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Abstract 
 

As is well known, cooperative sensing can significantly improve the sensing accuracy as 

compared to local sensing in cognitive radio networks (CRNs). However, a large number of 

cooperative secondary users (SUs) reporting their local detection results to the fusion center 

(FC) would cause much overhead, such as sensing delay and energy consumption. In this 

paper, we propose a fast cooperative sensing scheme, called double threshold fusion (DTF), to 

reduce the sensing overhead while satisfying a given sensing accuracy requirement. In DTF, 

FC respectively compares the number of successfully received local decisions and that of 

failed receptions with two different thresholds to make a final decision in each reporting 

sub-slot during a sensing process, where cooperative SUs sequentially report their local 

decisions in a selective fashion to reduce the reporting overhead. By jointly considering 

sequential detection and selective reporting techniques in DTF, the overhead of cooperative 

sensing can be significantly reduced. Besides, we study the performance optimization 

problems with different objectives for DTF and develop three optimum fusion rules 

accordingly. Simulation results reveal that DTF shows evident performance gains over an 

existing scheme. 
 

 

Keywords: Cognitive radio, spectrum sensing, cooperation diversity, fusion rule, detection 
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1. Introduction 

In cognitive radio networks (CRNs), secondary users (SUs) should detect whether primary 

users (PUs) are present or not before they access the licensed spectrum [1-3].  If PU is detected, 

SU can send its messages with power control so as to ensure PU quality-of-service (QoS); 

otherwise, SU can access the spectrum directly [4]. The detection functionality is fulfilled by 

spectrum sensing in which both sensing accuracy and sensing delay are crucial to the 

performance of secondary transmissions. To improve the sensing accuracy, cooperative 

sensing is introduced, where SUs detect the states of PUs collaboratively coordinated by the 

fusion center (FC) [5]. However, a larger number of cooperative SUs would cause significant 

overhead, such as sensing delay and energy consumption. 

In this paper, we propose a fast cooperative sensing scheme, called double threshold fusion 

(DTF), to reduce the sensing overhead while maintaining sensing accuracy. In DTF, sequential 

detection technique is naturally incorporated. More specifically, a final decision is attempted 

at the FC in each reporting sub-slot during a sensing process by comparing the numbers of 

successful and failed receptions of local decisions with two different thresholds. Specifically, 

once the number of successful decision receptions (or failed receptions) is equal to its 

predefined threshold in a sub-slot, FC will declare PU’s presence (or absence) and stop 

spectrum sensing immediately. Besides, in the case of that the numbers of successful and 

failed decision receptions do not reach their thresholds at the end of a sensing phase, FC will 

declare PU’s presence if the number of successful decision receptions is equal to or larger than 

that of failed receptions and declare PU’s absence otherwise. Beisdes, similar to [6], the 

cooperative SUs in DTF report their local decisions in a selective fashion to reduce the 

reporting overhead, i.e., a SU will report only when it detects PU’s presence. 

Overall, our main contributions can be summarized as follows: 

1) We investigate fast cooperative sensing for CRNs, and then propose a novel decision 

strategy called DTF to reduce the sensing times of detecting PU’s presence and 

absence while maintaining a given sensing accuracy. Note that, the saved sensing time 

in detecting PU’s presence can be used to improve the throughput of underlay 

transmissions while the saved sensing time in detecting PU’s absence can be used to 

improve the throughput of interweave transmissions [7]. 

2) We analyze the performance of DTF in terms of false alarm probability, detection 

probability and sensing time, and also derive their closed-form expressions over 

Rayleigh fading channels with considering reporting errors. Besides, we study the 

performance optimization problems with different objectives for DTF, and then 

develop three optimum fusion rules accordingly. 

3) We conduct extensive simulation studies to validate the effectiveness and efficiency of 

the proposed DTF scheme. It is shown that DTF can significantly reduce the sensing 

overhead without degrading the sensing accuracy compared to the traditional scheme. 

4) Due to the use of decision fusion, DTF can be easily extended to many local detector 

cases, such as matched filter detection, feature detection, energy detection, and so on.  

2. Related Work 

Several strategies have been emerged in literature aiming at reducing the overhead of 

cooperative sensing. Recently, user selection is employed in cooperative sensing to reduce the 
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sensing overhead. In [9], we proposed a user selection algorithm based on the correlations of 

trust functions for cooperative sensing to reduce the amount of fusion data collected at the FC. 

In [10], the authors investigated three methods to select the SUs with the best detection 

performance to participate in cooperative sensing. The authors showed that such cooperative 

sensing methods can effectively reduce the sensing overhead. In [9, 10], perfect reporting 

channels were assumed for ease of analysis. However, such assumption is not practical in real 

wireless environments. Unlike [9, 10], a selective reporting scheme was proposed with 

considering the reporting errors in [6]. In this scheme, a SU reports its local decision only 

when it does not detect the presence of PU, so as to reduce the reporting overhead as well as 

the induced interference to PU.  

Although the user selection based cooperative sensing schemes [6, 9-10] can reduce the 

reporting overhead, they can not reduce the sensing delay. To reduce both the reporting 

overhead and sensing delay, sequential detection is utilized in cooperative sensing. In [11], the 

authors let cooperative SUs report in descending order of received signal-to-noise ratio (SNR) 

to reduce the sensing time. Unlike [11], cooperative SUs in [12] report their detection results 

in descending order of the magnitude of their local test statistics. The authors of [13] studied 

sequential detection under the constraints of limited sensing time and number of cooperative 

SUs, where local detectors reported their log likelihood ratio (LLR) in descending order of 

LLR magnitude.  

From the above discussions, we know that DTF can make a final decision earlier before a 

sensing phase expires, which differs from [6, 9-10] where a final decision is always made at 

the end of a sensing phase. In this paper, the reporting errors are considered, which is more 

practical than [9, 10]. Different from [11-13] using data fusion, DTF employs decision fusion 

for implementation simplicity, which also implies that DTF is applicable for many local 

detector cases. Besides, unlike [6, 9-10, 11-13], we study the performance optimization 

problems for DTF and develop three optimum fusion rules with different objectives 

accordingly. DTF can not only improve secondary throughput but also reduce SU energy 

consumption due to less sensing delay and reporting overhead. 

P
Ui

U1

UN

S

Sensing channel

Reporting channel

 

Fig. 1. The system model of cooperative sensing 

3. System Model 

 As shown in Fig. 1, we consider a CRN consists of a source PU P , a FC S  and N  

cooperative SUs  1, , NU U . In this CRN, P transmits the signal Px  (  2
1PE x  ) to 

its destination with power PE . The gain of link I J  (  , iI P U ,  , iJ S U , I J ), 
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denoted as IJh , is Rayleigh fading with variance 2

IJ  [8]. We assume that Jn  is the additive 

white Gaussian noise (AWGN) at J  with zero mean and variance 2

n . Besides, like many 

existing works [9-13], a common control channel is assumed in this paper for the information 

exchange between iU  and S . 

Ui: D

(i=1,…,N)

T=τd+Nτr

t0 t1 tN

U1: R Ui: R

τd τr

D: Detect; R: Report

τr

UN: R
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Fig. 2. The time slot structure of cooperative sensing 

 

The time slot structure of cooperative sensing can be described by Fig. 2, where each 

sensing phase consists of a sub-slot 0t  with duration d  and N  equal sub-slots  1, , Nt t , 

each of duration r . Thus, the time duration of each sensing phase is d rT N   . The 

sub-slot 0t  is used for local sensing while the sub-slot it  (1 i N  ) is used for the decision 

reporting of iU . 

4. Proposed Fast Cooperative Sensing 

4.1 Traditional Sequential Detection Scheme 

For the purpose of performance comparison, we will briefly introduce the traditional 

sequential detection (TSD) scheme as proposed in our previous work [15] in this subsection. 

In TSD, all cooperative SUs make local sensing in 0t  first, then report the local decisions 

during  1, , Nt t  sequentially. At the same time, S  checks whether it successfully receives a 

local decision or not in each reporting sub-slot. Once S  successfully recieves a local decision 

in a certain reporting sub-slot, it will make a final decision indicating P ’s presence and stop 

spectrum sensing immediately. If S  does not receive any local decisions during  1, , Nt t , a 

final decision indicating P ’s absence is declared. In this process, a cooperative SU reports its 

local decision only when it detects P ’s presence in 0t  to reduce the reporting overhead.  

Similar to [6], in this paper, the reported local decisions can be encoded by cyclic 

redundancy codes (CRCs), and then they will be sent to the FC where CRC checking is 

performed to retrieve the reported local decisions. It is noted that, to make fair comparison 

with the proposed DTF scheme and also for analysis simplicity, this paper does not consider 

the local detection of S  and the optimization problem of cooperative SUs’ number for TSD, 

which differs from [15]. Clearly, TSD can remarkably reduce the sensing time consumed for 

correctly detect P ’s presence when P  is presnet. However, TSD can not reduce the sensing 

time consumed for finding spectrum hole when P  is absence. To solve this issue, we propose 

the DTF scheme in Section 4.2. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014                                 62 

Copyright ⓒ 2014 KSII 

4.2 Proposed DTF Scheme 

In DTF, S  maintains two counters, denoted as 1C  and 2C , used for counting the numbers of 

successful and failed decision receptions, respectively. Specifically, in it  ( 1, ,i N ), if S  

successfully receives a local decision from iU , it will add 1C  by 1; otherwise, it will add 2C  

by 1. Thus, the values of 1C  and 2C  in it , denoted by 1,iC  and 2,iC , are respectively given as 

 1, 1, 1 ,
ˆ

i i S iC C    (1) 

 2, 2, 1 ,
ˆ1i i S iC C     (2) 

where ,
ˆ 1S i   denotes that S  successfully receives a local decision from iU  while ,

ˆ 0S i   

denotes the opposite. 

Then, the sensing process of DTF is described as follows: 

 In 0t , each cooperative SU attempts to detect the states of P  by itself. Besides, S  

sets the initial values of 1C  and 2C  as 1,0 0C   and 2,0 0C  , respectively. 

 In it  ( 1, ,i N ), iU  reports its local decision to S  in a selective fashion, i.e., iU  

reports only when it detects P ’s presence in 0t . Meanwhile, S  tries to decode the 

reported decision from iU . Next, 1,iC  and 2,iC  are calculated by (1) and (2), then 

compared with the thresholds 1K  and 2K , respectively. If 1, 1iC K , S  claims P ’s 

presence and stops sensing immediately; if 2, 2iC K , S  declares P ’s absence and 

stops sensing immediately; if 1, 1iC K  and 2, 2iC K , the cooperative sensing will 

continue. Such sensing process will be sequentially performed from 1t  to Nt  and not 

stop until a final decision is given or the current sensing phase expires. Note that, if 

1, 1NC K  and 2, 2NC K  in Nt , the above fusion rule can not give a final decision. In 

this case, S  will compare 1,NC  with 2,NC , then claims P ’s presence if 1, 2,N NC C  

and declares P ’s absence otherwise. 

From the above discussions, we know that the decision strategy of DTF involves two basic 

fusion rules, denoted as D1 and D2, i.e., 

 

1, 1 1

1, 1 2, 2

2, 2 0

,  Declare H

D1: & ,  Continue

,  Declare H

i

i i

i

C K

C K C K

C K

 


 




 (3) 

 
1, 2, 1

1, 2, 0

,  Declare H
D2: 

,  Declare H

N N

N N

C C

C C





 (4) 

where 1H  and 0H  are two hypotheses denoting P ’s presence and absence, respectively. Note 

that D2 is employed only when a final decision can not be made using D1. 

Clearly, in traditional scheme, all cooperative SUs are used and the whole sensing phase is 

consumed, which would  induce significant sensing delay and energy consumption. However, 

DTF is able to give a final decision before a sensing phase expires, which implies that it can 

reduce the sensing overhead. In DTF, since two fusion thresholds are used, both the times 

required for detecting PU’s presence and that for finding spectrum holes can be reduced 
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compared to traditional scheme as long as 1K N  and 2K N  holds. Actually, the saved 

sensing time can be used for possible secondary transmissions, which potentially promotes the 

secondary throughput. 

5. Performance Analysis 

In this section, we let 
iUPf  and 

iUPd  denote the local false alarm and detection probabilities 

of iU , respectively. Besides, we suppose that all local false alarm probabilities are equal to the 

same value   and the overall false alarm probability is set as 0  [14]. Without loss of 

generality, we use energy detecor to evaluate the performacne of proposed DTF scheme in this 

paper. Since we want to show the advantages of proposed DTF scheme, the choice of detector 

is not critical. Note that the results obtained in this paper can be easily extended into other local 

detector cases. 

Here, we take an overview of energy detection first. For energy detection, a SU measures 

the received energy EY  over a finite time interval and then compares it with a predefined 

threshold  . The SU will claim P ’s presence if EY   and P ’s absence otherwise. Note 

that false alarm occurs if EY   under 0H  and miss detection occurs if EY   under 1H . 

Following [3, 15-18], the false alarm probability and detection probability at iU  are 

respectively given as 

 

 

,
2

i

i

i

i

U

U

U

U

m

Pf
m

 
 
 




 (5) 
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



 (6) 

where 
iUm  is the time-bandwidth product of energy detector and 

iU  is the average SNR 

received at iU  from P . 

5.1 Detection Probability 

Considering that iU  is allowed to report its local decision, the reported signal received at S  in 

it  is expressed as 

    
i i iS U U S U Sy i E h x n i   (7) 

where 
iUx  is the reported signal from iU  and 

iUE  is the corresponding transmit power. From 

(7) and following [6], the probability of that S  successfully decodes the reported decision 

from iU  is 
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  
22

2

1
Pr log 1 e

Ui

U U Si i

i i iU U U S

r r

P h
B

 





 

    
 

 (8) 

where 
 1/

2 1r r

i

B

U


    and rB  is the bandwidth of reporting channel. 

Then, the probability of the case ,
ˆ 1S i   under 0H , i.e., S  successfully receives a false 

alarm from iU , is derived as 

 , i i i iS U U U UPf Pf P Pa= =   (9) 

Besides, the probability of the case ,
ˆ 1S i   under 1H , i.e., S  successfully receives a 

detection from iU , is given as 

 , i i iS U U UPd Pd P=   (10) 

As shown in Section 3.3, the decision strategy of DTF involves two fusion rules, i.e., D1 

and D2. Consequently, the calculations of overall false alarm and detection probabilities for 

DTF can be given as follows: 

Case 1 (D1): In this case, a final decision is made by D1, where D2 is not required. Clearly, 

using D1, a final decision indicating PU’s presence could not be given before 
1Kt  or after 

 1 2min 1,N K K N   . We let i  denote the set of   1, iU U  and ,i j  denote its jth 

non-empty sub-collection. Besides, we let iA represent a set of sub-collections 

  , , 1| 1, 1, ,2 1i

i j i j K j      and ,i nA  represent iA ’s nth element, where   is the 

number of the elements in a set. Then, the probabilities of that S  declares P ’s presence under 

0H  and 1H  using D1 in it  ( 1K i N  ) are respectively calculated as 

 

 

 
1

1, 1 1,

1, 1 0

, ,

1

Pr | ,D1

1
i

i j k

j i n k i i n

i

A

U S S U S U

n U A U A

C K H

Pf Pf Pf


     



   
    

     
  

 (11) 

 

 

 
1

1, 1 1,

1, 1 1

, ,

1

Pr | ,D1

1
i

i j k

j i n k i i n

i

A

U S S U S U

n U A U A

C K H

Pd Pd Pd


     



   
    

     
  

 (12) 

In (11) and (12),  
g G

f g


  is equal to 1 if the set G  is empty. Then, the false alarm and 

detection probabilities for DTF under D1 are respectively given by 

  
1

D1 1, 1 0Pr | ,D1
N

Pro

i

i K

Pf C K H


   (13) 

  
1

D1 1, 1 1Pr | ,D1
N

Pro

i

i K

Pd C K H


   (14) 
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Case 2 (D2): If a final decision can not be given by D1 at the end of Nt , D2 is employed. 

First, we let i  denote the ith non-empty sub-collection of  . Besides, we define 

  1 2| 0 ,0 ,i i i i iB K K            (15) 

Then, the false alarm and detection probabilities for DTF under D2 are respectively 

derived as 

  D2 , ,

1

1
j k

j i k i

B

Pro

S U S U

n U B U B

Pf Pf Pf
  

   
    

    
    (16) 

  D2 , ,

1

1
j k

j i k i

B

Pro

S U S U

n U B U B

Pd Pd Pd
  

   
    

    
    (17) 

where iB  is the ith element of B . 

Finally, from (13), (14), (15) and (17), the overall false alarm and detection probabilities of 

DTF are respectively calculated as 

 D1 D2

Pro Pro ProPf Pf Pf   (18) 

 D1 D2

Pro Pro ProPd Pd Pd   (19) 

We define   ProPf    as a function of  . Since 0

ProPf   is assumed, we have 

 1

0   , where 1   is the inverse function of  . 

5.2 Sensing Time 

In this paper, we will examine the sensing overhead in terms of sensing time. Here, we define 

the average sensing time required for S  to declare P ’s presence under 1H  as presence 

sensing time (PST) and that required for S  to declare P ’s absence under 0H  as absence 

sensing time (AST), respectively. Note that PST is the sensing time consumed by S  for 

correctly detecting P ’s presence while AST is that for correctly finding the spectrum hole. 

From [15], we know that althrough TSD scheme can significantly reduce the PST, its AST 

can not be shortened, which is equal to d rT N   . However, in DTF, if S  claims P ’s 

presence or absence in it , the consumed sensing time is i d ri    . As shown in Section 4.1, 

the probability of that S  claims P ’s presence under 1H  in it ( 1K i N  ) can be easily 

calculated by (12) or (17). Thus, the PST of DTF is given as 

  
1

1, 1 1 D2Pr | ,D1
N

Pro

i i N

i K

PST C K H Pd 


    (20) 

We let iX  represent a set of sub-collections   , , 2| 1, 1, ,2 1i

i j i j K j       and 

,i nX   represent iX ’s nth element. Besides, we define 

  1 2| 0 ,0 ,i i i i iY K K            (21) 

In a similar way, the probability of that S  claims P ’s absence under 0H  in 

it ( 2K i N  ) using D1 is 
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 

 
1

1, 1 1,

2, 2 0

, ,

1

Pr | ,D1

1
i

i j k

j i n k i i n

i

X

U S S U S U

n U X U X

C K H

Pf Pf Pf


     



   
    

     
  

 (22) 

On the other hand, the probability of that S  claims P ’s absence under 0H  in Nt  using D2 

is 

  D2 , ,

1

1
j k

j i k i

Y

Pro

S U S U

n U Y U Y

Pa Pf Pf
  

   
    

    
    (23) 

where iY  is the ith element of Y . From (22) and (23), the AST of DTF can be easily derived as 

  
2

2, 2 1 D2Pr | ,D1
N

Pro

i i N

i K

AST C K H Pa 


    (24) 

6. Optimization Problems in DTF 

In CRNs, reducing the sensing time can not only lower the energy consumption but also 

improve the secondary throughout. Thus, in this paper, we will focus on minimizing the 

sensing time while satisfying a given detection probability requirement 0Pd  under a 

reasonable false alarm probability 0 , which is very important for secondary spectrum access. 

On the other hand, to reduce the induced interference to PUs, the detection probability is 

usually required to be maximized. 

According to different objectives, we develop three efficient rules to obtain the optimum 

fusion thresholds of 1K  and 2K  for DTF, which are respectively described as follows: 

Min-PST-plus-AST (MPA) rule: If the SUs are allowed to use the spectrum with power 

control when the PU is present, it is necessary to minimize the overall sensing time (OST) for 

given 0  and 0Pd . Here, the OST is defined as  1PST AST   , where   is equal to the 

probability of that the PU is present. Thus, the optimization problem is given by 

 1 2,

0 0

minimize  

subject to ,

K K

Pro Pro

OST

Pd Pd  Pf  
 (25) 

Min-AST (MA) rule: When the PUs are highly sensitive to the interference from SUs, 

secondary access is not allowed if the spectrum is detected busy. In this case, it is appropriate 

to minimize AST to improve the secondary throughput for given 0  and 0Pd . In fact, by 

setting 0  , the optimization problem of (25) evolves into the MA rule case. 

Max-Detection-Probability (MDP) rule: If PUs are sensitive to the interference induced 

by SUs, in addition to forbiding secondary access when PU is present, the detection 

probability should be maximized for given 0 . Such optimization problem can be described 

as follows: 
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 1 2,

0

maximize  

subject to 

Pro

K K

Pro

Pd

Pf 
 (26) 

From Section 5, we know that the closed-form expressions of detection probability and 

AST are derived for DTF. In addition, the calculations of detection probability and AST for 

DTF only need average channel gains instead of instantaneous ones. Thus, the detection 

probability and AST of DTF can be estimated in prior. When the number of cooperative SUs is 

not very large, the optimization problems of (25) and (26) can be easily solved by exhaustion 

search methods. More convenient mathematical methods for solving (25) and (26) will be 

studied in our future works. 

7. Simulation Results 

Without loss of generality, we use the energy detector shown in [3] to evaluate the 

performance of DTF, which is also compared with the traditional case. In these examples, we 

set the PU appearance probability as 0.5  , the time duration of local sensing as 4d  ms, 

the time duration of each decision reporting as 2r  ms, the bandwidth of energy detector as 

310eB  Hz, the bandwidth of reporting channel as 
410rB  Hz.  

First, we plot the AST of MA rule and OST of MPA rule versus the PU transmit SNR P  

for DTF in Fig. 3 and Fig. 4, respectively, which are also compared with the method in [15]. 

We set the simulation parameters as 20N  ,  3

0 10  , 5
iU   and 

2 2 1
i iPU U S   . From 

[15], we know that the AST of  TSD scheme is equal to 44d rN   ms as illustrated in Fig. 

3. Fig. 3 and Fig. 4 show that the optimum DTF rules significantly reduce the sensing time 

compared to the method in [15]. 
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Fig. 3. The AST of MA rule versus P  
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Fig. 4. The OST of MPA rule versus P  

Clearly, both the AST of MA rule and the OST of MPA rule decrease as P  increases. That 

is because, on one hand, the local detection probabilities of cooperative SUs will be improved 

with increasing P , which implies that S can make a final decision on P ’s presence faster. As 

a result, the PST of DTF is reduced. On the other hand, for a given 0Pd , the fusion threshold 

2K  can be reduced as P  increases due to an increased overall detection probability, resulting 

in a reduction of the AST in DTF. Besides, the sensing time can be cut by loosening the 

detection probability constraint 0Pd  for both MA and MPA rules since the fusion thresholds 

are decreased in this case. 
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Fig. 5. The AST of MA rule versus N  
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Fig. 6. The OST of MPA rule versus N  

Second, we illustrate the AST of MA rule and OST of MPA rule versus N  in Fig. 5 and 

Fig. 6 for DTF, respectively. The simualtion parameters are chosen as 3

0 10  , 5P  dB, 

5
iU  dB and 

2 2 1
i iPU U S   . From Fig. 5 and Fig. 6, it is observed that the sensing time of 

the method in [15] increases remarkably as the number of cooperative SUs grows. However, 

the sensing time in optimum DTF rules is always able to keep at a low level. This evidently 

confirms the advantages of proposed fusion rules. Besides, as expected, the sensing time of 

DTF is lower when the detection probability requirement becomes looser. As shown in Fig. 6, 

it is clear that the method in [15] consumes less sensing time than proposed MPA rule when 

the detection probability requirement is stringent and the number of cooperative SUs is small. 
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Fig. 7. The detection probability versus the false alarm probability for MDP rule 

Third, we depict the detection probability versus the false alarm probability in Fig. 7 for 

MDP rule and the method in [15], respectively. In this case, we set 10N   and 
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5
iP U    dB. Then, under the same simulation settings, we compare the sensing time of 

MDP with that of the method of [15] in Fig. 8 and Fig. 9, respectively. From Fig. 7, we know 

that the sensing accuracy of MDP rule is no lower than that of the method in [15], and even 

higher when the quality of reporting channel is good. Besides, the sensing accuracy will be 

improved as the quality of reporting channels goes high. 
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Fig. 8. The AST versus 0  for MDP rule 
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Fig. 9. The OST versus 0  for MDP rule 

On the other hand, we can easily observe from Fig. 8 and Fig. 9 that MDP rule can 

remarkably reduce the sensing time as compared to the method in [15] while maintaining the 

sensing accuracy. When 0  is low, the AST of MDP rule is higher under 
2 0.1

iU S   than 

under 
2 1

iU S   due to the lower probability of detecting PU’s absence in each reporting 
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sub-slot. However, the OST is higher under 
2 1

iU S   than under 
2 0.1

iU S   since the sensing 

time in detecting PU’s presence is longer in this case. When 0  is high, the AST of MDP rule 

under 
2 0.1

iU S   will approach to that under 
2 1

iU S   because the probablities of detecting 

PU’s absence in each reporting sub-slot under these two cases will get close to each other. But, 

the OST of MDP rule under 
2 0.1

iU S   becomes higher than that under 
2 1

iU S  , which is due 

to the fact that the probability of detecting PU’s presence in each reporting sub-slot is lower 

under 
2 0.1

iU S   than under 
2 1

iU S  . Besides, the AST and OST of MDP rule will decrease as 

0  is improved eventually due to an improved local sensing reliability. 

8. Conclusion 

In this paper, we propose a fast cooperative sensing scheme, called DTF, to reduce the sensing 

overhead while maintaining the sensing accuracy for CRNs. DTF uses two fusion thresholds 

to make a final decision sequentially at the FC in each reporting sub-lot, which has been shown 

as a promising method to reduce both the time for correctly detecting the presence of PU and 

that for finding the spectrum holes under the detection probability constraints. Besides, we 

develop three novel rules, i.e., MA, MPA and MDP, to obtain the optimum fusion thresholds 

with different objectives for DTF. Finally, simulation results are provided to confirm the 

effectiveness of proposed fusion rules and also make performance comparisons between DTF 

and existing schemes. Note that DTF can be easily extended to other local detector cases, such 

as matched filter detection, feature detection, etc. 
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