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Abstract 
 

Spectrum sensing is a key component of cognitive radio. The prediction of the primary user 
status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, 
because of noise uncertainty, secondary users have difficulty distinguishing between the 
primary signal and an unauthorized signal when an unauthorized user exists in a cognitive 
radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an 
entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence 
of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy 
between the primary signal and the unauthorized signal. The ability to detect the primary 
signal is thus robust against noise uncertainty, which leads to superior sensing performance in 
a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing 
scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the 
primary user detection probability.  
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1. Introduction 

Cognitive Radio (CR) enables efficient use of a limited spectrum by allowing secondary 
users (SUs) to access licensed frequency bands of primary users (PUs) [1], [2]. Spectrum 
sensing is a key element to allow SUs to use a vacant frequency band in a CR network. 
Because of noise uncertainty, however, the performance of the traditional detectors is rapidly 
deteriorated at a low signal-to-noise ratio (SNR). The current prevailing spectrum sensing 
schemes are an energy detection-based scheme, a cyclostationary-based scheme, a matched 
filter-based scheme, and an entropy-based scheme [3], [4].  

Many researchers have endeavored to increase the sensing performance of the detectors in 
CR networks. Some researchers have increased the spectrum sensing performance of the 
energy detector by adjusting parameters such as decision thresholds, sensing frequency, and 
the number of sensing operations [5]-[7]. Cooperative spectrum sensing can increase the PU 
detection performance by combining the sensing information from several SUs [2], [8]. The 
newly developed entropy-based spectrum sensing scheme generally outperforms the other 
spectrum sensing schemes [9]-[13]. In information theory, entropy is a measure of the 
uncertainty associated with a discrete random variable. The term usually refers to Shannon 
entropy [14]. The authors of [9] introduced an entropy-based approach for PU detection with 
uncertainty in noise and presented a likelihood ratio test for detecting a PU signal. To 
counteract the effect of noise uncertainty at a low SNR, the authors of [10]-[12] investigated 
an entropy-based spectrum sensing scheme in the frequency-domain. Estimating entropy in 
the time domain does not provide good performance under a low SNR, because the estimated 
entropy value is a constant regardless of the existence of PUs at a low SNR while the entropy 
can be estimated in the frequency-domain even at a low SNR. These studies identified the state 
of a PU solely from the current detected data set. The authors of [13] presented a new cross 
entropy-based spectrum sensing scheme that has two time-adjacent detected data sets of the 
PU. This scheme showed an enhanced discriminating ability due to the consideration of more 
information of the PU signal. The previous works approaches described in [9]-[13], on the 
other hand, showed the sensing performance in the CR network without the presence of an 
unauthorized user (UU), where the UU is known as a PU emulation attacker (PUEA). The 
PUEA emits a signal with a similar form to that of the PU so as to deter access to vacant 
channels by other SUs [15]. Several approaches have been studied to combat PUEAs. A 
location-based defence technique was employed in which a number of sensing nodes are 
deployed to pinpoint PUE attacks [16]. A cooperative spectrum sensing technique, where the 
existence of a PUEA in a CR network is considered, has been proposed wherein several SUs 
report the detected signal to the fusion center and the fusion center then calculates the decision 
statistic [17], [18]. However, the works of [15]-[18] fail to increase the detection performance 
of each SU because they employ the conventional energy detector.  

This paper proposes a conditional entropy-based spectrum sensing scheme to detect the PU 
in a CR network with an UU. The proposed spectrum sensing scheme uses the mutual 
information between the expected primary signal and the unauthorized signal; it thereupon 
enhances the sensing performance by reducing the noise uncertainty. In particular, the 
proposed spectrum sensing scheme substantially increases the sensing performance at a low 
SNR in comparison with the previous entropy-based spectrum sensing schemes. This paper is 
organized as follows. In Section 2, the system model is introduced. In Section 3, a conditional 
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entropy-based spectrum sensing scheme is proposed and analyzed. Simulation results are 
presented in Section 4, and conclusions are drawn in Section 5.  

2. System Model  
We consider a CR network with PUs and SUs along with an UU that influences the CR 
network, as shown in Fig. 1. The UU is assumed to be an attacker who is malicious and does 
not belong to the CR network. In the spectrum sensing period of each time slot, the UU may 
generate a PU emulation signal in order to deceive SUs. An UU has ability to mimic the 
behavior of the PU and therefore the unauthorized signal shows similar properties to a primary 
signal. 
 

 

PU
SU

UU  
Fig. 1. A CR network with an UU 

 
We consider a frequency bandwidth BW, with central frequency fc and sampling frequency fs. 

Each SU senses the signal during N samples. The signal received by SUs at the nth sample is 
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where s(n) is the primary signal, z(n) is the unauthorized signal, and w(n) represents 
background noise, which follows a Gaussian distribution N(0, 2

0σ ), and N is the sample size. 
α and β are binary indicators, where α = 1 or β = 1 indicates the presence of the PU or UU and 
α = 0 or β = 0 implies their absence. 

The spectrum sensing problem can be formulated as the following hypotheses: H0 denotes 
the absence of a primary and unauthorized signal; H1 denotes the presence of a primary signal 
when there is no UU; and H2 denotes the presence of an unauthorized signal when there is no 
PU, i.e., the detected signal was transmitted by UUs. The observed signal of a SU can then be 
expressed as  
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When we consider two hypotheses, H1 that a PU transmits a signal and H2 that an UU 

transmits a signal, two kinds of risks are incurred in the hypothesis test: 
 False alarm: Although the actual transmission is made by the UU, the SU decides that 

the transmission is due to the PU. In other words, a PUEA occurs. 
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 Miss detection: Although the actual transmission is made by the PU, the SU decides that 
the transmission is due to the UU. In other words, the SU unintentionally violates the 
spectrum sensing rule. 

From the Wald’s sequential probability ratio test (SPRT), we can specify the desired 
thresholds λ1 and λ2 for the false alarm and miss detection probabilities, respectively. The 
space of all observations is the sample space of the received power measured at the SU. Let the 
sequence of the measured power at the SU for N samples be denoted by {x1, x2, …, xN}, where 
xn is the measured power at the nth sample. According to the Wald’s SPRT, we can decide 
which hypothesis is correct [19]. The SPRT is based on considering the likelihood ratio as a 
function of the number of observations. After N samples, the likelihood ratio (LR) is given by 
[20] 
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where )()( ⋅PUf  is the probability density function (pdf) of the received power at a SU from the 
PU and )()( ⋅UUf  is the pdf of the received power at a SU from the UU. As shown in Fig. 2, if 

1TN ≤Λ , we decide H1, if 2TN ≥Λ , we then decide H2, otherwise, we decide H0. The decision 
criteria can then be expressed as follows [19], [20]:   
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In (4), as two thresholds, λ1 and λ2, decrease, the threshold T1 decreases and the threshold T2 
increases. Hence, as shown in Fig. 2, it is more likely that a SU makes another decision H0 that 
there is no signal although there is a PU or UU. To correctly detect the presence of the PU, 
when H1 is true, the LR of (3) should be small enough that it is less than or equal to T1. 
Similarly, when H2 is true, the LR of (3) should be large enough that it is greater than or equal 
to T2. However, in the SPRT, there is a tradeoff between a reliable decision and the time to 
detect. 
 

 

H1 H2H0

T1 T2  
Fig. 2. Decision criteria in SPRT 
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3. Proposed Conditional Entropy-based Spectrum Sensing 

3.1 Frequency-Domain Entropy 
The structure of the proposed conditional entropy-based detector is shown in Fig. 3, where the 
detector consists of three blocks: a frequency-domain converter, a conditional entropy 
estimator, and a test statistic. The frequency-domain detector is generally superior to the time 
domain detector [10], [11]. Applying the discrete Fourier transform (DFT) to (1), we have 
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where K, which is the DFT size, is equal to the sample size N; the parameters, )(kY , )(kS , 

and )(kW , represent the complex spectrum of the received signal, the primary signal, and the 
background noise, respectively. Hence, in the frequency-domain, we have the following 
hypotheses: 
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The complex spectrum of the received signal can be expressed as follows [11]: 
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where Yr(k) and Yi(k) represent the real part and the imaginary part of )(kY , respectively. The 

spectrum magnitude can then be expressed as )()()( 22 kYkYkY ir += . 
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Fig. 3. A block diagram of the conditional entropy-based frequency-domain detector 
 

In information theory, the conditional entropy quantifies the amount of information needed 
to describe the outcome of a random variable Y given that the value of another random variable 
Z is known. The distribution of Z is assumed to be estimated by observing UUs [17]. The 
conditional entropy is  
 

∑
∈∈

−=
ZzYy zp

zypzypZYH
, )(

),(log),()|( ,                                                (8) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 1, January 2015                                         25 

 
where )|( ZYH  is estimated from the probability mass function of Y and Z, and is compared 
with a threshold to decide the current knowledge of the PU. p(y) and p(z) denote the 
probability mass function of discrete random variables, Y and Z, respectively. p(y, z) denotes 
the joint probability mass function of Y and Z.  

A number of schemes have been proposed by earlier researchers for estimating the entropy 
of a continuous random variable based on a finite number of observations [10], [11], [14]. To 
reduce the computational complexity, we use the simplest approach, histogram-based 
estimation of the density function. The histogram-based method estimates the probability of 
each state. Let Y and Z represent the distribution of the spectrum magnitude of the measured 
signal in the presence of a primary signal and in the presence of an unauthorized signal, 
respectively. We divide the range of Y and Z into Ly bins and Lz bins, respectively. Hence, the 
bin widths are ∆y = Ymax / Ly and ∆z = Zmax / Lz, where Ymax and Zmax denote the maximum value 
of the random variables, Y and Z, respectively. The probability mass function can then be 
approximated as the frequency of occurrences in each bin width. Hence, we have 

Nkyp y /)( ≈  and Nkzp z /)( ≈ , where ky and kz are respectively the total number of 
occurrences in the yth bin of Y and in the zth bin of Z; N is the number of observations. As 
described above, a SU can estimate the distribution of Y based on the observations of the 
received signals. However, in practice, it is difficult to estimate the distribution of Z without 
the help of the primary system or without the location information of UUs. Some works 
analytically derived a distribution of unauthorized signals when UUs are uniformly located in 
a cell [20], while other works assumed that the channel information, both for the PU and for 
the UU, can be obtained [17]. In this paper, we assume that a primary system has a periodic 
duration for the pilot transmission or the silence. A SU can then receive unauthorized signals 
for every the periodic duration and it may estimate the distribution of Z based on the 
cumulative observations of the unauthorized signals. 

3.2 Spectrum Statistics of the Received Signal 
In hypothesis H0, the received signal, y(n) = w(n), consists of noise. Both the real part Wr and 
the imaginary part Wi of the spectrum follow a Gaussian distribution. Hence, 

)()()( 22 kWkWkY ir +=  follows a Rayleigh distribution with the parameter σy, and the 
differential entropy of Y can be expressed as [10], [14] 
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where γ is the Euler-Mascheroni constant. 

In hypothesis H1, the received signal, y(n) = s(n) + w(n), consists of both the primary signal 
and the noise. The entropy of the spectrum amplitude in the presence of the primary signal is 
much smaller than in the absence of the primary signal. Let D be the distance of the estimated 
entropies between hypothesis H0 and hypothesis H1. If D ≥ δ, we decide H1 and otherwise, we 
decide H0, where δ is the threshold determined by false alarm and miss detection probabilities 
[11]. Because the entropy of the noise signal has almost a constant value, we can do the test 
statistic with the estimated entropy of the received signal in hypothesis H1; i.e., if 

,')|( δ≤ZYH we decide H1 and otherwise, we decide H0, where 'δ  is the difference between 
the entropy of the noise signal and the value of δ.  
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3.3 Reduction of Noise Uncertainty 
The proposed spectrum sensing uses the conditional entropy with mutual information between 
the primary signal and the unauthorized signal. On the basis of the mutual information, the 
conditional entropy, )|( ZYH , is obtained as [14] 
 

),;()()|( ZYIYHZYH −=                                                (10) 
 
where H(Y) is the entropy of Y, and I(Y;Z) is the mutual information between Y and Z. The 
mutual information is equal to the relative entropy which measures the distance between 
probability distributions of Y and Z. The mutual information can be expressed as  
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where ))()(||),(( zpypzypD  is the Kullback-Leiber divergence of the product, p(y)p(z), of 
the two marginal probability distributions from the joint probability distribution of Y and Z, i.e., 
the expected number of extra bits that must be transmitted to identify Y and Z if they are coded 
using only their marginal distributions instead of the joint distribution. In the following, we 
derive how to reduce the noise uncertainty with the conditional entropy between the primary 
and unauthorized signals. 
 
Proposition 1. The mutual information of entropy reduces the uncertainty of the primary 
signal due to the knowledge of the unauthorized signal. With a fixed bin number, Lz, the 
entropy of the spectrum of WGN can be approximated by a constant; the proposed spectrum 
sensing technique on the basis of the mutual information is hence intrinsically robust to noise 
uncertainty. 
Proof. The maximum values of Y and Z, Ymax and Zmax, can be expressed as Ymax = Cyσy and 
Zmax = Czσz, respectively, where Cy and Cz are constant values [10]. The bin width can then be 
expressed as ∆y = Ymax / Ly = Cyσy / Ly and ∆z = Zmax / Lz = Czσz / Lz, respectively. If the density 
f(y) of the random variable Y is Riemann integrable, then the entropy of the quantized version 
H(Y∆) is [14] 
 
 

yYhYH ∆−≈∆ log)()( .                                                 (12) 
 

 

Hence, from (9), (10), and (12), with the natural logarithm, the conditional entropy )|( ZYH  
can be expressed as 
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where i(Y;Z) represents the differential entropy of the mutual entropy I(Y;Z). From (13), it is 
seen that the conditional entropy is approximated by a constant for a given bin number Lz, 
which implies that the proposed conditional entropy-based detection is robust against noise 
uncertainty.                                                                                                                                

4. Simulation Results 
We evaluate the performance of the spectrum sensing schemes in a cognitive radio network 
with the existence of UUs. The performance of the proposed spectrum sensing has been 
compared with that of [11] and [13] in the frequency-domain. MATLAB is used as a tool for 
evaluating the performance of the proposed spectrum sensing scheme though extensive 
simulations in Gaussian and Rayleigh fading channel environments. The simulation 
parameters are identical to those in the work of [11]. A single sideband signal is selected as a 
candidate PU signal. The UU is assumed to mimic the PU signal with a half power of the PU 
signal. The nominal noise power is -90 dBm with 5±  dB fluctuation. In the simulation, all 
channel information is assumed to be known to the SUs [17]. To estimate the probability mass 
functions, the probability space is partitioned into equal bin numbers, Ly = 15 and Lz = 10. The 
probabilities for hypotheses in SPRT are assumed to be λ1 = 0.1 and λ2 = 0.2. Moreover, the 
threshold for the test statistic is assumed to be δ = 0.3. The false alarm probability is no more 
than 0.1. The other simulation parameters used in this paper are summarized in Table 1. The 
terms “E-based scheme” and “CE-based scheme” in the figures denote the entropy-based and 
cross entropy-based spectrum sensing scheme, respectively. In the conventional E-based 
scheme, SUs decide the presence of a primary signal based on the estimated entropy H(Y) and 
in the previous CE-based scheme, SUs decide the presence of a primary signal based on the 
estimated cross entropy H(Yi, Yi-1) between the current detected data set Yi and the previous 
detected data set Yi-1 [11], [13]. In the proposed spectrum sensing scheme, SUs decide the 
presence of a primary signal based on the estimated conditional entropy H(Y | Z).  
 

Table 1. Simulation parameters 
Items Values 
Bandwidth, BW 12 KHz 
Carrier frequency, fc 40 KHz 
Sample frequency, fs 100 KHz 
DFT size, K 128 
Sample size, N 5000 
Average noise power -90 dBm 
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4.1 Gaussian Channel 
Fig. 4, 5, and 6 shows the performance of the spectrum sensing schemes under Gaussian 
channel environments. As shown in Fig. 4, the distances between the estimated entropies of 
the noise and signal in [11] and [13] are smaller than that of the proposed spectrum sensing 
scheme. A higher gap between the noise and the signal ensures better performance in 
distinguishing the signal from the noise regardless of the absolute value of the estimated 
entropy. For example, the distance between the noise and the signal of the estimated entropy in 
the proposed spectrum sensing is about ten times greater than that of [11] and twice that of [13] 
at a SNR of -10 dB. The entropy detector is based on the characteristic that the entropy of a 
stochastic signal is maximized if the signal is Gaussian. If the received signal contains the PU 
signal, the entropy is reduced. Hence, the signal in the estimated entropy degrades smoothly as 
the value of the SNR increases. From Fig. 4 it can be concluded that the proposed detector can 
better distinguish the signal from the noise even at a low SNR as compared with the 
conventional entropy detectors. 
 
 

 
Fig. 4. Estimated entropy in the Gaussian channel 

 
Fig. 5 shows the detection probabilities of the spectrum sensing schemes. The distance 

between the estimated entropies of the noise and signal in Fig. 4 results in the difference of the 
detection performance seen in Fig. 5. For example, to satisfy the detection probability over 0.9, 
the detectors of the E-based scheme, CE-based scheme, and proposed scheme require a SNR 
of -0.9 dB, -4.1 dB, and -5.8 dB, respectively. When the SNR is -5 dB, the detection 
probability of the proposed spectrum sensing scheme is about 1304% greater than that of the 
E-based scheme of [11] and about 28% greater than that of the CE-based scheme of [13]. 
Consequently, the proposed spectrum sensing can detect the primary signal even at a low 
SNR. 
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Fig. 5. Comparison of detection probability in the Gaussian channel 

 

Fig. 6 shows the receiver operating characteristic (ROC) curves of each sensing scheme 
when SNR = -10 dB. When the false alarm probability Pf = 0.2, the detection probability of the 
proposed scheme outperforms the E-based scheme of [11] by about 150% and the CE-based 
scheme of [13] by about 10%. 
 

 
Fig. 6. Comparison of ROC curves in the Gaussian channel when SNR = -10 dB 

 

4.2 Rayleigh Fading Channel 
Fig. 7, 8, and 9 show the performance of the spectrum sensing schemes under the Rayleigh 
fading channel environments. The primary signal is a single sideband signal, which is assumed 
to experience deep fading such that the magnitude follows a Rayleigh distribution when the 
delay time of each path is 0.01 seconds and the number of the paths is 15. 

As shown in Fig. 7, the proposed spectrum sensing scheme shows better performance than 
the previous spectrum sensing schemes of [11], [13] under a Rayleigh fading channel. 
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Superior performance in discerning signals from noise requires a greater gap between the 
noise and the signal regardless of the value of the estimated entropy. At any SNR value, the 
proposed scheme possesses higher gaps than others. For example, the distance between the 
noise and the signal of the estimated entropy is about three times greater than that of [11] and 
twice that of [13] at a SNR of -10 dB. 

 
Fig. 7. Estimated entropy in the Rayleigh fading channel 

 
Fig. 8 shows that the detection performance of the proposed scheme outperforms that of the 

conventional spectrum sensing schemes of [11] and [13]. For example, to satisfy detection 
probability over 0.9, the proposed spectrum sensing scheme has a SNR gain of about 7 dB and 
1.4 dB in comparison with [11] and [13], respectively. Moreover, at a SNR of approximately 
-10 dB, the detector of [11] is unable to detect PU signals while the detector of [13] and that of 
the proposed spectrum sensing scheme show detection probability of 0.40 and 0.65, 
respectively.  

 
Fig. 8. Comparison of detection probability in the Rayleigh fading channel 
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Fig. 9 shows that the detection ability of the proposed scheme is more robust than that of the 
conventional entropy-based schemes. By selecting a SNR = -10 dB, we have simulated the 
ROC curves in a Rayleigh fading channel. This figure shows that the detection probability of 
the proposed spectrum sensing scheme is better than that of [11], [13] when the false alarm 
probability is identical. 
 

 
Fig. 9. Comparison of ROC curves in the Rayleigh fading channel when SNR = -10 dB 

5. Conclusion 
A conditional entropy-based spectrum sensing scheme has been proposed for a cognitive radio 
network with an unauthorized signal. The proposed spectrum sensing scheme uses the mutual 
information and exploits the difference between the primary signal and the unauthorized 
signal. The proposed spectrum sensing scheme in the frequency-domain is shown to be robust 
to noise uncertainty and presents good primary user detection performance at a low 
signal-to-noise ratio. Under the Gaussian channel, when the signal-to-noise ratio is -5 dB, the 
proposed spectrum sensing scheme increases the detection probability by more than 28% as 
compared with the conventional entropy-based sensing schemes. However, the proposed 
spectrum sensing has a limitation that the characteristic of the unauthorized signal can be 
estimated from the observations due to the help of the primary system. Our future work will 
study an entropy-based spectrum sensing scheme with the partial or blind information of the 
UU signal characteristic. Future work will also include comparisons with other detection 
schemes designed to combat PUEAs, where the proposed conditional entropy-based spectrum 
sensing will be extended into cognitive radio networks with cooperative spectrum sensing. 
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