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Abstract 
 

Wireless sensor networks are generally deployed for specific applications to accomplish 

certain objectives over a period of time. To fulfill these objectives, it is crucial that the sensor 

network continues to function for a long time, even if some of its nodes become faulty. Energy 

efficiency and fault tolerance are undoubtedly the most crucial requirements for the design of 

an information extraction protocol for any sensor network application. However, most existing 

software agent based information extraction protocols are incapable of satisfying these 

requirements because of static agent itineraries and large agent sizes. This paper proposes an 

Information Extraction protocol based on Multiple software Agents with Dynamic Itineraries 

(IEMADI), where multiple software agents are dispatched in parallel to perform tasks based 

on the query assigned to them. IEMADI decides the itinerary for an agent dynamically at each 

hop using local information. Through mathematical analysis and simulation, we compare the 

performance of IEMADI with a well known static itinerary based protocol with respect to 

energy consumption and response time. The results show that IEMADI provides better 

performance than the static itinerary based protocols. 
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1. Introduction 

A Wireless Sensor Network (WSN) is a distributed network, which consists of a large 

number of battery-powered sensor nodes and one or more sink nodes [1]. Sensor nodes are 

small electronic devices that have limited communication and computation capabilities. They 

are deployed for monitoring physical phenomenon such as temperature, light, humidity, 

vibration, sound and so on [1]. Generally, WSNs are deployed for specific applications, to 

accomplish certain objectives over a period of time.  For this, it is crucial that the WSN 

continues to function over a period of time, even if some of its nodes become faulty. Energy 

efficiency and fault tolerance are undoubtedly the most crucial requirements for the design of 

an information extraction protocol for any WSN application. The design of a mobile software 

agent [2] based information extraction protocol should be carefully designed to optimize 

parameters like itinerary length, agent size and fault tolerant migration. 

     In recent years, the mobile agent computing paradigm has been introduced in WSNs for 

various purposes such as data aggregation and collection, topology discovery, network 

diagnostics and health monitoring, application reprogramming, etc. Successful functioning of 

these operations depends on the itinerary of the mobile software agent. A mobile software 

agent [2] is a software entity that can access the sensor nodes one by one, perform assigned 

task and fetch the results back to the sink node. When software agents are employed for 

information extraction task in the WSNs, the selection of the agent’s itineraries is extremely 

vital because it significantly affects the overall energy consumption, latency and information 

extraction cost. Thus a scheme that plans optimal length itineraries with minimum energy 

consumption, response time and low complexity for the nodes is required.  

      Most of the proposed itinerary planning algorithms [3-10] for agent based information 

extraction use a centralized algorithm that is executed at the sink node and that computes 

itineraries for the agents prior their migration. This is known as a static itinerary. The most 

notable issues associated with these algorithms are size of the agent packet and disruption in 

agent migration if some nodes fail along the itinerary. In the static itinerary based approach, 

each agent needs to carry a pre-computed itinerary which grows as network size increases, 

thereby also increasing agent size. Since static itineraries are computed using a centralized 

algorithm that requires updated global network topology information at the sink node and  it 

does not offer quick response to possible topology changes resulting from node failure. 

     In order to solve the above issues, we propose a distributed algorithm for the Information 

Extraction protocol based on Multiple software Agents with Dynamic Itineraries, called 

IEMADI, where multiple agents are deployed in parallel to perform tasks assigned to them. In 

IEMADI, an agent computes its itinerary dynamically at each hop using local information and 

offers efficient and fault tolerant agent migration within the network. IEMADI is suitable for 

both periodic as well as query based information extraction and is resilient to sensor node 

failures.  

      In this paper we evaluate the performance of IEMADI through mathematical analysis and 

extensive simulation experiments and compare it with a well-known static itinerary based 

protocol TBID [8] and a distributed information extraction protocol, called Directed 

Diffusion(DD) [22]. Simulation results show that IEMADI performs notably better than TBID 

and DD in terms of average energy consumption, response time, network lifetime, and success 

rate of agents’ round trips, in the presence of node failures. 

    The remainder of this paper is organized as follows. In Section 2, we briefly review work 
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related to the research presented herein. Section 3 presents the network model and the 

assumptions made. We describe the proposed protocol in Section 4.  Section 5 gives the 

mathematical analysis. In Section 6, we present the performance evaluation of the proposed 

protocol. Finally, Section 7 concludes the paper and presents ideas for future work. 

 

2. Related Work 

In this section, we review existing mobile agent itinerary design algorithms for WSNs. WSNs 

usually have lower communication bandwidth than wired networks, due to which, sensory 

data traffic may exceed network capacity, resulting in collisions and energy wastage. To solve 

the problem of large sensory data traffic, Qi et al. [3] proposed a mobile agent based 

distributed sensor network (MADSN) for energy efficient data aggregation. The authors 

proved through mathematical and simulation studies that by sending mobile agents for data 

aggregation to the sensor nodes, a large amount of redundant data may be filtered at the sensor 

nodes, resulting in saving network bandwidth and reduced network latency. 

     In [4], Qi et al. proposed two heuristic algorithms, Local Closest first (LCF) and Global 

Closest First (GCF) for itinerary design of an agent performing data aggregation. In LCF, each 

mobile agent originates its itinerary from the sink and chooses a sensor node with the shortest 

distance to its present location as the next-hop node for data aggregation. In GCF, each agent 

chooses a sensor node with the shortest distance to the center of the sensing field as the 

next-hop node.   

    In [5], a genetic algorithm based approach is proposed for itinerary design of an agent. This 

algorithm derives a lower cost itinerary than LCF and GCF algorithms, but takes more time for 

itinerary calculation, which cannot be tolerated for time-sensitive applications.  The 

algorithms proposed in [4] and [5] use only a single mobile agent deployed from the sink that 

successively visits all sensor nodes. The main drawback of these algorithms is that they are not 

scalable, i.e. their performance goes down as the network size increases. This is due to fact that 

the size of the mobile agent increases as it visits more and more sensor nodes, resulting in 

increase in overall energy consumption and the agent’s round trip time. 

    To overcome the drawback of single agent based itinerary design algorithms, Gavalas et al. 

[6] proposed a heuristic algorithm, called Near-optimal itinerary design (NOID). NOID 

calculates an appropriate number of agents that minimize overall communication cost and 

derives near optimal itineraries for each of them. NOID outperforms single agent based 

protocols proposed in [4] and [5], both in terms of data fusion cost and the overall response 

time. The main drawback of NOID is that it is not suitable for highly dynamic networks [6].  

      Cai et al. [7] proposed a genetic algorithm based Muti-Agent itinerary planning (GA-MIP) 

approach to address the drawback of the single agent based approach. The main drawback of 

this algorithm is that it requires a number of evolutionary iterations to determine efficient 

itineraries. This approach is time expensive and is not suitable for time-critical applications.  

     In [8], Konstantopoulos et al. proposed a tree based itinerary design (TBID) algorithm, 

which improves upon NOID. TBID uses a greedy like approach for building a number of trees 

and determines the itineraries of the agents using post order tree traversal with possible 

shortcutting approach. The main drawback of this algorithm is that it is not suitable for 

dynamic network where network topology frequently changes due to channel fading or node 

failures. 
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    In [9], a clone based itinerary design (CBID) algorithm is proposed where sensor nodes are 

organized in a spanning tree rooted at the sink node. The sink node dispatches multiple agents, 

one for each branch of the tree, for data aggregation tasks. When an agent visits a node with 

two or more child nodes, it makes clones of itself, one for each child and sends it to its children. 

When all cloned agents return to the location of the master agent, they hand over their 

accumulated aggregated data to it. The main drawback of this algorithm is that an agent packet 

needs to carry additional information with it about when and where to clone, resulting in poor 

scalability.  

    In [10], Chen et al. proposed an itinerary planning algorithm, called Itinerary Energy 

Minimum for First-source selection (IEMF) which extends the LCF algorithm by using the 

estimated communication cost. IEMF selects the next-hop node for agent migration by 

considering minimum energy cost. 

        Mpitziopoulos et al. [11] proposed a framework for supporting the visually impaired 

people, called PROTECT that employs autonomous software agents for locating and 

informing them for potential risks. PROTECT is executed at the sink where it forms a number 

of itinerary trees and the final itineraries for the agents are derived by tree traversal method 

proposed in [12]. 

     The algorithms proposed in [4-11] are centralized algorithms executed at the sink node, 

which generates static itineraries. There are many drawbacks of the centralized algorithm 

based itinerary design approach. First, it needs to collect periodically the location and residual 

energy information from all sensor nodes for calculating the updated itineraries, resulting in 

high communication overhead. Second, the agent may be unable to complete its round trip if 

some nodes die or become faulty along the itinerary. Third, each agent has to carry its itinerary, 

which increases its size as network size increases. Consequently, it takes more energy and time 

to transmit the agent packet. Finally, it does not offer quick response to possible topology 

changes.  

   Thus, static itinerary design does not suit highly dynamic sensor networks with large 

network size and is not efficient for those applications where network topology changes 

frequently and accurate topology information cannot be collected in advance at the sink node. 

Further, most of these algorithms fail to consider the requirement of fault tolerance in the 

context of mobile agent based WSNs. 

     In [13], Xu et al. proposed a dynamic itinerary design for getting progressive fusion 

accuracy. In their approach, an agent selects that sensor node from its neighborhood, which 

has maximum residual energy, consumes minimum energy for its migration and offers more 

information gain. This approach is designed for target tracking applications.  

     In [14], Gupta et al. proposed an agent based data dissemination protocol which decides the 

agent itinerary dynamically at each hop. The main weakness of this work is that the agent does 

not visit all nodes of the region. 

     Intanagonwiwat et al. [22] proposed a distributed information extraction protocol, called 

directed diffusion(DD). In DD, the sink disseminates interest message regarding the 

information to be extracted and each node records the neighboring node from which the 

interest message is received. Upon receiving the interest message, each node initiates the 

gradient setup phase in which it maintains a vector containing the next hope that has to be used 

to transmit the result of the query back to the sink node. The main drawback of DD is that  it 

does not eliminate redundant data transmissions.  
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     The advantages of the dynamic itinerary based agent migration approach are that it offers 

quicker response to possible topology changes and uses local information for computation of 

an agent’s itinerary better suited for resource-constrained sensor nodes. In addition, the size of 

an agent packet is noticeably smaller because it does not carry a pre-computed itinerary; 

instead, it decides the itinerary on the fly at each hop. Thus, the dynamic itinerary based agent 

migration approach suits highly dynamic sensor networks.  Keeping this in mind, we propose a 

distributed algorithm for information extraction based on multiple agents with dynamic 

itineraries that is suitable for periodic as well as query based information extraction and 

resilient to sensor node failures.  

3. Network Model and Assumptions 

This work considers a sensor network consisting of N sensor nodes uniformly distributed in a 

circular monitoring area of radius R, similar to the model presented in [8]. A sink node is 

placed at the center of monitoring area.  We assume each sensor node is static and knows its 

coordinates (x, y) in a two dimensional plane by means of some localization algorithms 

[15-17] where no GPS receiver is required. Each node knows the coordinates of the sink as 

well.  Using these coordinates, each node x calculates its polar coordinate, denoted by (x.r, 

x.theta), where x.r is the Euclidean distance of node from the sink and x.theta is an angle 

between the polar axis and the line connecting the sink and node x. Since sensor nodes are 

stationary, the setup of their polar coordinates is a one-time task [18]. We assume that node 

density in the network is sufficiently high to ensure migration of agent packets along the rings 

[19].  
       Table 1. Data structures/variables used in processing 

Data structures Meaning 

nodeID  Identifier for the node 

nodeEnergy Remaining energy of a node 

ringNo Identifier for the concentric ring 

wedgeNo Identifier for the wedge 

polarCoord Polar coordinate (r, theta) of a node 

Wi Wedge number 

k Number of the agent 

rmax Maximum transmission range of  the node 

maxRingNo Maximum ring rumber 

moveFlag Flag variable, if true means agent moves left to 

right , otherwise right to left direction within 

each ring 

Vx Neighbor table for node x 

W Number of wedge in which sensing field is 

divided. 

α angular width of the wedge  

R radius of monitoring area 

ngbPkt Neighbor discovery packet 

AgentPkt Software agent packet 

E_threshold Threshold node energy  

ma_direction Flag variable which decides direction of agent’s 

movement. 
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4. Proposed Protocol 

In this section, we present a distributed algorithm for the information extraction (IEMADI) 

protocol using multiple software agents with dynamic itineraries, for query based information 

extraction applications for WSNs. The operation of IEMADI consists of two phases: (1) 

initialization and (2) agent migration. This section describes each of these phases in detail.  

The data structures used in the design are given in Table 1. 

4.1 Initialization 

In the initialization phase, each node sets up its ringNo and wedgeNo using its polar 

coordinates. The width of the first ring is max.rw , where w  is a constant in the range [0.5, 1.0] 

and maxr   is the maximum communication range of any node. The width of all other rings is 

2maxr . The pseudo code for the setup of ringNo and wedgeNo is given in Fig. 1. 

     Next, each node starts the neighbor discovery process, where it creates and broadcasts an 

ngbPkt packet. The ngbPkt packet contains five fields: nodeID, nodeEnergy, ringNo, 

wedgeNo, and polarCoord, where nodeID is the identifier for the node, nodeEnergy is the 

remaining energy of the node, ringNo is the ring identifier to which node belongs, wedgeNo is 

the wedge identifier to which node belongs, and polarCoord is the polar coordinate of the 

node.  

     If a node receives an ngbPkt packet from its own wedge, it updates its neighbor table with 

the values in the nodeID, ringNo, wedgeNo, nodeEnergy and polarCoord fields. The structure 

of neighbor table is shown in Fig. 2. If a node x receives an ngbPkt packet from another wedge, 

it sets x.boundaryNode to true and informs its boundary state to its neighbors by broadcasting 

a beacon packet. At the end of this phase, each node knows its ringNo, wedgeNo and also all 

its neighbors within its transmission region in its wedge.  

 
Algorithm: Setup for ringNo and wedgeNo for each node 
Begin 

For sensor node x : 

Input: polar coordinate(x.r, x.theta) 

            ω : a constant in range of  [0.5,1.0] 

Output: ringNo, wedgeNo, neighbor table 

Initially: x.ringNo=0; x.wedgeNo=0; i=2; 

1: maxRing =   )2//().(1 maxmax rrwR  ; 

2: if (x.ringNo== 0 && x.wedgeNo == 0) 

3:      x.wedgeNo =   /.thetax   

4:      if ( max.. rwrx  ) 

5:           x.ringNo = 1; 

6:      else  

7:         while (i < maxRing)  

8:             if ))
2

).1(.(.)
2

).2(.(( max

max

max

max

r
irwrx

r
irw   

9:                            x.ringNo = i;  

10                            break; 

11:           end  if 

12:           i++; 

13:      end while 

14:   end else 
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15: end if 

End 
                     Fig. 1. Algorithm for the setup of ringNo and wedgeNo for node x. 

 

 

nodeID nodeEnergy ringNo wedgeNo polarCoord boundaryNode 
Fig. 2. Structure of a neighbor table 

 

 

 

 

 

ma_ID 

(1 byte) 

ma_direction 

(1 bit) 

moveFlag 

(1 bit) 

maxRingNo 

(6 bits) 

Query logic Payload 

 
 

Fig. 3. Structure of the mobile agent packet 

 

 

4.2 Agent Migration Process 

In this phase, the sink node creates and dispatches software agents to the first ring of each 

wedge Wi, where i=1, 2… W. Here W is the number of wedge regions that depends on angular 

width (α) of the wedge region. The structure of the mobile agent packet is shown in Fig. 3. The 

header of a mobile software agent packet contains four fields: ma_ID, ma_direction, moveflag 

and maxRingNo, where ma_ID is the identifier for the agent, ma_direction is a flag variable 

which shows the direction of the agent migration from one ring to another, moveFlag is a flag 

variable which shows the direction of agent migration within each ring, and maxRingNo is the 

maximum ring number which is computed by the sink node since it knows the radius of the 

monitoring area (R) and width of each ring. 

    The agent migration process is divided into two sub-phases. In the first sub-phase, an agent 

migrates through boundary nodes with minimum theta value from the inner to the outer ring. 

In the second phase, data aggregation starts from the outer ring and the agent migrates within 

the wedge in a spiral order from the outer to inner ring towards the sink, as shown in Fig. 4. In 

the initial traversal from sink to a node in outermost ring, an agent does not gather data. It 

starts gathering data from the node of the outer ring. The advantages of this approach is that it 

avoid unnecessary carry of data from the nodes during initial traversal from sink to a node in 

the outermost ring, as a result itinerary cost of an agent decreases.The flowcharts for agent 

migration process is given in Fig. 5. 
 

     During agent migration, if next hop in the ring does not meet threshold requirements, an 

agent selects an alternate node of the adjacent ring to complete the visit of the remaining nodes 

of the ring. If there is no alternate node available with required threshold, an agent simply 

jumps to the inner ring to traverse their nodes. If there is no neighbor node available in its 

neighbor table which satisfies the threshold condition, agent will not be move further and 

information extraction process is abandoned. 

 

 

Header 
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Fig. 4. Agent migration within wedge 
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Fig. 5. Flowchart for the agent migration algorithm executed by node x 
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5. Mathematical Analysis 

In this section, we evaluate the performance of our proposed protocol in terms of energy 

consumption and response time. These two metrics reflect the efficiency of agent based 

protocols. Assume N nodes are uniformly distributed over a circular sensing field which is 

divided into W wedge regions, each having an equal number of nodes n.  

5.1 Energy Consumption Analysis 

We first calculate the total energy consumed ( totalE ) in one round of agent based information 

extraction. totalE  depends on the number of agents deployed, size of the agent packet and the 

number of nodes visited by each agent. In WSNs, information extraction process is performed 

in rounds. In each round of information extraction, the sink node dispatches a number of 

software agents where it visits a set of nodes, perform data aggregation and carry relevant 

information with it and return to the sink. This whole cycle is called one round of information 

extraction. Let size of agent packet at i
th
 node be 

isizeagentS   Then, totalE can be expressed by the 

following formula: 









 




))()*((.
1

1
TxagentDARx

n

i

agentextratotal ESEESEWE
isizeisize

                     (1) 

Here, WNn  . RxE  and TxE  is energy consumed in receiving and transmitting a byte of 

message respectively. DAE  is the energy consumed in processing at each node. extraE  is total 

energy consumed in forwarding an agent from the sink to the starting sensor node from where 

agent starts data collection.  

     Let the size of agent packet when dispatched from the sink node be iniS bytes and on 

average a d bytes increase in agent size occurs at each sensor node after query based 

information. The size of agent packet at i
th
 node, 

isizeagentS  is given by: 

                 diSS iniagent
isize

*                                                                           (2) 

     For IEMADI protocol, initial size of the agent packet
 forIEMADIiniS _ , is given by: 

payloadicprocheaderforIEMADIini SSSS  log__                                    (3) 

Here headerS  is size of header. From Fig. 3, we can see that header of the agent packet contains 

four fields and the size of header is 2 bytes. icprocS log_   is the size of processing code carried 

with an agent and payloadS  is the size of payload, initially value of payloadS  is zero, when an 

agent dispatched by the sink. Equation 3 can be rewritten as: 

icprocforIEMADIini SS log__ 2                                                              (4) 

Therefore, from equation 2 and 4, for IEMADI, the size of the agent packet at the i
th
 node, 

isizeagentIEMADIS _  is given by: 

diSS icprocagentIEMADI
isize

*2 log__                                                  (5) 

For IEMADI protocol, extra total energy consumed ( forIEMADIextraE _ ) is equal to total energy 

dissipation in forwarding an agent from sink to the outer ring of the wedge.  forIEMADIextraE _   is 
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given by: 

     )(*
max

1

__ TxRx

RingNo

j

forIEMADIiniforIEMADIextra EESE  


 

                                                                              

                              )(*)2(*max log_ TxRxicproc EESRingNo                            (6) 

 

    From equation 6, it is evident that value of forIEMADIextraE _  is constant for each wedge.  

Hence, from equation 1, 5 and 6, total energy consumed in one round of query based 

information extraction for IEMADI protocol ( IEMADItotalE _ ) is given by: 
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                                                                                                                                           (7) 

Here forIEMADIextraE _  is constant for all wedges. From equation 7, it is evident that total energy 

consumed in one round of query based information extraction depends on agent size and 

number of nodes visited by it. Since wedge angular width )360( W  and )( nNW  , 

we can simplify equation 7 by putting the value of W, n and forIEMADIextraE _   , as given by:  
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(8) 

 

   The optimal value of α can be obtain by taking differential of equation 8 ( IEMADItotalE _  ) with 

respect to α. We get following expression: 

 

 
2

log_ )2(*max*2
*

360

d

SRingNo

N

icproc
                      (9) 

 

For network scenario where N=300 nodes are deployed in a circular monitoring area of radius 

100m. The value of icprocS log_  and d is 1000 and 100 bytes respectively. If 0074.0RxE  
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joules per byte and 0074.0TxE  joule per byte, we get minimum value of α is 15.19 by 

putting these values in equation 9. For this network scenario, Fig. 6 plots the effect of α on the 

average energy consumption ( NE IEMADItotal_ ) by using the equation 8. 
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Fig. 6. Average energy consumption vs. α for IEMADI protocol 

 

     In a static itinerary based protocol, each agent carries a pre-computed itinerary list. Initial 

size of the agent packet for static itinerary based protocol such as TBID, forTBIDiniS _  , is given 

by: 

payloadlistitineraryicprocheaderforTBIDini SSSSS  _log__                             (10) 

 

Here, value of headerS  is 1 byte since it contains only one field: agent identifier which occupies 

one byte. listitineraryS _  is size of itinerary list. Let an agent visit n nodes. If the entry for each 

node in the itinerary list takes l bytes, the size of itinerary list ( listitineraryS _ ) will be n*l. 

Initially value of payloadS  will be zero. Hence equation 10 can be rewritten as: 

 

   )*(1 log__ lnSS icprocfoTBIDini                                                        (11) 

 

The size of the agent packet at the i
th
 node, 

isizeagentTBIDS _ for TBID can be calculated from 

equation 2 and 10 and is given by: 

 

)*()*(1 log__ dilnSS icprocagentTBID
isize

                                          (12) 

     For TBID protocol, extra total energy consumed ( forTBIDextraE _ ) is equal to total energy 

dissipation in forwarding an agent from sink to the leftmost leaf node of the itinerary tree. 
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forTBIDextraE _  is given by: 

 



h
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TxRxforTBIDiniforTBIDextra EESE
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__ )(*  

                                                                            )(*)*(1(* log_ TxRxicproc EElnSh                                     

                                                                                                                                    (13) 

Here, h is height of itinerary tree. From equation 13, it is evident that value of forTBIDextraE _  is 

constant for each tree. Hence, from equation 1, 12 and 13, total energy consumed in one round 

of information extraction for TBID protocol ( TBIDtotalE _ ) can be expressed by the following 

formula: 
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     Table 2 shows the mathematical expressions for energy consumption for IEMADI and 

TBID protocols. It is evident that IEMADI consumes less energy because the agent packet 

does not carry pre-computed itinerary list, unlike in a static itinerary based protocol such as 

TBID, where it does. Since size of itinerary list grows as network size increases, higher energy 

consumption results in case of static itinerary based protocols. 

 

5.2 Response Time Analysis 

      Response time ( timeresponseT _ ) is the time interval from the moment the first agent is 

dispatched from the sink node to the time all the agents return back to it. Agent migration time 

(
1, iimigT ) from i

th
 node to (i+1)

th
 node depends on the communication bandwidth (bytes per 

sec) and the current size of the agent. If an agent visits n nodes in its itinerary,  timeresponseT _  is 

given by:  
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    Here,  instT  is time spent in instantiation of an agent packet at the sink. The value of instT  is 

constant for each agent.  extraT  is time spent in forwarding the agent from the sink to the 

starting sensor node from where the agent starts data collection. The value of extraT  is constant 

for each agent.  procT  is the time spent by the agent to complete its assigned task at a node. The 

value of procT is constant for each agent. propT  is the agent propagation time and depends on 

the physical distance travel by it. Let the agent packet be transmitted over a communication 

channel of bandwidth B bytes per sec. For dynamic itinerary based protocol, agent migration 

time (
1, iimigT ) from i

th
 node to (i+1)

th
  is given by[20]: 
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From equations 15 and 16, response time ( IEMADItimeresponseT __ ) for IEMADI is given by: 
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By putting the value of   forIEMADIiniS _   from equation 4 into equation 17, equation 17 can be 

rewritten as: 
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Similarly, from equation 12 and 16, for a static itinerary based protocol, agent migration time 

(
1, iimigT ) from i

th
 node to (i+1)

th
  is given by: 
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Therefore, response time ( TBIDtimeresponseT __ ) for a static itinerary based protocol such as TBID 

is given by: 
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Table 3. Response time analysis 
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    Table 3 shows the mathematical expressions for response time for IEMADI and TBID 

protocols. It is seen that the response time timeresponseT _  is dominated by the agent size and the 

length of the agent’s itinerary.  

6. Performance Evaluation 

This section presents the performance analysis of the IEMADI under different network 

scenarios and compares it with TBID [8] and DD[22]. We vary the network size, wedge angle, 

as well as percentage of faulty nodes and evaluate the average energy consumption, response 

time, network lifetime and success rate of the agent’s round trip under different network 

scenarios. All the simulation results with 95% confidence interval are shown in this section.    
 

Table 4. Simulation parameters 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

Terrain Shape Circular 

Terrain radius 150m 

Number of nodes 50-300 

Node density 0.0052 nodes/sq. m. 

Transmission range  25m 

Simulation time 3000 sec 

Initial battery power 18720J 

Size of  query logic (agent’s 

processing code) 

 

1000 bytes 

Average byte accumulated by an 

agent at each node (d) 

100 bytes 

Agent execution time  (Tproc)  55ms 

 

 
MAC protocol T-MAC 

Confidence level for results  95% 
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6.1 Simulation Setup 

We use a discrete event simulator Castalia3.2 [21] that is based on OMNeT++ platform, for all 

evaluations. We adopt the network model used in [8] and [18], in which 50-300 nodes are 

uniformly distributed within a circular sensing field of different radius to maintain the same 

node density. For simplicity, the sink node is placed at the center of the sensing field. The 

transmission radius of sensor nodes is 25m. All sensor nodes have the same initial battery 

power 18720J (equivalent to one 2AA battery). We have used T-MAC protocol at MAC layer 

to simulate the proposed scheme. In our experiments, T-MAC protocol takes care of 

disconnection issues arises between the adjacent sensor nodes due to nodes’sleep. The 

simulation parameters are listed in Table 4. We used the following metrics for performance 

evaluation: 

1. Average Energy consumption ( avgE ):  The amount of energy consumed by a node 

in performing the required network operation in each round of data collection.  

          (avgE Sum of energy consumption at each node) / (number of nodes)  

2. Response time( timeresponseT _ ): The average time interval required to complete one 

round of data collection  

   pTT
p

i
kforjjitimeresponse )max(

1
..1,_ 




 . Here, jiT ,  is the time taken by the j
th
 agent 

of i
th
 round to complete its data aggregation task, k is number of agents and p is the 

round number. 

3. Network lifetime: Lifetime of a sensor network basically depends on the energy 

dissipation of individual sensor nodes. It is defined as time duration until the first 

sensor node in the network dies due to battery exhaustion. Since agents are used for 

collecting the aggregated data from the network, the network lifetime is calculated as 

total number of successful rounds of data collection by the agents.   

4. Success rate of agent’s round trip: The number of agents received by the sink as a 

percentage of the total number of agents dispatched by it. 

 

6.2 Impact of Angular Width (α) Variation 

     Fig. 7(a) and (b) show the effects of the increase in angular width (α) of the wedge on the 

average energy consumption and response time respectively. For this experiment, we use a 

network scenario where 300 nodes are uniformly deployed with fixed node density (0.0052 

nodes/ sq. m.) and value of the payload (d) is 100 bytes. From the Fig. 7(a), we can observe 

that average energy consumption decreases as the value of α decreases from 60 to 15, but 

further increases as the value of α decreases from 15 to 5. Based on this result, we can 

conclude that when the value of α is below a threshold value, wedge region will become very 

narrow and an agent travels in line from sink to outer ring and return backs with almost using 

same path. Due to this reason, an agent visits twice each node of the wedge. As a result each 

node has to forward the agent packet two times, this increases average energy consumption. 

For the first case when value of α decreases from 60 to 15, size of wedge region decreases and 

each agent visits nodes of the wedge except boundary nodes only one time. However, number 

of nodes of the wedge visited by an agent decreases with decrease in value of α from 60 to 15, 

as a result average energy consumption decreases due to payload size of the agent packet 

decreases. 
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        From the Fig. 7(b), we can observe that response time decreases as the value of α 

decreases from 60 to 15, but almost same as the value of α decreases from 15 to 5. This is 

because as the value of α decreases, the number of nodes visited by the agents also decreases, 

resulting in decrease in response time.        
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Fig. 7. Performance analysis of IEMADI with varying value of α 

 

                          

6.3 Impact of payload size (d) variation      
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Fig. 8. Performance comparison of IEMADI and TBID with varying value of payload size (d) 
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       Fig. 8(a) and (b) show the effects of the increase in the value of d on the average energy 

consumption and response time respectively. From the Fig. 8(a), we can observe that as the 

value of d increases, average energy consumption also increases since the agent packet size 

increases. In the IEMADI, average energy consumption increases slower compare to IEMADI 

when the value of d increases. This is because IEMADI uses dynamic itineraries for the agents 

in which the agent does not carry itinerary list which makes its size smaller than the agent used 

in TBID. In addition, IEMADI uses shorter itinerary length for the agent compare to TBID. 

DD consumes higher energy than IEMADI and TBID. This is due to fact that each node sends 

their raw data to the sink and intermediate nodes not only transmit its data but also transmit its 

children’s data as well. 

    From the Fig. 8(b), we can observe that response time grows as the value of d increases. In 

the IEMADI, response time increases slower compare to TBID when the value of d increases 

due to the smaller size of agent packet and itinerary length used in IEMADI compare to TBID. 

However, DD takes more response time than IEMADI and TBID as the payload increases. The 

reason for this is same as discussed in above paragraph. 

6.4 Impact of Network Size Variation 

Fig. 9(a) and (b) show the result of the comparison of IEMADI with TBID and DD in terms of 

average energy consumption with varying number of nodes for d=100 and d=200, respectively. 

From Fig. 9, we observe that the average energy consumption increases with the increase in 

network size because of increase in agent’s itinerary and size, which increases as the number 

of nodes increases. IEMADI consumes approximately 12% less energy compared to TBID. 

This is due to the use of dynamic agent migration, where the agents need not carry the 

pre-computed itinerary. As a result the size of the agent packet becomes smaller and saves 

communication energy. However, DD consumes more energy than IEMADI and TBID. This 

is because each node in DD sends their data to the sink through multihop transmission towards 

the sink and intermediate nodes are also work as relay nodes for forwarding the data packets of 

its children nodes.        
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Fig. 9. Performance comparison of IEMADI, TBID, and DD in terms of average energy consumption 
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     Fig. 10 (a) and (b) shows the comparison of IEMADI with TBID and DD, in terms of 

response time with varying number of nodes for d=100 and d=200, respectively. We observe 

that the response time increases with increase in network size, because of increase in agent’s 

itinerary and size. Since an agent accumulates more data as the network size increases, it takes 

more time to transmit the agent. IEMADI takes approximately 2% less time as compared to 

TBID to complete one round. This is again due to the dynamic agent migration scheme, where 

the agents need not carry pre-computed itineraries; as a result the size of agent packet becomes 

smaller and thus reduces response time. Response time for DD is less when number of nodes 

are less compare to TBID. When number of nodes increases, response time for DD is increases 

compare to TBID. 
 

     

0

5

10

15

20

25

30

35

50 100 150 200 250 300

Number of nodes

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
)

IEMADI d=100

TBID d=100

DD d=100

 

0

5

10

15

20

25

30

35

50 100 150 200 250 300

Number of nodes

R
e
s
p
o
n
s
e
 t

im
e
(s

e
c
)

IEMADI d=200

TBID d=200

DD d=200

 
(a)                                                                                  (b)  

 

Fig. 10. Performance comparison of IEMADI, TBID, and DD in terms of response time 

 

       Fig. 11 gives the comparison of IEMADI with TBID and DD, in terms of network lifetime 

with varying number of nodes. It is evident that network life time decreases with the increase 

in network size because of increase in agent’s itinerary length and size. This is due to fact that 

an agent has to visit more nodes as the network size increases. The network life time of 

IEMADI is approximately 28% higher than TBID. This is because of the calculation of 

dynamic itinerary at each hop and smaller size of agent. As a result, it takes less energy to 

transmit an agent and thus enhances network lifetime. However, in TBID, sink needs to collect 

topology information periodically, resulting in more energy consumption. In addition, the 

agents carry pre-computed itineraries which increase its size, hence take more energy of the 

node for agent migration. The network life time of IEMADI is approximately 30% higher than 

DD. 
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      Fig. 11. Network lifetime vs. number of nodes             Fig. 12. Success rate of agents’ trip in    

                                                                                                         presence of faulty nodes 

6.5 Impact of Node Failures  

      Fig.12 gives a comparison of IEMADI with TBID in terms of success rate of agents’ round 

trip with varying percentage of faulty nodes present in the network. It is seen that success rate 

in IEMADI is notably higher than in TBID. This is because IEMADI calculates agents’ 

itineraries at each hop dynamically using local information; as a result it bypasses faulty nodes. 

However, in TBID, an agent carries a pre-computed itinerary and strictly follows the node 

sequence in it. For this reason, it is unable to complete its round trip, if some nodes fail along 

the itinerary. 

7. Conclusion 

This paper has proposed an information extraction protocol, based on multiple mobile agents 

with dynamic itineraries, for reducing the impact of faulty nodes on the agent’s migration and 

enhancing network lifetime. We studied the performance of the proposed protocol IEMADI 

through mathematical analysis and extensive simulation experiments, and compared it with a 

static itinerary based protocol, TBID and a distributed information extraction protocol, DD. 

The mathematical analysis and simulation results confirmed that IEMADI performs notably 

better in terms of average energy consumption, response time, network lifetime and success 

rate of agents’ round trip, as compared to TBID and DD. In future, we plan to extend this work 

for mobile wireless sensor networks and study the impact of node mobility on the agent 

migration. 
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