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Abstract 
 

The maximal signal-to-interference-plus-noise ratio (Max-SINR) algorithm for interference 

alignment (IA) has received considerable attention for its high sum rate achievement in the 

multiple-input multiple-output (MIMO) interference channel. However, its complexity may 

increase dramatically when the number of users approaches the IA feasibility bound, and the 

number of iterations and computational time may become unacceptable. In this paper, we 

study the properties of the Max-SINR algorithm thoroughly by presenting theoretical insight 

into the algorithm and by providing the potential of reducing the overall computational cost. 

Furthermore, a novel IA algorithm based on the principle direction search is proposed, which 

can converge more rapidly than the conventional Max-SINR method. In the proposed 

algorithm, it searches along the principle direction, which is found to approximately point to 

the convergence values, and can approach the convergence solutions rapidly. In addition, the 

closed-form solution of the optimal step size can be formulated in the sense of minimal 

interference leakage. Simulation results demonstrate that the proposed algorithm outperforms 

the conventional minimal interference leakage and Max-SINR algorithms in terms of the 

convergence rate while guaranteeing the high throughput of IA networks. 

 

 
Keywords: Max-SINR, Interference Alignment, Rapid Convergence, Low Complexity. 
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1. Introduction 

In current multiuser wireless networks where some resources such as frequency, time, and 

space are usually shared among different users, interference appears and becomes the 

bottleneck of the throughput of the system. Many scholars have focused on interference 

management techniques to eliminate the interference [1] and to maximize the sum rate [2], and 

interference alignment (IA) is a novel scheme that can mitigate the interference and thus 

increase the total throughput significantly [3]. Cadambe and Jafar showed that the degrees of 

freedom (DoFs) of the multiple-input multiple-output (MIMO) communication system scale 

proportionally to the number of users by employing IA in the high signal-to-noise ratio (SNR) 

regime in [4]. The essential idea of IA is to separate the desired signal and interference into 

different signal subspaces by using the proper precoding matrices and to reconstruct the 

former as well as to suppress the latter by using the proper decoding matrices [5]. Due to its 

promising performance in eliminating the interference and increasing the sum rate, IA has 

become an intensive research topic in recent years [6-8].  

The feasibility condition for the K-user IA system of M transmitting antennas, N receiving 

antennas, and d DoFs was provided by Yetis et al. in [9] as K≤(M+N)/d-1. However, the 

closed-form solutions to IA can be obtained only in some very special situations [10], and 

finding the optimal IA solutions still remains an open problem. Schmidt et al. analyzed these 

challenges in [11] and noted that the number of IA solutions increases dramatically with the 

number of users and antennas. In addition, the sum rate that different IA solutions can achieve 

varies considerably, and a brutal search is obviously infeasible due to the large computational 

cost. Furthermore, this problem was proved to be non-convex and NP-hard in [12]. Therefore, 

many scholars have developed different strategies to determine the sub-optimal IA solutions. 

Gomadam et al. developed the minimizing interference leakage (MinIL) algorithm in [13] to 

seek perfect IA points, and its convergence was proved. However, the MinIL algorithm does 

not consider the direct channel and might suffer from the loss of the desired signal power. 

Therefore, a maximal signal-to-interference-plus-noise ratio (Max-SINR) algorithm was 

proposed in [14], which aims at maximizing the SINR of each data stream by designing proper 

precoding and decoding matrices. The minimum mean square error (MMSE) criterion was 

introduced in [15] and [16] to optimize the sum rate in the broadcast and interference channels, 

respectively. Shrestha et al. developed the maximal signal-to-leakage-and-noise ratio 

(Max-SLNR) algorithm in [17], which has the advantages of best sum capacity in low and 

moderate SNR regimes, stable performance with respective to antenna order, and not requiring 

channel reciprocity. The gradient descent method was leveraged in [18] to maximize the sum 

rate. An excellent survey on the current IA techniques was conducted by Schmidt et al. in [11], 

where the objectives, convergence performance, and sum rate of different beamforming 

strategies are compared in great detail. 

Among the current IA algorithms, the Max-SINR method can achieve a high sum rate and 

has received considerable attention [11, 19]. As noted in [11], the Max-SINR algorithm can 

achieve the maximum DoFs and can converge faster than many other algorithms such as 

MMSE. In addition, the throughput that the Max-SINR algorithm achieves is considerably 

higher than that of the MinIL algorithm in the low and medium SNR regimes. However, the 

iterations and computational time required by the Max-SINR algorithm might increase 

dramatically when the number of users K is close to the IA feasibility bound (M+N)/d-1, 

especially in the situations of larger M, N, and K. In practical systems, the precoding and 

decoding matrices should be obtained before the channel state information (CSI) changes, and 
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longer calculating times might cause a misalignment and loss of sum rate when the outdated 

precoding and decoding matrices are applied.  

In this paper, we focus on developing the low-complexity Max-SINR algorithm with rapid 

convergence. The main contributions of this paper are summarized as follows: 1. The behavior 

of the Max-SINR algorithm in the neighborhood of the convergence solution is analyzed 

thoroughly, and it is found that the relationship of the consecutive iteration deviations can be 

approximately expressed by linear transformations. 2. The principle direction of the 

transformations is introduced, which can approximately point to the convergence solution. 3. 

A novel principle direction search (PDS) algorithm is proposed, which can increase the 

convergence rate and reduce the overall computational cost significantly.  

The remaining parts of the paper are organized as follows. In Section 2, the system model 

is presented. The properties of the traditional Max-SINR algorithm are investigated in Section 

3. The proposed PDS algorithm is developed in Section 4. In Section 5, simulation results are 

provided, followed by the conclusions in Section 6.  

Notation: Re{A}, Im{A}, A
T
, A

*
, A

H
, Tr[A], ||A||, and A(l) represent the real part, 

imaginary part, transpose, conjugate, conjugate transpose, trace, Frobenius norm, and the lth 

column of matrix A, respectively. [ ]j

kA  denotes the value of matrix Ak at the jth iteration. 

Particularly, [ ]

( )

j

k lA  is the lth column of matrix Ak obtained at the jth iteration, and H

( )k lA  is the 

conjugate transpose of 
( )k lA . We use  and to represent the sets of real and complex 

numbers, respectively. I, 
M×N

, and (µ , ) denote the identity matrix, MN complex matrix, 

and complex Gaussian vector with mean µ  and covariance matrix , respectively. The notation 

(MN, d)
K
 is employed to represent an MIMO interference channel with K users, M 

transmitting antennas, N receiving antennas, and d data streams. 

2. System Model 

In this paper, we mainly concentrate on the (MN, d)
K
 channels. For the kth user, the 

transmitted symbol vector sk
d×1

 is first precoded by the transmitting beamforming matrix 

Pk
M×d

, and the transmitted signal vector xk
M×1

 can be obtained as: 

, 1,2,..., .k k k k K x P s                                                    (1) 

The transmitted signal vectors of all users will be sent to the receivers, and the received signal 

vector of the kth user yk
N×1

 can be expressed as: 

1

, 1,2,...,
K

k kj j k

j

k K


  y H x z                                          (2) 

where zk
N×1

 represents the received noise vector with zk~ (0, 
2
I) and Hkj

N×M
 denotes 

the channel coefficient matrix from transmitter j to receiver k. In this paper, perfect CSI is 

assumed to be known by each user, and the reader can refer to [20] and [21] for more 

information on CSI. The receiver k employs the decoding matrix Dk
N×d

 to extract the 

desired symbol vector and to suppress the interference from other users. The final 

reconstructed symbol vector of the kth user can be attained as: 

H H H H

1,

ˆ
K

k k k k kk k k k kj j j k k

j j k 

   s D y D H P s D H P s D z                       (3) 
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where 
H

k kk k kD H P s , 
H

1,

K

k kj j j

j j k 

D H P s , and 
H

k kD z  are the desired symbol vector, residual 

interference, and noise, respectively.  

The interference in the network can be eliminated completely if the precoding and 

decoding matrices satisfy the following conditions: 
H = ;  , {1,2,..., };k kj j k j K k j D H P 0                                       (4) 

Hrank( )k kk k dD H P                                                              (5) 

H H, .k k k k P P I D D I                                                             (6) 

However, when perfect IA cannot be achieved, interference leakage appears, and it can be 

given by: 

H H H

1 1,

Tr[ ( ) ].
K K

k kj j j kj k

k j j k

L
  

 D H P P H D                                         (7) 

In addition, the desired signal and the interference-plus-noise covariance matrices of the lth 

data stream of receiver k are defined, respectively, as [14]: 
H H

( ) ( ) , 1,2,...,kl kk k l k l kk l d A H P P H                                          (8) 

H H H H 2

( ) ( )

1, 1,

.
K d

kl kj j j kj kk k r k r kk

j j k r r l


   

   B H P P H H P P H I                       (9) 

Thus the SINR of the lth data stream of receiver k can be calculated as: 
H H

( ) ( ) ( ) ( )( ) / ( ).kl k l kl k l k l kl k lSINR  D A D D B D                                       (10) 

According to the Max-SINR algorithm [14], the decoding vector that maximizes (10) can 

be given by: 
1 1

( ) ( ) ( )( )/ || || .k l kl kk k l kl kk k l

 D B H P B H P                                      (11) 

Using the channel reciprocity, the channel coefficients matrices, precoding matrices, and 

decoding matrices in the reciprocal channel are defined, respectively, as: 
H ,  ,  and ;  , {1, 2,..., }ij i iji i i i j K   H H P D D P                          (12) 

Similarly, the desired signal and the interference-plus-noise covariance matrices in the 

reciprocal channel, i.e., klA  and klB , can be attained accordingly.  

In this paper, we focus on increasing the convergence rate and reducing the computational 

complexity of the conventional Max-SINR algorithm in the high SNR regime. The properties 

of the Max-SINR algorithm are studied, and a rapid convergent IA algorithm is proposed.  

3. Properties of the Traditional Max-SINR Algorithm 

The Max-SINR algorithm is a promising method to approach the channel capacity, and the 

sum rate it achieves outperforms many other algorithms. In the low to medium SNR regimes 

where the sum rate is dominated by noise instead of interference, the Max-SINR algorithm can 

achieve a significantly higher sum rate than many other algorithms. However, in the high SNR 

regime, the throughput will be determined by interference rather than noise, and the 

Max-SINR algorithm has to align the interference properly with considerably more iterations 

and computational time. The large computational cost and long iteration time might constitute 
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a major impediment to its application in practical systems. Therefore, the properties of the 

Max-SINR algorithm in the high SNR regime will be studied in this section to provide the 

theoretical foundation of the later proposed rapid convergent algorithm. 

3.1 The mechanism of the Max-SINR Algorithm 

The Max-SINR algorithm, as shown in Algorithm 1, leverages the channel reciprocity and 

maximizes the SINR of each data stream alternatively. It is mainly composed of two 

procedures, i.e., the forward and backward iterations. The most important point of the 

algorithm lies in the design of the precoding and decoding matrices. Gomadam et al. [14] did 

not provide the matrices design mechanism, and we present Theorem 1 to explain that the 

maximal SINR problem is essentially the optimization of the generalized Rayleigh quotient of 

matrices Akl and Bkl. 

 

Algorithm 1: Max-SINR Algorithm 

1. Set the maximal iterations as Imax and the initial precoding matrices as 
[0]

kP  with 

[0]

( )|| || 1k l P  ( k=1, 2, …, K; l=1, 2, …, d ). The variable i is used to represent the iterations 

and is initialized as i=1.  

2. (Forward Iteration) Calculate the interference-plus-noise covariance matrices 
[ ]i

klB  in the 

original channel according to (9), i.e., 

[ ] [ 1] [ 1] H H [ 1] [ 1] H H 2

( ) ( )

1, 1,

( ) ( ) .
K d

i i i i i

kl kj j j kj kk k r k r kk

j j k r r l

   

   

   B H P P H H P P H I             (13) 

Formulate the decoding matrix 
[ ]i

kD , the lth column of which can be attained according to 

(11), i.e., 
[ ] [ ] 1 [ 1] [ ] 1 [ 1]

( ) ( ) ( )( ) / || ( ) || .i i i i i

k l kl kk k l kl kk k l

   D B H P B H P                            (14) 

3. (Backward Iteration) Calculate the interference-plus-noise covariance matrices 
[ ]i

klB  in the 

reciprocal channel, i.e.,  

[ ] H [ ] [ ] H H [ ] [ ] H 2

( ) ( )

1, 1,

( ) ( ) .
K d

i i i i i

kl jk j j jk kk k r k r kk

j j k r r l


   

   B H D D H H D D H I              (15) 

Formulate the precoding matrix 
[ ]i

kP , the lth column of which can be expressed as: 

[ ] [ ] 1 H [ ] [ ] 1 H [ ]

( ) ( ) ( )( ) / || ( ) || .i i i i i

k l kl kk k l kl kk k l

 P B H D B H D                               (16) 

4. Update ii+1. If i > Imax or the algorithm converges, stop and output the results; 

otherwise, go to step 2).  

 

Theorem 1: The unit-norm vector Dk(l) in (11) is the generalized eigenvector associated with 

the maximal generalized eigenvalue of matrices Akl and Bkl. In particular, SINRkl in (10) is the 

maximal generalized eigenvalue. Similarly, this theorem holds for the reciprocal channel. 

Proof: From (8) and (11), we have 
1

( ) ( )H H H H 1

( ) ( ) ( ) ( ) ( )1 1

( ) ( )

.
|| || || ||

kl kk k l kk k l

kl k l kk k l k l kk k l kk kl kk k l

kl kk k l kl kk k l





 
 

B H P H P
A D H P P H P H B H P

B H P B H P
    (17) 

Define  
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H H 1

( ) ( )kl k l kk kl kk k l  P H B H P                                                  (18) 

and (17) can be rewritten as: 
1

( ) ( )

( ) 1 1

( ) ( )

.
|| || || ||

kk k l kl kl kk k l

kl k l kl kl

kl kk k l kl kk k l

 



 
 

H P B B H P
A D

B H P B H P
                             (19) 

Substitute (11) into (19), and the following equation can be satisfied: 

( ) ( ).kl k l kl kl k lA D B D                                                        (20) 

Therefore, kl is the generalized eigenvalue of matrices Akl and Bkl with the corresponding 

generalized eigenvector of Dk(l). Particularly, kl is the generalized Rayleigh quotient and 

equates to SINRkl. 

Left-multiply both sides of (20) by 
1

kl


B , and the generalized eigenvalue problem can be 

equivalent to the ordinary eigenvalue problem, i.e., 
1

( ) ( ).kl kl k l kl k l B A D D                                                      (21) 

Thus, kl and Dk(l) are the eigenvalue and the associated eigenvector of matrix 
1

kl kl


B A , 

respectively. As HkkPk(l)
N×1

, we have rank(HkkPk(l))=rank(HkkPk(l))
H
=1. Then, 

H

( ) ( )rank( ) min{rank( ), rank( ) } 1.kl kk k l kk k l A H P H P                       (22) 

Therefore, rank( ) 1kl A . Because 
1rank( ) rank( ) 1kl kl kl

  B A A , 
1

kl kl


B A  has only one 

nonzero eigenvalue. Equivalently, there is only one nonzero generalized eigenvalue of 

matrices Akl and Bkl. As kl equates to SINRkl, it can be shown that kl >0. Therefore, kl is the 

only nonzero generalized eigenvalue of Akl and Bkl. Obviously, kl is the maximal Rayleigh 

quotient and the maximal SINR. Similarly, the proof above can be extended to the reciprocal 

channel to show that Pk(l) serves as the generalized eigenvector associated with the maximal 

generalized eigenvalue of matrices klA  and klB . 

Theorem 1 provides a way for us to change the SINR optimization into a generalized 

eigenvalue problem, and some interesting properties can also be explored based on this 

theorem. 

3.2 The Principle Direction of the Max-SINR Algorithm 

In this section, we will develop the principle direction of the Max-SINR method, which will 

serve as the foundation of the latter proposed rapid convergent algorithm. Based on Theorem 1, 

we continue to develop Theorem 2 to show that the relationship for the consecutive iteration 

deviations of the Max-SINR algorithm can be approximately expressed by 

iteration-independent linear transformations. Properties of the transformations are later 

studied in Theorem 3 and Property 4. From these theorems, the principle direction of the 

transformations is then introduced in Theorem 5, and its mechanism for increasing the 

convergence rate is verified. Finally, because the principle direction cannot be attained 

directly, a convenient method to approximate the principle direction is developed in Theorem 

6. 

Before introducing Theorem 2, the following notations have to be defined beforehand. 

Define the convergence values of 
[ ]i

kP  and 
[ ]i

kD  as kP  and kD , respectively. The deviations 

from the ith iteration to the convergence value, i.e., 
[ ]i

kP  and 
[ ]i

kD , satisfy 
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[ ] [ ], 1,2,...,i i

k k k k K  P P P                                      (23) 

[ ] [ ].i i

k k k D D D                                                           (24) 

Next, several column vectors are constructed to represent the overall precoding and decoding 

vectors as follows: 
[ ] [ ]

1(1) 1(1)1(1)

[ ] [ ]

1(2) 1(2)1(2)

[ ]

1( ) 1( )

[ ] [ ]

[ ]

(1) (1)

[ ]

(2) (2)

[ ]

( ) ( )

... ......

ˆˆ ˆ, ,... ...

... ...

i i

i i

i

d d

i i

i

K K

i

K K

i

K d K d

   
  

  
  
  

  
     
  
  
  
  
  
  

   

P PP

P PP

P PP

p p p

P P

P P

P P

[ ]

1(1) 1(1)

[ ]

1(2) 1(2)

[ ] [ ]

1( ) 1( ) 1( )

[ ]

[ ] [ ]

(1) (1) (1)

[ ] [ ]

(2) (2) (2

[ ] [ ]

( ) ( )

... ...

ˆˆ, ,... ... ...

... ...

i

i

i i

d d d

i

i i

K K K

i i

K K K

i i

K d K d

   
   
   
   
   
   
    
   
   
   
   
   
   
   

D D

D D

D D

d d

P D D

P D D

P D

[ ]

1(1)

[ ]

1(2)

[ ]

1( )

[ ]

[ ]

(1)

[ ]

(2))

[ ]

( )( )

...

ˆ, ....

......

i

i

i

d

i

i

K

i

K

i

K dK d

   
   

   
   
   

   
    
   

   
   
   
   
   

  

D

D

D

d

D

D

DD

 (25) 

In addition, we can separate the real and imaginary parts of the vectors above to construct the 

associated real vectors, i.e., 
[ ] [ ]

[ ] [ ]

[ ] [ ]

ˆˆ ˆRe{ } Re{ } Re{ }
, ,

ˆˆ ˆIm{ } Im{ }Im{ }

i i

i i

i i

    
       

     

p p p
p p p

p pp


2KMd×1
               (26) 

[ ] [ ]

[ ] [ ]

[ ] [ ]

ˆˆ ˆRe{ } Re{ } Re{ }
, ,

ˆ ˆ ˆIm{ } Im{ }Im{ }

i i

i i

i i

    
       
         

d d d
d d d

d dd


2KNd×1

.               (27) 

It is obvious that the following relations can be satisfied: 
[ ] [ ]i i p p p                                                                    (28) 

[ ] [ ].i i d d d                                                                  (29) 

The change in the overall deviations 
[ ]ip  and 

[ ]id  is studied, and the following theorem 

can be given: 

 

Theorem 2: In the high SNR regime, if the Max-SINR algorithm can converge to a near IA 

point, there exists iteration-independent transformations TP
2MKd× 2MKd

 and TD
2NKd× 2NKd

, 

respectively, that exert on the deviation vectors 
[ ]ip  and 

[ ]id . When 
[ ]i

p  and 
[ ]i

d  are 

located within the small neighborhoods of p  and d , respectively, the following 

approximation can be obtained: 
[ 1] [ ]i i

P

  p T p                                                                 (30) 

[ 1] [ ].i i

D

  d T d                                                               (31) 

Proof: See Appendix A. 

It is obvious that TD and TP determine the behavior of the Max-SINR algorithm in the 

neighborhoods around the convergence solutions. Therefore, a thorough analysis on the 

transformations will be executed in Theorem 3 and Property 4 to provide theoretical insight 
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into the algorithm and to explore the potential of increasing the convergence rate of the 

Max-SINR algorithm.  

 

Theorem 3: The transformations TD and TP of the Max-SINR algorithm have the same 

eigenvalues. 

Proof: For matrices E
m×n

 and F
n×m

, EF has the same eigenvalues as FE [22]. Therefore, 

TD=TPD TDP and TP=TDP TPD have the same eigenvalues.  

In the (M×M, d)
 K

 case, define the eigenvalues of TD and TP as {1, 2,…, 2MKd} and the 

associated eigenvectors as {e1,e2,…,e2MKd} and {f1,f2,…,f2MKd}, respectively. For the high 

complexity of TD and TP, their properties are mainly studied by simulations, and one 

important feature can be observed as follows: 

 

Property 4: In the (M×M, d)
K
 channel, the eigenvalues and eigenvectors of TD and TP are real 

and satisfy: 

1 2 2... MKd                                                            (32) 

1 2 2rank( , ,..., ) 2MKd MKde e e                                               (33) 

1 2 2rank( , ,..., ) 2MKd MKdf f f                                                (34) 

In particular, the last several eigenvalues tend to be zeros.  

Here, we refer to the eigenvectors associated with the maximal eigenvalue, i.e., e1 and f1, as 

the principle directions. When TD and TP are successively exerted on 
[ ]id  and 

[ ]ip , 

respectively, the following theorem can be obtained. 

 

Theorem 5: For the (M×M, d)
K
 channel in the high SNR regimes, if the Max-SINR algorithm 

can converge to a near IA point, when 
[ ]i

d  and 
[ ]i

p  are located within a small region of d  

and p , they will converge approximately along the principle directions of TD and TP, 

respectively.  

Proof: From Property 4, {e1,e2,…,e2MKd} and {f1,f2,…,f2MKd} can serve as the bases of the 

2MKd real space. Therefore, 
[ 1]id  and 

[ 1]ip  can be expanded as: 

2
[ 1]

1

MKd
i

l l

l

g



  d e                                                           (35) 

2
[ 1]

1

.
MKd

i

l l

l

h



  p f                                                            (36) 

At the (i+j)th iteration, from (30), (31), (35), and (36), 
[ ]i jd  and 

[ ]i jp  can be given by: 

2 2
[ ] 1 [ 1] 1 1

1 1

MKd MKd
i j j i j j

D l D l l l l

l l

g g     

 

     d T d T e e                             (37) 

2 2
[ ] 1 [ 1] 1 1

1 1

.
MKd MKd

i j j i j j

P l P l l l l

l l

h h     

 

     p T p T f f                               (38) 

From (32), when j is sufficiently large, 1 will take the dominant position, i.e., 
1 1 1

1 2 2... .j j j

MKd                                                        (39) 

Then, 
[ ]i jd  and 

[ ]i jp  can be approximated by the principle directions as follows: 
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[ ] 1

1 1 1

i j jg   d e                                                              (40) 

1

1

[ ]

1 1.
i j jh  p f                                                              (41) 

From (28), (29), (40), and (41), 
[ ]i j

d  and 
[ ]i j

p  can be written as: 

[ ] [ ] 1

1 1 1

i j i j jg      d d d d e                                         (42) 

[ ] [ ] 1

1 1 1.
i j i j jh     p p p p f                                          (43) 

Thus, 
[ ]i j

d  and 
[ ]i j

p  will converge to d  and p  approximately along the principle 

directions of e1 and f1, respectively.  

If the principle directions can be obtained, we can search along these directions and go to 

the destination directly. However, the principle directions require knowledge of the 

convergence values, which is impossible to attain beforehand. Nevertheless, the following 

theorem provides a way for us to approximate the principle directions. 

 

Theorem 6: In the high SNR regime, if the Max-SINR algorithm can converge to a near IA 

point, when 
[ ]i

d  and 
[ ]i

p  are located within a small region of d  and p , respectively, the 

principle directions can be approximated by the difference in the consecutive iteration results 

of the Max-SINR algorithm. In particular, the convergence solutions can be approximated as: 
[ ] [ ] [ 1]( )i i i

k k k ks   D D D D ,s , k=1,2,…,K                           (44) 

[ ] [ ] [ 1]( ).i i i

k k k ks   P P P P                                                         (45) 

Proof: At the (i+j+1)th iteration, from (42) and (43), the decoding and precoding vectors can 

be expressed as: 

[ 1] 2

1 1 1

i j jg    d d e                                                              (46) 

[ 1] 2

1 1 1.
i j jh   p p f                                                               (47) 

Subtract (46) by (42) and (47) by (43), and we have 
[ 1] [ ] 1

1 1 1 1( 1)i j i j jg       d d e                                             (48) 

1

[ 1] [ ] 1

1 1 1( 1) .i j i j jh       fp p                                              (49) 

Therefore, the principle directions can be approximated by the difference in the 

consecutive iterations results. Substitute (48) and (49) into (46) and (47), respectively, and the 

convergence solutions can be approximated as: 

[ 1] 2 [ 1] [ 1] [ ]

1 1 1 1 1[ / ( 1)]( )i j j i j i j i jg               d d e d d d                     (50) 

[ 1] 2 [ 1] [ 1] [ ]

1 1 1 1 1[ / ( 1)]( ).i j j i j i j i jh              p p e p p p                      (51) 

Replace i+j+1 with i and -1/(1-1) with s. Then, (50) and (51) can be expressed as: 

[ ] [ ] [ 1]( )i i is   d d d d                                                         (52) 

[ ] [ ] [ 1]( ).i i is   p p p p                                                        (53) 

Substitute (25) through (27) into (52) and (53), then (44) and (45) can be formulated.  

Theorem 6 provides a direct way to approach the convergence solutions. It is expected that 

the iterations and computational time can be reduced by searching along the principle 

directions instead of the circuitous route of the Max-SINR algorithm. Based on the analysis in 

this section, the rapid convergent maximal SINR algorithm is straightforward.  
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4. The Principle Direction Search Algorithm 

The original Max-SINR algorithm has satisfactory performance of a high sum rate. However, 

in the high SNR regime where the throughput is mainly limited by interference instead of 

noise, the Max-SINR algorithm will have to align the interference properly at the expense of a 

large amount of iterations and computational time. Particularly, the complexity will become 

significantly larger when the number of users is close to the IA feasibility bound (M+N)/d-1. 

Moreover, the complexity of the Max-SINR algorithm will increase with the number of users 

and antennas. These disadvantages might serve as a bottleneck for the application of the 

Max-SINR algorithm. In this section, a highly efficient maximal SINR algorithm, namely, a 

principle direction search algorithm, is proposed based on the theoretical analysis in Section 3 

with the advantage of considerably less complexity than the traditional Max-SINR algorithm.  

 4.1 The Procedure of the PDS Algorithm  

The procedure of the PDS algorithm is stated in Algorithm 2. As shown in Theorem 5, the 

principle direction search can be employed to increase the convergence rate of the Max-SINR 

algorithm when the current iteration results are located within a small neighborhood of the 

convergence solutions. In the proposed algorithm, PDS will be started after the intermediate 

sum rate is higher than the product of the parameter  and the initial sum rate R1. The principle 

directions are attained by the difference in the intermediate results as shown in (44) and (45). 

In addition, PDS will be executed every  iterations because some iterations have to be 

performed so that (39) can be satisfied and the principle direction will point to the convergence 

solution more accurately. 

 

Algorithm 2: PDS Algorithm 

1. Set the maximal iterations as Imax and the initial precoding matrices as 
[0]

kP  with 
[0]

( )|| || 1k l P ( k=1, 2, …, K; l=1, 2, …, d). Initialize the parameters  and . The variable i 

is used to represent the iterations with an initial value of 1. The other auxiliary variables 

are initialized as flag=0 and is=0. 

2. (Forward Iteration) Calculate 
[ ]i

klB  in the original channel according to (13), and formulate 

the decoding matrices 
[ ]i

kD  according to (14). 

3. (Backward Iteration) Calculate 
[ ]i

klB  in the reciprocal channel according to (15), and 

formulate the precoding matrices 
[ ]i

kP according to (16). 

4. If flag=1 and (i-is) mod =0, go to step 5) for PDS; otherwise, go to step 6). 

5. (PDS) Update the precoding and decoding matrices as follows: 

a) Calculate the principle directions as: 
[ ] [ 1], 1,2,...,i i

k k k k K   P P P                                      (54) 

[ ] [ 1].i i

k k k  D D D                                                           (55) 

b) Calculate the step size s, and the corresponding details will be provided in “The Step 

Size Calculation” section. 

c) Calculate the new precoding and decoding matrices as: 
[ ]i

k k ks P P P                                                                (56) 

[ ] .i

k k ks D D D                                                             (57) 
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d) Normalize kP  and kD  so that ( )|| || 1k l P  and ( )|| || 1k l D , 1,  2,  ...,  l d . 

Update 
[ ]i

k kP P , 
[ ]i

k kD D , 1i i  , and go to step 2). 

6. If flag=1, go to step 7); otherwise, compute the sum rate and record it as Ri. Set flag=1 and 

is=i when Ri>R1. (Remark: flag and is are updated only once.) 

7. Update ii+1. If i > Imax or the algorithm converges, stop and output the results; 

otherwise, go to step 2). 
 

 

4.2 The Step Size Calculation 

The step size calculation is one of the crucial procedures in the PDS algorithm and plays an 

important role in increasing the convergence rate. It is desirable that the optimal step size in 

the sense of maximal SINR or sum rate could be provided analytically. However, the 

closed-form solution of the optimal step size under this criterion remains unknown. 

Nevertheless, in the high SNR regime, the sum rate is mainly limited by the interference, and 

minimal interference leakage can be employed as the optimization objective. In addition, the 

optimal step size along the principle direction under the minimal interference leakage criterion 

can be formulated analytically. Therefore, instead of maximizing the sum rate, we minimize 

the interference leakage by choosing the proper step size.  

As shown in (7), (54), (55), (56), and (57), when kP  and kD  are applied, the interference 

leakage can be calculated as: 

H H H

1 1,

[ ] H [ ] [ ] H H [ ]

1 1,

4 3 2

4 3 2 1 0

Tr[ ( ) ]

Tr{( ) [ ( )( ) ]( )}

K K

k kl l l kl k

k l l k

K K
i i i i

k k kl l l l l kl k k

k l l k

L

s s s s

s s s s

   

    

  

  



    

    

 

 

D H P P H D

D D H P P P P H D D (58) 

where  

H

4

1 1,

Tr[ ]
K K

kl kl

k l l k


  

  X X                                                                            (59) 

H H

3

1 1,

2Tr[Re( )]
K K

kl kl kl kl

k l l k


  

   V X W X                                                   (60) 

H H H H

2

1 1,

Tr[ 2Re( )]
K K

kl kl kl kl kl kl kl kl

k l l k


  

     V V W W V W X U                 (61) 

H H

1

1 1,

Tr[2Re( )]
K K

kl kl kl kl

k l l k


  

   U V U W                                                  (62) 

H

0

1 1,

Tr[ ]
K K

kl kl

k l l k


  

  U U                                                                             (63) 

[ ] H [ ][( ) ]i i

kl k kl lU D H P                                                                                  (64) 

[ ] H [ 1] H [ ][( ) ( ) ]i i i

kl k kl k kl l

 V D H D H P                                                           (65) 

H [ ] [ 1][( ) ]( )i i i

kl k kl l l

 W D H P P                                                                   (66) 
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[ ] H [ 1] H [ ] [ 1][( ) ( ) ]( ).i i i i

kl k kl k kl l l

   X D H D H P P                                          (67) 

It is obvious that 4 >0, and the quartic function (58) must have the global minimal value. 

Let the derivatives of (58) be zero, i.e., 
3 2

4 3 2 1/ 4 3 2 0.dL ds s s s                                                  (68) 

The cubic equation (68) has three real solutions at most, and the optimal step size is chosen 

as the real solution that has the smallest function value.  

5. Simulation Results 

In this section, we evaluate the performances of the proposed PDS algorithm. We assume 

narrowband frequency non-selective fading channels. Except for the performance evaluation 

in Fig. 2, all of the other experiments are averaged over 250 channel realizations. Each 

element of the channel coefficients is independent and complies with the (0,1) distribution. 

The parameters of the PDS algorithm are first analyzed and selected through simulations in 

section 5.1. Then, a comparison of the PDS, MinIL, and Max-SINR algorithms is executed in 

section 5.2. 

5.1 Parameter Analysis 

As shown in Algorithm 2, the parameters  and  can affect the convergence rate of the PDS 

algorithm. The closed-form solutions of the optimal parameters remain unknown, and 

simulations are employed to determine them in Fig. 1. 

  
(a) comparison of                                                (b) comparison of  

Fig. 1. Convergence of the average sum rate of the PDS algorithm in (55, 1)
9
 under different 

parameters with SNR=30 dB 

 

The parameter  determines when the PDS procedure starts. As shown in Theorem 5, the 

principle direction will approximately point to the convergence solution only when the 

intermediate iteration results are within a small region of the convergence point. Because the 

convergence solution is not available beforehand, it is impossible to measure the distance 

between the intermediate and the convergence points directly. Nevertheless, the sum rate can 

be leveraged as one type of measure of the distance because it increases as the algorithm 

approaches the destination. Therefore, we start PDS when the current sum rate is larger than 

the product of  and R1. In this experiment,  is selected as 1, 1.5, 2, 2.5, and 3, and  is preset 

to be 10. The convergence of the average sum rate with SNR=30 dB in (55, 1)
9
 is depicted in 
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Fig. 1 (a). As shown in the figure, the convergence curves with different  nearly overlap, 

indicating that the algorithm is insensitive to this parameter. In the simulations afterward, the 

parameter is chosen as =1.5. 

The parameter  controls the interval for executing PDS. As shown in (39), (40), and (41), 

the maximal eigenvalue and the principle direction will take the dominating position only after 

several iterations are executed. Therefore, PDS is performed every  iterations. In this 

experiment,  is selected as 1, 5, 10, and 20, and  is preset to be 1.5. The convergence of the 

average sum rate with SNR=30 dB in (55, 1)
9
 is depicted in Fig. 1 (b). As shown in the figure, 

=1 has the worst performance because the non-principle eigenvectors in (37) and (38) cannot 

be ignored and the principle direction cannot point to the convergence solution properly when 

only one iteration is performed. On the other hand, if  is set to be too large, as in the =20 

case, the PDS algorithm will fail to increase the convergence rate in time, and the performance 

of =20 is inferior to the performances of =5 and =10. Because =5 has the best 

convergence rate, it will be chosen as the selected interval afterward. 

5.2 Comparison of Different Algorithms 

In this section, the PDS, MinIL, and Max-SINR algorithms are compared. To gain an 

overview on the efficiency of the PDS algorithm, the convergence curves of the interference 

leakage and the sum rate during the first several iterations are provided in Fig. 2 for a 

randomly generated channel realization. In contrast to the smooth and slow variance on the 

interference leakage and the sum rate of the MinIL and Max-SINR algorithms, there is an 

instant decrease in interference leakage and an instant increase in sum rate after PDS is applied. 

Therefore, the PDS algorithm can suppress the interference leakage and increase the sum rate 

more effectively compared with the MinIL and Max-SINR algorithms.  

  
(a) interference leakage evaluation                                 (b) sum rate evaluation  

Fig. 2. Convergence of the interference leakage and sum rate of the PDS, MinIL, and Max-SINR 

algorithms for a randomly generated channel realization in (1010, 1)
19

 with SNR=30 dB 

 

To further compare the convergence rate of the algorithms, the average interference 

leakage and the sum rate with respect to the computational time for (55, 1)
9
 are depicted in 

Fig. 3. As shown in the figures, the average interference leakage of the MinIL and Max-SINR 

algorithms decreases in the same pattern during the first several seconds and reaches the level 

of 3×10
-3

 at 2 s. In contrast, the PDS algorithm has a higher convergence rate and can suppress 

the interference leakage to the level of 2×10
-4

 at 2 s. Both the PDS and Max-SINR algorithms 

converge at the same level of interference leakage, while the former algorithm takes only 3 s 

compared with the 20 s required by the latter algorithm. Although the MinIL algorithm can 
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achieve a lower level of interference leakage after 8.5 s, its sum rate is considerably inferior to 

those of the PDS and Max-SINR algorithms. The average sum rate of the PDS algorithm 

converges at approximately 2 s with a convergence value of 104 bps/Hz, while the Max-SINR 

algorithm takes as long as 9 s to reach the same sum rate.  

The proposed algorithm can be applied not only to the single data stream channel but also 

to the multi-data stream scenarios. The convergence of the average sum rate of the algorithms 

is compared in the (1010, 2)
9
 and (1010, 4)

4
 channels in Fig. 4. As shown in Fig. 4 (a), the 

Max-SINR algorithm requires as much as 19.5 s to reach the sum rate of 190 bps/Hz, while the 

PDS algorithm only takes 6.5 s to reach the same sum rate. For the scenario of even more data 

streams as shown in Fig. 4 (b), the PDS algorithm can achieve the highest sum rate and exhibit 

considerably faster convergence rate than the Max-SINR algorithm.  

  
(a) interference leakage evaluation                                   (b) sum rate evaluation  

 

Fig. 3. Convergence of the average interference leakage and sum rate of the PDS, MinIL, and 

Max-SINR algorithms in (55, 1)
9
 with SNR=30 dB 

 

 
              (a) (1010, 2)

9
                                                           (b) (1010, 4)

4 

 

Fig. 4. Convergence of the average sum rate of the PDS, MinIL, and Max-SINR algorithms in  

(1010, 2)
9
 and (1010, 4)

4 
with SNR=30 dB 

 

Although we are mainly concerned with the high SNR regime, it is desirable to evaluate the 

sum rate in terms of different SNRs. As shown in Fig. 5 (a), the average sum rates of the PDS, 

MinIL, and Max-SINR algorithms with respect to SNR are compared under sufficient 

iterations of 10,000. It can be seen that both the PDS and Max-SINR algorithms can achieve 

the same sum rate, which is higher than those of the MinIL algorithm from the low to high 
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SNR regimes. However, these sufficient iterations are nearly impossible for practical 

applications, and limited iterations are often required. As revealed in Fig. 5 (b), under 100 

iterations, both the PDS and Max-SINR algorithms can achieve a higher sum rate than the 

MinIL algorithm for all SNRs. In the low SNR regime, the PDS and Max-SINR algorithms 

share the same sum rate. However, the former algorithm can achieve a higher sum rate in the 

high SNR regime. In addition, the difference in the sum rate between the PDS and Max-SINR 

algorithms increases with an increase in SNR, from a difference of 2 bps/Hz at SNR=20 dB to 

23 bps/Hz at SNR=40 dB. When the number of iterations allowed is even smaller as shown in 

Fig. 5 (c), the advantage of the PDS algorithm over the MinIL and Max-SINR algorithms is 

even more significant. Therefore, the proposed PDS algorithm has practical significance in 

that it can achieve a higher sum rate than the Max-SINR algorithm under limited iterations. 

 
(a) 10,000 iterations                                                     (b) 100 iterations  

 
(c) 20 iterations 

 

Fig. 5. Average sum rate versus SNR under iterations of 10,000, 100, and 20 for (55, 1)
9
 

 

To further evaluate the performances of the algorithms, the average iterations and 

computational time under different numbers of users, data streams, and antennas are listed in 

Table 1. We consider the (MM, d)
K
 channel with K=2M/d-1, the maximal user number in the 

IA networks [9]. All three algorithms are run with sufficient iterations of 10,000, and the final 

sum rate R can be obtained. Then, we calculate the iterations that are required to reach the sum 

rate of 0.9R and 0.99R as I0.9 and I0.99, respectively. By averaging I0.9, I0.99, and R over 250 

realizations of channel coefficients, we attain IAV0.9, IAV0.99, and RAV for each algorithm. 

Similarly, we can attain TAV0.9 and TAV0.99 for the computational time. In addition, the ratios of 

the average iteration and computational time between PDS and Max-SINR algorithms are 

provided in parentheses under the corresponding values of the PDS algorithm in Table 1. For 
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the single data stream situation, the PDS and Max-SINR algorithms can achieve the same sum 

rate, which is comparably higher than those of the MinIL algorithm. From the perspective of 

average iterations, the PDS algorithm can reach the sum rate of 0.9RAV and 0.99RAV with only 

29~30% and 25~33% of the iterations required by the Max-SINR algorithm. Furthermore, in 

terms of computational time, the PDS algorithm can reach the sum rate of 0.9RAV and 0.99RAV 

with only 51~55% and 44~61% of the time required by the Max-SINR algorithm. For the 

multi-data stream situation, the PDS algorithm can achieve a higher sum rate than the 

Max-SINR algorithm with lower computational complexity and more rapid convergence.  

 
Table 1 Statistics on the average iterations, computational time, and sum rate of different algorithms  

for (M×M, d)
K
 with SNR=30 dB 

(M, d, K) Algorithms IAV0.9 IAV0.99 TAV0.9 (s) TAV0.99 (s) RAV (bps/Hz) 

 

(5, 1,9) 

Max-SINR 2.04×10
2
 1.18×10

3
 6.81×10

-1
 3.95×10

0
 105 

MinIL 2.49×10
2
 1.03×10

3
 1.01×10

0
 4.16×10

0
 91 

PDS 
6.00×10

1
 

(0.29) 

2.95×10
2
 

(0.25) 

3.48×10
-1

 

(0.51) 

1.74×10
0
 

(0.44) 
105 

 

(6, 1, 11) 

Max-SINR 2.41×10
2
 1.75×10

3
 1.14×10

0
 8.28×10

0
 131 

MinIL 2.91×10
2
 1.54×10

3
 1.68×10

0
 8.85×10

0
 111 

PDS 
6.93×10

1
 

(0.29) 

5.18×10
2
 

(0.30) 

5.82×10
-1

 

(0.51) 

4.44×10
0
 

(0.54) 
131 

 

(9, 1, 17) 

Max-SINR 2.85×10
2
 2.33×10

3
 3.29×10

0
 2.67×10

1
 212 

MinIL 3.95×10
2
 2.43×10

3
 5.75×10

0
 3.53×10

1
 172 

PDS 
8.61×10

1
 

(0.30) 

7.75×10
2
 

(0.33) 

1.78×10
0
 

(0.54) 

1.63×10
1
 

(0.61) 
212 

 

(10, 1, 19) 

Max-SINR 3.06×10
2
 2.20×10

3
 4.27×10

0
 3.06×10

1
 239 

MinIL 4.02×10
2
 2.43×10

3
 6.55×10

0
 3.96×10

1
 191 

PDS 
9.24×10

1
 

(0.30) 

6.05×10
2
 

(0.27) 

2.33×10
0
 

(0.55) 

1.54×10
1
 

(0.50) 
239 

 

(12, 2, 11) 

Max-SINR 2.00×10
3
 6.99×10

3
 4.02×10

1
 1.40×10

2
 250 

MinIL 2.93×10
2
 2.08×10

3
 4.82×10

0
 3.38×10

1
 216 

PDS 
6.97×10

2
 

(0.35) 

4.82×10
3
 

(0.69) 

1.92×10
1
 

(0.48) 

1.31×10
2
 

(0.93) 
255 

 

(12, 4, 5) 

Max-SINR 2.04×10
3
 6.92×10

3
 2.08×10

1
 6.99×10

1
 210 

MinIL 2.34×10
2
 2.04×10

3
 1.17×10

0
 1.01×10

1
 195 

PDS 
7.07×10

2
 

(0.35) 

5.01×10
3
 

(0.72) 

8.75×10
0
 

(0.42) 

6.16×10
1
 

(0.88) 
216 

6. Conclusions 

In this paper, we have focused on reducing the execution time and computational complexity 

of the traditional Max-SINR algorithm for IA. The properties of the Max-SINR method have 

been investigated, and the principle direction has been introduced, which is found to 

approximately point to the convergence solutions. A rapid convergent low-complexity PDS 

algorithm has been proposed that approaches the convergence point directly along the 

principle direction. Furthermore, the analytical form of the optimal step size along this 

direction has been formulated under the minimal interference leakage criterion. Numerical 

results have verified that the proposed PDS algorithm can achieve a significantly higher 

convergence rate and lower overall computational complexity than the conventional MinIL 

and Max-SINR algorithms while maintaining the high sum rate. This paper has developed a 
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rapid convergent algorithm and provided theoretical insight into the Max-SINR algorithm.  
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Appendix A: Proof of Theorem 2 

Proof: As shown by Schmidt et al. [11], the Max-SINR algorithm can suppress the 

interference leakage to approximately zero and approach the IA solutions in the high SNR 

regime, i.e.,  
H , .j ji i i j D H P 0                         Equation Chapter (Next) Section 1 (A.1) 

Then, the desired signal and the interference-plus-noise covariance matrices of the lth data 

stream of the kth user for the forward and backward channels at the convergence point can be 

expressed as: 
H H

( ) ( )kl kk k l k l kkA H P P H                                                        (A.2) 

H H

( ) ( )kl kk k l k l kkA H D D H                                                      (A.3) 

H H H H 2

( ) ( )

1, 1,

( )
K d

kl kj j j kj kk k r k r kk

j j k r r l


   

   B H P P H H P P H I                 (A.4) 

H H H H 2

( ) ( )

1, 1,

( ) .
K d

kl jk j j jk kk k r k r kk

j j k r r l


   

   B H D D H H D D H I             (A.5) 

Define the generalized eigenvalues and the associated generalized eigenvectors of klA and 

klB  as _1 _ 2 _{ , ,..., }kl kl kl N    and _1 _ 2 _{ , ,..., }kl kl kl Nv v v , respectively. Similarly, define 

the generalized eigenvalues and the corresponding generalized eigenvectors of klA and klB  

as _1 _ 2 _{ , ,..., }kl kl kl M    and _1 _ 2 _{ , ,..., }kl kl kl Mv v v , respectively. From Theorem 1, there 

is only one nonzero generalized eigenvalue, i.e., 

_1 _ 2 _3 _0, ... 0kl kl kl kl N                                       (A.6) 

_1 _ 2 _3 _0, ... 0.kl kl kl kl M                                      (A.7) 

From Theorem 1, ( )k lD  should be the generalized eigenvector associated with the maximal 

generalized eigenvalue of klA and klB ; ( )k lP  should be the generalized eigenvector 

associated with the maximal generalized eigenvalue of klA and klB , i.e., 

( ) _1k l klP v                                                                        (A.8) 

( ) _1.k l klD v                                                                      (A.9) 

Substitute (23) into (13), and 
[ ]i

klB  can be expressed as 
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[ ] [ 1] [ 1] H H

1,

[ 1] [ 1] H H 2

( ) ( ) ( ) ( )

1,

[ ]

( )( )

( )( )

K
i i i

kl kj j j j j kj

j j k

d
i i

kk k r k r k r k r kk

r r l

i

kl kl



 

 

 

 

    

     

  





B H P P P P H

H P P P P H I

B B

            (A.10) 

where 
[ ]i

klB  is given by 

[ ] [ 1] H [ 1] H [ 1] [ 1] H H

1,

[ 1] H [ 1] H [ 1] [ 1] H H

( ) ( ) ( ) ( ) ( ) ( )

1,

[ ( ) ( ) ]

[ ( ) ( ) ]

K
i i i i i

kl kj j j j j j j kj

j j k

d
i i i i

kk k r k r k r k r k r k r kk

r r l

   

 

   

 

       

      





B H P P P P P P H

H P P P P P P H

     (A.11) 

From (8) and (23), the desired signal covariance matrix can be written as  
[ ] [ 1] [ 1] H H

( ) ( )

[ 1] [ 1] H H

( ) ( ) ( ) ( )

[ ]

( )

( )( )

i i i

kl kk k l k l kk

i i

kk k l k l k l k l kk

i

kl kl

 

 



    

  

A H P P H

H P P P P H

A A

                            (A.12) 

where 
[ ]i

klA  is given by 

[ ] [ 1] H [ 1] H [ 1] [ 1] H H

( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ] .i i i i i

kl kk k l k l k l k l k l k l kk

        A H P P P P P P H              (A.13) 

When 
[ ]i

p  is located within a small neighborhood of p , 
[ 1]

( )

i

k l

P  is a small item, and the 

high order terms in (A.11) and (A.13) can be omitted. Thus, 
[ ]i

klA  and 
[ ]i

klB  can be 

approximated as 
[ ] [ 1] H [ 1] H H

( ) ( ) ( ) ( )[ ( ) ]i i i

kl kk k l k l k l k l kk

    A H P P P P H                                    (A.14) 

[ ] [ 1] H [ 1] H H

1,

[ 1] H [ 1] H H

( ) ( ) ( ) ( )

1,

[ ( ) ]

[ ( ) ]

K
i i i

kl kj j j j j kj

j j k

d
i i

kk k r k r k r k r kk

r r l

 

 

 

 

    

   





B H P P P P H

H P P P P H

                          (A.15) 

From Theorem 1, the decoding vector 
[ ]

( )

i

k lD  in the forward iteration is the generalized 

eigenvector associated with the maximal generalized eigenvalue of 
[ ]i

klA  and 
[ ]i

klB . From the 

eigenvalue perturbation theory, when 
[ ]i

klA  and 
[ ]i

klB  are very small, 
[ ]

( )

i

k lD  can be 

approximated as 
H [ ] H [ ] [ ]

_1 _1 _ _1 _1[ ]

( ) _1 _

2 _1 _

( )
(1 ) .

2

i i iN
kl kl kl kl n kl kl kl kli

k l kl kl n

n kl kl n



 

   
  




v B v v A B v
D v v       (A.16) 

Substitute (A.6) and (A.9) into (A.16), and 
[ ]

( )

i

k lD  can be rewritten as 

H [ ] H [ ] [ ]

( ) ( ) _ _1 ( )[ ] [ ]

( ) ( ) _ ( ) ( )

2 _1

( )
(1 )

2

i i iN
kk l kl k l kl n kl kl kl k li i

k l k l kl n k l k l

n kl





   
    

D B D v A B D
D D v D D
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(A.17) 

where 
[ ]

( )

i

k lD  is given by: 

H [ ] H [ ] [ ]

( ) ( ) _ _1 ( )[ ]

( ) ( ) _

2 _1

( )
.

2

i i iN
kk l kl k l kl n kl kl kl k li

k l k l kl n

n kl





   
   

D B D v A B D
D D v          (A.18) 

Substitute (A.14) and (A.15) into (A.18), and the terms 
H [ ]

( ) ( )

i

kk l kl k lD B D , 
H [ ]

_ ( )

i

kl n kl k lv A D , and 

H [ ]

_ ( )

i

kl n kl k lv B D  in (A.18) can be expanded as: 

H [ ] H [ 1] H H H [ 1] H H

( ) ( ) ( ) ( ) ( ) ( )

1,

H [ 1] H H H [ 1] H H

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1,

[ ( ) ]

[ ( ) ]

K
i i i

kk l kl k l kk l kj j j kj k l kk l kj j j kj k l

j j k

d
i i

kk l kk k r k r kk k l kk l kk k r k r kk k l

r r l

 

 

 

 

    

   





D B D D H P P H D D H P P H D

D H P P H D D H P P H D

(A.19) 
H [ ] H [ 1] H H H [ 1] H H

_ ( ) _ ( ) ( ) ( ) _ ( ) ( ) ( )( )i i i

kl n kl k l kl n kk k l k l kk k l kl n kk k l k l kk k l

     v A D v H P P H D v H P P H D    (A.20) 

H [ ] H [ 1] H H H [ 1] H H

_ ( ) _ ( ) _ ( )

1,

H [ 1] H H H [ 1] H H

_ ( ) ( ) ( ) _ ( ) ( ) ( )

1,

[ ( ) ]

[ ( ) ].

K
i i i

kl n kl k l kl n kj j j kj k l kl n kj j j kj k l

j j k

d
i i

kl n kk k r k r kk k l kl n kk k r k r kk k l

r r l

 

 

 

 

    

   





v B D v H P P H D v H P P H D

v H P P H D v H P P H D

(A.21) 

When the interference leakage at the convergence point is assumed to be approximately 

zero as shown in (A.1), the terms 
H

( )kk l kj jD H P , 
H H

( )j kj k lP H D , 
H

( ) ( )kk l kk k rD H P , and 
H H

( ) ( )k r kk k lP H D  

in (A.19) and (A.21) can be ignored. Then, 
H [ ]

( ) ( )

i

kk l kl k lD B D  and 
H [ ]

_ ( )

i

kl n kl k lv B D  can be 

rewritten as 
H [ ]

( ) ( ) 0i

kk l kl k l D B D                                                                          (A.22) 

H [ ] H [ 1] H H

_ ( ) _ ( )

1,

H [ 1] H H

_ ( ) ( ) ( )

1,

[ ( ) ]

[ ( ) ].

K
i i

kl n kl k l kl n kj j j kj k l

j j k

d
i

kl n kk k r k r kk k l

r r l



 



 

  

 





v B D v H P P H D

v H P P H D

                  (A.23) 

Substitute (A.20), (A.22), and (A.23) into (A.18), and we have 

[ ] H [ 1] H H H [ 1] H H

( ) _ ( ) ( ) ( ) _ ( ) ( ) ( ) _

2_1

H [ 1] H H

_ ( ) _

2 1,

H [ 1] H H

_ ( ) ( )

1
{[ ( ) ] }

{ [ ( ) ] }

{ [ ( )

N
i i i

k l kl n kk k l k l kk k l kl n kk k l k l kk k l kl n

nkl

N K
i

kl n kj j j kj k l kl n

n j j k

i

kl n kk k r k r kk



 





  



    

 

 



 

D v H P P H D v H P P H D v

v H P P H D v

v H P P H ( ) _

2 1,

] }.
N d

k l kl n

n r r l  

  D v

 

(A.24) 
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The items that depend on the iterations i  come from 
[ 1]

( )

i

j l

P  and 
[ 1] H

( )( )i

j l

P  with j=1, 

2, …, K and l=1, 2, …, d. Consequently, 
[ ]

( )

i

k lD  can be represented by the linear combination 

of 
[ 1]

( )Re{ }i

j l

P  and 
[ 1]

( )Im{ }i

j l

P . Therefore, there exists an iteration-independent 

transformation TPD
2NKd×2MKd

, so that 
[ ] [ 1].i i

PD

  d T p                                                                   (A.25) 

Similarly in the backward iteration, there exists an iteration-independent transformation 

TDP
2MKd×2NKd

, and 
[ ]i

kp  can be approximated as 

[ ] [ ].i i

DP  p T d                                                                     (A.26) 

From (A.25) and (A.26), the relationship of the precoding and the decoding vectors 

between two successive iterations can be depicted as  
[ ] [ 1] [ 1]i i i

PD DP D

     d T T d T d                                          (A.27) 

[ ] [ 1] [ 1]i i i

DP PD P

     p T T p T p                                           (A.28) 

where  

D PD DPT T T 
2NKd×2NKd

                                                        (A.29) 

P DP PDT T T 
2MKd×2MKd

.                                                      (A.30) 
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