
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 123

Copyright ⓒ 2014 KSII

http://dx.doi.org/10.3837/tiis.2014.01.008

Distributed Information Extraction in
Wireless Sensor Networks using Multiple
Software Agents with Dynamic Itineraries

Govind P. Gupta

1
, Manoj Misra

1
 and Kumkum Garg

2

1 Department of Computer Science & Engineering, Indian Institute of Technology

Roorkee-247667, India

[e-mail: {gpg09dec, manojfec}@iitr.ernet.in]
2 Faculty of Engineering, Manipal University

Jaipur-302026, India

 [e-mail: kgargfec@gmail.com]

*Corresponding author: Govind Gupta

Received May 21, 2013; revised December 1, 2013; accepted December 21, 2013; published January 29, 2014

Abstract

Wireless sensor networks are generally deployed for specific applications to accomplish

certain objectives over a period of time. To fulfill these objectives, it is crucial that the sensor

network continues to function for a long time, even if some of its nodes become faulty. Energy

efficiency and fault tolerance are undoubtedly the most crucial requirements for the design of

an information extraction protocol for any sensor network application. However, most existing

software agent based information extraction protocols are incapable of satisfying these

requirements because of static agent itineraries and large agent sizes. This paper proposes an

Information Extraction protocol based on Multiple software Agents with Dynamic Itineraries

(IEMADI), where multiple software agents are dispatched in parallel to perform tasks based

on the query assigned to them. IEMADI decides the itinerary for an agent dynamically at each

hop using local information. Through mathematical analysis and simulation, we compare the

performance of IEMADI with a well known static itinerary based protocol with respect to

energy consumption and response time. The results show that IEMADI provides better

performance than the static itinerary based protocols.

Keywords: Wireless sensor network, software agent, dynamic itinerary, agent migration,

information extraction

124 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

1. Introduction

A Wireless Sensor Network (WSN) is a distributed network, which consists of a large

number of battery-powered sensor nodes and one or more sink nodes [1]. Sensor nodes are

small electronic devices that have limited communication and computation capabilities. They

are deployed for monitoring physical phenomenon such as temperature, light, humidity,

vibration, sound and so on [1]. Generally, WSNs are deployed for specific applications, to

accomplish certain objectives over a period of time. For this, it is crucial that the WSN

continues to function over a period of time, even if some of its nodes become faulty. Energy

efficiency and fault tolerance are undoubtedly the most crucial requirements for the design of

an information extraction protocol for any WSN application. The design of a mobile software

agent [2] based information extraction protocol should be carefully designed to optimize

parameters like itinerary length, agent size and fault tolerant migration.

 In recent years, the mobile agent computing paradigm has been introduced in WSNs for

various purposes such as data aggregation and collection, topology discovery, network

diagnostics and health monitoring, application reprogramming, etc. Successful functioning of

these operations depends on the itinerary of the mobile software agent. A mobile software

agent [2] is a software entity that can access the sensor nodes one by one, perform assigned

task and fetch the results back to the sink node. When software agents are employed for

information extraction task in the WSNs, the selection of the agent’s itineraries is extremely

vital because it significantly affects the overall energy consumption, latency and information

extraction cost. Thus a scheme that plans optimal length itineraries with minimum energy

consumption, response time and low complexity for the nodes is required.

 Most of the proposed itinerary planning algorithms [3-10] for agent based information

extraction use a centralized algorithm that is executed at the sink node and that computes

itineraries for the agents prior their migration. This is known as a static itinerary. The most

notable issues associated with these algorithms are size of the agent packet and disruption in

agent migration if some nodes fail along the itinerary. In the static itinerary based approach,

each agent needs to carry a pre-computed itinerary which grows as network size increases,

thereby also increasing agent size. Since static itineraries are computed using a centralized

algorithm that requires updated global network topology information at the sink node and it

does not offer quick response to possible topology changes resulting from node failure.

 In order to solve the above issues, we propose a distributed algorithm for the Information

Extraction protocol based on Multiple software Agents with Dynamic Itineraries, called

IEMADI, where multiple agents are deployed in parallel to perform tasks assigned to them. In

IEMADI, an agent computes its itinerary dynamically at each hop using local information and

offers efficient and fault tolerant agent migration within the network. IEMADI is suitable for

both periodic as well as query based information extraction and is resilient to sensor node

failures.

 In this paper we evaluate the performance of IEMADI through mathematical analysis and

extensive simulation experiments and compare it with a well-known static itinerary based

protocol TBID [8] and a distributed information extraction protocol, called Directed

Diffusion(DD) [22]. Simulation results show that IEMADI performs notably better than TBID

and DD in terms of average energy consumption, response time, network lifetime, and success

rate of agents’ round trips, in the presence of node failures.

 The remainder of this paper is organized as follows. In Section 2, we briefly review work

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 125

Copyright ⓒ 2014 KSII

related to the research presented herein. Section 3 presents the network model and the

assumptions made. We describe the proposed protocol in Section 4. Section 5 gives the

mathematical analysis. In Section 6, we present the performance evaluation of the proposed

protocol. Finally, Section 7 concludes the paper and presents ideas for future work.

2. Related Work

In this section, we review existing mobile agent itinerary design algorithms for WSNs. WSNs

usually have lower communication bandwidth than wired networks, due to which, sensory

data traffic may exceed network capacity, resulting in collisions and energy wastage. To solve

the problem of large sensory data traffic, Qi et al. [3] proposed a mobile agent based

distributed sensor network (MADSN) for energy efficient data aggregation. The authors

proved through mathematical and simulation studies that by sending mobile agents for data

aggregation to the sensor nodes, a large amount of redundant data may be filtered at the sensor

nodes, resulting in saving network bandwidth and reduced network latency.

 In [4], Qi et al. proposed two heuristic algorithms, Local Closest first (LCF) and Global

Closest First (GCF) for itinerary design of an agent performing data aggregation. In LCF, each

mobile agent originates its itinerary from the sink and chooses a sensor node with the shortest

distance to its present location as the next-hop node for data aggregation. In GCF, each agent

chooses a sensor node with the shortest distance to the center of the sensing field as the

next-hop node.

 In [5], a genetic algorithm based approach is proposed for itinerary design of an agent. This

algorithm derives a lower cost itinerary than LCF and GCF algorithms, but takes more time for

itinerary calculation, which cannot be tolerated for time-sensitive applications. The

algorithms proposed in [4] and [5] use only a single mobile agent deployed from the sink that

successively visits all sensor nodes. The main drawback of these algorithms is that they are not

scalable, i.e. their performance goes down as the network size increases. This is due to fact that

the size of the mobile agent increases as it visits more and more sensor nodes, resulting in

increase in overall energy consumption and the agent’s round trip time.

 To overcome the drawback of single agent based itinerary design algorithms, Gavalas et al.

[6] proposed a heuristic algorithm, called Near-optimal itinerary design (NOID). NOID

calculates an appropriate number of agents that minimize overall communication cost and

derives near optimal itineraries for each of them. NOID outperforms single agent based

protocols proposed in [4] and [5], both in terms of data fusion cost and the overall response

time. The main drawback of NOID is that it is not suitable for highly dynamic networks [6].

 Cai et al. [7] proposed a genetic algorithm based Muti-Agent itinerary planning (GA-MIP)

approach to address the drawback of the single agent based approach. The main drawback of

this algorithm is that it requires a number of evolutionary iterations to determine efficient

itineraries. This approach is time expensive and is not suitable for time-critical applications.

 In [8], Konstantopoulos et al. proposed a tree based itinerary design (TBID) algorithm,

which improves upon NOID. TBID uses a greedy like approach for building a number of trees

and determines the itineraries of the agents using post order tree traversal with possible

shortcutting approach. The main drawback of this algorithm is that it is not suitable for

dynamic network where network topology frequently changes due to channel fading or node

failures.

126 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

 In [9], a clone based itinerary design (CBID) algorithm is proposed where sensor nodes are

organized in a spanning tree rooted at the sink node. The sink node dispatches multiple agents,

one for each branch of the tree, for data aggregation tasks. When an agent visits a node with

two or more child nodes, it makes clones of itself, one for each child and sends it to its children.

When all cloned agents return to the location of the master agent, they hand over their

accumulated aggregated data to it. The main drawback of this algorithm is that an agent packet

needs to carry additional information with it about when and where to clone, resulting in poor

scalability.

 In [10], Chen et al. proposed an itinerary planning algorithm, called Itinerary Energy

Minimum for First-source selection (IEMF) which extends the LCF algorithm by using the

estimated communication cost. IEMF selects the next-hop node for agent migration by

considering minimum energy cost.

 Mpitziopoulos et al. [11] proposed a framework for supporting the visually impaired

people, called PROTECT that employs autonomous software agents for locating and

informing them for potential risks. PROTECT is executed at the sink where it forms a number

of itinerary trees and the final itineraries for the agents are derived by tree traversal method

proposed in [12].

 The algorithms proposed in [4-11] are centralized algorithms executed at the sink node,

which generates static itineraries. There are many drawbacks of the centralized algorithm

based itinerary design approach. First, it needs to collect periodically the location and residual

energy information from all sensor nodes for calculating the updated itineraries, resulting in

high communication overhead. Second, the agent may be unable to complete its round trip if

some nodes die or become faulty along the itinerary. Third, each agent has to carry its itinerary,

which increases its size as network size increases. Consequently, it takes more energy and time

to transmit the agent packet. Finally, it does not offer quick response to possible topology

changes.

 Thus, static itinerary design does not suit highly dynamic sensor networks with large

network size and is not efficient for those applications where network topology changes

frequently and accurate topology information cannot be collected in advance at the sink node.

Further, most of these algorithms fail to consider the requirement of fault tolerance in the

context of mobile agent based WSNs.

 In [13], Xu et al. proposed a dynamic itinerary design for getting progressive fusion

accuracy. In their approach, an agent selects that sensor node from its neighborhood, which

has maximum residual energy, consumes minimum energy for its migration and offers more

information gain. This approach is designed for target tracking applications.

 In [14], Gupta et al. proposed an agent based data dissemination protocol which decides the

agent itinerary dynamically at each hop. The main weakness of this work is that the agent does

not visit all nodes of the region.

 Intanagonwiwat et al. [22] proposed a distributed information extraction protocol, called

directed diffusion(DD). In DD, the sink disseminates interest message regarding the

information to be extracted and each node records the neighboring node from which the

interest message is received. Upon receiving the interest message, each node initiates the

gradient setup phase in which it maintains a vector containing the next hope that has to be used

to transmit the result of the query back to the sink node. The main drawback of DD is that it

does not eliminate redundant data transmissions.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 127

Copyright ⓒ 2014 KSII

 The advantages of the dynamic itinerary based agent migration approach are that it offers

quicker response to possible topology changes and uses local information for computation of

an agent’s itinerary better suited for resource-constrained sensor nodes. In addition, the size of

an agent packet is noticeably smaller because it does not carry a pre-computed itinerary;

instead, it decides the itinerary on the fly at each hop. Thus, the dynamic itinerary based agent

migration approach suits highly dynamic sensor networks. Keeping this in mind, we propose a

distributed algorithm for information extraction based on multiple agents with dynamic

itineraries that is suitable for periodic as well as query based information extraction and

resilient to sensor node failures.

3. Network Model and Assumptions

This work considers a sensor network consisting of N sensor nodes uniformly distributed in a

circular monitoring area of radius R, similar to the model presented in [8]. A sink node is

placed at the center of monitoring area. We assume each sensor node is static and knows its

coordinates (x, y) in a two dimensional plane by means of some localization algorithms

[15-17] where no GPS receiver is required. Each node knows the coordinates of the sink as

well. Using these coordinates, each node x calculates its polar coordinate, denoted by (x.r,

x.theta), where x.r is the Euclidean distance of node from the sink and x.theta is an angle

between the polar axis and the line connecting the sink and node x. Since sensor nodes are

stationary, the setup of their polar coordinates is a one-time task [18]. We assume that node

density in the network is sufficiently high to ensure migration of agent packets along the rings

[19].
 Table 1. Data structures/variables used in processing

Data structures Meaning

nodeID Identifier for the node

nodeEnergy Remaining energy of a node

ringNo Identifier for the concentric ring

wedgeNo Identifier for the wedge

polarCoord Polar coordinate (r, theta) of a node

Wi Wedge number

k Number of the agent

rmax Maximum transmission range of the node

maxRingNo Maximum ring rumber

moveFlag Flag variable, if true means agent moves left to

right , otherwise right to left direction within

each ring

Vx Neighbor table for node x

W Number of wedge in which sensing field is

divided.

α angular width of the wedge

R radius of monitoring area

ngbPkt Neighbor discovery packet

AgentPkt Software agent packet

E_threshold Threshold node energy

ma_direction Flag variable which decides direction of agent’s

movement.

128 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

4. Proposed Protocol

In this section, we present a distributed algorithm for the information extraction (IEMADI)

protocol using multiple software agents with dynamic itineraries, for query based information

extraction applications for WSNs. The operation of IEMADI consists of two phases: (1)

initialization and (2) agent migration. This section describes each of these phases in detail.

The data structures used in the design are given in Table 1.

4.1 Initialization

In the initialization phase, each node sets up its ringNo and wedgeNo using its polar

coordinates. The width of the first ring is max.rw , where w is a constant in the range [0.5, 1.0]

and maxr is the maximum communication range of any node. The width of all other rings is

2maxr . The pseudo code for the setup of ringNo and wedgeNo is given in Fig. 1.

 Next, each node starts the neighbor discovery process, where it creates and broadcasts an

ngbPkt packet. The ngbPkt packet contains five fields: nodeID, nodeEnergy, ringNo,

wedgeNo, and polarCoord, where nodeID is the identifier for the node, nodeEnergy is the

remaining energy of the node, ringNo is the ring identifier to which node belongs, wedgeNo is

the wedge identifier to which node belongs, and polarCoord is the polar coordinate of the

node.

 If a node receives an ngbPkt packet from its own wedge, it updates its neighbor table with

the values in the nodeID, ringNo, wedgeNo, nodeEnergy and polarCoord fields. The structure

of neighbor table is shown in Fig. 2. If a node x receives an ngbPkt packet from another wedge,

it sets x.boundaryNode to true and informs its boundary state to its neighbors by broadcasting

a beacon packet. At the end of this phase, each node knows its ringNo, wedgeNo and also all

its neighbors within its transmission region in its wedge.

Algorithm: Setup for ringNo and wedgeNo for each node
Begin

For sensor node x :

Input: polar coordinate(x.r, x.theta)

 ω : a constant in range of [0.5,1.0]

Output: ringNo, wedgeNo, neighbor table

Initially: x.ringNo=0; x.wedgeNo=0; i=2;

1: maxRing =  )2//().(1 maxmax rrwR  ;

2: if (x.ringNo== 0 && x.wedgeNo == 0)

3: x.wedgeNo =  /.thetax

4: if (max.. rwrx )

5: x.ringNo = 1;

6: else

7: while (i < maxRing)

8: if))
2

).1(.(.)
2

).2(.((max

max

max

max

r
irwrx

r
irw 

9: x.ringNo = i;

10 break;

11: end if

12: i++;

13: end while

14: end else

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 129

Copyright ⓒ 2014 KSII

15: end if

End
 Fig. 1. Algorithm for the setup of ringNo and wedgeNo for node x.

nodeID nodeEnergy ringNo wedgeNo polarCoord boundaryNode
Fig. 2. Structure of a neighbor table

ma_ID

(1 byte)

ma_direction

(1 bit)

moveFlag

(1 bit)

maxRingNo

(6 bits)

Query logic Payload

Fig. 3. Structure of the mobile agent packet

4.2 Agent Migration Process

In this phase, the sink node creates and dispatches software agents to the first ring of each

wedge Wi, where i=1, 2… W. Here W is the number of wedge regions that depends on angular

width (α) of the wedge region. The structure of the mobile agent packet is shown in Fig. 3. The

header of a mobile software agent packet contains four fields: ma_ID, ma_direction, moveflag

and maxRingNo, where ma_ID is the identifier for the agent, ma_direction is a flag variable

which shows the direction of the agent migration from one ring to another, moveFlag is a flag

variable which shows the direction of agent migration within each ring, and maxRingNo is the

maximum ring number which is computed by the sink node since it knows the radius of the

monitoring area (R) and width of each ring.

 The agent migration process is divided into two sub-phases. In the first sub-phase, an agent

migrates through boundary nodes with minimum theta value from the inner to the outer ring.

In the second phase, data aggregation starts from the outer ring and the agent migrates within

the wedge in a spiral order from the outer to inner ring towards the sink, as shown in Fig. 4. In

the initial traversal from sink to a node in outermost ring, an agent does not gather data. It

starts gathering data from the node of the outer ring. The advantages of this approach is that it

avoid unnecessary carry of data from the nodes during initial traversal from sink to a node in

the outermost ring, as a result itinerary cost of an agent decreases.The flowcharts for agent

migration process is given in Fig. 5.

 During agent migration, if next hop in the ring does not meet threshold requirements, an

agent selects an alternate node of the adjacent ring to complete the visit of the remaining nodes

of the ring. If there is no alternate node available with required threshold, an agent simply

jumps to the inner ring to traverse their nodes. If there is no neighbor node available in its

neighbor table which satisfies the threshold condition, agent will not be move further and

information extraction process is abandoned.

Header

130 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

Fig. 4. Agent migration within wedge

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 131

Copyright ⓒ 2014 KSII

Fig. 5. Flowchart for the agent migration algorithm executed by node x

132 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

5. Mathematical Analysis

In this section, we evaluate the performance of our proposed protocol in terms of energy

consumption and response time. These two metrics reflect the efficiency of agent based

protocols. Assume N nodes are uniformly distributed over a circular sensing field which is

divided into W wedge regions, each having an equal number of nodes n.

5.1 Energy Consumption Analysis

We first calculate the total energy consumed (totalE) in one round of agent based information

extraction. totalE depends on the number of agents deployed, size of the agent packet and the

number of nodes visited by each agent. In WSNs, information extraction process is performed

in rounds. In each round of information extraction, the sink node dispatches a number of

software agents where it visits a set of nodes, perform data aggregation and carry relevant

information with it and return to the sink. This whole cycle is called one round of information

extraction. Let size of agent packet at i
th
 node be

isizeagentS Then, totalE can be expressed by the

following formula:









 




))()*((.
1

1
TxagentDARx

n

i

agentextratotal ESEESEWE
isizeisize

 (1)

Here, WNn  . RxE and TxE is energy consumed in receiving and transmitting a byte of

message respectively. DAE is the energy consumed in processing at each node. extraE is total

energy consumed in forwarding an agent from the sink to the starting sensor node from where

agent starts data collection.

 Let the size of agent packet when dispatched from the sink node be iniS bytes and on

average a d bytes increase in agent size occurs at each sensor node after query based

information. The size of agent packet at i
th
 node,

isizeagentS is given by:

 diSS iniagent
isize

* (2)

 For IEMADI protocol, initial size of the agent packet
 forIEMADIiniS _ , is given by:

payloadicprocheaderforIEMADIini SSSS  log__ (3)

Here headerS is size of header. From Fig. 3, we can see that header of the agent packet contains

four fields and the size of header is 2 bytes. icprocS log_ is the size of processing code carried

with an agent and payloadS is the size of payload, initially value of payloadS is zero, when an

agent dispatched by the sink. Equation 3 can be rewritten as:

icprocforIEMADIini SS log__ 2 (4)

Therefore, from equation 2 and 4, for IEMADI, the size of the agent packet at the i
th
 node,

isizeagentIEMADIS _ is given by:

diSS icprocagentIEMADI
isize

*2 log__  (5)

For IEMADI protocol, extra total energy consumed (forIEMADIextraE _) is equal to total energy

dissipation in forwarding an agent from sink to the outer ring of the wedge. forIEMADIextraE _ is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 133

Copyright ⓒ 2014 KSII

given by:

)(*
max

1

__ TxRx

RingNo

j

forIEMADIiniforIEMADIextra EESE  


)(*)2(*max log_ TxRxicproc EESRingNo  (6)

 From equation 6, it is evident that value of forIEMADIextraE _ is constant for each wedge.

Hence, from equation 1, 5 and 6, total energy consumed in one round of query based

information extraction for IEMADI protocol (IEMADItotalE _) is given by:

























n

i

TxicprocDARxicproc

forIEMADIextra

IEMADItotal
EdiSEEdiS

E

WE

1

log_log_

_

_
*)*2(*)*)1(2((

*

 (7)

Here forIEMADIextraE _ is constant for all wedges. From equation 7, it is evident that total energy

consumed in one round of query based information extraction depends on agent size and

number of nodes visited by it. Since wedge angular width)360(W and)(nNW  ,

we can simplify equation 7 by putting the value of W, n and forIEMADIextraE _ , as given by:

 

 



























































Txicproc

DA

Rxicproc

TxRxicproc

IEMADItotal

E
N

dS

E

E
N

N
dS

EESRingNo
N

NE

*)1)
360

*
((*)2()2((

*)
*

720
3)

360

*.
((*)2()2((

)(*)2(*max*
)*(

360

*

log_

log_

log_

_









(8)

 The optimal value of α can be obtain by taking differential of equation 8 (IEMADItotalE _) with

respect to α. We get following expression:

 
2

log_)2(*max*2
*

360

d

SRingNo

N

icproc
 (9)

For network scenario where N=300 nodes are deployed in a circular monitoring area of radius

100m. The value of icprocS log_ and d is 1000 and 100 bytes respectively. If 0074.0RxE

134 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

joules per byte and 0074.0TxE joule per byte, we get minimum value of α is 15.19 by

putting these values in equation 9. For this network scenario, Fig. 6 plots the effect of α on the

average energy consumption (NE IEMADItotal_) by using the equation 8.

0

10

20

30

40

50

60

60 45 40 30 20 15 10 5

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o

n
(J

)

α

IEMADI

Fig. 6. Average energy consumption vs. α for IEMADI protocol

 In a static itinerary based protocol, each agent carries a pre-computed itinerary list. Initial

size of the agent packet for static itinerary based protocol such as TBID, forTBIDiniS _ , is given

by:

payloadlistitineraryicprocheaderforTBIDini SSSSS  _log__ (10)

Here, value of headerS is 1 byte since it contains only one field: agent identifier which occupies

one byte. listitineraryS _ is size of itinerary list. Let an agent visit n nodes. If the entry for each

node in the itinerary list takes l bytes, the size of itinerary list (listitineraryS _) will be n*l.

Initially value of payloadS will be zero. Hence equation 10 can be rewritten as:

)*(1 log__ lnSS icprocfoTBIDini  (11)

The size of the agent packet at the i
th
 node,

isizeagentTBIDS _ for TBID can be calculated from

equation 2 and 10 and is given by:

)*()*(1 log__ dilnSS icprocagentTBID
isize

 (12)

 For TBID protocol, extra total energy consumed (forTBIDextraE _) is equal to total energy

dissipation in forwarding an agent from sink to the leftmost leaf node of the itinerary tree.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 135

Copyright ⓒ 2014 KSII

forTBIDextraE _ is given by:

 



h

j

TxRxforTBIDiniforTBIDextra EESE
1

__)(*

)(*)*(1(* log_ TxRxicproc EElnSh 

 (13)

Here, h is height of itinerary tree. From equation 13, it is evident that value of forTBIDextraE _ is

constant for each tree. Hence, from equation 1, 12 and 13, total energy consumed in one round

of information extraction for TBID protocol (TBIDtotalE _) can be expressed by the following

formula:



































n

i Txicproc

DARxicproc

forTBIDextra

TBIDtotal

EdilnS

EEdilnS

E

WE

1 log_

log_

_

_

)*)*)*(1(

))1()*(1((

*

* (14)

Table 2. Energy consumption analysis

Protocol Energy Consumption

IEMADI
























n

i

TxicprocDARxicproc

forIEMADIextra

EdiSEEdiS

E

W

1

log_log_

_

*)*2(*)*)1(2((
*

TBID



































n

i Txicproc

DARxicproc

forTBIDextra

EdilnS

EEdilnS

E

W

1 log_

log_

_

)*)*)*(1(

))1()*(1((

*

*

 Table 2 shows the mathematical expressions for energy consumption for IEMADI and

TBID protocols. It is evident that IEMADI consumes less energy because the agent packet

does not carry pre-computed itinerary list, unlike in a static itinerary based protocol such as

TBID, where it does. Since size of itinerary list grows as network size increases, higher energy

consumption results in case of static itinerary based protocols.

5.2 Response Time Analysis

 Response time (timeresponseT _) is the time interval from the moment the first agent is

dispatched from the sink node to the time all the agents return back to it. Agent migration time

(
1, iimigT) from i

th
 node to (i+1)

th
 node depends on the communication bandwidth (bytes per

sec) and the current size of the agent. If an agent visits n nodes in its itinerary, timeresponseT _ is

given by:

136 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents







n

i

propmigprocextrainsttimeresponse TTTTTWT
ii

1

_)(.
1,

 (15)

 Here, instT is time spent in instantiation of an agent packet at the sink. The value of instT is

constant for each agent. extraT is time spent in forwarding the agent from the sink to the

starting sensor node from where the agent starts data collection. The value of extraT is constant

for each agent. procT is the time spent by the agent to complete its assigned task at a node. The

value of procT is constant for each agent. propT is the agent propagation time and depends on

the physical distance travel by it. Let the agent packet be transmitted over a communication

channel of bandwidth B bytes per sec. For dynamic itinerary based protocol, agent migration

time (
1, iimigT) from i

th
 node to (i+1)

th
 is given by[20]:

BdiST inimig ii
/)*(

1,



 (16)

From equations 15 and 16, response time (IEMADItimeresponseT __) for IEMADI is given by:





n

i

propforIEMADIiniprocforIEMADIextrainstIEMADItimeresponse TBdiSTTTWT
1

____))/)*(((.

 (17)

By putting the value of forIEMADIiniS _ from equation 4 into equation 17, equation 17 can be

rewritten as:





n

i

propicprocprocforIEMADIextrainstIEMADItimeresponse TBdiSTTTWT
1

log____))/)*2(((.

 (18)

Similarly, from equation 12 and 16, for a static itinerary based protocol, agent migration time

(
1, iimigT) from i

th
 node to (i+1)

th
 is given by:

BdilnST icprocmig ii
/)*)*(1(log_1,




 (19)

Therefore, response time (TBIDtimeresponseT __) for a static itinerary based protocol such as TBID

is given by:





n

i

propicprocprocforTBIDextrainstTBIDtimeresponse TBdilnSTTTWT
1

log____))/)*)*(1(((.

 (20)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 137

Copyright ⓒ 2014 KSII

Table 3. Response time analysis

Protocol Response Time

IEMADI

 



n

i

propicprocprocforIEMADIextrainst TBdiSTTTW
1

log__))/)*2(((.

TBID





n

i

propicprocprocforTBIDextrainst TBdilnSTTTW
1

log__))/)*)*(1(((.

 Table 3 shows the mathematical expressions for response time for IEMADI and TBID

protocols. It is seen that the response time timeresponseT _ is dominated by the agent size and the

length of the agent’s itinerary.

6. Performance Evaluation

This section presents the performance analysis of the IEMADI under different network

scenarios and compares it with TBID [8] and DD[22]. We vary the network size, wedge angle,

as well as percentage of faulty nodes and evaluate the average energy consumption, response

time, network lifetime and success rate of the agent’s round trip under different network

scenarios. All the simulation results with 95% confidence interval are shown in this section.

Table 4. Simulation parameters

Parameter Value

Terrain Shape Circular

Terrain radius 150m

Number of nodes 50-300

Node density 0.0052 nodes/sq. m.

Transmission range 25m

Simulation time 3000 sec

Initial battery power 18720J

Size of query logic (agent’s

processing code)

1000 bytes

Average byte accumulated by an

agent at each node (d)

100 bytes

Agent execution time (Tproc) 55ms

MAC protocol T-MAC

Confidence level for results 95%

138 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

6.1 Simulation Setup

We use a discrete event simulator Castalia3.2 [21] that is based on OMNeT++ platform, for all

evaluations. We adopt the network model used in [8] and [18], in which 50-300 nodes are

uniformly distributed within a circular sensing field of different radius to maintain the same

node density. For simplicity, the sink node is placed at the center of the sensing field. The

transmission radius of sensor nodes is 25m. All sensor nodes have the same initial battery

power 18720J (equivalent to one 2AA battery). We have used T-MAC protocol at MAC layer

to simulate the proposed scheme. In our experiments, T-MAC protocol takes care of

disconnection issues arises between the adjacent sensor nodes due to nodes’sleep. The

simulation parameters are listed in Table 4. We used the following metrics for performance

evaluation:

1. Average Energy consumption (avgE): The amount of energy consumed by a node

in performing the required network operation in each round of data collection.

 (avgE Sum of energy consumption at each node) / (number of nodes)

2. Response time(timeresponseT _): The average time interval required to complete one

round of data collection

   pTT
p

i
kforjjitimeresponse)max(

1
..1,_ 




 . Here, jiT , is the time taken by the j
th
 agent

of i
th
 round to complete its data aggregation task, k is number of agents and p is the

round number.

3. Network lifetime: Lifetime of a sensor network basically depends on the energy

dissipation of individual sensor nodes. It is defined as time duration until the first

sensor node in the network dies due to battery exhaustion. Since agents are used for

collecting the aggregated data from the network, the network lifetime is calculated as

total number of successful rounds of data collection by the agents.

4. Success rate of agent’s round trip: The number of agents received by the sink as a

percentage of the total number of agents dispatched by it.

6.2 Impact of Angular Width (α) Variation

 Fig. 7(a) and (b) show the effects of the increase in angular width (α) of the wedge on the

average energy consumption and response time respectively. For this experiment, we use a

network scenario where 300 nodes are uniformly deployed with fixed node density (0.0052

nodes/ sq. m.) and value of the payload (d) is 100 bytes. From the Fig. 7(a), we can observe

that average energy consumption decreases as the value of α decreases from 60 to 15, but

further increases as the value of α decreases from 15 to 5. Based on this result, we can

conclude that when the value of α is below a threshold value, wedge region will become very

narrow and an agent travels in line from sink to outer ring and return backs with almost using

same path. Due to this reason, an agent visits twice each node of the wedge. As a result each

node has to forward the agent packet two times, this increases average energy consumption.

For the first case when value of α decreases from 60 to 15, size of wedge region decreases and

each agent visits nodes of the wedge except boundary nodes only one time. However, number

of nodes of the wedge visited by an agent decreases with decrease in value of α from 60 to 15,

as a result average energy consumption decreases due to payload size of the agent packet

decreases.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 139

Copyright ⓒ 2014 KSII

 From the Fig. 7(b), we can observe that response time decreases as the value of α

decreases from 60 to 15, but almost same as the value of α decreases from 15 to 5. This is

because as the value of α decreases, the number of nodes visited by the agents also decreases,

resulting in decrease in response time.

0

10

20

30

40

50

60

60 45 40 30 20 15 10 5

α

A
v
e

ra
g

e
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
(J

)

IEMADI

0

5

10

15

20

25

30

35

60 45 40 30 20 15 10 5

α

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
)

IEMADI

(a) Average energy consumption (b) Response time

Fig. 7. Performance analysis of IEMADI with varying value of α

6.3 Impact of payload size (d) variation

0

10

20

30

40

50

60

70

50 100 150 200 250 300

d (in bytes)

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
(J

)

IEMADI

TBID

DD

0

5

10

15

20

25

30

35

50 100 150 200 250 300

d (in bytes)

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
)

IEMADI

TBID

DD

(a) Average energy consumption (b) Response time

Fig. 8. Performance comparison of IEMADI and TBID with varying value of payload size (d)

140 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

 Fig. 8(a) and (b) show the effects of the increase in the value of d on the average energy

consumption and response time respectively. From the Fig. 8(a), we can observe that as the

value of d increases, average energy consumption also increases since the agent packet size

increases. In the IEMADI, average energy consumption increases slower compare to IEMADI

when the value of d increases. This is because IEMADI uses dynamic itineraries for the agents

in which the agent does not carry itinerary list which makes its size smaller than the agent used

in TBID. In addition, IEMADI uses shorter itinerary length for the agent compare to TBID.

DD consumes higher energy than IEMADI and TBID. This is due to fact that each node sends

their raw data to the sink and intermediate nodes not only transmit its data but also transmit its

children’s data as well.

 From the Fig. 8(b), we can observe that response time grows as the value of d increases. In

the IEMADI, response time increases slower compare to TBID when the value of d increases

due to the smaller size of agent packet and itinerary length used in IEMADI compare to TBID.

However, DD takes more response time than IEMADI and TBID as the payload increases. The

reason for this is same as discussed in above paragraph.

6.4 Impact of Network Size Variation

Fig. 9(a) and (b) show the result of the comparison of IEMADI with TBID and DD in terms of

average energy consumption with varying number of nodes for d=100 and d=200, respectively.

From Fig. 9, we observe that the average energy consumption increases with the increase in

network size because of increase in agent’s itinerary and size, which increases as the number

of nodes increases. IEMADI consumes approximately 12% less energy compared to TBID.

This is due to the use of dynamic agent migration, where the agents need not carry the

pre-computed itinerary. As a result the size of the agent packet becomes smaller and saves

communication energy. However, DD consumes more energy than IEMADI and TBID. This

is because each node in DD sends their data to the sink through multihop transmission towards

the sink and intermediate nodes are also work as relay nodes for forwarding the data packets of

its children nodes.

0

10

20

30

40

50

60

50 100 150 200 250 300

Number of nodes

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
(J

)

IEMADI d=100

TBID d=100

DD d=100

0

10

20

30

40

50

60

50 100 150 200 250 300

Number of nodes

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
(J

)

IEMADI d=200

TBID d=200

DD d=200

(a) (b)

Fig. 9. Performance comparison of IEMADI, TBID, and DD in terms of average energy consumption

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 141

Copyright ⓒ 2014 KSII

 Fig. 10 (a) and (b) shows the comparison of IEMADI with TBID and DD, in terms of

response time with varying number of nodes for d=100 and d=200, respectively. We observe

that the response time increases with increase in network size, because of increase in agent’s

itinerary and size. Since an agent accumulates more data as the network size increases, it takes

more time to transmit the agent. IEMADI takes approximately 2% less time as compared to

TBID to complete one round. This is again due to the dynamic agent migration scheme, where

the agents need not carry pre-computed itineraries; as a result the size of agent packet becomes

smaller and thus reduces response time. Response time for DD is less when number of nodes

are less compare to TBID. When number of nodes increases, response time for DD is increases

compare to TBID.

0

5

10

15

20

25

30

35

50 100 150 200 250 300

Number of nodes

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
)

IEMADI d=100

TBID d=100

DD d=100

0

5

10

15

20

25

30

35

50 100 150 200 250 300

Number of nodes

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
)

IEMADI d=200

TBID d=200

DD d=200

(a) (b)

Fig. 10. Performance comparison of IEMADI, TBID, and DD in terms of response time

 Fig. 11 gives the comparison of IEMADI with TBID and DD, in terms of network lifetime

with varying number of nodes. It is evident that network life time decreases with the increase

in network size because of increase in agent’s itinerary length and size. This is due to fact that

an agent has to visit more nodes as the network size increases. The network life time of

IEMADI is approximately 28% higher than TBID. This is because of the calculation of

dynamic itinerary at each hop and smaller size of agent. As a result, it takes less energy to

transmit an agent and thus enhances network lifetime. However, in TBID, sink needs to collect

topology information periodically, resulting in more energy consumption. In addition, the

agents carry pre-computed itineraries which increase its size, hence take more energy of the

node for agent migration. The network life time of IEMADI is approximately 30% higher than

DD.

142 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300

Number of nodes

N
e
tw

o
rk

 l
if
e
ti
m

e
(i
n
 r

o
u
n
d
s
)

IEMADI

TBID

DD

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10

% of faulty nodes

S
u
c
c
e
s
s
 r

a
te

 o
f

a
g
e
n
t'
s
 t

ri
p

IEMADI

TBID

 Fig. 11. Network lifetime vs. number of nodes Fig. 12. Success rate of agents’ trip in

 presence of faulty nodes

6.5 Impact of Node Failures

 Fig.12 gives a comparison of IEMADI with TBID in terms of success rate of agents’ round

trip with varying percentage of faulty nodes present in the network. It is seen that success rate

in IEMADI is notably higher than in TBID. This is because IEMADI calculates agents’

itineraries at each hop dynamically using local information; as a result it bypasses faulty nodes.

However, in TBID, an agent carries a pre-computed itinerary and strictly follows the node

sequence in it. For this reason, it is unable to complete its round trip, if some nodes fail along

the itinerary.

7. Conclusion

This paper has proposed an information extraction protocol, based on multiple mobile agents

with dynamic itineraries, for reducing the impact of faulty nodes on the agent’s migration and

enhancing network lifetime. We studied the performance of the proposed protocol IEMADI

through mathematical analysis and extensive simulation experiments, and compared it with a

static itinerary based protocol, TBID and a distributed information extraction protocol, DD.

The mathematical analysis and simulation results confirmed that IEMADI performs notably

better in terms of average energy consumption, response time, network lifetime and success

rate of agents’ round trip, as compared to TBID and DD. In future, we plan to extend this work

for mobile wireless sensor networks and study the impact of node mobility on the agent

migration.

References

[1] Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E., “Wireless sensor networks: a survey,”

Computer Networks, vol. 38, pp. 393–422, 2002. Article (CrossRef Link)

http://dx.doi.org/10.1016/S1389-1286%2801%2900302-4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014 143

Copyright ⓒ 2014 KSII

[2] Chen, M., Gonzalez, S., Leung, V., “Applications and design issues for mobile agents in wireless

sensor networks,” IEEE Wireless Communication, 14, (6), pp. 20–26, 2007. Article (CrossRef

Link)

[3] Qi H., Iyengar S. S., and Chakrabarty K., “Multi-Resolution Data Integration Using Mobile

Agents in Distributed Sensor Networks,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C, vol. 31, no. 3, pp. 383–391, Aug. 2001. Article (CrossRef Link)

[4] Qi H. and Wang F., “Optimal Itinerary Analysis for Mobile Agents in Ad Hoc Wireless Sensor

Networks,” in Proc. 13th International Conference on Wireless Communications (Wireless’2001),

vol. 1, Calgary, Canada, pp. 147–153, Jul. 2001.

[5] Wu Q., Rao N., Barhen J., Iyengar S., Vaishnavi V., Qi H., Chakrabarty K.,, “On Computing

Mobile Agent Routes for Data Fusion in Distributed Sensor Networks,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 6, pp. 740–753, Jun. 2004. Article (CrossRef Link)

[6] Gavalas, D., Mpitziopoulos, A., Pantziou, G., Konstantopoulos, C., “An approach for near-optimal

distributed data fusion in wireless sensor networks,” Springer Wireless Network, vol. 16, pp.

1407–1425, 2009. Article (CrossRef Link)

[7] Cai W., Chen M., Hara T., Shu L., Kwon T., “A genetic algorithm approach to multi-agent

itinerary planning in wireless sensor networks,” Springer Mobile Network application, 16 (6), pp.

782–793, 2011. Article (CrossRef Link)

[8] Konstantopoulos, C., Mpitziopoulos, A., Gavalas, D., Pantziou, G., “Effective determination of

mobile agent itineraries for data aggregation on sensor networks,” IEEE Transaction on

Knowledge and Data Engineering, vol. 22(12), pp. 1679–1693, 2010. Article (CrossRef Link)

[9] Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., Pantziou, G., “CBID: a scalable method for

distributed data aggregation in WSNs,” Hindawi International Journal of Distributed Sensor

Network, vol. 2010, Article ID 206517, pp.13, 2010. Article (CrossRef Link)

[10] Chen, M., et al., “Itinerary Planning for Energy-efficient Agent Communication in Wireless

Sensor Networks,” IEEE Transactions on Vehicular Technology, pp. 1-1, 2011. Article (CrossRef

Link)

[11] Mpitziopoulos A., Konstantopoulos C., Gavalas D., and Pantziou G., “A pervasive assistive

environment for visually impaired people using wireless sensor network infrastructure,” Journal of

Network and Computer Applications, vol. 34, pp. 194-206, 2011. Article (CrossRef Link)

[12] Averbakh I. and Berman O., “Sales-delivery man problems on treelike networks,” Networks, vol.

25, pp. 45-58, 1995. Article (CrossRef Link)

[13] Xu, Y., & Qi, H., “Mobile agent migration modeling and design for target tracking in wireless

sensor networks,” Ad Hoc Networks, vol. 6(1), pp. 1–16, 2008. Article (CrossRef Link)

[14] Gupta G. P., Misra M., and Garg K., "Multiple Mobile Agents based Data Dissemination Protocol

for Wireless Sensor Networks," in Proc. of Springer International Conference on Advances in

Computer Science and Information Technology, Networks and Communications, pp. 334-345,

2012.

[15] Bulusu N., Heidemann J., and Estrin D., “GPS-Less Low Cost Outdoor Localization for Very

Small Devices,” IEEE Personal Communication, vol. 7, no. 5, pp. 28-34, Oct. 2000. Article

(CrossRef Link)

[16] Mao G., Fidan B., Anderson B. D., “Wireless sensor network localization techniques,” Computer

Networks, vol. 51(10), pp. 2529-2553, 2007. Article (CrossRef Link)

[17] Wang Y., Wang X.,Wang D., Agrawal D. P., “Range-free localization using expected hop progress

in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20(10),

pp.1540-1552, 2009. Article (CrossRef Link)

[18] Rachuri K. K., Murthy C.S.R., “On the scalability of expanding ring search for dense wireless

sensor networks,” Journal of Parallel and Distributed Computing, vol. 70(9), pp.917–929, 2010.

 Article (CrossRef Link)

[19] Intanagonwiwat C., Estrin D., Govindan R., Heidemann J., “Impact of network density on data

aggregation in wireless sensor networks,” in Proc. of ICDCS’02, the 22
nd

 International Conference

on Distributed Computing Systems, pp.457, Jul.2002.

http://dx.doi.org/10.1109/MWC.2007.4407223
http://dx.doi.org/10.1109/MWC.2007.4407223
http://dx.doi.org/10.1109/5326.971666
http://dx.doi.org/10.1109/TKDE.2004.12
http://dx.doi.org/10.1007/s11276-009-0211-0
http://dx.doi.org/10.1007/s11036-010-0269-z
http://dx.doi.org/10.1109/TKDE.2009.203
http://dx.doi.org/10.1155/2010/206517
http://dx.doi.org/10.1109/TVT.2011.2134116
http://dx.doi.org/10.1109/TVT.2011.2134116
http://dx.doi.org/10.1016/j.jnca.2010.07.017
http://dx.doi.org/10.1002/net.3230250204
http://dx.doi.org/10.1016/j.adhoc.2006.07.004
http://dx.doi.org/10.1109/98.878533
http://dx.doi.org/10.1109/98.878533
http://dx.doi.org/10.1016/j.comnet.2006.11.018
http://dx.doi.org/10.1109/TPDS.2008.239
http://dx.doi.org/10.1016/j.jpdc.2010.05.004

144 Gupta et al.: Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents

[20] Verma V, Joshi R. C., Xie B, Agrawal D. P., “Combating the bloated state problem in mobile

agents based network monitoring applications,” Computer Networks, vol.52(17), pp.3218 – 3228,

2008. Article (CrossRef Link)

[21] Castalia Simulator (March 2012) [online] http://castalia.npc.nicta.com.au/.

[22] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed diffusion for

wireless sensor networking,” IEEE/ACM Transactions on Networking, vol. 11, pp. 2-16, 2003.

Article (CrossRef Link)

Govind Gupta received the B.E. degree in Computer Science and Engineering in

2000 from CCS Meerut University, Meerut, India, and M.Tech degree in

Computer Science and Engineering in 2007 from UP Technical University,

Lucknow, India. He is currently a PhD candidate in the Department of Computer

Science & Engineering at Indian Institute of Technology, Roorkee, India. His

research interests include mobile computing, wireless ad hoc and sensor network,

network security, distributed computing and performance evaluation. He is a

student member of IEEE.

Manoj Misra received his Bachelor’s degree in Electrical Engineering in 1983

from HBTI Kanpur, India and Master’s in Computer Science in 1986 from

University of Roorkee, India. He received his PhD in Computer Science in 1997

from University of Newcastle, Upon Tyne, UK. He is currently a Professor in the

Department of Computer Science and Engineering at Indian Institute of

Technology, Roorkee. He has guided several PhD theses, ME/MTech

dissertations. His areas of interest include mobile computing, distributed

computing, wireless ad hoc and sensor network and performance evaluation. He

is a senior member of IEEE.

Kumkum Garg received her Bachelor’s in Electronics Engineering from

University of Roorkee, India in 1971 and Master’s in Computer Engineering in

1977 from University of Roorkee, India. She received her PhD in Computer

Engineering in 1984 from University of London, UK. She has been a Professor in

the Department of Computer Science and Engineering, Indian Institute of

Technology, and Roorkee, India from 1989 to 2010. She has been the Head of

Information superhighway Centre from 2005 to 2006 at IIT, Roorkee. Currently,

she is Professor of Computing and Dean, Faculty of Engineering at Manipal

University Jaipur, India. She has guided several PhD theses, ME/MTech

dissertations and completed various projects. Her research interests include

mobile computing, mobile agents, network security, trust, wireless ad hoc and

sensor network. She is a senior member of the IEEE Computer Society.

http://dx.doi.org/10.1016/j.comnet.2008.08.017
http://castalia.npc.nicta.com.au/
http://dx.doi.org/10.1109/TNET.2002.808417

