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Abstract 
 

In this paper we develop a link cost function for data delivery in sensor network. Usually most 
conventional methods determine the optimal coefficients in the cost function without 
considering the surrounding environment of the node such as the wireless propagation 
environment or the topological environment. Due to this reason, there are limitations to 
improve the quality of data delivery such as data delivery ratio and delay of data delivery. To 
solve this problem, we derive a new cost function using the concept of Partially Connected 
Neural Network (PCNN) which is modeled according to the input types whether inputs are 
correlated or uncorrelated. The correlated inputs are connected to the hidden layer of the 
PCNN in a coupled fashion but the uncoupled inputs are in an uncoupled fashion. We also 
propose the training technique for finding an optimal weight vector in the link cost function. 
The link cost function is trained to the direction that the packet transmission success ratio of 
each node maximizes. In the experimental section, we show that our method outperforms 
other conventional methods in terms of the quality of data delivery and the energy efficiency. 
 
 
Keywords: Data forwarding method, link cost function, partially connected neural network, 
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1. Introduction 

Wireless sensor network (WSN) is a multi-hop wireless network whose main purpose is to 
deliver sensing data collected from multiple sensors to one or more data collecting devices (or 
sinks). Despite of the power and resource limitations, WSN has attracted the attention of many 
researchers in recent years [1]. WSN has a wide range of applications [2]. Especially, WSN is 
useful in continuous information acquisition in inaccessible or perilous areas. When a sensing 
area is far away from remote monitoring center, sensing data collected at sinks have to be 
delivered to remote monitoring center through an intermediate system.  

The issues on constructing WSN, such as the deployment of sensors/sinks and the data 
collection of sinks from sensors, are well addressed in the literatures of WSNs [3][4]. The 
distribution network is responsible for delivering gathered data from sinks to the remote 
monitoring center through an intermediate system, i.e., the gateway (GW) connected to an 
external network like the global Internet. To reduce the deployment and management cost of 
the distribution network, wireless multi-hop communication paradigm is often employed. 
Since the monitoring center is far away from sinks and it requires delivery of a large volume of 
information automatically and continuously, the distribution network needs to be designed 
soundly. The data delivery problem for the distribution network is one of the fundamental 
issues. Since the GW is connected to the monitoring center through a high-speed wired 
network, the data delivery between them is highly reliable. The problem of data delivery in the 
distribution network is the same as the problem of data collecting from sinks to the GW. The 
data forwarding technology  is  one of the solutions to the problem in an environment where a 
single GW gathers data from the static or mobile sinks sparsely populated . 

In general, data delivery in WSN is based on the premise that data from sensors to sink are 
loss- tolerant due to the sheer amount of correlated data [5]. However, in the distribution 
network, data delivery from sinks to the GW is sensitive to the data loss because the sink sends 
the aggregated data from a specific area to the GW. Besides, since the remote monitoring 
center takes actions based on the information provided by the distribution network, the 
aggregated data from sinks need to be promptly delivered to the monitoring center.  

To improve the quality of data delivery in terms of data loss and delay of data delivery in the 
distribution network, some researchers [6][7] have developed various methods. They model an 
optimal cost function using more than one input metric, to select next delivering neighbor 
node. The main drawback of their methods lies in determining the optimal coefficients in the 
cost function, without considering of the wireless propagation environment or the topological 
environment around the node. To avoid the drawback, we first derive a new cost function by 
modifying Neural Network (NN) concept [8] and then determine the optimal coefficients (or 
weights) in the cost function. Since the conventional NNs do not consider whether inputs are 
correlated or uncorrelated among them, their performances are limited. In the process of the 
derivation, the correlated inputs are connected to the hidden layer in a coupled fashion and the 
uncorrelated inputs in an uncoupled fashion. To determine the optimal weights, we train the 
cost function in the direction to maximize packet transmission success ratio (PTSR) of each 
node. Since each packet transmission or retransmission can increase a node’s energy  
consumption, we are able to reduce the energy consumed per packet delivery by maximizing 
PTSR. In the experimental section, we show the improvement on the quality of data delivery 
and energy efficiency of our method by comparing with other conventional methods. 
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This paper is organized as follows. Section 2 presents the data collection problem from 
sinks to a GW in WSN and explains drawbacks of related works. In addition, we explain a 
fundamental concept of Neural Network in Section 2. In Section 3, our link cost function using 
NN concept is derived in detail. In Section 4, the performance of the link cost function is 
evaluated from the NS-2 based simulation results, and finally we conclude in Section 5. 

2. Problem Statement  

2.1 Data Collection Problem  
The main research issues in WSN are data forwarding from sensors to sink and extension of 
the network lifetime. Literatures of the data forwarding can be classified into the mobile sink 
approach [9][10] and the relay node approach [11][12]. In the former approach, the mobile 
sink goes back and forth between sensors and a GW, to gather sensing data and to deliver the 
data to the GW. It takes time for the mobile sink to travel into a transmission range of the GW. 
In the meantime, the GW cannot collect the sensing data. Considering that sinks are sparsely 
populated even if sensors are densely deployed, the latter approach seems the most suitable 
solution for the data collection between sinks and the GW. Relay Node (RN) is supposed to 
only forward data from source to destination, not to generate or consume data. One of the 
important issues in the relay node approach lies in the optimal placement of RNs to guarantee 
data delivery. In data collection between sensors and a sink, the optimal place of each RN can 
be computed by considering locations of sensors and sink because information sources (i.e., 
sensors) are not mobile. In data collection between sinks and the GW, it is not possible to 
optimally locate RNs because it is difficult to predict the trajectory of mobile sinks and the 
number of sinks. From the rationale, we assume RNs are deployed randomly in the distribution 
network.  

Usually, the path management methods model a cost function using more than one input 
metric to improve their performance [13-20]. ETX (Expected Transmission Count) [13] finds 
high-throughput data delivery path using the delivery ratios of transmission successfully sent 
and received. ETX may decrease the energy consumed per packet as each transmission or 
retransmission may increase a node's energy consumption. ETT (Expected Transmission 
Time) and WCETT (Weighted Cumulative ETT) [14] consider metrics such as packet size or 
link bandwidth, as well as ETX. PRR-d (Packet Reception Rate-distance) [15] models a cost 
function using signal-to-noise ratio and frame length to improve the delivery rate and energy 
efficiency. In [16-20], the link cost is computed using the energy-based inputs such as network 
lifetime and remaining energy of a node. Even though the above methods use the input metrics 
reflecting environments around each node, the coefficients in the cost functions are unified for 
all nodes. Since the environments are different from each other, the performance is degraded 
when the unified coefficients are employed to determine the data delivery path.  

To obtain the customized coefficients for environments around each node instead of the 
unified coefficients, NN has been employed. SSR (Self-Selective Routing) [21] finds the next 
node with the smallest number of hops to the destination using the lecture hall algorithm 
originated in the field of NN. SSR uses the hop distance to select the next forwarding node as 
input metric and then estimates the hop distance from a node to the destination, using NN 
technique. From the above rationale, SSR  is a kind of the conventional method using hop 
distance in computing the cost function. In the experemental section, we will compare the 
performance of our method with that of SSR. 
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The quality of data delivery is affected by not only hop distance to the destination and 
remaining energy of nodes but also wireless channel condition and channel contention 
between nodes. However, most conventional methods determine the unified coefficients in the 
cost function without considering the surrounding environment of a node. To solve this 
problem, we derive a new cost function using the concept of NN to improve the quality of data 
delivery and the enery efficiency.  

2.2 Neural Network  
Neural Network (NN) is a system in which computational units analogous to the human brain 
are interconnected. Fully Connected Neural Network (FCNN) is a class of NNs whose 
structure has input, hidden, and output layers, as seen in Fig. 1-(a). They can be defined as 
neural networks with acyclic connections from the input layer to the output layer.  
For input-output mapping problems [22][23], FCNN has been commonly used as a matter of 
course, since it usually does not need a priori information about data.  

FCNNs work on complicated input-output mapping problems [24] even when data is 
corrupted; it has been proved that they can be applied to real applications [25][27].  
Nevertheless, we need to study them further because of their black-box learning style. A 
couple of concerns when FCNNs are used for mapping problems can be summarized as 
follows: 
 Difficulty in understanding input-output relationship: The black-box style 

learning models a system by adjusting internal weights without considering intrinsic 
relationship of input and output. Because of their learning style, it is difficult to 
understand an input-output relationship even though FCFNNs have been attractive 
for modeling a system when the input-output relationship is unknown due to the 
learning style.  

 Generalization: The performance of FCNNs for unseen data during training may not 
be as good as we expected because of their complexity.  

Noyes [28]  mentioned that the generalization ability is the most valuable feature of NNs so 
that many researchers and scientists have studied it. Noyes summarized the various 
approaches to improving the generalization of NNs. As one approach researchers have studied 
ways to simplify NNs, and it has been found that NNs with a simple structure perform than 
complicated ones in many cases. 
 

 
To improve performance, Partially Connected Neural Network (PCNN) has been tried. 

PCNN is defined as an NN in which there are missing connections of nodes between adjacent 
layers. Usually, PCNNs [29][30] have been used in special cases in which the relationship 
between input and output is known to some extent. For example, Y.Y. Chung et al. [29] 

               
 
(a) FCNN                                                                   (b) PCNN 

Fig. 1. Examples of FCNN and PCNN. 
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obtained a decision tree [31] by using the classifier program called C4.5 [32] in order to 
structure a PCNN by knowing the number of neurons and how the neurons are supposed to be 
connected within the PCNN. They obtained a better performance when a PCNN rather than an 
FCNN was used. 

In our previous work [33], we structured a PCNN according to the input types for generating 
outputs. To build PCNN, we need to correctly identify the input type of each input. For 
example, x1 is an uncoupled input, while other inputs are coupled inputs as seen in Fig. 1-(b). 
The identification of input type includes an analysis of input sensitivity changes. Here, the 
input sensitivity [34] can be defined as the quantitative or qualitative influence of outputs due 
to a variation in the inputs. If all inputs are coupled, an FCNN is a good choice. However, if 
there are uncoupled inputs, a PCNN can achieve better performance than  that of an FCNN. 

3. Link Cost Function using Partially Connected Neural Network  
Since the packet loss probability in wireless multi-hop communication environment 
increases with the number of hops [35], we choose the hop distance from an RN to the 
GW as one of the metrics for path management. The GW periodically floods a probe 
message over the entire network so that each RN can infer the hop distance from itself to 
the GW through each of its neighbor RNs. Since the topology of the distribution network 
is static in terms of hop distance, flooding interval of a probe message is set to be large. 
The overhead of its periodic flooding is negligible. It is well known that packet loss is due 
to either collision or weak signal [36]. Each RN periodically sends a HELLO message to 
its neighbor RNs as its heartbeat. By exchanging HELLO messages among RNs, each RN 
measures Received Signal Strength (RSS) and HELLO Message Reception Ratio 
(HMRR) of its neighbor RNs. HMRR represents the ratio of the number of HELLO 
message received from a neighbor RN to the number of the Hello message sent by the RN. 
HMRR reflects the impact of channel contention from neighbor RNs. Suppose that each 
RN sends a HELLO message for every 100 milliseconds. A RN measures HMRR for each 
neighbor RN every one second, e.g., 6/10 for one neighbor RN, 9/10 for the other 
neighbor RN. The measured RSS and HMRR are normalized using the maximum value of 
the measured RSSs or HMRRs for one second in order to scale down into one. The 
inferred hop distance is also normalized using the network diameter. Using the 
normalized RSSs, HMRRs, and hop distances for neighbor RNs, the link cost function 
calculates link costs for neighbor RNs and the RN with maximum link cost is selected as 
the next data forwarding RN (i.e., next-hop RN).   

When a mobile sink enters to or a static sink is powered on in the service area of an RN 
and the sink sends the aggregated data to the RN, a path setup from the RN to the GW 
needs to deliver the data from the sink to the GW. Since more than one RN may be in a 
transmission range of a sink, the sink needs to selects its next-hop RN on the path from the 
sink to the GW. The sink sends a request message to its neighbor RNs by one-hop flooding. 
Then, the RN receives the request message and it sends a response message having the 
maximum link cost among its neighbor RNs. When the sink receives the response 
messages, the sink selects the RN with the largest link cost as its next-hop RN and it sends 
a confirmation message to the selected RN. After being selected, the next-hop RN selects 
its next-hop RN and forwards data received from the sink to its next-hop RN.  It is 
repeated until the data is delivered to the GW.  

To improve the quality of data delivery in terms of data loss and delay of data delivery, it 
is important to determine an optimal link cost function to select the next-hop RN. We 
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define the optimal cost function as maximizing PTSR for each node. In this subsection, 
we derive the link cost function to determine the next-hop RN out of neighbor RNs by 
exploring the NN modeling philosophy. 

3.1 Derivation of Link Cost Function  
The link cost function depends on the input features based on the characteristics of 
wireless propagation, channel contention, and topological environment surrounding an 
RN such as RSS denoted as x1, HMRR denoted as x2, and the hop distance denoted as x3. 
In this paper, input and input feature are exchangeable. Also, we generalize the number of 
inputs during derivation of the cost function because the number of inputs is varied 
according to applications.  

The link cost function can be characterized as a nonlinear function of a weighted sum of 
the inputs as seen in Eq. (1). In general, each weight value is determined by the 
importance of the corresponding input. 
                                                       ),( T

ii WXfCost ⋅=                                                      (1) 
where Costi is the link cost of the ith neighbor RN out of N neighbor RNs and f is a 
nonlinear function. Xi is the input vector collected from the ith neighbor RN, composed of 
[xi,1,xi,2,…,xi,n] (n is the number of inputs) and W is the corresponding weight vector 
composed of [w1,w2,…,wn]. Also, T is the notation of vector transpose. For fair 
comparison in the function, we normalize each input into the range in [0, 1] using min. 
and max. value of each input samples. Eq. (1) can be represented in a two layered NN in 
which the input layer consisted of input features and the output layer with the activation 
function f as seen in Fig. 2.   
 

 
As in Fig. 2, we employ log function as the nonlinear function f because of its promising 

characteristic. By using log function as in Eq.(2), many natural processes have a history 
dependent progression in which it begins small and accelerates to some point and then 
approaches to a saturation point over input features.  
                                                 ),WXlog(Cost T

ii ⋅=                                                        (2) 
Now, let's discuss about the connectivity of the inputs in the network. In Fig. 2, all inputs 

are fully connected to the function. It is just like black-box style connection which is 
commonly used in NN. However, we intuitively know that some inputs are highly 
correlated to generate the output of the cost function. For instance, the higher RSS 
becomes, the smaller the degree of affection by the slow fading and the fast fading 
becomes [37]. In other words, if an RN has high RSS(x1) value then it is highly possible to 
have high HMRR(x2). To take this into the consideration, we connect the inputs in the 
coupled and uncouple connection style according to whether inputs are correlated or 

 
Fig. 2. Link cost function represented in a two-layered neural network. 
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uncorrelated to the hidden layer which is the output layer in Fig. 2, as seen in Fig. 3. There 
is no weight on the connections between the hidden layer and the output layer. For 
instance, the connection of x1 and x2 is coupled and that of x3 is uncoupled in the PCNN. 

 

 
From Fig. 3, our derived cost function can be formularized as Eq. (3). 

                          ,)wxlog()WXlog(Cost
k

T
k,ik,u,ij

T
j,cj,c,ii ∑∑ ⋅+⋅=                                   (3) 

where Xi,c,j and xi,u,k are the jth coupled(c) input vector set and the kth uncoupled(u) input 
collected from the ith neighbor RN respectively. Wc,j and wi,k are the corresponding weight 
vector set and weight respectively. For instance, in our inputs, we have one coupled input 
vector set, [xi,1, xi,2] and only one uncoupled input xi,3. From Eq. (3), the optimal 
performance of the cost function depends on the proper weight vector.   

3.2 Adaptation of Weights 
To find an optimal weight vector, we imitate the training process of finding the optimal 
weights in the link cost function. Each weight in the cost function means the importance of 
each input for producing the cost function. Thus, each weight can be obtained by weight 
sensitivity with respect to the cost value. The weights are adapted  to the direction in which the 
mean error between target PTSRs and estimated PTSRs of RNs is minimized.  Here, the target 
PTSR means the ratio of the number of training packets transmitted successfully to the RN 
with the total number of training packets sent to the RN. Suppose that a RN sends five training 
packets for every 100 milliseconds. The RN received the training packets notifies the sending 
RN of a list of the received training packets using HELLO message. The sending RN receives 
HELLO message and measures the PTSR. And the estimated PTSR is the output of the cost 
function. Based on the NN training process with the rationale, the cost function is trained with 
the following steps:  

i. Set to 1s' to each weight as an initial weight vector and we call it old weight vector 
denoted as Wold = {w1,old, w2,old, .., wn,old}, where n is the number of inputs. 

ii. Estimate PTSR for each RN which is the output of the cost function in Eq. (3). 
iii. Calculate mean square error between target PTSRs and estimated PTSRs of neighbor 

RNs as seen in Eq. (4). 

 
Fig. 3. Link cost function represented in PCNN. 
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where iPTSR  and oldWiPTSR ,  are target PTSR and estimated PTSR using Wold of 
neighbor RN i respectively. The N is the number of neighbor RNs. 

iv. Change each weight using the delta rule [8] with learning ratio η as in Eq. (5).  

      .,...,2,1,
,

,, nk
w
E

WW
oldk

W
oldknewk

old =
∂

∂
⋅+← η                                   (5) 

v. We can obtain new weight vector denoted as Wnew = {w1,new, w2,new, .., wn,new} and 
calculate mean square error, denoted as , between target PTSRs and estimated 
PTSRs using Wnew. 

vi. Update newold WW ← if. 
oldnew WW EE < . 

vii. Repeat the steps from ii to vi until
oldnew WW EE ≥ .  

During the training process, it is challenging to determine an optimal learning ratio. If we 
choose too large value of η, it causes high convergence speed but it has high possibility of 
missing the optimal weight values. Too small value of η is vice versa of too large value of η 
where convergence speed is too small but low possibility of missing the optimal weight 
values. We determine the learning ratio from exhaustive empirical experiment in the next 
section. 

3.3 Compensation of Measurement Errors 
One thing not to be overlooked is that the link cost function can be distorted for the case when 
metrics such as RSS, HMRR, hop distance, and PTSR are corrupted by environmental factors 
during the training process. The quality of data delivery degrades as the errors in the link cost 
function with the corrupted metrics increases. For example, RSS corrupted with interference 
or obstacle will likely produce a high RSS value during training the link cost function. In this 
case, the RN associated with that RSS could be chosen as the next-hop RN which may not be 
the optimal solution. To handle the problem, we employ the compensation methods such as the 
weighted moving average and autoregressive (AR). The weighted moving average process is 
usually employed to filter out the RSS measurement uncertainty and obtains the low frequency 
components of the measured RSS as seen Eq. (6). 
                                        ),()1()1()( nRnRnR αα +−−=                          (6) 
where )n(R is the nth measured RSS value, )(nR is the average RSS value after the nth 
measurement, and α is the smoothing factor. The )(nR  becomes smoother as α  gets smaller. 
We filter out the measurement error by Eq. (6) with 01.0=α as in [38]. 
HMRR and PTSR depend on channel contention between nodes and fluctuate dynamically in 
time. We employ an adaptive autoregressive process as a statistical compensation method. The 
measured value in a time window can be represented by the AR(p) model. Let 

)M(tttt z,,z,z,z 121 −−−−   denote the measured value at time t, t-T, t-2T, …, t-(M-1)T, where T is 
the measurement interval and M is the number of measurements in a time window. By the 
AR(p), the current value can be expressed as a linear aggregate of the previous values and 
uncorrelated normal noise with mean zero and variance 2

aσ . Let µ denote the average value in 
a time window. Defining µ−= tt zz~ , we have  

                                   ,2211
~~~~

tptpttt azzzz ++++= −−− φφφ                                      (7) 

where iφ s (i=1,2,…,p) are model parameters. If we define an autoregressive operator of order 
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p by p
pBBB)B( φφφφ −−−−= 2

111 , where B is the backward shift operator defined by 

1−= tt zBz (hence, mtt
m zzB −= ), the AR model is written economically as  

                                                               .~)( tt azB =φ                                                          (8) 
By Yule-Walker equations, iφ s can be obtained in terms of the autocorrelations of tz~ 's [39]. 
That is, if we write 
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where iρ  is the large lag-i autocorrelation of tz~ . The parameters φ can be obtained by solving 
the following linear operations 

                                                                    .1
ppP ρφ −=                                                     (10) 

From Eq. (7), the variance of ta  is given by  

                                                     ),1](~[
1

22 ∑ =
−=

p
i iita pzE φσ

 
                                       (11) 

where ]~[ 2
tzE is the expectation of 2~

tz . For example, in case of AR(1) process, the model 
parameter and the variance of ta  are given as 11 ρφ = , and )1](~[ 11

22 φρσ −= ta zE . By the 
time-series theory, in the sense of the minimum mean square error, the optimal k-step ahead 
predictor of ktz +

~ is given by the conditional expectation, ],~,~|~[ˆ 1 −++ = ttktkt zzzEz . 
Therefore, the k-step ahead prediction at time t is give by   
                                                                ,ˆ kkt ez ++ +µ                                                     (12) 

where ke is the k-step ahead prediction error. In this paper, we compensate the measurement 
errors in HMRR and PTSR using 1-step ahead prediction method. 

4. Performance Evaluation 
We perform experiments for our method using the NS-2 [40] simulator. We use the log-normal 
shadowing model [41] to model radio propagation environment. The path loss exponent 
ranges from 2 to 8 for a large-scale outdoor environment. An RN sends a HELLO message for 
every 100 milliseconds. A training packet to measure PTSR is sent every 100 milliseconds. 
IEEE 802.11 [42] is used as the MAC layer and the transmission range of a node is 250m. The 
total simulation time is 360 sec.  

4.1 Validation of Input Types 
Before we model the link cost function using three inputs as mentioned in the previous section, 
we validate whether RSS and HMRR are correlated, using the input sensitivity explained in 
the our previous work [33]. The validation algorithm is summarized as follows. 

i. Train an NN with the inputs, and calculate the cost function for each node. 
ii. Vary one input at one time by adding small random value ranging from 0.01 to 0.1. 

iii. Calculate the cost function using the varied input obtained in ii. 
iv. Obtain the input sensitivity of each input, which is the mean difference between the 
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costs obtained from i and iii. 
As seen in Table 1, when we vary input x1(RSS), the input sensitivity of x1 is 0.45 and that 

of x2(HMRR) is 0.36 while that of x3(hop distance) is 0.09. Also, when varying input x2,  we 
obtain similar result with when varying input x1. However, when input x3 is varied, only x3 has 
large sensitivity compared to x1 and x2. From the results, we validate x1 and x2 are correlated, 
and x3 is uncorrelated. Based on the identified input types, we can model our link cost function 
as in Eq.(13). 

                                             ),log()log( 3,3, i
T
Ccii xwWXCost ⋅+⋅=                                   (13) 

where Xi,c is the coupled input vector collected from the ith neighbor RN, composed of [xi,1, 
xi,2] and Wc is the corresponding weight vector composed of [w1, w2].  

Table 1. The result of the input sensitivities. 
Varied input Input sensitivity of x1 Input sensitivity of x2 Input sensitivity of x3 

x1 0.45 0.36 0.09 
x2 0.31 0.40 0.06 
x3 0.14 0.13 0.34 

 
To determine the optimal learning ratio (η ) as explained in the previous section, we train 

the NNs repeatedly as varying the value of η by 0.1 increment in a single-hop transmission 
environment. We compare the performances of our method with those of NN method (Fully 
Connected NN, FCNN). For the construction of the single-hop distribution network, 20 RNs 
are randomly placed in the 500m ×  500m area. From experimental results, we can infer that 
PTSR decreases asη  increases. For η = 0.3, PTSRs of PCNN and FCNN are the best, i.e., 
0.979 and 0.792 respectively. The training process takes about 5-10 seconds by varying the 
learning ratio. The training time includes the packet transmission delay and CPU processing 
time. As seen in Eq. (13), the link cost function operates in constant time O(1) and repeats 

η/n 1×  times. Thus, CPU processing time depends on the number of inputs, n. In this case n is 
only three, which is very small compared to other NN applications with tens or hundreds of 
inputs. The CPU processing time for training the link cost function is very small which is 
negligible in our application. Therefore, the convergence speed is not issued in this experiment. 
Hereafter, using η = 0.3, we compare the performance of the three methods by varying the 
input values.  

 4.2 Quality of Data Delivery 
In this subsection, we evaluate the performance of our link cost function in terms of the 
following factors: 
 Data delivery ratio- the ratio of the number of data packet successfully received at 

the GW to the total number of data packets sent by sinks. 
 End to end delay- the time to deliver data from a sink to the GW. 
 Energy efficiency- the number of packets delivered to the GW for each unit of 

energy spent by the network 
Our experiment is performed for the distribution network with randomly deployed 120 

RNs and 20 sinks in the 1000m ×  1000m area. The number of the mobile sinks is set to 
20% of the number of sinks and the mobility model of the mobile sink is set to random 
waypoint [43]. The sink sends one data message every second at constant bit rate (CBR).  
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Fig. 4 and Fig. 5 show the data delivery ratio between a sink and the GW. The data 

delivery ratio is mostly affected by the signal strength and the degree of collision. In the 
figures, PCNN-comp and PCNN represent PCNN using and not using our compensation 
method for the measurement errors. SSR [21] is one of the conventional methods using x3. 
The results indicate that methods using the NNs deliver more data than the conventional 
methods by 47% and 42% as varying σ1 and σ2. The link cost function using the PCNN 
improves the performance by about 21% and 23%, compared to that using the FCNN. It is 
because our link cost function considers various input metrics affecting the data delivery 
ratio and correlation between the inputs to obtain the cost function for determining the 
next-hop RN. In addition, the error compensation method improves the data delivery ratio 
of our link cost function by about 6%. 

Fig. 6 and Fig. 7 show the average delay of data delivery from a sink to the GW. The 
end to end delay is mainly affected by the link-layer retransmission of a data packet and 
the number of hops between a sink and the GW. As the probability of collision increases, 
the probability of retransmission increases. As seen in the figures, the link cost functions 
using the NNs show shorter end to end delay than the conventional method by about 38% 
and 33% respectively. It is because our link cost function considers HMRR reflecting the 
degree of collision in our link cost function for determining the next-hop RN. Besides, the 

 
Fig. 5. Data delivery ratio with varying HMRR using Gaussian distribution with N(0, σ2). 

 
Fig. 4. Data delivery ratio with varying RSS by adding log normal random fading with N(0, σ1). 
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link cost function using the PCNN improves the delay by about 16% and 12%, compared 
to those using the FCNN with varying σ1 and σ2. The error compensation method 
improves the end to end delay of our link cost function by about 4%.  
 

 

 
Energy efficiency(ξ ) is calculated as seen in Eq. (14). The energy efficiency means the 

number of packets delivered to the GW for each unit of energy spent by the network in 
communication events.  

                                   ,
te
rp

total

src =ξ                                                         (14) 

where r and t are delivery rate and total number of transmissions, respectively. totale  is the total 
amount of energy consumed by the network for each packet and it is obtained from 

rxtxtotal eee +=  where txe  and rxe  are the amount of energy required by a node to transmit and 
to receive a packet, respectively. srcp is the number of packets sent by the data source. Fig. 8 
and Fig. 9 show energy efficiencies in the environment varying RSS and HMRR. The link cost 
function using the PCNN improves the energy efficiency about 10% and 47%, compared to 
those using the FCNN and conventional methods. It is because our link cost function is 

 
Fig. 7. End to end delay with varying HMRR using Gaussian distribution with N(0, σ2). 

 
Fig. 6. End to end delay with varying RSS by adding log normal random fading with N(0, σ1). 
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designed to improve the packet delivery ratio and it reduces the energy consumed per packet 
delivery.  
 

 

 
From the above results, we conclude that the data forwarding method using our link 

cost function improves the energy efficiency and quality of data delivery in terms of data 
delivery ratio and end to end delay. The distribution system adopting our method can 
deliver aggregated data from a sink to the GW reliably and promptly.  

5. Conclusion 
We developed the link cost function for the path management method in WSN. The 
contributions of this paper are stated as follows: 

We designed the data forwarding method to deliver data from a sink to the GW. 
We derived the cost function using the concept of PCNN structured by the input types 

(correlated input type and uncorrelated input type). The input types can be identified using the 
input sensitivity as shown in the experimental section.  

We developed the training technique for finding optimal weights in the link cost function. 

 
Fig. 9. Energy efficiency with varying HMRR using Gaussian distribution with N(0, σ2). 

 
Fig. 8. Energy efficiency with varying RSS by adding log normal random fading with N(0, σ1). 
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We showed the feasibility of our method from comparison of our method with the other 
conventional methods. From the comparison, we can conclude that the performance of our 
method is better than those of the conventional methods with perspective of the quality of data 
delivery and energy efficiency.  

In our link cost function, we extracted three input features to customize for the distribution 
network in WSN, and improved the quality of data delivery and energy efficiency with the 
inputs.  

There are two approaches for efficient data delivery; one is power control and the other is 
the link cost function. In this paper, we focus on the development of link cost function to solve 
the data delivery problem. Since the power control approach can be one of solutions to solve 
the problem, we will consider the approach as another research direction. Also, we need to 
extract more input features to meet the requirements and characteristics of applications and 
systems such as ITS (Intelligent Transportation System) and wireless mesh network.  
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