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Abstract 
 

Service discovery is one of the major challenges in cloud computing environment with a large 
number of service providers and heterogeneous services. Non-uniform naming conventions, 
varied types and features of services make cloud service discovery a grueling problem. With 
the proliferation of cloud services, it has been laborious to find services, especially from 
Internet-based service repositories. To address this issue, services are crawled and clustered 
according to their similarity. The clustered services are maintained as a catalogue in which the 
data published on the cloud provider’s website are stored in a standard format. As there is no 
standard specification and a description language for cloud services, new efficient and 
intelligent mechanisms to discover cloud services are strongly required and desired. This 
paper also proposes a key-value representation to describe cloud services in a formal way and 
to facilitate matching between offered services and demand. Since naïve users prefer to have a 
query in natural language, semantic approaches are used to close the gap between the 
ambiguous user requirements and the service specifications. Experimental evaluation 
measured in terms of precision and recall of retrieved services shows that the proposed 
approach outperforms existing methods. 
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1. Introduction 

Cloud computing is a new trend of distributed computing where scalable computing 
resources are exposed as services over the Internet. The perception of cloud computing has 
seen a significant growth as it provides “everything as a service”. Most companies farm out 
large parts of their resource requirements to cloud service providers owing to the ample 
available services offered. Cloud service is virtually any business or consumer service that is 
delivered and consumed over the World Wide Web in real time [1]. Examples of cloud 
services include web-based email services, online data storage and backup solutions, 
document management and collaboration services, database processing management and 
more. One of the demanding issues in cloud computing is the selection of cloud service and the 
service provider over the web. With the boom of the Internet, cloud service providers offer lots 
of services to end users in various formats. Unlike web services, cloud services do not have 
unified standard description.  

Due to the various service descriptions, non-uniform naming conventions, heterogeneous 
types and features of services, it is difficult for the user to find the cloud services that fulfill 
their requirements [2]. Though providers like Amazon S3 and EC2 describe their services 
using Web Service Definition Language (WSDL), it could not solely meet the requirements of 
cloud service description. Furthermore, WSDL fails to cover the unique features of cloud 
services. Efforts like USDL (Unified Service Description Language) [3] and TOSCA 
(Topology and Orchestration Specification for Cloud Applications) [4] have been made to 
provide standards for cloud computing. But their levels of interoperability and the degree to 
which they can be integrated are faltering. Generally, cloud services are described in plain text 
in the service provider’s website. Adoption of a standardized format to describe the 
requirements and service offerings will bolster the trade of cloud services. However, research 
work on cloud services description language is still in its early stages.  

Contemporary service discovery techniques may not be suitable to be used in the 
Internet-scale environment [2]. Hence, a marketplace that contains a catalogue for all the cloud 
services under a single URL is infeasible. According to Gartner [5], strong demands are 
anticipated for all types of cloud service offerings even if there is wide variation between 
cloud services market sub-segments. With the growth of public cloud offerings, a cloud 
service registry is urgently required to connect the cloud providers and users [6]. In order to 
speed up the process of service discovery, catalogues of existing services along with their 
service descriptions and pricing concerns have to be created. To realize this, the existing 
services are crawled using cloud service crawler. Cloud service crawler [7] is a program which 
fetches as many relevant services as possible for the specific users.  

Cloud services are dynamic entities that evolve at rapid rates. New services are added and 
old ones are removed or modified over time. As a result, the crawling should be done 
periodically in order to keep the cloud services repository up-to-date. Multi-threaded priority 
based crawler [8] is used to crawl cloud specifications and pricing details from the provider’s 
website. A repository of cloud services is created by categorizing the crawled services based 
on the functionalities of the cloud services by using a clustering algorithm. When services are 
grouped into different clusters, services within the same cluster provide similar matches with 
respect to a service request. If the services are classified well, searching through predefined 
groups may provide better results for service discovery [9]. This paper suggests clustering of 
services based on similarity and search service in the closest similar group, which has fewer 
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services. Its main benefit is that it reduces the time needed for discovering services. 
To have an effective search results, the service consumer must specify the outputs he/she 

requires and the inputs he/she can provide for the service. But most of the service requesters do 
not have a clear idea of their request, and hence, cannot convey their requests accurately. Users 
who are technically illiterate depend on Natural Language Queries (NLQ) for retrieving 
information about cloud services. NLQ to cloud services will be a key technology to guarantee 
effortless access to services. NLQ processing facilitates conveying without resorting to 
memorization of complex procedures for discovering services. This involves resolving the 
complex problem of identifying relevant services given an ambiguous natural language query. 
There may be a mismatch between the vocabulary used to specify the user request and that 
used to describe service descriptions. This leads to poor service discovery and hence, to low 
precision and recall [10].  

Consequently, discovering existing cloud services according to user’s request is a tricky 
task. Hence, to mitigate the burden of users, a novel approach is proposed in this paper to 
convert natural language query to a standard format. Thus, end users must be able to discover 
services based on a query written in natural language. The limitations of the conventional 
discovery process and the difficulty of matching between user demands and service 
descriptions advertised by providers can be overcome through ontologies and semantic 
technologies. As an initial step toward this goal, the potential terms in the natural language 
query are identified and enriched with further relevant information to route them to suitable 
services. This can be realized by integrating semantics to service through ontologies. Hence, 
this paper recommends an enhanced cloud service discovery mechanism based on ontology 
for naïve user requests. The discovery mechanism creates a bridge between user requirements 
written in natural language and service descriptions on the provider’s site, using semantically 
enhanced standard format. 
 The rest of the paper is structured as follows. The related research work is described in 
Section 2. Problem definition and uniform representation format for services, Key – Value 
(KV) representation, are discussed in Section 3.  The architecture of Semantic-based Service 
Discovery with Clustering for Naïve users is detailed in Section 4. Results are analyzed and 
efficiency of the system is discussed in Section 5 and Section 7 presents conclusions and 
future directions. 

2. Related Work 
Cloud adoption is, without a doubt, on the rise. Recent IDC report [11] predict that cloud 
services will remain a hotbed of activity in 2015 with $118 billion in the global cloud market. 
Sun et.al., conducted an exhaustive state-of-the-art survey of existing cloud service selection 
approaches to evaluate and compare current cloud service publication platforms, modeling 
languages and ranking methods [12]. As cloud computing becomes more popular, the number 
of services offered by providers increases tremendously day by day. In the previous work [8], 
6743 unique cloud services were crawled from the web. Among them, 1922 services are 
infrastructure related services including storage, backup, virtualization and networking and 
3814 are software services like accounting, business management and security as a service. 
517 services focus on PaaS services. Rest 490 services offer more than one cloud service 
model. Major players such as Microsoft, Amazon, Google, AT&T Inc, IBM, Oracle Corp and 
Dell offer more than one cloud service.  

  While cloud services offer evident benefits in terms of cost reduction and increased 
performance, searching and selecting them is in flux. To find a set of ranked services, Service 
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Provider Search Engine (SPSE) was recommended which supports user personalization in 
service selection [13]. It uses SAW-based service searching and scheduling algorithm to locate 
the suitable service by considering the user’s multiple QoS (Quality of Service) needs. But a 
number of cloud services exist without proper semantic descriptions. Providers use a different 
vocabulary to describe similar services. Due to this many services which are most relevant to 
the user request is left undiscoverable.  Hence, discovering cloud services have more hurdles 
compared with web service discovery from WSDL files and UDDI registry [14]. Cloud 
service description languages are restricted to a certain cloud layer and support only the 
specification of some particular aspects of a cloud service [15]. Open Virtual Format is a 
standard for denoting the packaging and distribution information of an IaaS [16], and Open 
Cloud Computing Interface is a standard for specifying the IaaS management API.  

A few proprietary specification languages maintained by the commercial cloud vendors, 
such as adhoc XML format for Microsoft Azure, exist in PaaS layer. Standards in Web 
services such as WSDL can be reused for specifying services in SaaS layer. TOSCA [4] 
supports provisioning of SaaS applications. These languages do not help to publish, query, and 
compose cloud services across providers. The Blueprint Specification Language (BSL) [15] 
provides a specification language for cloud service providers to specify their services. But it 
allows for specifying only certain information sets of a cloud service and lacks support to 
Service-level Agreement policy, the pricing policy, and compensation policy of a cloud 
service. Hence, there is a great demand for a uniform specification language. Discovering 
cloud services based on user request from internet repository is a time consuming process. 
Hence, to find the best suitable service for a certain demand, service registries has been 
established as fundamental systems between providers and consumers. 

 The search facility is limited to the service name and/or category in service directories like 
CloudBook [17]. Hence, to create a repository of cloud services, focused crawlers are required 
to gather cloud service descriptions from the provider’s website. Algorithms based on clusters 
can extract information from large volumes of data by dividing it into different groups based 
on certain similarities [9]. The access time can be reduced by bringing in efficient clustering 
and matchmaking algorithms. Operation parameter clustering techniques are also used in 
Seekda! [18], where information about services is gathered from various sources like Web 
pages and blogs. Some researchers propose using semantic approaches for cloud service 
discovery. The Mosaic ontology [19] developed in OWL is used for semantic retrieval and 
composition of cloud services in the Mosaic project. Semantic service annotation enables end 
users to search existing web services using keywords [20].  

Sim [21] propose an Agent based Cloud Service Discovery System (CSDS) which interact 
with ontology to find cloud services that are closer to users’ requirements. Unified business 
service and cloud ontology [22] captures the required business services in an organization and 
provides a mapping between business functions and the offered services in the cloud 
landscape. The ontology serves as a repository for cloud services and providers. Users can 
query the ontology to discover the services that match their requirements. In most of the 
ontology based discovery systems, the query is expressed in SPARQL language [23], 
confining the use of ontology to experienced users only. Hence, a system that accepts a natural 
language query is greatly demanded. In Pythia, natural language input is converted into a 
formal query by means of a linguistic analysis driven by an ontology-based grammar [24].  It 
is also observed that burst path losses have become a pressing concern in real time video 
conferencing services [34-36]. Hence, the efficiency of service discovery becomes a 
significant issue for cloud computing enabled applications. 
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3. Background 
3.1 Problem Definition 
 
Naïve users rely on conventional search engines in pursuing cloud services. There are no 
specialized search engines for discovering cloud services. Traditional search hunt offers 
immeasurable solutions. Moreover, searching the web is a lingering process. To speed up the 
service discovery process, an up-to-date repository of services is essential. This can be 
accomplished with a multi-threaded priority based incremental crawler and similarity based 
clustering. Services are crawled from the web and these M services are clustered into N 
categories (i.e. C1, C2… CN) based on their similarity by a clustering algorithm. The selection 
order of cloud services does not influence the accuracy of the clustering process. However, 
users may not know which cloud services to use, and they need to keep perusing the service 
description before selecting an appropriate one. Henceforth, the search engines are not suitable 
for finding services that address the user’s prerequisites.  

Most of the cloud providers describe the services in their websites in various formats. 
Hence, the complexity involved in matching user demand with the service description is very 
high. One of the critical issues addressed in this paper is the formal representation of services 
in a standard format. Service description is an abstract specification of operation it supports 
and can be expressed as a quadruple CSdes = (Sname, Sid, SA, SD), where Sname represents the title 
of the service, Sid is the unique identification of the service, SA = {A1, A2,…., Ai} are the 
attributes of the service including the functional and non-functional specifications and SD = 
{D1, D2,…, Di} are the corresponding data values of the attributes. The service request is a 
description of user requirements. The request in natural language is processed and expressed 
as a triple CSreq= (SK, SV, SC), where SK = {K1, K2,…, Kn} represents the functional and 
non-functional requirements, SV = {V1, V2,…, Vn} is the user’s expectation on the attributes 
and SC is a set of QoS constraints. 

Further, the difference in the vocabulary used by the providers and users makes the 
searching process more complex. Hence, semantics needs to be integrated into the services 
through ontology. Ontology-based service matchmaking method is used to find the most 
suitable services (MCS) from a cluster of services whose attribute values are closest to the 
service requested CSreq. The absence of technical skills of naïve users demands an efficient 
strategy for ranking MCS. Service ranking outputs a ranked list using a scoring mechanism that 
depends on five factors and can be expressed formally as a quintuple CSrank = (SS, UP, UF, AV, 
SC), ∀service ∈ MCS. Here SS, UP, UF, AV and SC corresponds to similarity score, user 
preference, user feedback, availability and service cost respectively. The proposed system 
addresses the problem of naïve users being not able to discover pertinent cloud services that 
meet their requirements. The system requires little human interaction and can be accessed via 
a web based user interface. 
 
3.2 KV Representation 
 
Although semantic technology is the main research direction in service matchmaking, less 
research has been focused on the semantic representation of cloud services [26]. A precise 
service specification model based on ontology is vital when developing specification models 
for cloud services. In general, providers describe information about the cloud services in their 
web pages in natural language. The pricing rules and service offerings are frequently modified 
and published on the cloud providers’ websites. The descriptors in these web pages have no 
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proper machine interpretable structure and henceforth, cannot be utilized to process 
information about cloud services automatically. Consequently, many questions arise about 
how to manage the inconsistencies in knowledge representation and standardization of the 
description. Hence, to formalize this issue, Key-Value (KV) representation is used to store 
cloud service description, where key stands for an attribute of a service. A separate KV 
template is used for a different category of services. Here the key can take only string form 
whereas the value can be categorical (string or Boolean) or numerical (integer or float). For 
example, the KV representation for storage services is shown in Table 1.  

 
Table 1. Storage service specification in K-V representation 

  <service_type = “storage”>: {  "title" : "Storage services", 
   "description": “Specifications of storage services”, 
    "type": "object", An ordered collection of key/value pairs.  
     [ "properties": { The property specifier holds the description of the key/value pairs. 
     "Provider": {"type": "string",    "category": "MANDATORY"}, 
     "display_name": {"type": "string",  "category": "OPTIONAL"}, 
      "url" : {"type": "string", "category": " MANDATORY"}, 
      "billing_time": {"type": "string", "category": "OPTIONAL"}, 
      "price": {"type": "float", "minimum": 0, "exclusiveMin": true, "category": " MANDATORY"}, 
      "storage_capacity" : {"type" : "integer",  "category" : "MANDATORY"}, 
      "free_plan": {"type": "integer", "category": "OPTIONAL"}, 
      "unlimited_plan": {"type": "boolean",  "category": "OPTIONAL"}, 
      "data_center": {"type": "string",   "category": "OPTIONAL"}, 
      "hasLocation": {"type": "string",   "category": "OPTIONAL"}, 
      "api": {"type": "string",  "category": "OPTIONAL"}, 
      "hasBlock_level_replication": {"type": "boolean", "category": "OPTIONAL"}, 
      "hasRedundancy": {"type": "integer",  "category": "OPTIONAL"}, 
      "hasDesktop_file_sync": {"type": "boolean", "category": "OPTIONAL"}, 
      "hasAvailability": {"type": "float", "category": "OPTIONAL"}, 
      "hasRobustness": {"type": "float", "category": "OPTIONAL"}, 
      "os_platform": {"type": "string", "category": "OPTIONAL"}]}} 

4. System Architecture 
A convenient natural language interface is essential to discover cloud services. The user may 
pose imperative questions, or wh-questions. The user can express a query using a set of 
keywords, simple or compound sentences. The proposed system translates the natural 
language question QN to a structured formal query QF that focuses on the concept articulated 
by QN.  The architecture of Semantic based Service Discovery with Clustering for Naïve users 
(SSDCN) is shown in Fig. 1. 

SSDCN is divided into two sections query rewriting and service matching. In query 
rewriting, the user request is parsed and the parsed phrases are mapped to the cloud ontology 
concepts. In service matching, the mapping is performed between the user request and 
categorized services which are stored as a catalogue. In order to fasten the process of service 
discovery, a catalogue of services is created by making use of cloud service crawler and 
clustering algorithm. The catalogue contains a set of cloud services that an end user can 
request, including pricing and the terms and conditions for service provisioning. The process 
of service discovery is to seek suitable service which could satisfy the user’s requirements 
from a pool of services. Reasoning based on ontology increases the chance of finding relevant 
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alternatives of a service [21]. Hence, in SSDCN, intelligent service discovery platform based 
on ontology is employed for finding suitable services precisely.  

 
Fig. 1. Architecture of SSDCN 

 
4.1 Cloud Ontology 

Ontology is defined as a formal and explicit specification of a shared conceptualization [25]. 
An ontology O is a quintuple, O = (OC, OP, OI, OV, OA) where OC, OP, OI, OV and OA are the sets 
of classes, properties, individuals, property values and constraint axioms respectively. To 
facilitate machine readable description of cloud services, a cataloging of services has been 
accomplished through Web Ontology Language (OWL) ontology, which recognizes the 
service types and their specifications. Ontology specifies how a concept is related to linguistic 
structures such as regular expressions and lexicons. Discovery of services represented in 
a heterogeneous format is a complex task. However, it has been proved that ontology has been 
useful for semantic annotation and discovery of cloud services [19] [21] [27] [28]. Hence, it 
can be used by Natural Language Processing (NLP) to improve expressiveness and to resolve 
the ambiguity of NL queries. Ontologies are employed to map the concepts from different 
providers to a unique formal representation. These ontologies are also used to establish 
mappings at the time of query rewriting. Thus, ontology plays a critical role in query 
reformulation process.  
 
4.2 Creation of cloud services catalogue  
 

Discovering and ranking services from the web may not be proper, particularly from the 
performance point of view. To create a catalogue of cloud services, multi-threaded priority 
based crawler is employed to crawl the service descriptions from the provider’s site. Good 
choices of relevant seed URL certainly influence the results of a crawler. Table 2 shows the 
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initial seed URL used for crawling.  
Grouping of services based on similarity of service description substantially reduces the 

number of comparisons required for service matching.  Clustering brings identical services 
together and this scale well even if the number of services increases exponentially. However, 
clustering algorithms work effectively either on pure numeric data or of pure categorical data, 
most of them perform poorly on mixed data types.  Cloud services have both numeric and 
categorical attributes. Hence, it is difficult for applying conventional clustering algorithm 
directly into these kinds of data. Based on the type of attribute value, the attributes of the 
service si = (a1, a2, …., am ) are split into numerical (snum) and categorical (scat) attributes. A 
distance measure is needed for grouping services into clusters. 

 
Table 2. Initial seed URL list 

http://www.dmoz.org/Computers/Internet/Cloud_Computing/Service_Providers/ 
http://www.cloudreviews.com/ 
http://www.cloudservicemarket.info/services/servicesBrowse.aspx 
http://cloudshowplace.com 
http://www.cloudxl.com/category 
http://talkincloud.com/tc100 
http://atechjourney.com/list-of-free-cloud-storage-services.html/ 
http://compixels.com/2303/list-of-top-free-cloud-based-services 
http://en.wikipedia.org/wiki/Category:Cloud_computing_providers 

 
4.2.1 Similarity Calculation for numerical attributes 

Consider two services S1 = (X, A) and S2 = (Y, B).  Attributes of S1 are split into numerical 
},...,,{ 211 n

num xxxS =  and categorical }.,...,,{ 211 m
cat aaaS = Similarly S2 is split into 

},...,,{ 212 n
num yyyS =  and }.,...,,{ 212 n

cat bbbS = For numerical attributes, Pearson Correlation 
Coefficient is used to determine the similarity between feature vectors. This metric is 
measured from -1 to +1 and it measures how highly correlated are two services. Pearson 
Correlation Coefficient of 1 indicates that the data attributes are perfectly correlated and a 
score of -1 means that the data attributes are not correlated.   In the mathematical form, the 
score can be described as: 

𝑟𝑟𝑥𝑥𝑥𝑥 =  𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖  𝑖𝑖 −∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖  𝑖𝑖𝑖𝑖

�𝑛𝑛∑ 𝑥𝑥𝑖𝑖2𝑖𝑖 −( ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )2�𝑛𝑛∑ 𝑦𝑦𝑖𝑖2𝑖𝑖 −( ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 )2
                    (1) 

 
 In this equation, (x, y) refers to the data objects and ‘n’ is the total number of attributes. A 
distance metric for two variables ‘x’ and ‘y’ known as Pearson's distance can be defined from 
their correlation coefficient as 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦)𝑛𝑛𝑛𝑛𝑛𝑛  =  1 −  𝑟𝑟𝑥𝑥𝑥𝑥      (2) 
and lies between 0 (when correlation coefficient is +1, i.e. the two samples are most similar) 
and 2 (when correlation coefficient is -1). For instance, for the data provided in Table 3, the 
numerical attribute corresponds to {hasHourlyPrice, hasVirtualCores, hasComputeUnits, 
hasMemory, hasDiskSpace}. Here, X= {0.15, 2, 4, 7.5, 840}  and  Y= {0.11, 2, 2, 7.5, 738},  
and hence, correlation coefficient rxy = 0.99999636298309 and Sim (x, y) = 3.64 *10-6

, which 
shows that there is a strong positive correlation among services S1 and S2. 
 
4.2.2 Similarity Calculation for categorical attributes 

For categorical attributes, the Jaccard/Tanimoto Coefficient [29] is employed for measuring 
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similarity. It uses the ratio of the intersecting set to the union set as the measure of similarity, 
and can be mathematically represented as: 

                                                       cba

c

MMM
MBAT

−+
=),(                                                          (3) 

 
 Table 3. Two services S1 and S2 in KV representation 

<service_type = “compute”>:{ 
   "title": "compute services", 
   "description":“Specifications of compute services”, 
   "id": "C070", 
     [ "properties": {"Provider": "Amazon", 
      "display_name":  "AWS", 
      "billing_time": "hourly", 
      "hasHourlyPrice": "$0.15", 
      "hasInstance Type":  "m1.large", 
      "hasVirtualCores": "2", 
      "hasCompute Units":  "4", 
      "hasMemory":  "7.5 GB", 
      "hasDiskSpace":  "840 GB", 
      "supportOS":  "linux", 
      "supportDatabase":  "MySQL", 
      "hasDataCentreAt":  "Europe" }]} 

<service_type = “compute”>:{ 
   "title": "compute services", 
   "description": “Specifications of compute services”, 
   "id": "C095", 
     [ "properties": {"Provider" : "Joyent", 
      "display_name":  "Joyent medium", 
      "billing_time": "hourly", 
      "hasHourlyPrice": "$0.11", 
      "hasInstance Type":  "medium", 
      "hasVirtualCores": "2", 
      "hasCompute Units":  "2", 
      "hasMemory":  "7.5 GB", 
      "hasDiskSpace":  "738 GB", 
       "supportOS":  "linux", 
      "supportDatabase":  "MongoDB", 
      "hasDataCentreAt":  "Europe"}]} 

 
In this equation, ‘M’ represents the number of categorical attributes in (A, B) and ‘c’ in this 
case is the intersection set. 

                                        
),(1),( BATBASim cat −=                                                    (4) 

From the data provided in Table 3,  A = {“Amazon”,“AWS”,“hourly”,“m1.large”, 
“Linux”, “MySQL”,“Europe”} and B = {“Joyent”,“Joyent medium”,“hourly”,“medium”, 
“Linux”, “MongoDB”,“Europe”}. Here, Ma = 7, Mb = 7, Mc = 3 and hence, T (A, B) = 0.27 
and Sim(A, B) is 0.73. The value of Sim (A, B)cat is in the range of [0,1]. When the value of Sim 
(A, B)cat  is larger, the correlation between A and B is lesser. Consider the services has m 
attributes, with mc categorical and mn numeric attributes, where mc + mn = m. Also, assume 
that each attribute has equal importance, i.e. all attributes have equal weight and no biased 
treatment of any attributes. The similarity between two mixed-type services S1 and S2 can be 
represented as:  

                          
catcnumn BASim

m
mYXSim

m
mSSSim ),(),(
2

),( 21 +=
                                         

(5) 

Since the Pearson coefficient is used as a similarity metric for numerical data and its range 
is [0,2], Sim (X, Y)num is divided by 2. 

 

Algorithm 1: Finding similarities of services 
Input:    Set of services ,S = {s1, s2, s3,…., sn} 
Output: Similarity between service 
Steps: 
 1. Split si =(a1, a2, …., am ) into si = (snum, scat), where snum and scat represent the numerical and  

categorical attributes of si. 
 2. Find distance metric for the numerical attribute using Pearson’s distance formula as explained in 

equation 2. 
 3. Employ Tanimoto coefficient for calculating similarity of categorical attributes (explained in 

equation 4) 
 4. Use equation 5 to find the similarity between a pair of services. 
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4.2.3 Service clustering 

An improved k-means approach is used for clustering of cloud services so that the most similar 
services are grouped together. The steps for implementing the modified K-means algorithm 
are: 
1. Generate K cluster centers as per the algorithm 2. 
2. Compute the proximity of each service to each cluster centre and assign each service to the 

nearest cluster centre. 
3. Re-compute the cluster centers by taking the mean of the member services in each cluster; 

for the categorical attribute, most repeated values in the cluster is taken as the attribute 
mean. 

4. Stop if there is no or minimal change in the cluster centers; else go back to step 2. 
Thus, the services are clustered based on their similarity and a catalogue is maintained for 

the further discovery process. Two major modules of SSDCN are query rewriting and service 
matching. 

 
Algorithm 2:   Finding initial centroids 
Input:    S = {s1, s2, s3,……,sn} // set of services 

k = number of desired clusters;  
Output:  Set initial centroids K.  
Steps:  
1.  Calculate the Weighted Score (WS) of each service Sn = {a1, a2, a3,…., am} 

     Weighted Score (WS) of   𝑆𝑆𝑛𝑛    = ∑ 𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖(max)

𝑚𝑚
𝑖𝑖=1   , where a = the attribute’s value, m =  number of  

attributes and ai(max)=Maximum value of attribute ai 
      //numerical values are assigned to each categorical attribute based on their number of  

occurrences, most repeated value is given the higher number 
2.  Sort the services in ascending order based on weighted score 
3.  Divide the datasets into k subsets 
4.  Calculate the average of each group 
5.  Select services as initial centroids whose weighted score is closest to the average value of groups 

 
4.3 Query rewriting 

Query rewriting operates by carrying out the following steps as 1) Read in a natural language 
query and split it into words/tokens. 2) Annotate each token with POS tags. 3) Identify the 
potential concepts in the query by applying regular expression chunk parsers. 4) Map the 
extracted phrases with ontology concepts 
 
4.3.1 Shallow syntactic parsing 

 
Query rewriting starts with shallow syntactic processing which consists of tokenization and 
Part Of Speech (POS) tagging, chunking and extraction of key concepts. Natural Language 
Toolkit (NLTK) with Python is used in the preprocessing. The Natural Language Query (NLQ) 
posed by the user is a sequence of tokens, QN = {T0, T1,…, Tn}. The tagger with the necessary 
linguistic knowledge reads the NLQ and assigns part of speech category to each word in an 
input query. The tag set is based on the Penn Treebank Tagging Guidelines [30] with 36 POS 
tags.  For example, the query "List the providers who offer free storage services” can be tagged 
as follows: [List/NNP] [the/DT] [providers/NNS] [who/WP] [offer/NN] [free/JJ] 
[storage/NN] [services/NNS] 
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After having POS for each word, the query is given to the phrase identification parser 
which analyzes the syntax of given NLQ and finds the relation between words. A phrase is a 
subsequence of tokens which exemplifies the needed information. The parser uses a 
context-free grammar to group the word as constituents like a noun phrase, verb phrase, 
adjectival phrase and prepositional phrase. Rule-based chunker receives a sequence of tagged 
words and then divides the NLQ into relevant phrases. Chunk parsing extracts syntactically 
associated fragments, in agreement with regular expression grammar, which define 
well-grounded sequences of POS tags. NN.* could be one or more nouns where NN: noun, 
singular or mass; NNS: noun, plural; NNP: proper noun, singular; or NNPS: proper noun, 
plural. CP is a comparative phrase, could be either adjective comparative or adjective 
superlative (cheaper, most popular). IN could be a preposition or subordinating conjunction 
(in, of, like, after, that). CD could be any cardinal number (10, two). The output of the parser 
for the query “Name the providers who offer ERP services with a cost less than $10 per month 
and have data centers in Asia” is shown below.  

 
Rules used to identify a NP Output 
NBAR: 
     {<NN.*|JJ>*<NN.*>}   
     {<DT|PRP$>?<JJ>*<NN.*>*} 
CP:  {<JJR|JJS>} 
NP: 
     <NBAR><CP><IN><CD><IN><NBAR>} 
     {<CP>?<NBAR><IN>+<NBAR>+}   
     {<NBAR><CD><NBAR>?}   
     {<NBAR>} 

(S  (NP (NBAR Name/NN)) 
  the/DT 
  (NP (NBAR providers/NNS)) 
  who/WP 
  (NP (NBAR offer/NN ERP/NN services/NNS)) 
  with/IN 
  (NP  (NBAR cost/NN) (CP less/JJR) 
    than/IN 10/CD  per/IN  (NBAR month/NN)) 
  and/CC  
  have/VBP  
  (NP (NBAR datacenters/NN) in/IN (NBAR Asia/NNP))) 

 
4.3.2 Identification of Credible Ontological terms 

 
The major goal of this component is to identify a syntactic structure of a NLQ and adapt it to a 
formal semantic representation. Heuristic rules are used to identify Credible Ontological terms 
(COT) from natural language query. COTs refer to query terms that could be associated with 
ontology concepts. Each NP (noun phrase) is identified as a base to COT. To identify the COT 
of noun phrases, following rules are used: 
• For phrases with of the form: “NN.+” the COT is the last noun keyword and all other 
keywords are treated as attributes/modifiers. 
• For the phrases of the form “<CP>? <NBAR> <IN> <NBAR>”, the COT is the last noun 
keyword before the preposition. For example, “datacenter” in “List the largest datacenter in 
Asia”. 

A manually built synonym table is used to identify common abbreviations and their 
original forms in the noun phrases. For example, the original form of ‘ERP’ is ‘Enterprise 
Resource Planning’ and ‘OS’ is ‘Operating System’. NLTK Stopwords Corpus is used to 
remove default English stopword from these phrases.  

 
4.3.3 Term Concept mapping and formal specification  
 
This module maps query phrases with ontology concepts via WordNet [31] synsets (synonym 
sets) by assigning the structured meanings of the ontology to plain text. Ontologies are used as 
background knowledge to capture the semantic features of the key phrases in the query. In 
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order to have the best opportunity to discover the requested service, the credible query terms 
are expanded with the concepts from ontologies. The tokens in the query are linked to 
ontological concepts. COTs of noun phrases identify the class concepts in the ontology. The 
object type property identifier is extracted using a verb phrase. The datatype property 
identifier is extracted using the regular expression <CD> + <NN.* > + e.g., ‘five VMs’. 

The term-concept mapper retrieves the concepts from the ontology repository and matches 
them with the query terms. Initially, the query words are matched directly with the subjects, 
predicates, and objects of the ontology models. If a direct mapping fails, the stripped mapping 
is done between query words and the ontology concepts.  If no match is found, two possible 
relations of interest are taken; the synonyms or equivalent terms and hypernyms where 
ontology concept is more general than WordNet synset of query terms. WordNet is used to 
identify the synonyms of the concepts and relationships in the ontology. This will help to 
query a service even if the user is unaware of the exact terminology used in the service 
description. Once the corresponding ontology terms are identified, the query is rewritten to 
KV representation. 

 
Algorithm 3: Concept Mapping 
Input: COT Terms, Ontology 
Output: KV representation of query 
    T: {t | t in COT}  // list of COTs in NLQ   
    for i = 1 to |T|     //loop through all indexed tokens in NLQ 
// Loop through ontology O, and create a list with all concepts c,  
// where the stem of the concept name or the stem of a synonym of the concept equals the stem of the 
// COT, and where the POS equals the POS of the COT 
    L :={c| c ɛ O} 

for  m = 1 to |L| 
      if stem(t) = stem(name(c))  OR  stem(t) = stem(synonyms(c)) then 

                 if POS(t) = POS(c) then call replace(c, t, corres- noun-phrase) end for 
 if c is a subclass of concept “service”  then assign “title” as <name(c)> in KV format 

        if c is object type property or c is-a member or instance then assign superclass(c) as <t> in KV   
format 

      if c is a datatype property then assign name(c) as <t> in KV format end for 
 
The general representation of the formal query has the following format. 
 

<service_type = < X > > :  { "title" : < Y > , "temporal expr" : < Z >  [ <Concept name> :  
< A > ,   <Object Property name> :  < B > ,   <Data Property name> : < C >  ] }  

 
 For example, the formal representation of the query “List the popular storage service 
providers from North America” is <service_type = “storage”>:  
{"title": "Storage service", "temporal expr": "popular"  [hasLocation: North_America]},  
where the datatype property hasLocation in ontology is used to enhance the query. 
 
4.4 Service matching 
 
Given a user's service request, the system should be able to narrow down the search within a 
small group of eligible providers rather than checking all providers against the user's request. 
The ontology based matchmaking of services appears in this perspective as a promising 
solution, allowing the efficient discovery and selection of services, adapted to the constraints 
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of the user requirement. When a service query requirement comes, we should find the cluster 
of services whose attribute values are closest to the service requested. For this, compare 
feature vector of service query with the feature vector of the centre of each cluster. After that, 
in the closest cluster, ontology-based service matchmaking method can be used to find the 
suitable service of choice. With the concept ontology, the similarity between service and 
service query is calculated. If the similarity degree is larger than the threshold, then the service 
is matched, or else the service is discarded. Thus, this approach simplifies the search process 
by doing calculations only within the most similar cluster, rather than with all the cloud service 
entries. Due to a limited number of services in each group, the time taken for service searching 
is low.  

The most relevant cloud services with its details are presented as a list of suitable services 
to the user. The service request q can be expressed as Qa = < 𝑄𝑄𝑎𝑎 ,

𝑛𝑛 𝑄𝑄𝑎𝑎𝑐𝑐  > where numeric attributes 
𝑄𝑄𝑎𝑎 
𝑛𝑛 =< 𝑞𝑞𝑎𝑎1,

𝑛𝑛 𝑞𝑞𝑎𝑎2 
𝑛𝑛 , … , 𝑞𝑞𝑎𝑎𝑎𝑎𝑛𝑛 >, categorical attributes  𝑄𝑄𝑎𝑎 

𝑐𝑐 = < 𝑞𝑞𝑎𝑎1,
𝑐𝑐 𝑞𝑞𝑎𝑎2 

𝑐𝑐 , … , 𝑞𝑞𝑎𝑎𝑎𝑎𝑐𝑐 > and 0 ≤ i, j ≤
m. Similarly, centre of cluster   𝑋𝑋𝑎𝑎 = <  𝑋𝑋𝑎𝑎 ,

𝑛𝑛 𝑋𝑋𝑎𝑎𝑐𝑐  > where numeric attributes   𝑋𝑋𝑎𝑎 
𝑛𝑛 =<

𝑥𝑥𝑎𝑎1,
𝑛𝑛 𝑥𝑥𝑎𝑎2 

𝑛𝑛 , … , 𝑥𝑥𝑎𝑎𝑎𝑎𝑛𝑛 > and categorical attributes 𝑋𝑋𝑎𝑎 
𝑐𝑐 = < 𝑥𝑥𝑎𝑎1,

𝑐𝑐 𝑥𝑥𝑎𝑎2 
𝑐𝑐 , … , 𝑥𝑥𝑎𝑎𝑎𝑎𝑐𝑐 >. Similarity between 

the query q and the center of the cluster x can be found as in equation 5: 
𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞, 𝑥𝑥) = 𝑖𝑖

𝑚𝑚
∗ 𝑞𝑞𝑛𝑛 + 𝑗𝑗

𝑚𝑚
∗ 𝑞𝑞𝑐𝑐   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑞𝑞𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑞𝑞𝑎𝑎𝑎𝑎𝑛𝑛 ,𝑥𝑥𝑎𝑎𝑎𝑎𝑛𝑛 ), and 1 ≤ p ≤ i    

              𝑞𝑞𝑐𝑐 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞𝑎𝑎𝑎𝑎𝑐𝑐 ,𝑥𝑥𝑎𝑎𝑎𝑎𝑐𝑐 ),    and 1 ≤ q ≤ j             
 

Algorithm 4: Discovery of services 
Input: Query service, Closest cluster centroid 
Output: Similar services list 
Steps 
1. Compare the similarity of Query service (Qs) with each service si ∊ Closest cluster (CC) using 

equation 6.  
2.  If the similarity score ≥ threshold τ , append the service to the list; else discard the service. 

 
Once the nearest cluster is found, we apply ontology based matchmaking to compare the 
services within the cluster. 
The similarity is calculated using the equation proposed by Kolodner and Simpson [32]: 

𝑆𝑆(𝑡𝑡, 𝑟𝑟) =  ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ∗𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖

𝑡𝑡 ,𝑎𝑎𝑖𝑖
𝑟𝑟)

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

          (6) 
Where S (t, r) is the global similarity between the target ‘t’ and the source ‘r’; ‘wi’ is the weight 
of the attribute ‘i’; 𝑎𝑎𝑖𝑖𝑡𝑡  and 𝑎𝑎𝑖𝑖𝑟𝑟  are  the value of attribute ‘i’ of target ‘t’ and source ‘r’ 
respectively. Since all attributes are given equal weights the equation (6) reduces to: 

𝑆𝑆(𝑡𝑡, 𝑟𝑟) = 1
𝑛𝑛
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖𝑡𝑡  ,𝑎𝑎𝑖𝑖𝑟𝑟)𝑛𝑛
𝑖𝑖=1            (7) 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖𝑡𝑡  ,𝑎𝑎𝑖𝑖𝑟𝑟)  is calculated according to overlap coefficient and similarity for numerical 
attributes. 
The similarity measure for categorical attributes can be represented by   

𝑆𝑆𝑆𝑆𝑆𝑆�𝐶𝐶𝑖𝑖,𝐶𝐶𝑗𝑗� =  𝑎𝑎 |𝐴𝐴𝑖𝑖∩𝐴𝐴𝑗𝑗 |
𝑓𝑓(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑗𝑗)

+ (1 − 𝑎𝑎)
|𝐴𝐴𝑖𝑖
′∩ 𝐴𝐴𝑗𝑗

′ |

𝑔𝑔(𝐴𝐴𝑖𝑖
′  ,𝐴𝐴𝑗𝑗

′ )
            (8) 

where Ai and Aj are the sets of attributes of classes Ci and Cj, |𝐴𝐴𝑖𝑖 ∩ 𝐴𝐴𝑗𝑗 | is the number of 
common attributes shared by classes Ci and Cj and a takes the values of 0 or 1. When a=1 and  

𝑓𝑓�𝐴𝐴𝑖𝑖  ,𝐴𝐴𝑗𝑗� = min(|𝐴𝐴𝑖𝑖|, |𝐴𝐴𝑗𝑗|) ,     (9) 
equation (8) becomes the overlap coefficient given as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝐶𝐶𝑖𝑖𝑡𝑡 ,𝐶𝐶𝑖𝑖𝑟𝑟) =  |𝐴𝐴𝑖𝑖
𝑡𝑡∩ 𝐴𝐴𝑖𝑖

𝑟𝑟|
min�|𝐴𝐴𝑖𝑖

𝑡𝑡�,| 𝐴𝐴𝑖𝑖
𝑟𝑟| )

    (10) 
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where 𝐴𝐴𝑖𝑖𝑡𝑡 and 𝐴𝐴𝑖𝑖𝑟𝑟 are the set of formal attributes of the class specified in feature 𝐶𝐶𝑖𝑖𝑡𝑡 and 𝐶𝐶𝑖𝑖𝑟𝑟. 
The overlap between two sets of attributes of classes are equal to the intersection between the 
two sets of attributes normalized by the size of the minimum number of attributes. 
The similarity between two numeric values in the same domain can be calculated as the 
following formula.  

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 �𝑎𝑎𝑖𝑖𝑡𝑡  ,𝑎𝑎𝑖𝑖𝑟𝑟 ,𝑎𝑎𝑖𝑖� = 1 −  |𝑎𝑎𝑖𝑖
𝑡𝑡 ∩ 𝑎𝑎𝑖𝑖

𝑟𝑟|
𝑎𝑎𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚                                          (11) 

where 𝑎𝑎𝑖𝑖𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖𝑟𝑟 are the numeric values of the attribute ai  of the target and source; 𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 
𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum numeric values of the attribute ai. 

Choosing services exclusively in the light of their functionality may bring about services 
with detrimental QoS. QoS-based service selection is vital in the cloud as the huge number of 
services will certainly bring upon competition among providers that offer similar functionality. 
A large number of competing cloud services and the lack of technical skills of naïve users 
insist an efficient methodology for ranking services [33]. Top N services, whose similarity 
scores are computed, are ranked based on user preferences, user feedback and QoS of cloud 
services like availability and cost. The time complexity of ranking is O (C N log N) where N is 
the number of services and C is the number of criteria chosen for service selection. Rank 
scores of service “i” can be mathematically given as: 
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where ‘i’ represents the service whose rank is currently evaluated. ‘k’ represents various user 
preferences other than availability and cost and 0≤ k ≤ m. ‘ω’ and ‘θ’ represents the 
corresponding weights assigned to various criteria chosen for service ranking and  
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The user queries and discovered services are stored in a repository which can be used as a 
reference whenever the user queries have temporal expression. The repository is defined as a 
set of entries. Each entry is composed of a set of questions and answers. Table 4 shows the 
common temporal expressions used in user queries. 

 
Table 4. Usual temporal expressions in user query 

Temporal 
expression 

Sample 
Token 

Example query 

Prepositional 
phrases  

in a year List the service providers which provide news from multiple sources 
in the last year. 

Adjectival 
phrases  

current, 
popular 

Name the popular storage providers with on the fly encryption 
system. 

Adverbial 
phrases  

recently, 
frequently 

Give frequently used service providers for photo album management. 

Noun 
phrases  

 today Fetch the services to listen online music with less cost per hour on 
weekends 

5. Experimental Results and Analysis 
All experiments are implemented with Java 6 JRE in Eclipse 4.3. Ontology was constructed 
using Protégé 4.3 and accessed using Jena API. Experiments are conducted on a machine with 
1.90 GHz Intel Core I3-3227U CPU and 4GB RAM. The system offers a simple GUI to 
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facilitate the discovery process as shown in Fig. 2. The discovery process has as input a query 
expressed in plain text. The goal of the SSDCN is to automatically create structured formal 
queries by mapping the natural language question into KV representation. The implemented 
technologies are transparent to the user. As there is no established standard evaluation dataset 
for cloud services related queries, sample queries were generated in all possible service 
categories. The user’s requirements may contain many features such as geographical location 
of the data center, deployment model, security policies or even more detailed technical aspects 
like a number of virtual machines needed. The user can pose simple (e.g. Q1, Q2, Q3, Q6, Q7, 
Q8, Q13, Q15) or complex (e.g. Q4, Q5, Q9, Q10, Q11, Q12, Q14) queries as shown in Table 
5. 

 
Fig. 2. User interface for service discovery 

 
Table 5. Sample queries used for service discovery 

Q1 List the payroll providers available in America. 

Q2 Fetch the providers who offer free storage services of atleast 5 GB. 

Q3 List document management systems with document encryption features.  

Q4 Fetch free web hosting service with PHP and MySQL 

Q5 Give the service providers for file sharing and syncing with minimum free storage of 1GB 

Q6 List the providers who give Java web hosting platform with minimum pay per resource 

Q7 Name the infrastructure providers who have a minimum of 5 instance types 

Q8 List the services that can play online videos with cost less than 5 dollars per month 

Q9 Name the vendors who offer Linux based web hosting platform which supports dedicated IP addresses. 

Q10 List the providers who offer a Linux virtual machine with price less than $0.25 hourly. 

Q11 Name the providers who offer ERP services with a cost less than 10$ per month and data center in Asia. 

Q12 Fetch the services with self instantiating virtual machines on 2GHz processing and 4MB cache and not 
less than 8GB RAM with a cost less than 25 dollars per month. 

    Q13 Provide data analytic services with migrating option hosted on windows platform. 

    Q14  Fetch the providers who give customer relation management services on Java with 24/7 technical support. 

    Q15 Fetch cloud-based multi player game services with cost less than 5 dollars per month 
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Experiments were implemented over a collection of 6743 services covering 30 categories 
such as various applications, platform, storage, etc. Clustering of services was done in a 
reasonable time and service discovery can be entirely conducted offline. With no clustering in 
advance, the average search complexity to find the most similar service from N services is 
O(N). With clustering, the service matching will first locate the appropriate cluster by 
comparing the distance between query and cluster centroid and then search each service in that 
cluster. As a result, the average search complexity will be O (M), where M = K + O (Si), 
assuming that there are ‘K’ categories, each category has ‘Si’ services. This is very promising 
since the number of services does not exceed a few hundred in most of the service categories.  

The average time taken to discover services, using and without using clusters, is calculated 
with varying number of services. General methods for service discovery compare the request 
with all of the services in the registry. Fig. 3 shows the time taken for discovering services 
with and without clustering for three queries (Q1, Q2 and Q5) of simple, medium and complex 
constraints. Usage of service clusters improves the system response time to a great extent as 
depicted in Fig. 3. SSDCN method can reduce response time to 23-80% compared with 
service discovery without clustering. As the number of service increases, the response time for 
service discovery without clustering increases dramatically compared with the proposed 
method.  Hence, service discovery based on clustering can effectively improve time efficiency 
of service discovery. 

 

 
 

Fig. 3. Response time for Queries Q1, Q2 and Q5 with and without clustering 
 
 For each sample query, a set of services was manually chosen. SSDCN approach is 
compared with keyword based search, WordNet-based lexical query expansion and 
ontology-based semantic query expansion. The results of these approaches were compared 
with manually selected suitable services. The rank of 5 services found common in the top-15 
list in all the four approaches, for queries with various constraint level, were used in the 
performance analysis. Here, ANOVA is used to analyze the performance of each service 
selection method. The null hypothesis for the rows states that the row mean is equal for all the 
rows irrespective of the service in consideration. The null hypothesis for the columns states 
that all the approaches perform equally well. The ranking of 5 common services for query Q4 
and the results of a two-way ANOVA test is shown in Table 6 and Table 7.   
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Table 6. Rank score of query Q4 for various methods of service discovery 
 

Keyword Lexical Semantic SSDCN 
000webHost 0.4 0.5 0.54 0.56 
Biz.nf 0.44 0.53 0.6 0.74 
ByteHost 0.3 0.48 0.65 0.63 
100webspace 0.54 0.69 0.79 0.86 
Awardspace 0.63 0.79 0.86 0.91 

 
Table 7. Results of two-way ANOVA test 

Source of Variation SS df MS F P-value F critical 

Rows 0.27487 4 0.068718 36.86232 1.19E-06 3.259167 

Columns 0.22228 3 0.074093 39.74609 1.65E-06 3.490295 

Error 0.02237 12 0.001864 
   

Total 0.51952 19         
 
The value of F is much higher than Fcritical. It means that there is a significant difference 
between the four service discovery approaches. Also, P- value is less than α=0.5. Hence, both 
the null hypothesis can be rejected. 
 Precision and recall are used to evaluate the effectiveness of the proposed approach. 
Precision is the fraction of retrieved documents that are relevant. The recall is the fraction of 
relevant documents retrieved. F-score is the harmonic mean of precision and recall. 
Mathematically, they are defined as follows:          
                       
             𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  Number of relevant services retrieved in a service discovery

Total number of services identified 
                          (14) 

 
   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  Number of relevant services retrieved in a service discovery 

Total number of relevant services available
                                (15) 

 
  𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∗  Precision ∗ Recall 

Precision + Recall 
                                                          (16) 

 
Table 8 shows the comparison of performance measurement of various approaches. The 

results show that the SSDCN approach outperforms the rest in terms of high precision and 
recall values. Keyword based search has low precision due to the difference in the terminology 
used by providers and naïve users. SSDCN employs the power of both lexical expansion and 
semantic expansion of query words.  Precision has a higher margin on complex queries as they 
have more constraints. Ontology-based semantic query expansion and SSDCN have 
comparable precision. Fig. 4 shows that the SSDCN approach outperforms other approaches 
in terms of F-score. The false negatives in semantic approach become less as the number of 
constraints in the query increases. Hence, the gap between ontology-based semantic query 
expansion and SSDCN in recall rate and f-measure becomes smaller. From Table 8 it is 
evident that semantic based methods are much more efficient compared to traditional 
keyword-based methods and WordNet-based lexical expansion methods for finding similar 
cloud services. 
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Table 8. Comparison of precision and recall for various methods of service discovery 

Query Keyword based Lexical expansion Semantic 
expansion SSDCN 

Precision Recall Precision Recall Precision Recall Precision Recall 
Q1 0.45 0.39 0.69 0.63 0.89 0.80 0.91 0.93 
Q2 0.53 0.20 0.70 0.40 0.88 0.75 0.94 0.95 
Q3 0.47 0.40 0.69 0.59 0.91 0.92 0.93 0.95 
Q4 0.37 0.49 0.55 0.80 0.91 0.96 0.93 0.98 
Q5 0.34 0.48 0.63 0.85 0.91 0.92 0.96 0.95 

 

 
Fig. 4. Comparing F-Score values of different methods for a set of queries 

6. Conclusion 
This paper presented an automated cloud service discovery system which provides solutions 
that accurately match the suitable services in terms of the naïve user request. The experimental 
results demonstrate the effectiveness of natural language processing and clustering in cloud 
service discovery. It is not an easy task to effectively find the services that semantically match 
the user’s requirements in free text. Ontology-based natural language processing techniques 
are employed to convert the user request in plain text to a formal representation. 
Ontology-based service discovery help to bridge the ambiguity of the user query in natural 
language and the service description. Based on the assumption that the efficiency of finding 
services can be improved if services are grouped together, enhanced k-means approach is used 
for clustering of services. Clustering helps in speeding up the discovery processes resulting in 
better efficiency. Overall, the results show that compared with existing methods, SSDCN 
improves recall and precision. Results show that SSDCN can effectively help an amateurish 
user to identify services that are closest to their preferences. In the future, we plan to consider 
methods to evaluate trust and reliability of providers from the user experience as an important 
benchmark for ranking services. The performance of SSDCN in video streaming and 
multimedia conferencing services will also be explored in the future. 
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