
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 379

Copyright ⓒ 2012 KSII

DOI: 10.3837/tiis.2012.01.021

myEvalSVC: an Integrated Simulation
Framework for Evaluation of H.264/SVC

Transmission

Chih-Heng Ke
Department of Computer Science and Information Engineering, National Quemoy University

Kinmen, Taiwan

[e-mail: smallko@gmail.com]

*Corresponding author: Chih-Heng Ke

Received October 6, 2011; revised December 26, 2011; accepted January 8, 2012;

Published January 31, 2012

Abstract

The ever-increasing demand for H.264 scalable video coding (H.264/SVC) distribution

motivates researchers to devise ways to enhance the quality of video delivered on the Internet.

Furthermore, researchers and practitioners in general depend on computer simulators to

analyze or evaluate their designed network architecture or proposed protocols. Therefore, a

complete toolset, which is called myEvalSVC, for evaluating the delivered quality of

H.264/SVC transmissions in a simulated environment is proposed to help the network and

video coding research communities. The toolset is based on the H.264 Scalable Video coding

streaming Evaluation Framework (SVEF) and extended to connect to the NS2 simulator. With

this combination, people who work on video coding can simulate the effects of a more realistic

network on video sequences resulting from their coding schemes, while people who work on

network technology can evaluate the impact of real video streams on the proposed network

architecture or protocols. To demonstrate the usefulness of the proposed new toolset,

examples of H.264/SVC transmissions over 802.11 and 802.11e are provided.

Keywords: H.264/SVC, SVEF, NS2, myEvalSVC, network simulation

380 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

1. Introduction

H.264/MPEG10 or advanced video coding (AVC) [1][2] is an industrial video compression

standard, which converts digital video into a format that consumes less capacity for storage or

transmission [3][4][5]. Video recording, video playback, video surveillance, and video

conferencing are common examples of applications of H.264/AVC technology. However, the

limitation of scalability restricts the ability of H.264/AVC to meet different needs of different

users with different displays connected through different network links. Therefore, H.264

scalable video coding (H.264/SVC) [6] was proposed to overcome the limitation. Spatial

scalability, temporal scalability, and signal-noise-ratio (SNR) scalability are three important

features of the H.264/SVC standard. Spatial scalability can provide the standard with the

ability to adapt to the video’s spatial resolution. Temporal scalability enables adaptation to the

frame rate, and SNR scalability enables adaptation to the video quality.

SVC contains one base layer and one or more enhancement layers. The base layer provides

the basic quality of video. Moreover, in order to be backward compatible, the base layer must

be recognized by all conventional H.264 decoders. Adding the enhancement layer to the base

layer increases the video quality. On the other hand, when the available bandwidth is

insufficient, dropping one or more enhancement layers, partially or completely, is an easy way

to avoid run-time video transcoding.

For delivering better H.264 video quality, researchers or practitioners usually need an

experimental environment to test their ideas. Traditionally, they implement the video server,

set up the network, and build the video client. Then, they use the H.264 video traffic to

transmit over the testbed and measure the results [7][8]. These steps are time consuming and

expensive. Furthermore, if one interesting result is obtained, it is not easy to repeat the

experiment to find the factors that make the interesting result to appear again. A

simulation-based method is another way to test an idea. References [9][10][11][12] provide

examples that use simulations to carry out the evaluations. However, almost none of these

works provide their evaluation framework in the public domain.

To the best of my knowledge, EvalSVC [13] is the only publicly available toolset to

perform quality evaluation of delivered H.264/SVC video in a network simulation

environment. However, EvalSVC does not clearly indicate how it handles missing or

corrupted Network Abstraction Layer Unit (NALU) losses and how it handles play-out delay

constraints. The current Joint Scalable Video Model (JSVM) codec (version 9.19), which is

the existing reference open source software for H.264/SVC coding and decoding, cannot

decode properly in these situations. In addition, EvalSVC does not provide any simulation

example and explanation on how to use it. For providing a more realistic simulation

environment, an H.264/SVC transmission evaluation framework, which is called myEvalSVC,

is proposed in this paper. This framework integrates the H.264 Scalable Video coding

streaming Evaluation Framework (SVEF) [14][15] with the NS2 [16], which is a widely

adopted network simulator. By using this combination, people who work on video coding can

simulate the effects of a more realistic network on video sequences resulting from their coding

schemes, while people who work on network technology can evaluate the impact of real video

streams on the proposed network architecture or protocols. In fact, it is very difficult for

beginners to set up the whole simulation environment. Microsoft Visual C++ [17] is needed to

build the JSVM; Python [18], to run the SVEF; and Cygwin [19], to build NS2. Based on the

virtual machine technology, a VirtualBox [20] guest operating system image is available at

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 381

[21]. Beginners just need to download the image and install VirtualBox software. They can

start using myEvalSVC immediately. In [21], examples of H.264/SVC transmission over

802.11 and 802.11e are provided. A user can start by encoding the raw video, parse the

compressed video content, send the corresponding packets at the assigned time, and then

perform delivered video quality evaluation after simulations. In [22], a sender transmits one

base layer and two enhancement layers of packets to three receivers. One receiver receives all

three layers of packets, another receives one base layer and one enhancement layer of packets,

and the other only receives the base layer of packets. This example shows the benefits of

multicasting H.264/SVC to users with different needs. All steps are well explained and

illustrated to make it easy for beginners to start using myEvalSVC. Moreover, the concept to

combine SVEF with different network simulators is also presented at [21]. It will help the

potential users in handling similar integration tasks.

The remainder of this paper is organized as follows. Section 2 provides an overview of video

coding, an evaluation of video transmission methods, and a description of the SVEF. Section 3

describes the proposed myEvalSVC evaluation framework. Examples of usage of the

framework in IEEE 802.11 and 802.11e wireless networks are given in section 4. Finally,

section 5 presents the concluding remarks.

2. Background and Related Work

2.1 Overview of VIdeo Coding

Non-scalable video coding: There are three basic types for Moving Picture Experts Group

(MPEG) video frames: (1) I-frame, or intra-coded frame, where the frame is encoded

independently of other frames and decoded by itself, (2) P-frame, or predictive-frame, where

the frame is encoded using predictions from a preceding I- or P-frame in the video sequence,

and (3) B-frame, or bi-directionally predictive-coded frame, where the frame is encoded using

predictions from preceding and succeeding I- or P-frames.

Generally, the entire video sequence can be decomposed into smaller units, which are then

coded together, called the Group of Pictures (GOP). A GOP pattern is characterized by two

parameters, G (N, M): N is the I-to-I frame distance and M is the I-to-P frame distance. For

example, as shown in Fig. 1, G (9, 3) means that the GOP includes one I-frame, two P-frames,

and six B-frames. The second I-frame shown in Fig. 1 indicates the beginning of the next GOP.

The arrows indicate that the B-frames and P-frames decoded are dependent on the preceding

or succeeding I- or P-frames.

I BB P BB P BB

GOP

I

Fig. 1. An example of MPEG coding with GOP (N = 9, M = 3)

Scalable video coding (SVC): In scalable or layered video coding, the video is encoded

382 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

hierarchically into a base layer and one or more enhancement layers. Decoding the base layer

offers low but standard video quality, while decoding the base layer together with additional

enhancement layers provides further refinement of the video quality. There are different forms

of scalability, including temporal, spatial, and SNR scalability.

Fig. 2 shows an example of the temporal scalable encoding. The I- and P-frames form the

base layer, and the B-frames form the enhancement layer. The base layer provides the basic

video quality with a lower frame rate. Adding the enhancement layer to the base layer

increases the smoothness of the video quality.

H.264/SVC is a scalable extension of H.264/AVC. It is a current standardization of the Joint

Video Team (JVT). An encoded SVC bitstream consists of an H.264/AVC-compatible base

layer and one or more scalable enhancement layers. Conceptually, the design of H.264/AVC

covers a Video Coding Layer (VCL) and a Network Abstraction Layer (NAL). While the VCL

creates a coded representation of the source content, the NAL formats these data and provides

the header information in a way that enables simple and effective customization of the use of

VCL data for a wide variety of systems.

I

BB

P

BB

P

Enhancement

Layer

Base Layer

BB

P

Fig. 2. An example of temporal video coding

Multiple description video coding: Multiple description coding (MDC) [23] arose in

connection with communicating speech over the telephone network. The idea was to split the

information from a call into two parts that are sent on two different paths. In normal operation,

two parts are received and combined for usual voice quality. However, an outage of one link or

other can still be accommodated by reducing the voice quality. This idea of channel splitting

inspired the so-called multiple description video coding.

In multiple description video coding, the video signal is split into multiple sub-streams,

where each of the sub-streams is decodable in a stand-alone fashion. The more sub-streams are

received; the more information of the original source can be restored. Note that these

properties are in contrast to the scalable or layered video coding schemes, in which the

enhancement layer(s) would become useless for the receiver if the base layer is lost.

2.2 Evaluation of Video Transmission

Generally, there are three different ways to evaluate video transmission.

Using real bit streams: This method uses the actual output of video encoding for video

transmission evaluation. RealTracer [24], a set of tools for measuring the performance of

RealVideo, is an example. It includes RealTracker, a customized video player that can play

streaming RealVideo clips and record system performance statistics and user ratings, along

with RealData, a data analysis tool that helps manage, parse, and analyze statistical data

captured by RealTracker. One advantage of this kind of method is that it allows the quality of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 383

the video to be visually evaluated. The network level metrics, such as bandwidth usage,

frame-rate, jitter etc, can also be obtained. However, this kind of tool focuses mainly on real

networks. This may prevent networking people from evaluating their proposed protocols in a

timely manner, because they commonly use simulation tools to verify the effectiveness of their

designs before deploying the protocols in real networks. In order to solve the above-mentioned

problem, an evaluation framework, which is called myEvalvid, was proposed for more

realistic simulations of MPEG video transmission [25][26]. myEvalvid, which combines

Evalvid [27] and NS2, allows researchers and practitioners analyze the performance of real

video streams through simulations under a large range of network scenarios. However, the

myEvalvid only supports not scalable video coding. Besides, the user needs to install NS2

simulators first, and then follow the instructions provided in [26] to manually setup related

files in NS2. This is not an easy task, especially for NS2 beginners. As a consequence,

myEvalSVC is provided in VirtualBox operating system image. Users can be quickly familiar

with this integrated evaluation framework by running examples and then start their own

research work. Furthermore, myEvalSVC not only supports non-scalable video coding but

also scalable video coding.

Using traffic traces: The video traffic trace is an abstraction of real video stream. It

typically gives the frame number, frame type, and frame size in a text file to describe the

characteristics of real video traffic. Reference [28] indicates a good website that provides

many kinds of video traffic traces, such as H.264, MPEG, or MDC traces. The advantage of

using traffic traces is that one does not need to be concerned about copyright issues, because

they do not contain the actual video information. Nevertheless, for a simulation study, usually

only network level metrics can be obtained. In the case of evaluating video transmission,

network level metrics may be insufficient to rate the quality perceived by an end user. Take the

loss rate as an example: relatively low loss rates do not necessarily mean good delivered video

quality. A 3% packet loss percentage could translate into a 30% frame error probability.

Modern video codecs are hierarchical, so the loss of the I-frame would cause other frames in

the same GOP become useless. Furthermore, it is hard to study the effects of proposed network

mechanisms on different characteristics of the same video extensively, because the encoding

settings for the publicly available video traffic traces are limited.

Using video traffic models: A video model captures the properties of real video bit streams

in a mathematical way. This method is typically developed based on the statistical properties

of a set of video trace samples of real video traffic. Transform Expand Sample (TES) [29] is an

example of this kind of methodology for generating data that closely match (in terms of its

marginal distribution and auto-correlation function) any set of given observation of a time

series. The developed model can be used for the mathematical analysis of networks, but it

lacks the possibility of visualizing a transmitted video.

2.3 The SVEF Evaluation Framework

The structure of the SVEF evaluation framework is shown in Fig. 3, redrawn from [9]. The

main components of the evaluation framework are described as follows:

Raw YUV video: This is the video source file. These files are commonly in the YUV 4CIF

(704 × 576), YUV CIF (352 × 288), or QCIF (176 × 144) formats.

JSVM Encoder: The encoding process is based on configuration files. Users can enable

spatial scalability, temporal scalability, SNR scalability, or combined scalability. Table 1

shows an example of encoding process. The second field shows the frame number and frame

type. The third field is in temporal_id (TId), dependency_id (DId), and quality_id (QId)

format. DId allows spatial scalability, TId denotes the temporal scalability, and QId represents

384 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

the quality scalability. For the current version 1.4, the SVEF does not take the spatial

scalability into consideration, and only supports SVC with a single dependency layer and an

arbitrary number of quality enhancement layers. Therefore, with the same value for the DId

and TId parameters, a NALU having “qid (the value of QId) > 0” depends on NALUs having

“qid－1”. With the same value for the DId and QId, a NALU having “tid (the value of TId) >

0” and “qid=0” depends on NALUs having “tid－1”. The remaining fields indicate the

quantization parameter, Y-PSNR, U-PSNR, V-PSNR, and encoded frame size. The Peak

Signal Noise Ratio (PSNR) can be calculated for both luminance (Y-PSNR) and chrominance

(U-PSNR and V-PSNR) components of the video. Since the human eye is more sensitive to

luminance (brightness) than chrominance (colour), the PSNR is typically evaluted only for the

luminace (Y) component. The following equation shows the definition of the PSNR between

the luminance component Y of source image and destination image D:

PSNR(n)dB = 20 log10























 
2

col
N

0=i

row
N

0j=
DS

rowcol

peak

]j)i,(n,Yj)i,(n,[Y
NN

1

V
 (1)

where Vpeak = 2
k
-1 and k = number of bits per pixel. Ncol presents the number of columns, while

Nrow is the number of rows in an image. PSNR measures the error between a reconstructed

image and the original one. A larger PSNR value corresponds to a better image quality. For

more detailed information, please refer to the JSVM Software Manual [30].

Table 1. Example of encoding process

AU 0: I T0 L0 Q0 QP 29 Y 37.2503 U 40.7950 V 43.6207 51944 bit

AU 4: I T0 L0 Q0 QP 29 Y 37.2076 U 40.8874 V 43.6978 52992 bit

AU 2: B T1 L0 Q0 QP 33 Y 36.4711 U 40.7747 V 43.6246 5888 bit

AU 1: B T2 L0 Q0 QP 34 Y 36.5085 U 40.7194 V 43.5171 2656 bit

……………………………………………………………………………………

JSVM BitStreamExtractor: After encoding, a H.264 video file is generated. This video file

is then fed into BitStreamExtractor to produce the original Network Abstraction Layer Unit

(NALU) trace file. However, this trace file does not contain frame number information. So this

trace file is processed by an F-N Stamp to generate a NALU trace with frame number

information in it. In Table 2, the meanings of all fields are as follows: memory offset,

NALU-size, DId, TId, UId, Type, Discardable, Truncatable, Frame-number, and

Frame-sending time or Frame-receiving time.

Table 2. Example of the original NALU Trace

0x00000000 97 0 0 0 StreamHeader No No -1 0

0x00000061 13 0 0 0 ParameterSet No No -1 0

0x0000006e 8 0 0 0 ParameterSet No No -1 0

0x00000076 18 0 0 0 SliceData No No 0 0

0x00000088 6484 0 0 0 SliceData No No 0 0

……………………………………………………………………………………

Streamer: The streamer reads the original NALU trace file, loads the data from H.264 file,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 385

and then sends the NALUs over the IP network. The sent out packets consists of an IP header,

UDP header, custom layer-5 header, and then payload. If a packet is too large and exceeds the

fragmentation limit, the SVC will let the IP layer to do IP fragmentation/reassembly jobs.

MiddleBox: This component is optional. The creators of the SVEF use this MiddleBox as an

example to do packet scheduling. When the available bandwidth is less than the sending rate,

MiddleBox will decide which packets can send out and which packets cannot in accordance

with the DId, TId, and QId fields in the packet header.

The Receiver-side Tools (NALU-Receiver, NALU-Filter, and Frame-Filler): In the

receiver side, the NALU-Receiver is used to receive packets, and builds a received NALU

trace file at the same time. The file format is the same as in Table 2, but the last field is

recorded as frame-receiving time. Next, the received NALU trace file is processed by the

NALU-Filter. This filter reorders the NALUs in accordance with the sending order, and

removes NALUs that are too late or the NALUs with unfulfilled decoding dependencies. Then,

the filtered NALU trace file is passed to JSVM BitStreamExtractor to retrieve the NALUs that

are effectively decoded at the receiving side, and then decodes them into YUV video. It is

worth noting that JSVM decoder does not directly decode the received NALUs. This is

because the JSVM decoder cannot handle out-of-order, corrupted, or missing NALUs properly.

In the final step, in order to compare the PSNR values, the same number of frames with the

original raw YUV video is needed. Therefore, Frame-Filler is used to conceal the missing

frames by copying the previous frame.

JSVM

Encoder

original

H.264

video

JSVM

BitStreamExtractor

F-N

Stamp

original

NALU

trace

STREAMER MiddleBox
NALU

Reciiver

receivedl

NALU

trace

NALU

FILTER

Filtered

NALU

Trace

JSVM

BitStreamExtractor

Filtered

H.264

video

JSVM

Decoder

Filtered

YUV

video

FRAME

FILLER

Final

YUV

video

Raw

YUV

video

Fig. 3. SVEF software chain

3. The myEvalSVC Evaluation Framework

Fig. 4 shows the myEvalSVC evaluation framework. It is mainly based on the SVEF

evaluation, and extended by three trace file converting programs (prepare_ns2sendtrace,

prepare_receivedtrace1, and prepare_receivedtrace2), two network-level performance

evaluation tools (Pe2edelay and PLossRate), and three connecting NS2 agents (myEvalSVC,

MyUDP, and myEvalSVC_Sink).

After encoding the raw YUV video and content analysis, the original NALU trace is passed

to the prepare_ns2sendtrace program to generate the NS2 traffic trace file. This file is the input

of the myEvalSVC agent and contains the sending time, frame size, DId, TId, QId, and the

number of fragmented packet fields for each record. The myEvalSVC agent reads each record

from the NS2 traffic trace file, generates the corresponding number of packets, and sends them

to the lower UDP layer at the appropriate time according to the user settings specified in the

simulation script file. MyUDP is an extension of the UDP agent. It allows the user to specify

the output file name of the sender trace file and records the sending time, packet ID, and the

386 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

packet size of each transmitted packet. Then, those packets go down to the lower layers and to

the simulated networks. Researchers can design different protocols or evaluate the H.264/SVC

over different network topologies easily by means of setting different parameters in the

simulation script file. At the receiving side, the myEvalSVC_Sink agent is used to receive

packets and record the corresponding receiving time, frame number, packet size, DId, TId,

QId, packet ID, and the sending time in the user-specified receiver trace file.

After simulation, the number of records in the sender trace file and that in the receiving trace

file are used to calculate the number of lost packets during transmission. By dividing the

number of lost packets by the number of all sending packets, we get the packet loss rate. This

is what PLossRate does. Moreover, if the sending time is subtracted from the receiving time

for the same packet ID, the packet end-to-end delay can be obtained. Then, the received trace

file is first processed by the prepare_receivedtrace1 program to obtain a frame-level received

trace file. The same frame number packets are merged into one record and the last received

packet is assigned to the frame receiving time. This frame-level received trace file, the NS2

traffic trace file, and the original NALU trace are further processed by prepare_received2trace

to generate the received NALU trace needed by the SVEF evaluation framework. At the final

stage, through NALU filtering, decoding, and frame filling, the final YUV video is produced.

This final YUV video can compare with the raw YUV video to obtain frame-level PSNR for

evaluating the end-to-end delivered video quality.

Simulated Network

myEvalSVC

MyUDP

Source Receiver

myEvalSVC_Sink

receiver trace file

sender trace file

NS2 Environment

JSVM

Encoder

original

H.264

video

JSVM

BitStreamExtractor

F-N

Stamp

original

NALU

trace

Raw

YUV

video

prepare_ns2sendtrace

NS2

traffic

trace

Pe2edelay

Packet-level

end to end

dealy

PLossRate

Packet-level

loss rate

prepare_receivedtrace1

frame-level

received

trace

prepare_receivedtrace2

Received

NALU

trace

NALU

FILTER

Filtered

NALU

Trace

JSVM

BitStreamExtractor

Filtered

H.264

video

JSVM

Decoder

Filtered

YUV

video

FRAME

FILLER

Final

YUV

video

PSNR
frame-level

PSNR

Fig. 4. The myEvalSVC evaluation framework

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 387

4. Usage Examples

To demonstrate the usefulness of the proposed myEvalSVC evaluation framework, examples

of H.264/SVC transmissions over IEEE 802.11 [31] and IEEE 802.11e [32] networks are

provided (see Fig. 5) in this section. The test video source, Foreman, used in the simulation is

in YUV CIF (352 × 288) format and comprises 300 frames. It is encoded by JSVM (version

9.19) with only temporal scalability enabled. The resulting video parameters are summarized

in Table 3.

Table 3. Parameters for Foreman video

Layer Resolution Frame rate Bit rate (DId, TId, QId)

0 352 × 288 7.5 514.10 (0,0,0)

1 352 × 288 15.0 548.70 (0,1,0)

2 352 × 288 30.0 588.20 (0,2,0)

The simulated scenario consists of three wireless nodes, i.e., n0, n1, and n2, and each node

is within another node’s transmission range. In the 802.11 case, n0 transmits H.264/SVC,

CBR flow 1, FTP, and CBR flow 2, to n1, n1, n2, and n2 respectively as depicted in Fig. 5-(a).

In 802.11e cases, the H.264/SVC packets are mapped to the AC_VI (video) queue, the CBR

Flow 1 and FTP packets are mapped to AC_BE (best effort) queue, and the CBR Flow 2 are

mapped to AC_BK (background) queue (see Fig. 5-(b)). The other parameter settings are

shown in Table 4.

All traffic packets

Backoff

DIFS

CW

wireless medium

802.11

Backoff

AIFS[AC_VO]

CW[AC_VO]

Backoff

AIFS[AC_VI]

CW[AC_VI]

Backoff

AIFS[AC_BE]

CW[AC_BE]

Backoff

AIFS[AC_BK]

CW[AC_BK]

H.264/ SVC

packets

CBR Flow 1

FTP
CBR Flow 2

virtual collision handler

wireless medium

802.11e

(a) (b)

Fig. 5. Different H.264/SVC transmission schemes

388 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

Table 4. Simulation parameters

SIFS (μs) 10

Time slot (μs) 20

DIFS (μs) 50

CWmin 32

CWmax 1024

Physical header (bits) 192

MAC header (bits) 224

ACK (bits) 112

Data rate (Mbps) 1

Basic rate (Mbps) 1

Sending rate of CBR flow 1 (Mbps) 0.2

Sending rate of CBR flow 2 (Mbps) 0.3

Play-out delay (seconds) 5

Table 5. Packet Loss Rate

802.11 802.11e

51.44% 9.22%

Fig. 6. End-to-End Delay

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 389

Fig. 7. Variation in AC_VI queue length in 802.11e

Fig. 8. The frame size versus frame sending time for Foreman video

390 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

Table 5 and Fig. 6 show the network level performance metrics, i.e., the packet loss rate and

end-to-end delay. It is clearly seen from Table 5 that when all traffic packets are transmitted

over 802.11 networks, the packet loss rate is high. This is because all packets go into the same

output interface queue and the queue size is limited. When the queue is full, it starts to drop the

packets. On the contrary, when video packets are transmitted over 802.11e, these packets do

not need to contend with best effort or background traffic packets. Therefore, 802.11e can

achieve the lowest packet loss rate. Next, if we compare the end-to-end delay, we can see that

when the packet sequence number is below 500, the packets with 802.11e are lower than those

with 802.11. However, when the packet sequence number is above 500, the packets with

802.11e become larger. This phenomenon can be explained by Fig. 7 and Fig. 8. When the

simulation time is below 8 seconds, the queue length is small. The video packets do not need to

wait for so long. Therefore, the end-to-end delay is also small. However, when the simulation

time is above 8 seconds, the AC_VI queue is augmented sharply. This is because the frames

with TId=0 after 7 seconds have larger sizes and will be fragmented into many small packets.

Then these packets are sent to AC_VI queue back to back. Consequently, the video packets

have to wait longer when transmitting to the wireless medium.

Fig. 9 shows the PSNR values for different sending methods. The top curve represents the

ideal PSNR values with no NALU loss, the middle curve is for video transmission over

802.11e, and the bottom curve is over 802.11. The average values are 35.9, 24.0, and 15.8

respectively. The results show that the H.264/SVC transmission over 802.11e can achieve

better PSNR values than the transmission over 802.11. In addition, to illustrate how the

difference in performance is received by an end user, the corresponding visual effects are

shown in Fig. 10 by means of the YUV display tool, i.e., YUVviewer [33]. In Fig. 10, the

frame number 190, 191, and 192 are snapshotted for different scenarios. The frames in

all_layers and 802.11e are almost the same. However, due to the high packet loss rate of

802.11, the exact frames cannot be decoded. So the displayed frames are those that can be

decoded previously.

With the aid of the proposed myEvalSVC framework, researchers can easily evaluate their

proposed network protocols or architecture and then visually compare the performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 391

Fig. 9. PSNR values

all layers

802.11e

802.11

Fig. 10. Simulation-based visual comparisons

392 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

5. Conclusion

The objective of this paper is twofold. The first is to integrate SVEF and NS2 to create the

myEvalSVC framework for the evaluation of H.264/SVC transmission in a simulated

environment. Researchers who work on video coding can simulate the effects of a more

realistic network on video sequences resulting from their coding schemes, while researchers

who work on network technology can evaluate the impact of real video streams on the

proposed network architecture or protocols.

The second is to provide a VirtualBox guest operating system image and a well-explained

and illustrated website [21] that helps beginners easily repeat the examples of H.264/SVC

transmission over IEEE 802.11 and 802.11e networks. They can start the evaluation from

encoding the raw YUV video, parse the video content, prepare the NS2 traffic trace file, and

perform the simulation. After the simulation, the network-level performance metrics such as

packet loss rate and end-to-end delay can be obtained with the aid of programs provided in

myEvalSVC. Moreover, the received video can be constructed through the process of filtering

out very late and undecodable NALUs and through frame concealment. Lastly, the end-to-end

application level metric, PSNR, can be calculated by comparison of the received final YUV

video with the original raw YUV video. In addition, visual evaluation is also possible with the

help of the YUVviewer program.

References

[1] “ITU-T recommendation H.264: Advanced video coding for generic audiovisual services,”

International Telecommunication Union, Nov. 2007.

[2] B. An, Y. Kim and O. J. Kwon, “Low-complexity motion estimation for H.264/AVC through

perceptual video coding,” KSII Transactions on Internet and Information Systems, vol. 5, no. 8, pp.

1444-1456, Aug. 2011. in Proc. of Article (CrossRef Link)

[3] H. J. Cho, D. Y. Noh, S. H. Jang, J. C. Kwon and S. J. Oh, “A new video bit rate estimation scheme

using a Model for IPTV services,” KSII Transactions on Internet and Information Systems, vol. 5,

no. 10, pp. 1814-1829, Oct. 2011. Article (CrossRef Link)

[4] L. Zhou, H. H. Chen, “On distributed multimedia scheduling with constrained control channels,”

IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 1040-1051, Oct. 2011. Article (CrossRef

Link)

[5] L. Zhou, X. Wang, W. Tu, G. Muntean and B.Geller, “Distributed scheduling scheme over video

streaming over multi-channel multi-radio multi-hop wireless networks,” IEEE Journal on Selected

Areas in Communications, vol. 28, no. 3, pp. 409-419, Apr. 2010. Article (CrossRef Link)

[6] H. Schwarz, D. Marpe and T. Wiegand, “Overview of the scalable video coding extension of the

H.264/AVC standard,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 17,

no. 9, pp. 1103-1120, Sep. 2007. Article (CrossRef Link)

[7] G. Bianchi, A. Detti, P. Loreti, C. Pisa, F. S. Proto, W. Kellerer, S. Thakolsri and J. Widmer,

“Application-aware H.264 scalable video coding delivery over wireless LAN: Experimental

assessment,” in Proc. of The Second International Workshop on Cross layer Design, 2009. Article

(CrossRef Link)

[8] A. Detti, P. Loreti, N. Blefari-Melazzi and F. Fedi, “Streaming H.264 scalable video over data

distribution service in a wireless environment,” in Proc. of IEEE International Symposium on

World of Wireless Mobile and Multimedia Networks, Jun. 2010. Article (CrossRef Link)

[9] H. L. Chen, P. C. Lee and S. H. Hu, “Improving scalable video transmission over IEEE 802.11e

through a cross-layer architecture,” in Proc. of The Fourth International Conference on Wireless

and Mobile Communications, Aug. 2008. Article (CrossRef Link)

[10] E. H. Putra, E. Supriyanto, J. Din and H. Satria, “Cross layer design of wireless LAN for

telemedicine application,” in Proc. of Third Asia International Conference on Modelling &

http://dx.doi.org/10.3837/tiis.2011.08.005
http://dx.doi.org/10.3837/tiis.2011.10.008
http://dx.doi.org/10.1109/TMM.2011.2160716
http://dx.doi.org/10.1109/TMM.2011.2160716
http://dx.doi.org/10.1109/JSAC.2010.100412
http://dx.doi.org/10.1109/TCSVT.2007.905532
http://dx.doi.org/10.1109/IWCLD.2009.5156512
http://dx.doi.org/10.1109/IWCLD.2009.5156512
http://dx.doi.org/10.1109/WOWMOM.2010.5534937
http://dx.doi.org/10.1109/ICWMC.2008.35

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 1, Jan 2012 393

Simulation, 2009. Article (CrossRef Link)

[11] M. Li, Z. Chen, Y. P. Tan, “Cross-layer optimization for SVC video delivery over the IEEE 802.11e

wireless networks,” Journal of Visual Communication and Image representation, vol. 22, no. 3, pp.

284-296, Apr. 2011. Article (CrossRef Link)

[12] L. Zhou, H. C. Chao and A. Vasilakos, “Joint forensics-scheduling strategy for delay-sensitive

multimedia applications over heterogeneous networks,” IEEE Journal on Selected Areas in

Communications, vol. 29, no. 7, pp. 1358-1367, Aug. 2011. Article (CrossRef Link)

[13] T. A. Le, H. Nguyen and H. Zhang, “EvalSVC - An evaluation platform for scalable video coding

transmission,” in Proc. of IEEE 14
th

 International Symposium on Consumer Electronics, 2010

Article (CrossRef Link)

[14] A. Detti, G. Bianchi, C. Pisa, F. S. Proto, P. Loreti, W. Kellerer, S. Thakolsri and J. Widmer,

“SVEF: An open-source experimental evaluation framework for H.264 scalable video streaming,”

in Proc. of IEEE Symposium on Computers and Communications, 2009. Article (CrossRef Link)

[15] SVEF-reference software, http://svef.netgroup.uniroma2.it/

[16] The Network Simulator-NS2, http://www.isi.edu/nsnam/ns/

[17] Microsoft Visual C++ 2008 Expression Edition,

http://www.microsoft.com/express/Downloads/#2008-Visual-CPP

[18] Python Programming Language,http://www.python.org/

[19] Cygwin, http://www.cygwin.com/

[20] VirtualBox, http://www.virtualbox.org/

[21] myEvalSVC-reference software, http://hpds.ee.ncku.edu.tw/~smallko/ns2/svc.htm

[22] How to multicast H.264/SVC video over wired networks,

http://hpds.ee.ncku.edu.tw/~smallko/ns2/svc_multicast_wired.htm

[23] V. K. Goyal, “Multiple description coding: Compression meets the network?,” IEEE Signal

Processing Magazine, vol. 18, no. 5, pp. 74-94, Sep. 2001. Article (CrossRef Link)

[24] Y. Wang and M. Claypool, “RealTracer-tools for measuring the performance of real video on the

Internet,” Kluwer Multimedia Tools and Applications, vol. 27, no. 3, Dec. 2005.

[25] C. H. Ke, C. K. Shieh, W. S. Hwang and A. Ziviani, “An evaluation framework for more realistic

simulations of MPEG video transmission,” Journal of Information Science and Engineering, vol.

24, no. 2, pp. 425-440, Mar. 2008. Article (CrossRef Link)

[26] How to evaluate MPEG video transmission using NS2 simulator,

http://hpds.ee.ncku.edu.tw/~smallko/ns2/Evalvid_in_NS2.htm

[27] J. Klaue, B. Rathke and A. Wolisz, “Evalvid-A framework for video transmission and quality

Evaluation,” The 13th International Conference on Modelling Techniques and Tools for Computer

Performance Evaluation, 2003. Article (CrossRef Link)

[28] Video Trace Library, http://trace.eas.asu.edu/

[29] A. Matrawy, I. Lambadaris and C. Huang, “MPEG4 traffic modeling using the transform expand

sample methodology,” The Fourth IEEE International Workshop on Network Appliances, 2002.

Article (CrossRef Link)

[30] JSVM Software Manual, http://evalsvc.googlecode.com/files/SoftwareManual.doc

[31] IEEE Standard 802.11-1999, “Wireless LAN medium access control (MAC) and physical layer

(PHY) specifications”.

[32] IEEE Standard 802.11e-2005, “Wireless LAN medium access control (MAC) and physical layer

(PHY) specifications, Amendment 8: medium access control (MAC) quality of service

enhancements”.

[33] YUVviewer, http://wftp3.itu.int/av-arch/jvt-site/software_tools/

http://doi.ieeecomputersociety.org/10.1109/AMS.2009.128
http://dx.doi.org/10.1016/j.jvcir.2011.01.002
http://dx.doi.org/10.1109/JSAC.2011.110803
http://dx.doi.org/10.1109/ISCE.2010.5523712
http://dx.doi.org/10.1109/ISCC.2009.5202390
http://svef.netgroup.uniroma2.it/
http://www.isi.edu/nsnam/ns/
http://www.microsoft.com/express/Downloads/#2008-Visual-CPP
http://www.python.org/
,%20http:/www.cygwin.com/
http://www.virtualbox.org/
http://hpds.ee.ncku.edu.tw/~smallko/ns2/svc.htm
http://hpds.ee.ncku.edu.tw/~smallko/ns2/svc_multicast_wired.htm
http://dx.doi.org/10.1109/79.952806
http://www.iis.sinica.edu.tw/page/jise/2008/200803_07.html
http://hpds.ee.ncku.edu.tw/~smallko/ns2/Evalvid_in_NS2.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.3918
http://trace.eas.asu.edu/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.4342
http://evalsvc.googlecode.com/files/SoftwareManual.doc
http://wftp3.itu.int/av-arch/jvt-site/software_tools/

394 Ke et al.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

Chih-Heng Ke received his B.S. and Ph.D degrees in electrical engineering from National

Cheng-Kung University, in 1999 and 2007. He now is an assistant professor of Computer

Science and Information Engineering, National Quemoy University, Kinmen, Taiwan. His

current research interests include multimedia communications, wireless networks, and QoS

networks.

