
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, Jan. 2016 38
Copyright ⓒ2016 KSII

Enhanced Cloud Service Discovery for
Naïve users with Ontology based

Representation

Viji Rajendran V1 and Swamynathan S2
1 Research Scholar, Department of Information Science and Technology,

CEG Campus, Anna University,
Chennai 600025, India

[E-mail: vijirajv@gmail.com]
2 Associate Professor, Department of Information Science and Technology,

CEG Campus, Anna University,
Chennai 600025, India

 [E-mail: swamyns@annauniv.edu]
*Corresponding author: Viji Rajendran.V

Received July 23, 2015; revised October 5, 2015; accepted October 27, 2015;

published January 31, 2016

Abstract

Service discovery is one of the major challenges in cloud computing environment with a large
number of service providers and heterogeneous services. Non-uniform naming conventions,
varied types and features of services make cloud service discovery a grueling problem. With
the proliferation of cloud services, it has been laborious to find services, especially from
Internet-based service repositories. To address this issue, services are crawled and clustered
according to their similarity. The clustered services are maintained as a catalogue in which the
data published on the cloud provider’s website are stored in a standard format. As there is no
standard specification and a description language for cloud services, new efficient and
intelligent mechanisms to discover cloud services are strongly required and desired. This
paper also proposes a key-value representation to describe cloud services in a formal way and
to facilitate matching between offered services and demand. Since naïve users prefer to have a
query in natural language, semantic approaches are used to close the gap between the
ambiguous user requirements and the service specifications. Experimental evaluation
measured in terms of precision and recall of retrieved services shows that the proposed
approach outperforms existing methods.

Keywords: Natural language query, cloud services, ontology, clustering

http://dx.doi.org/10.3837/tiis.2016.01.003 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 39

1. Introduction

Cloud computing is a new trend of distributed computing where scalable computing
resources are exposed as services over the Internet. The perception of cloud computing has
seen a significant growth as it provides “everything as a service”. Most companies farm out
large parts of their resource requirements to cloud service providers owing to the ample
available services offered. Cloud service is virtually any business or consumer service that is
delivered and consumed over the World Wide Web in real time [1]. Examples of cloud
services include web-based email services, online data storage and backup solutions,
document management and collaboration services, database processing management and
more. One of the demanding issues in cloud computing is the selection of cloud service and the
service provider over the web. With the boom of the Internet, cloud service providers offer lots
of services to end users in various formats. Unlike web services, cloud services do not have
unified standard description.

Due to the various service descriptions, non-uniform naming conventions, heterogeneous
types and features of services, it is difficult for the user to find the cloud services that fulfill
their requirements [2]. Though providers like Amazon S3 and EC2 describe their services
using Web Service Definition Language (WSDL), it could not solely meet the requirements of
cloud service description. Furthermore, WSDL fails to cover the unique features of cloud
services. Efforts like USDL (Unified Service Description Language) [3] and TOSCA
(Topology and Orchestration Specification for Cloud Applications) [4] have been made to
provide standards for cloud computing. But their levels of interoperability and the degree to
which they can be integrated are faltering. Generally, cloud services are described in plain text
in the service provider’s website. Adoption of a standardized format to describe the
requirements and service offerings will bolster the trade of cloud services. However, research
work on cloud services description language is still in its early stages.

Contemporary service discovery techniques may not be suitable to be used in the
Internet-scale environment [2]. Hence, a marketplace that contains a catalogue for all the cloud
services under a single URL is infeasible. According to Gartner [5], strong demands are
anticipated for all types of cloud service offerings even if there is wide variation between
cloud services market sub-segments. With the growth of public cloud offerings, a cloud
service registry is urgently required to connect the cloud providers and users [6]. In order to
speed up the process of service discovery, catalogues of existing services along with their
service descriptions and pricing concerns have to be created. To realize this, the existing
services are crawled using cloud service crawler. Cloud service crawler [7] is a program which
fetches as many relevant services as possible for the specific users.

Cloud services are dynamic entities that evolve at rapid rates. New services are added and
old ones are removed or modified over time. As a result, the crawling should be done
periodically in order to keep the cloud services repository up-to-date. Multi-threaded priority
based crawler [8] is used to crawl cloud specifications and pricing details from the provider’s
website. A repository of cloud services is created by categorizing the crawled services based
on the functionalities of the cloud services by using a clustering algorithm. When services are
grouped into different clusters, services within the same cluster provide similar matches with
respect to a service request. If the services are classified well, searching through predefined
groups may provide better results for service discovery [9]. This paper suggests clustering of
services based on similarity and search service in the closest similar group, which has fewer

40 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

services. Its main benefit is that it reduces the time needed for discovering services.
To have an effective search results, the service consumer must specify the outputs he/she

requires and the inputs he/she can provide for the service. But most of the service requesters do
not have a clear idea of their request, and hence, cannot convey their requests accurately. Users
who are technically illiterate depend on Natural Language Queries (NLQ) for retrieving
information about cloud services. NLQ to cloud services will be a key technology to guarantee
effortless access to services. NLQ processing facilitates conveying without resorting to
memorization of complex procedures for discovering services. This involves resolving the
complex problem of identifying relevant services given an ambiguous natural language query.
There may be a mismatch between the vocabulary used to specify the user request and that
used to describe service descriptions. This leads to poor service discovery and hence, to low
precision and recall [10].

Consequently, discovering existing cloud services according to user’s request is a tricky
task. Hence, to mitigate the burden of users, a novel approach is proposed in this paper to
convert natural language query to a standard format. Thus, end users must be able to discover
services based on a query written in natural language. The limitations of the conventional
discovery process and the difficulty of matching between user demands and service
descriptions advertised by providers can be overcome through ontologies and semantic
technologies. As an initial step toward this goal, the potential terms in the natural language
query are identified and enriched with further relevant information to route them to suitable
services. This can be realized by integrating semantics to service through ontologies. Hence,
this paper recommends an enhanced cloud service discovery mechanism based on ontology
for naïve user requests. The discovery mechanism creates a bridge between user requirements
written in natural language and service descriptions on the provider’s site, using semantically
enhanced standard format.
 The rest of the paper is structured as follows. The related research work is described in
Section 2. Problem definition and uniform representation format for services, Key – Value
(KV) representation, are discussed in Section 3. The architecture of Semantic-based Service
Discovery with Clustering for Naïve users is detailed in Section 4. Results are analyzed and
efficiency of the system is discussed in Section 5 and Section 7 presents conclusions and
future directions.

2. Related Work
Cloud adoption is, without a doubt, on the rise. Recent IDC report [11] predict that cloud
services will remain a hotbed of activity in 2015 with $118 billion in the global cloud market.
Sun et.al., conducted an exhaustive state-of-the-art survey of existing cloud service selection
approaches to evaluate and compare current cloud service publication platforms, modeling
languages and ranking methods [12]. As cloud computing becomes more popular, the number
of services offered by providers increases tremendously day by day. In the previous work [8],
6743 unique cloud services were crawled from the web. Among them, 1922 services are
infrastructure related services including storage, backup, virtualization and networking and
3814 are software services like accounting, business management and security as a service.
517 services focus on PaaS services. Rest 490 services offer more than one cloud service
model. Major players such as Microsoft, Amazon, Google, AT&T Inc, IBM, Oracle Corp and
Dell offer more than one cloud service.

 While cloud services offer evident benefits in terms of cost reduction and increased
performance, searching and selecting them is in flux. To find a set of ranked services, Service

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 41

Provider Search Engine (SPSE) was recommended which supports user personalization in
service selection [13]. It uses SAW-based service searching and scheduling algorithm to locate
the suitable service by considering the user’s multiple QoS (Quality of Service) needs. But a
number of cloud services exist without proper semantic descriptions. Providers use a different
vocabulary to describe similar services. Due to this many services which are most relevant to
the user request is left undiscoverable. Hence, discovering cloud services have more hurdles
compared with web service discovery from WSDL files and UDDI registry [14]. Cloud
service description languages are restricted to a certain cloud layer and support only the
specification of some particular aspects of a cloud service [15]. Open Virtual Format is a
standard for denoting the packaging and distribution information of an IaaS [16], and Open
Cloud Computing Interface is a standard for specifying the IaaS management API.

A few proprietary specification languages maintained by the commercial cloud vendors,
such as adhoc XML format for Microsoft Azure, exist in PaaS layer. Standards in Web
services such as WSDL can be reused for specifying services in SaaS layer. TOSCA [4]
supports provisioning of SaaS applications. These languages do not help to publish, query, and
compose cloud services across providers. The Blueprint Specification Language (BSL) [15]
provides a specification language for cloud service providers to specify their services. But it
allows for specifying only certain information sets of a cloud service and lacks support to
Service-level Agreement policy, the pricing policy, and compensation policy of a cloud
service. Hence, there is a great demand for a uniform specification language. Discovering
cloud services based on user request from internet repository is a time consuming process.
Hence, to find the best suitable service for a certain demand, service registries has been
established as fundamental systems between providers and consumers.

 The search facility is limited to the service name and/or category in service directories like
CloudBook [17]. Hence, to create a repository of cloud services, focused crawlers are required
to gather cloud service descriptions from the provider’s website. Algorithms based on clusters
can extract information from large volumes of data by dividing it into different groups based
on certain similarities [9]. The access time can be reduced by bringing in efficient clustering
and matchmaking algorithms. Operation parameter clustering techniques are also used in
Seekda! [18], where information about services is gathered from various sources like Web
pages and blogs. Some researchers propose using semantic approaches for cloud service
discovery. The Mosaic ontology [19] developed in OWL is used for semantic retrieval and
composition of cloud services in the Mosaic project. Semantic service annotation enables end
users to search existing web services using keywords [20].

Sim [21] propose an Agent based Cloud Service Discovery System (CSDS) which interact
with ontology to find cloud services that are closer to users’ requirements. Unified business
service and cloud ontology [22] captures the required business services in an organization and
provides a mapping between business functions and the offered services in the cloud
landscape. The ontology serves as a repository for cloud services and providers. Users can
query the ontology to discover the services that match their requirements. In most of the
ontology based discovery systems, the query is expressed in SPARQL language [23],
confining the use of ontology to experienced users only. Hence, a system that accepts a natural
language query is greatly demanded. In Pythia, natural language input is converted into a
formal query by means of a linguistic analysis driven by an ontology-based grammar [24]. It
is also observed that burst path losses have become a pressing concern in real time video
conferencing services [34-36]. Hence, the efficiency of service discovery becomes a
significant issue for cloud computing enabled applications.

42 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

3. Background
3.1 Problem Definition

Naïve users rely on conventional search engines in pursuing cloud services. There are no
specialized search engines for discovering cloud services. Traditional search hunt offers
immeasurable solutions. Moreover, searching the web is a lingering process. To speed up the
service discovery process, an up-to-date repository of services is essential. This can be
accomplished with a multi-threaded priority based incremental crawler and similarity based
clustering. Services are crawled from the web and these M services are clustered into N
categories (i.e. C1, C2… CN) based on their similarity by a clustering algorithm. The selection
order of cloud services does not influence the accuracy of the clustering process. However,
users may not know which cloud services to use, and they need to keep perusing the service
description before selecting an appropriate one. Henceforth, the search engines are not suitable
for finding services that address the user’s prerequisites.

Most of the cloud providers describe the services in their websites in various formats.
Hence, the complexity involved in matching user demand with the service description is very
high. One of the critical issues addressed in this paper is the formal representation of services
in a standard format. Service description is an abstract specification of operation it supports
and can be expressed as a quadruple CSdes = (Sname, Sid, SA, SD), where Sname represents the title
of the service, Sid is the unique identification of the service, SA = {A1, A2,…., Ai} are the
attributes of the service including the functional and non-functional specifications and SD =
{D1, D2,…, Di} are the corresponding data values of the attributes. The service request is a
description of user requirements. The request in natural language is processed and expressed
as a triple CSreq= (SK, SV, SC), where SK = {K1, K2,…, Kn} represents the functional and
non-functional requirements, SV = {V1, V2,…, Vn} is the user’s expectation on the attributes
and SC is a set of QoS constraints.

Further, the difference in the vocabulary used by the providers and users makes the
searching process more complex. Hence, semantics needs to be integrated into the services
through ontology. Ontology-based service matchmaking method is used to find the most
suitable services (MCS) from a cluster of services whose attribute values are closest to the
service requested CSreq. The absence of technical skills of naïve users demands an efficient
strategy for ranking MCS. Service ranking outputs a ranked list using a scoring mechanism that
depends on five factors and can be expressed formally as a quintuple CSrank = (SS, UP, UF, AV,
SC), ∀service ∈ MCS. Here SS, UP, UF, AV and SC corresponds to similarity score, user
preference, user feedback, availability and service cost respectively. The proposed system
addresses the problem of naïve users being not able to discover pertinent cloud services that
meet their requirements. The system requires little human interaction and can be accessed via
a web based user interface.

3.2 KV Representation

Although semantic technology is the main research direction in service matchmaking, less
research has been focused on the semantic representation of cloud services [26]. A precise
service specification model based on ontology is vital when developing specification models
for cloud services. In general, providers describe information about the cloud services in their
web pages in natural language. The pricing rules and service offerings are frequently modified
and published on the cloud providers’ websites. The descriptors in these web pages have no

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 43

proper machine interpretable structure and henceforth, cannot be utilized to process
information about cloud services automatically. Consequently, many questions arise about
how to manage the inconsistencies in knowledge representation and standardization of the
description. Hence, to formalize this issue, Key-Value (KV) representation is used to store
cloud service description, where key stands for an attribute of a service. A separate KV
template is used for a different category of services. Here the key can take only string form
whereas the value can be categorical (string or Boolean) or numerical (integer or float). For
example, the KV representation for storage services is shown in Table 1.

Table 1. Storage service specification in K-V representation

 <service_type = “storage”>: { "title" : "Storage services",
 "description": “Specifications of storage services”,
 "type": "object", An ordered collection of key/value pairs.
 ["properties": { The property specifier holds the description of the key/value pairs.
 "Provider": {"type": "string", "category": "MANDATORY"},
 "display_name": {"type": "string", "category": "OPTIONAL"},
 "url" : {"type": "string", "category": " MANDATORY"},
 "billing_time": {"type": "string", "category": "OPTIONAL"},
 "price": {"type": "float", "minimum": 0, "exclusiveMin": true, "category": " MANDATORY"},
 "storage_capacity" : {"type" : "integer", "category" : "MANDATORY"},
 "free_plan": {"type": "integer", "category": "OPTIONAL"},
 "unlimited_plan": {"type": "boolean", "category": "OPTIONAL"},
 "data_center": {"type": "string", "category": "OPTIONAL"},
 "hasLocation": {"type": "string", "category": "OPTIONAL"},
 "api": {"type": "string", "category": "OPTIONAL"},
 "hasBlock_level_replication": {"type": "boolean", "category": "OPTIONAL"},
 "hasRedundancy": {"type": "integer", "category": "OPTIONAL"},
 "hasDesktop_file_sync": {"type": "boolean", "category": "OPTIONAL"},
 "hasAvailability": {"type": "float", "category": "OPTIONAL"},
 "hasRobustness": {"type": "float", "category": "OPTIONAL"},
 "os_platform": {"type": "string", "category": "OPTIONAL"}]}}

4. System Architecture
A convenient natural language interface is essential to discover cloud services. The user may
pose imperative questions, or wh-questions. The user can express a query using a set of
keywords, simple or compound sentences. The proposed system translates the natural
language question QN to a structured formal query QF that focuses on the concept articulated
by QN. The architecture of Semantic based Service Discovery with Clustering for Naïve users
(SSDCN) is shown in Fig. 1.

SSDCN is divided into two sections query rewriting and service matching. In query
rewriting, the user request is parsed and the parsed phrases are mapped to the cloud ontology
concepts. In service matching, the mapping is performed between the user request and
categorized services which are stored as a catalogue. In order to fasten the process of service
discovery, a catalogue of services is created by making use of cloud service crawler and
clustering algorithm. The catalogue contains a set of cloud services that an end user can
request, including pricing and the terms and conditions for service provisioning. The process
of service discovery is to seek suitable service which could satisfy the user’s requirements
from a pool of services. Reasoning based on ontology increases the chance of finding relevant

44 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

alternatives of a service [21]. Hence, in SSDCN, intelligent service discovery platform based
on ontology is employed for finding suitable services precisely.

Fig. 1. Architecture of SSDCN

4.1 Cloud Ontology

Ontology is defined as a formal and explicit specification of a shared conceptualization [25].
An ontology O is a quintuple, O = (OC, OP, OI, OV, OA) where OC, OP, OI, OV and OA are the sets
of classes, properties, individuals, property values and constraint axioms respectively. To
facilitate machine readable description of cloud services, a cataloging of services has been
accomplished through Web Ontology Language (OWL) ontology, which recognizes the
service types and their specifications. Ontology specifies how a concept is related to linguistic
structures such as regular expressions and lexicons. Discovery of services represented in
a heterogeneous format is a complex task. However, it has been proved that ontology has been
useful for semantic annotation and discovery of cloud services [19] [21] [27] [28]. Hence, it
can be used by Natural Language Processing (NLP) to improve expressiveness and to resolve
the ambiguity of NL queries. Ontologies are employed to map the concepts from different
providers to a unique formal representation. These ontologies are also used to establish
mappings at the time of query rewriting. Thus, ontology plays a critical role in query
reformulation process.

4.2 Creation of cloud services catalogue

Discovering and ranking services from the web may not be proper, particularly from the
performance point of view. To create a catalogue of cloud services, multi-threaded priority
based crawler is employed to crawl the service descriptions from the provider’s site. Good
choices of relevant seed URL certainly influence the results of a crawler. Table 2 shows the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 45

initial seed URL used for crawling.
Grouping of services based on similarity of service description substantially reduces the

number of comparisons required for service matching. Clustering brings identical services
together and this scale well even if the number of services increases exponentially. However,
clustering algorithms work effectively either on pure numeric data or of pure categorical data,
most of them perform poorly on mixed data types. Cloud services have both numeric and
categorical attributes. Hence, it is difficult for applying conventional clustering algorithm
directly into these kinds of data. Based on the type of attribute value, the attributes of the
service si = (a1, a2, …., am) are split into numerical (snum) and categorical (scat) attributes. A
distance measure is needed for grouping services into clusters.

Table 2. Initial seed URL list

http://www.dmoz.org/Computers/Internet/Cloud_Computing/Service_Providers/
http://www.cloudreviews.com/
http://www.cloudservicemarket.info/services/servicesBrowse.aspx
http://cloudshowplace.com
http://www.cloudxl.com/category
http://talkincloud.com/tc100
http://atechjourney.com/list-of-free-cloud-storage-services.html/
http://compixels.com/2303/list-of-top-free-cloud-based-services
http://en.wikipedia.org/wiki/Category:Cloud_computing_providers

4.2.1 Similarity Calculation for numerical attributes

Consider two services S1 = (X, A) and S2 = (Y, B). Attributes of S1 are split into numerical
},...,,{ 211 n

num xxxS = and categorical }.,...,,{ 211 m
cat aaaS = Similarly S2 is split into

},...,,{ 212 n
num yyyS = and }.,...,,{ 212 n

cat bbbS = For numerical attributes, Pearson Correlation
Coefficient is used to determine the similarity between feature vectors. This metric is
measured from -1 to +1 and it measures how highly correlated are two services. Pearson
Correlation Coefficient of 1 indicates that the data attributes are perfectly correlated and a
score of -1 means that the data attributes are not correlated. In the mathematical form, the
score can be described as:

𝑟𝑟𝑥𝑥𝑥𝑥 = 𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝑖𝑖 −∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖 𝑖𝑖𝑖𝑖

�𝑛𝑛∑ 𝑥𝑥𝑖𝑖2𝑖𝑖 −(∑ 𝑥𝑥𝑖𝑖𝑖𝑖)2�𝑛𝑛∑ 𝑦𝑦𝑖𝑖2𝑖𝑖 −(∑ 𝑦𝑦𝑖𝑖𝑖𝑖)2
 (1)

 In this equation, (x, y) refers to the data objects and ‘n’ is the total number of attributes. A
distance metric for two variables ‘x’ and ‘y’ known as Pearson's distance can be defined from
their correlation coefficient as

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦)𝑛𝑛𝑛𝑛𝑛𝑛 = 1 − 𝑟𝑟𝑥𝑥𝑥𝑥 (2)
and lies between 0 (when correlation coefficient is +1, i.e. the two samples are most similar)
and 2 (when correlation coefficient is -1). For instance, for the data provided in Table 3, the
numerical attribute corresponds to {hasHourlyPrice, hasVirtualCores, hasComputeUnits,
hasMemory, hasDiskSpace}. Here, X= {0.15, 2, 4, 7.5, 840} and Y= {0.11, 2, 2, 7.5, 738},
and hence, correlation coefficient rxy = 0.99999636298309 and Sim (x, y) = 3.64 *10-6

, which
shows that there is a strong positive correlation among services S1 and S2.

4.2.2 Similarity Calculation for categorical attributes

For categorical attributes, the Jaccard/Tanimoto Coefficient [29] is employed for measuring

46 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

similarity. It uses the ratio of the intersecting set to the union set as the measure of similarity,
and can be mathematically represented as:

 cba

c

MMM
MBAT

−+
=),((3)

 Table 3. Two services S1 and S2 in KV representation

<service_type = “compute”>:{
 "title": "compute services",
 "description":“Specifications of compute services”,
 "id": "C070",
 ["properties": {"Provider": "Amazon",
 "display_name": "AWS",
 "billing_time": "hourly",
 "hasHourlyPrice": "$0.15",
 "hasInstance Type": "m1.large",
 "hasVirtualCores": "2",
 "hasCompute Units": "4",
 "hasMemory": "7.5 GB",
 "hasDiskSpace": "840 GB",
 "supportOS": "linux",
 "supportDatabase": "MySQL",
 "hasDataCentreAt": "Europe" }]}

<service_type = “compute”>:{
 "title": "compute services",
 "description": “Specifications of compute services”,
 "id": "C095",
 ["properties": {"Provider" : "Joyent",
 "display_name": "Joyent medium",
 "billing_time": "hourly",
 "hasHourlyPrice": "$0.11",
 "hasInstance Type": "medium",
 "hasVirtualCores": "2",
 "hasCompute Units": "2",
 "hasMemory": "7.5 GB",
 "hasDiskSpace": "738 GB",
 "supportOS": "linux",
 "supportDatabase": "MongoDB",
 "hasDataCentreAt": "Europe"}]}

In this equation, ‘M’ represents the number of categorical attributes in (A, B) and ‘c’ in this
case is the intersection set.

),(1),(BATBASim cat −= (4)

From the data provided in Table 3, A = {“Amazon”,“AWS”,“hourly”,“m1.large”,
“Linux”, “MySQL”,“Europe”} and B = {“Joyent”,“Joyent medium”,“hourly”,“medium”,
“Linux”, “MongoDB”,“Europe”}. Here, Ma = 7, Mb = 7, Mc = 3 and hence, T (A, B) = 0.27
and Sim(A, B) is 0.73. The value of Sim (A, B)cat is in the range of [0,1]. When the value of Sim
(A, B)cat is larger, the correlation between A and B is lesser. Consider the services has m
attributes, with mc categorical and mn numeric attributes, where mc + mn = m. Also, assume
that each attribute has equal importance, i.e. all attributes have equal weight and no biased
treatment of any attributes. The similarity between two mixed-type services S1 and S2 can be
represented as:

catcnumn BASim

m
mYXSim

m
mSSSim),(),(
2

),(21 +=

(5)

Since the Pearson coefficient is used as a similarity metric for numerical data and its range
is [0,2], Sim (X, Y)num is divided by 2.

Algorithm 1: Finding similarities of services
Input: Set of services ,S = {s1, s2, s3,…., sn}
Output: Similarity between service
Steps:
 1. Split si =(a1, a2, …., am) into si = (snum, scat), where snum and scat represent the numerical and

categorical attributes of si.
 2. Find distance metric for the numerical attribute using Pearson’s distance formula as explained in

equation 2.
 3. Employ Tanimoto coefficient for calculating similarity of categorical attributes (explained in

equation 4)
 4. Use equation 5 to find the similarity between a pair of services.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 47

4.2.3 Service clustering

An improved k-means approach is used for clustering of cloud services so that the most similar
services are grouped together. The steps for implementing the modified K-means algorithm
are:
1. Generate K cluster centers as per the algorithm 2.
2. Compute the proximity of each service to each cluster centre and assign each service to the

nearest cluster centre.
3. Re-compute the cluster centers by taking the mean of the member services in each cluster;

for the categorical attribute, most repeated values in the cluster is taken as the attribute
mean.

4. Stop if there is no or minimal change in the cluster centers; else go back to step 2.
Thus, the services are clustered based on their similarity and a catalogue is maintained for

the further discovery process. Two major modules of SSDCN are query rewriting and service
matching.

Algorithm 2: Finding initial centroids
Input: S = {s1, s2, s3,……,sn} // set of services

k = number of desired clusters;
Output: Set initial centroids K.
Steps:
1. Calculate the Weighted Score (WS) of each service Sn = {a1, a2, a3,…., am}

 Weighted Score (WS) of 𝑆𝑆𝑛𝑛 = ∑ 𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖(max)

𝑚𝑚
𝑖𝑖=1 , where a = the attribute’s value, m = number of

attributes and ai(max)=Maximum value of attribute ai
 //numerical values are assigned to each categorical attribute based on their number of

occurrences, most repeated value is given the higher number
2. Sort the services in ascending order based on weighted score
3. Divide the datasets into k subsets
4. Calculate the average of each group
5. Select services as initial centroids whose weighted score is closest to the average value of groups

4.3 Query rewriting

Query rewriting operates by carrying out the following steps as 1) Read in a natural language
query and split it into words/tokens. 2) Annotate each token with POS tags. 3) Identify the
potential concepts in the query by applying regular expression chunk parsers. 4) Map the
extracted phrases with ontology concepts

4.3.1 Shallow syntactic parsing

Query rewriting starts with shallow syntactic processing which consists of tokenization and
Part Of Speech (POS) tagging, chunking and extraction of key concepts. Natural Language
Toolkit (NLTK) with Python is used in the preprocessing. The Natural Language Query (NLQ)
posed by the user is a sequence of tokens, QN = {T0, T1,…, Tn}. The tagger with the necessary
linguistic knowledge reads the NLQ and assigns part of speech category to each word in an
input query. The tag set is based on the Penn Treebank Tagging Guidelines [30] with 36 POS
tags. For example, the query "List the providers who offer free storage services” can be tagged
as follows: [List/NNP] [the/DT] [providers/NNS] [who/WP] [offer/NN] [free/JJ]
[storage/NN] [services/NNS]

48 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

After having POS for each word, the query is given to the phrase identification parser
which analyzes the syntax of given NLQ and finds the relation between words. A phrase is a
subsequence of tokens which exemplifies the needed information. The parser uses a
context-free grammar to group the word as constituents like a noun phrase, verb phrase,
adjectival phrase and prepositional phrase. Rule-based chunker receives a sequence of tagged
words and then divides the NLQ into relevant phrases. Chunk parsing extracts syntactically
associated fragments, in agreement with regular expression grammar, which define
well-grounded sequences of POS tags. NN.* could be one or more nouns where NN: noun,
singular or mass; NNS: noun, plural; NNP: proper noun, singular; or NNPS: proper noun,
plural. CP is a comparative phrase, could be either adjective comparative or adjective
superlative (cheaper, most popular). IN could be a preposition or subordinating conjunction
(in, of, like, after, that). CD could be any cardinal number (10, two). The output of the parser
for the query “Name the providers who offer ERP services with a cost less than $10 per month
and have data centers in Asia” is shown below.

Rules used to identify a NP Output
NBAR:
 {<NN.*|JJ>*<NN.*>}
 {<DT|PRP$>?<JJ>*<NN.*>*}
CP: {<JJR|JJS>}
NP:
 <NBAR><CP><IN><CD><IN><NBAR>}
 {<CP>?<NBAR><IN>+<NBAR>+}
 {<NBAR><CD><NBAR>?}
 {<NBAR>}

(S (NP (NBAR Name/NN))
 the/DT
 (NP (NBAR providers/NNS))
 who/WP
 (NP (NBAR offer/NN ERP/NN services/NNS))
 with/IN
 (NP (NBAR cost/NN) (CP less/JJR)
 than/IN 10/CD per/IN (NBAR month/NN))
 and/CC
 have/VBP
 (NP (NBAR datacenters/NN) in/IN (NBAR Asia/NNP)))

4.3.2 Identification of Credible Ontological terms

The major goal of this component is to identify a syntactic structure of a NLQ and adapt it to a
formal semantic representation. Heuristic rules are used to identify Credible Ontological terms
(COT) from natural language query. COTs refer to query terms that could be associated with
ontology concepts. Each NP (noun phrase) is identified as a base to COT. To identify the COT
of noun phrases, following rules are used:
• For phrases with of the form: “NN.+” the COT is the last noun keyword and all other
keywords are treated as attributes/modifiers.
• For the phrases of the form “<CP>? <NBAR> <IN> <NBAR>”, the COT is the last noun
keyword before the preposition. For example, “datacenter” in “List the largest datacenter in
Asia”.

A manually built synonym table is used to identify common abbreviations and their
original forms in the noun phrases. For example, the original form of ‘ERP’ is ‘Enterprise
Resource Planning’ and ‘OS’ is ‘Operating System’. NLTK Stopwords Corpus is used to
remove default English stopword from these phrases.

4.3.3 Term Concept mapping and formal specification

This module maps query phrases with ontology concepts via WordNet [31] synsets (synonym
sets) by assigning the structured meanings of the ontology to plain text. Ontologies are used as
background knowledge to capture the semantic features of the key phrases in the query. In

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 49

order to have the best opportunity to discover the requested service, the credible query terms
are expanded with the concepts from ontologies. The tokens in the query are linked to
ontological concepts. COTs of noun phrases identify the class concepts in the ontology. The
object type property identifier is extracted using a verb phrase. The datatype property
identifier is extracted using the regular expression <CD> + <NN.* > + e.g., ‘five VMs’.

The term-concept mapper retrieves the concepts from the ontology repository and matches
them with the query terms. Initially, the query words are matched directly with the subjects,
predicates, and objects of the ontology models. If a direct mapping fails, the stripped mapping
is done between query words and the ontology concepts. If no match is found, two possible
relations of interest are taken; the synonyms or equivalent terms and hypernyms where
ontology concept is more general than WordNet synset of query terms. WordNet is used to
identify the synonyms of the concepts and relationships in the ontology. This will help to
query a service even if the user is unaware of the exact terminology used in the service
description. Once the corresponding ontology terms are identified, the query is rewritten to
KV representation.

Algorithm 3: Concept Mapping
Input: COT Terms, Ontology
Output: KV representation of query
 T: {t | t in COT} // list of COTs in NLQ
 for i = 1 to |T| //loop through all indexed tokens in NLQ
// Loop through ontology O, and create a list with all concepts c,
// where the stem of the concept name or the stem of a synonym of the concept equals the stem of the
// COT, and where the POS equals the POS of the COT
 L :={c| c ɛ O}

for m = 1 to |L|
 if stem(t) = stem(name(c)) OR stem(t) = stem(synonyms(c)) then

 if POS(t) = POS(c) then call replace(c, t, corres- noun-phrase) end for
 if c is a subclass of concept “service” then assign “title” as <name(c)> in KV format

 if c is object type property or c is-a member or instance then assign superclass(c) as <t> in KV
format

 if c is a datatype property then assign name(c) as <t> in KV format end for

The general representation of the formal query has the following format.

<service_type = < X > > : { "title" : < Y > , "temporal expr" : < Z > [<Concept name> :
< A > , <Object Property name> : < B > , <Data Property name> : < C >] }

 For example, the formal representation of the query “List the popular storage service
providers from North America” is <service_type = “storage”>:
{"title": "Storage service", "temporal expr": "popular" [hasLocation: North_America]},
where the datatype property hasLocation in ontology is used to enhance the query.

4.4 Service matching

Given a user's service request, the system should be able to narrow down the search within a
small group of eligible providers rather than checking all providers against the user's request.
The ontology based matchmaking of services appears in this perspective as a promising
solution, allowing the efficient discovery and selection of services, adapted to the constraints

50 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

of the user requirement. When a service query requirement comes, we should find the cluster
of services whose attribute values are closest to the service requested. For this, compare
feature vector of service query with the feature vector of the centre of each cluster. After that,
in the closest cluster, ontology-based service matchmaking method can be used to find the
suitable service of choice. With the concept ontology, the similarity between service and
service query is calculated. If the similarity degree is larger than the threshold, then the service
is matched, or else the service is discarded. Thus, this approach simplifies the search process
by doing calculations only within the most similar cluster, rather than with all the cloud service
entries. Due to a limited number of services in each group, the time taken for service searching
is low.

The most relevant cloud services with its details are presented as a list of suitable services
to the user. The service request q can be expressed as Qa = < 𝑄𝑄𝑎𝑎 ,

𝑛𝑛 𝑄𝑄𝑎𝑎𝑐𝑐 > where numeric attributes
𝑄𝑄𝑎𝑎
𝑛𝑛 =< 𝑞𝑞𝑎𝑎1,

𝑛𝑛 𝑞𝑞𝑎𝑎2
𝑛𝑛 , … , 𝑞𝑞𝑎𝑎𝑎𝑎𝑛𝑛 >, categorical attributes 𝑄𝑄𝑎𝑎

𝑐𝑐 = < 𝑞𝑞𝑎𝑎1,
𝑐𝑐 𝑞𝑞𝑎𝑎2

𝑐𝑐 , … , 𝑞𝑞𝑎𝑎𝑎𝑎𝑐𝑐 > and 0 ≤ i, j ≤
m. Similarly, centre of cluster 𝑋𝑋𝑎𝑎 = < 𝑋𝑋𝑎𝑎 ,

𝑛𝑛 𝑋𝑋𝑎𝑎𝑐𝑐 > where numeric attributes 𝑋𝑋𝑎𝑎
𝑛𝑛 =<

𝑥𝑥𝑎𝑎1,
𝑛𝑛 𝑥𝑥𝑎𝑎2

𝑛𝑛 , … , 𝑥𝑥𝑎𝑎𝑎𝑎𝑛𝑛 > and categorical attributes 𝑋𝑋𝑎𝑎
𝑐𝑐 = < 𝑥𝑥𝑎𝑎1,

𝑐𝑐 𝑥𝑥𝑎𝑎2
𝑐𝑐 , … , 𝑥𝑥𝑎𝑎𝑎𝑎𝑐𝑐 >. Similarity between

the query q and the center of the cluster x can be found as in equation 5:
𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞, 𝑥𝑥) = 𝑖𝑖

𝑚𝑚
∗ 𝑞𝑞𝑛𝑛 + 𝑗𝑗

𝑚𝑚
∗ 𝑞𝑞𝑐𝑐 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑞𝑞𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑞𝑞𝑎𝑎𝑎𝑎𝑛𝑛 ,𝑥𝑥𝑎𝑎𝑎𝑎𝑛𝑛), and 1 ≤ p ≤ i

 𝑞𝑞𝑐𝑐 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞𝑎𝑎𝑎𝑎𝑐𝑐 ,𝑥𝑥𝑎𝑎𝑎𝑎𝑐𝑐), and 1 ≤ q ≤ j

Algorithm 4: Discovery of services
Input: Query service, Closest cluster centroid
Output: Similar services list
Steps
1. Compare the similarity of Query service (Qs) with each service si ∊ Closest cluster (CC) using

equation 6.
2. If the similarity score ≥ threshold τ , append the service to the list; else discard the service.

Once the nearest cluster is found, we apply ontology based matchmaking to compare the
services within the cluster.
The similarity is calculated using the equation proposed by Kolodner and Simpson [32]:

𝑆𝑆(𝑡𝑡, 𝑟𝑟) = ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ∗𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖

𝑡𝑡 ,𝑎𝑎𝑖𝑖
𝑟𝑟)

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 (6)
Where S (t, r) is the global similarity between the target ‘t’ and the source ‘r’; ‘wi’ is the weight
of the attribute ‘i’; 𝑎𝑎𝑖𝑖𝑡𝑡 and 𝑎𝑎𝑖𝑖𝑟𝑟 are the value of attribute ‘i’ of target ‘t’ and source ‘r’
respectively. Since all attributes are given equal weights the equation (6) reduces to:

𝑆𝑆(𝑡𝑡, 𝑟𝑟) = 1
𝑛𝑛
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖𝑡𝑡 ,𝑎𝑎𝑖𝑖𝑟𝑟)𝑛𝑛
𝑖𝑖=1 (7)

𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑖𝑖𝑡𝑡 ,𝑎𝑎𝑖𝑖𝑟𝑟) is calculated according to overlap coefficient and similarity for numerical
attributes.
The similarity measure for categorical attributes can be represented by

𝑆𝑆𝑆𝑆𝑆𝑆�𝐶𝐶𝑖𝑖,𝐶𝐶𝑗𝑗� = 𝑎𝑎 |𝐴𝐴𝑖𝑖∩𝐴𝐴𝑗𝑗 |
𝑓𝑓(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑗𝑗)

+ (1 − 𝑎𝑎)
|𝐴𝐴𝑖𝑖
′∩ 𝐴𝐴𝑗𝑗

′ |

𝑔𝑔(𝐴𝐴𝑖𝑖
′ ,𝐴𝐴𝑗𝑗

′)
 (8)

where Ai and Aj are the sets of attributes of classes Ci and Cj, |𝐴𝐴𝑖𝑖 ∩ 𝐴𝐴𝑗𝑗 | is the number of
common attributes shared by classes Ci and Cj and a takes the values of 0 or 1. When a=1 and

𝑓𝑓�𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑗𝑗� = min(|𝐴𝐴𝑖𝑖|, |𝐴𝐴𝑗𝑗|) , (9)
equation (8) becomes the overlap coefficient given as:

𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝐶𝐶𝑖𝑖𝑡𝑡 ,𝐶𝐶𝑖𝑖𝑟𝑟) = |𝐴𝐴𝑖𝑖
𝑡𝑡∩ 𝐴𝐴𝑖𝑖

𝑟𝑟|
min�|𝐴𝐴𝑖𝑖

𝑡𝑡�,| 𝐴𝐴𝑖𝑖
𝑟𝑟|)

 (10)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 51

where 𝐴𝐴𝑖𝑖𝑡𝑡 and 𝐴𝐴𝑖𝑖𝑟𝑟 are the set of formal attributes of the class specified in feature 𝐶𝐶𝑖𝑖𝑡𝑡 and 𝐶𝐶𝑖𝑖𝑟𝑟.
The overlap between two sets of attributes of classes are equal to the intersection between the
two sets of attributes normalized by the size of the minimum number of attributes.
The similarity between two numeric values in the same domain can be calculated as the
following formula.

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 �𝑎𝑎𝑖𝑖𝑡𝑡 ,𝑎𝑎𝑖𝑖𝑟𝑟 ,𝑎𝑎𝑖𝑖� = 1 − |𝑎𝑎𝑖𝑖
𝑡𝑡 ∩ 𝑎𝑎𝑖𝑖

𝑟𝑟|
𝑎𝑎𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 (11)

where 𝑎𝑎𝑖𝑖𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖𝑟𝑟 are the numeric values of the attribute ai of the target and source; 𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and
𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum numeric values of the attribute ai.

Choosing services exclusively in the light of their functionality may bring about services
with detrimental QoS. QoS-based service selection is vital in the cloud as the huge number of
services will certainly bring upon competition among providers that offer similar functionality.
A large number of competing cloud services and the lack of technical skills of naïve users
insist an efficient methodology for ranking services [33]. Top N services, whose similarity
scores are computed, are ranked based on user preferences, user feedback and QoS of cloud
services like availability and cost. The time complexity of ranking is O (C N log N) where N is
the number of services and C is the number of criteria chosen for service selection. Rank
scores of service “i” can be mathematically given as:

321 ***
*__

ωωω
θ

CosttyAvailabiliFeedbackUser
spreferenceUserscoreSimilarityscoreRank

i

kkii

++
++=

 (12)

where ‘i’ represents the service whose rank is currently evaluated. ‘k’ represents various user
preferences other than availability and cost and 0≤ k ≤ m. ‘ω’ and ‘θ’ represents the
corresponding weights assigned to various criteria chosen for service ranking and
 1

1

3

1
=+∑∑

==

m

k
k

i
i θω

 (13)

The user queries and discovered services are stored in a repository which can be used as a
reference whenever the user queries have temporal expression. The repository is defined as a
set of entries. Each entry is composed of a set of questions and answers. Table 4 shows the
common temporal expressions used in user queries.

Table 4. Usual temporal expressions in user query

Temporal
expression

Sample
Token

Example query

Prepositional
phrases

in a year List the service providers which provide news from multiple sources
in the last year.

Adjectival
phrases

current,
popular

Name the popular storage providers with on the fly encryption
system.

Adverbial
phrases

recently,
frequently

Give frequently used service providers for photo album management.

Noun
phrases

 today Fetch the services to listen online music with less cost per hour on
weekends

5. Experimental Results and Analysis
All experiments are implemented with Java 6 JRE in Eclipse 4.3. Ontology was constructed
using Protégé 4.3 and accessed using Jena API. Experiments are conducted on a machine with
1.90 GHz Intel Core I3-3227U CPU and 4GB RAM. The system offers a simple GUI to

52 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

facilitate the discovery process as shown in Fig. 2. The discovery process has as input a query
expressed in plain text. The goal of the SSDCN is to automatically create structured formal
queries by mapping the natural language question into KV representation. The implemented
technologies are transparent to the user. As there is no established standard evaluation dataset
for cloud services related queries, sample queries were generated in all possible service
categories. The user’s requirements may contain many features such as geographical location
of the data center, deployment model, security policies or even more detailed technical aspects
like a number of virtual machines needed. The user can pose simple (e.g. Q1, Q2, Q3, Q6, Q7,
Q8, Q13, Q15) or complex (e.g. Q4, Q5, Q9, Q10, Q11, Q12, Q14) queries as shown in Table
5.

Fig. 2. User interface for service discovery

Table 5. Sample queries used for service discovery

Q1 List the payroll providers available in America.

Q2 Fetch the providers who offer free storage services of atleast 5 GB.

Q3 List document management systems with document encryption features.

Q4 Fetch free web hosting service with PHP and MySQL

Q5 Give the service providers for file sharing and syncing with minimum free storage of 1GB

Q6 List the providers who give Java web hosting platform with minimum pay per resource

Q7 Name the infrastructure providers who have a minimum of 5 instance types

Q8 List the services that can play online videos with cost less than 5 dollars per month

Q9 Name the vendors who offer Linux based web hosting platform which supports dedicated IP addresses.

Q10 List the providers who offer a Linux virtual machine with price less than $0.25 hourly.

Q11 Name the providers who offer ERP services with a cost less than 10$ per month and data center in Asia.

Q12 Fetch the services with self instantiating virtual machines on 2GHz processing and 4MB cache and not
less than 8GB RAM with a cost less than 25 dollars per month.

 Q13 Provide data analytic services with migrating option hosted on windows platform.

 Q14 Fetch the providers who give customer relation management services on Java with 24/7 technical support.

 Q15 Fetch cloud-based multi player game services with cost less than 5 dollars per month

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 53

Experiments were implemented over a collection of 6743 services covering 30 categories
such as various applications, platform, storage, etc. Clustering of services was done in a
reasonable time and service discovery can be entirely conducted offline. With no clustering in
advance, the average search complexity to find the most similar service from N services is
O(N). With clustering, the service matching will first locate the appropriate cluster by
comparing the distance between query and cluster centroid and then search each service in that
cluster. As a result, the average search complexity will be O (M), where M = K + O (Si),
assuming that there are ‘K’ categories, each category has ‘Si’ services. This is very promising
since the number of services does not exceed a few hundred in most of the service categories.

The average time taken to discover services, using and without using clusters, is calculated
with varying number of services. General methods for service discovery compare the request
with all of the services in the registry. Fig. 3 shows the time taken for discovering services
with and without clustering for three queries (Q1, Q2 and Q5) of simple, medium and complex
constraints. Usage of service clusters improves the system response time to a great extent as
depicted in Fig. 3. SSDCN method can reduce response time to 23-80% compared with
service discovery without clustering. As the number of service increases, the response time for
service discovery without clustering increases dramatically compared with the proposed
method. Hence, service discovery based on clustering can effectively improve time efficiency
of service discovery.

Fig. 3. Response time for Queries Q1, Q2 and Q5 with and without clustering

 For each sample query, a set of services was manually chosen. SSDCN approach is
compared with keyword based search, WordNet-based lexical query expansion and
ontology-based semantic query expansion. The results of these approaches were compared
with manually selected suitable services. The rank of 5 services found common in the top-15
list in all the four approaches, for queries with various constraint level, were used in the
performance analysis. Here, ANOVA is used to analyze the performance of each service
selection method. The null hypothesis for the rows states that the row mean is equal for all the
rows irrespective of the service in consideration. The null hypothesis for the columns states
that all the approaches perform equally well. The ranking of 5 common services for query Q4
and the results of a two-way ANOVA test is shown in Table 6 and Table 7.

0

0.1

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000 6000 7000

Ti
m

e
in

 se
c

Number of services

SSDCN Q1

WithoutCluster(WC) Q1

SSDCN Q2

WC Q2

SSDCN Q5

WC Q5

54 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

Table 6. Rank score of query Q4 for various methods of service discovery

Keyword Lexical Semantic SSDCN
000webHost 0.4 0.5 0.54 0.56
Biz.nf 0.44 0.53 0.6 0.74
ByteHost 0.3 0.48 0.65 0.63
100webspace 0.54 0.69 0.79 0.86
Awardspace 0.63 0.79 0.86 0.91

Table 7. Results of two-way ANOVA test

Source of Variation SS df MS F P-value F critical

Rows 0.27487 4 0.068718 36.86232 1.19E-06 3.259167

Columns 0.22228 3 0.074093 39.74609 1.65E-06 3.490295

Error 0.02237 12 0.001864

Total 0.51952 19

The value of F is much higher than Fcritical. It means that there is a significant difference
between the four service discovery approaches. Also, P- value is less than α=0.5. Hence, both
the null hypothesis can be rejected.
 Precision and recall are used to evaluate the effectiveness of the proposed approach.
Precision is the fraction of retrieved documents that are relevant. The recall is the fraction of
relevant documents retrieved. F-score is the harmonic mean of precision and recall.
Mathematically, they are defined as follows:

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = Number of relevant services retrieved in a service discovery

Total number of services identified
 (14)

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = Number of relevant services retrieved in a service discovery

Total number of relevant services available
 (15)

 𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∗ Precision ∗ Recall

Precision + Recall
 (16)

Table 8 shows the comparison of performance measurement of various approaches. The

results show that the SSDCN approach outperforms the rest in terms of high precision and
recall values. Keyword based search has low precision due to the difference in the terminology
used by providers and naïve users. SSDCN employs the power of both lexical expansion and
semantic expansion of query words. Precision has a higher margin on complex queries as they
have more constraints. Ontology-based semantic query expansion and SSDCN have
comparable precision. Fig. 4 shows that the SSDCN approach outperforms other approaches
in terms of F-score. The false negatives in semantic approach become less as the number of
constraints in the query increases. Hence, the gap between ontology-based semantic query
expansion and SSDCN in recall rate and f-measure becomes smaller. From Table 8 it is
evident that semantic based methods are much more efficient compared to traditional
keyword-based methods and WordNet-based lexical expansion methods for finding similar
cloud services.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 55

Table 8. Comparison of precision and recall for various methods of service discovery

Query Keyword based Lexical expansion Semantic
expansion SSDCN

Precision Recall Precision Recall Precision Recall Precision Recall
Q1 0.45 0.39 0.69 0.63 0.89 0.80 0.91 0.93
Q2 0.53 0.20 0.70 0.40 0.88 0.75 0.94 0.95
Q3 0.47 0.40 0.69 0.59 0.91 0.92 0.93 0.95
Q4 0.37 0.49 0.55 0.80 0.91 0.96 0.93 0.98
Q5 0.34 0.48 0.63 0.85 0.91 0.92 0.96 0.95

Fig. 4. Comparing F-Score values of different methods for a set of queries

6. Conclusion
This paper presented an automated cloud service discovery system which provides solutions
that accurately match the suitable services in terms of the naïve user request. The experimental
results demonstrate the effectiveness of natural language processing and clustering in cloud
service discovery. It is not an easy task to effectively find the services that semantically match
the user’s requirements in free text. Ontology-based natural language processing techniques
are employed to convert the user request in plain text to a formal representation.
Ontology-based service discovery help to bridge the ambiguity of the user query in natural
language and the service description. Based on the assumption that the efficiency of finding
services can be improved if services are grouped together, enhanced k-means approach is used
for clustering of services. Clustering helps in speeding up the discovery processes resulting in
better efficiency. Overall, the results show that compared with existing methods, SSDCN
improves recall and precision. Results show that SSDCN can effectively help an amateurish
user to identify services that are closest to their preferences. In the future, we plan to consider
methods to evaluate trust and reliability of providers from the user experience as an important
benchmark for ranking services. The performance of SSDCN in video streaming and
multimedia conferencing services will also be explored in the future.

References
[1] Chen Fei, Xiaoli Bai, and Bingbing Liu, “Efficient service discovery for cloud computing

environments." Advanced Research on Computer Science and Information Engineering, Springer
Berlin Heidelberg, pp. 443-448, 2011. Article (CrossRef Link)

[2] C.N. Höfer, and G. Karagiannis, “Cloud computing services: taxonomy and comparison,” Journal
of Internet Service Applications, issue 2, pp. 81–94, 2011. Article (CrossRef Link)

0

0.2

0.4

0.6

0.8

1

Q1 Q2 Q3 Q4 Q5

F-
sc

or
e

Keyword Lexical Semantic SSDCN

http://dx.doi.org/10.1007/978-3-642-21411-0_72
http://dx.doi.org/10.1007/s13174-011-0027-x

56 Viji et al.: Enhanced Cloud Service Discovery for Naïve users with Ontology based Representation

[3] Kona Srividya, Ajay Bansal, Luke Simon, Ajay Mallya, and Gopal Gupta. "USDL: a
service-semantics description language for automatic service discovery and
composition," International Journal of Web Services Research (IJWSR) 6, no. 1, pp.20-48, 2009.
Article (CrossRef Link)

[4] Topology and Orchestration Specification for Cloud Applications Version 1.0. OASIS Committee
Specification Draft 03, 2012.

[5] Anderson E, L. Lam, C. Eschinger, S. Cournoyer, J. M. Correia, L. F. Wurster, R. Contu et al.
"Forecast overview: Public cloud services, worldwide, 2011-2016, 4Q12 Update,” Gartner Inc.,
February 2013.

[6] Afify Yasmine M, "Cloud Services Discovery and Selection: Survey and New Semantic-Based
System,” Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations, Springer
Berlin Heidelberg, pp. 449-477, 2014. Article (CrossRef Link)

[7] Noor T H, Sheng Q Z and Bouguettaya A. "Cloud service crawler engine," Trust Management in
Cloud Services. Springer International Publishing, pp. 69–79, 2014. Article (CrossRef Link)

[8] Viji Rajendran V, and Swamynathan S, “Multi Threaded priority based semantic crawler for cloud
services,” International conference on Intelligent Information Technologies (ICIIT), Chennai,
pp.122-130, 2014.

[9] A.K. Jain, M.N. Murty, P.J. Flynn, “Data clustering: A review,” ACM Computing Surveys, vol.
31,no. 3, pp. 264 – 323, 1999. Article (CrossRef Link)

[10] Studer Rudi, “Semantic Service Discovery using Natural Language Queries,” Diss. SAP Research,
2009.

[11] Frank Gens, IDC Predictions 2015: Accelerating Innovation and Growth on the 3rd Platform, Doc
252700, Dec 2014.

[12] Sun L, Dong H, Hussain F K, Hussain O K, and Chang E. "Cloud service selection: State-of-the-art
and future research directions," Journal of Network and Computer Applications, vol 45,
pp.134-150, 2014. Article (CrossRef Link)

[13] Zhao L, Ren Y, Li M and Sakurai K, “Flexible service selection with user-specific QoS support in
service-oriented architecture,” Journal of Network and Computer Applications, vol. 35, no. 3, pp.
962- 973, 2012. Article (CrossRef Link)

[14] UDDI Technical White Paper (2001), http://www.uddi.org/pubs/lru_UDDI_Technical_Paper
Article (CrossRef Link)

[15] D.K. Nguyen, F. Lelli, M.P. Papazoglou, W.-J. van den Heuvel, “Blueprinting approach in support
of Cloud computing,” Future Internet. 4 (1), pp.322–346, 2012. Article (CrossRef Link)

[16] DMTF, Open Virtualization Format Specification Version 1.0.0, Specification DSP0243,
Distributed Management Task Force, Inc., 2009.

[17] Cloudbook. The Cloud Computing & SaaS Information Resource, http://www.cloudbook.net/
directories/product-services/cloud-computing-directory?category=Applications
Article (CrossRef Link)

[18] Semantic technology institute. (2009). Seekda! Available from http://seekda.com/
Article (CrossRef Link)

[19] Moscato, Francesco, Rocco Aversa, Beniamino Di Martino, T. Fortis, and Victor Munteanu, "An
analysis of mOSAIC ontology for Cloud resources annotation," in Proc. of Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 973-980. IEEE, 2011.

[20] Liu X, Huang G and Mei H, "Discovering homogeneous web service community in the user centric
web environment," IEEE Transactions on Services Computing, vol. 2, no. 2, pp. 167– 181, 2009.
Article (CrossRef Link)

[21] Sim K. M., “Agent-based Cloud computing,” IEEE Transaction on Service Computing, vol. 5, no.
4, pp. 564-577, 2012. Article (CrossRef Link)

[22] Tahamtan, A., Beheshti, S.A., et al., “Cloud Repository and Discovery Framework Based on a
Unified Business and Cloud Service Ontology,” 8th IEEE World Congress on Services, IEEE
Press, USA , pp. 203–210, 2012. Article (CrossRef Link)

[23] The W3C SPARQL Working Group, “SPARQL 1.1 Overview,” W3C recommendation 21 March
2013.

http://dx.doi.org/10.4018/jwsr.2009010102
http://dx.doi.org/10.1007/978-3-662-43616-5_17
http://dx.doi.org/10.1007/978-3-319-12250-2_6
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/j.jnca.2014.07.019
http://dx.doi.org/10.1016/j.jnca.2011.03.013
http://dx.doi.org/10.1016/j.jnca.2011.03.013
http://dx.doi.org/10.1016/j.jnca.2011.03.013
http://dx.doi.org/10.1016/j.jnca.2011.03.013
http://dx.doi.org/10.1016/j.jnca.2011.03.013
http://dx.doi.org/10.1109/TSC.2009.11
http://dx.doi.org/10.1109/TSC.2011.52
http://dx.doi.org/10.1109/services.2012.42

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016 57

[24] Unger, Christina, and Philipp Cimiano. “Pythia: compositional meaning construction for
ontology-based question answering on the semantic web,” Natural Language Processing and
Information Systems., Springer Berlin Heidelberg, pp.153-160, 2011. Article (CrossRef Link)

[25] Gruber, Thomas R. "Toward principles for the design of ontologies used for knowledge
sharing?" International journal of human-computer studies 43.5, pp.907-928, 1995.
Article (CrossRef Link)

[26] Sun Le, Hai Dong, and Jamshaid Ashraf., “Survey of service description languages and their issues
in cloud computing,” in Proc. of Semantics, Knowledge and Grids (SKG), 2012 Eighth
International Conference on, pp. 128-135. IEEE, 2012. Article (CrossRef Link)

[27] Garcia R, Angel M, Valencia-Garcia R, Garcia- Sanchez F and Samper-Zapater J,
"Ontology-based annotation and retrieval of services in the cloud," Knowledge-Based Systems 56,
pp. 15–25, 2014. Article (CrossRef Link)

[28] Abdullah A, Noor T H, Sheng Q Z and Yong Xu, "Towards ontology-enhanced cloud services
discovery," Advanced Data Mining and Applications, Springer International Publishing, pp.
616–629, 2014. Article (CrossRef Link)

[29] Tanimoto T, 1957 IBM Internal Report 17th Nov.1957.
[30] Santorini, Beatrice. "Part-of-speech tagging guidelines for the Penn Treebank Project (3rd

revision)." 1990.
[31] Miller, George A. "WordNet: a lexical database for English," Communications of the ACM 38.11,

pp. 39-41, 1995. Article (CrossRef Link)
[32] J. Kolodner and R. Simpson. The MEDIATOR: Analysis of an early case-based problem solver.

Cognitive Science, 13(4):507-549, 1989. Article (CrossRef Link)
[33] Qi Yu, “CloudRec: a framework for personalized service Recommendation in the Cloud,” Knowl

Inf Syst, vol. 43, pp.417–443, 2015. Article (CrossRef Link)
[34] J. Wu, Y. Shang, C. Yuen, B. Cheng, and J. Chen, "TRADER: A Reliable Transmission Scheme to

Video Conferencing Applications over the Internet," Journal of Network and Computer
Applications, vol. 44, pp. 161-171, 2014. Article (CrossRef Link)

[35] J. Wu, B. Cheng, C. Yuen, Y. Shang, J. Chen, "Distortion Aware Concurrent Multipath Transfer
for Mobile Video Streaming in Heterogeneous Wireless Networks," IEEE Transactions on Mobile
Computing, vol. 14, no. 4, pp. 688-701, 2015. Article (CrossRef Link)

[36] J. Wu, B. Cheng, Y. Shang, C. Yuen, J. Chen, "A Novel Transmission Scheme to Inter Destination
Video Synchronization," IET Communications, vol. 9, no. 5, pp. 603-612, 2015.
Article (CrossRef Link)

Viji Rajendran V received her Bachelor’s degree in Computer Engineering from
Cochin University of Science and Technology in the year 2002 and Master’s degree in
Computer Science and Engineering from Anna University in the year 2008. She is
currently pursuing Ph.D. in the Department of Information Science and Technology,
Anna University, Chennai, India. Her research interest includes Cloud Services, Ontology
and Semantic Web. She is a lifetime member of Indian Society for Technical Education
(ISTE).

Swamynathan Sankaranarayanan received his Master’s degree in Computer
Science and Engineering and Doctorate in Distributed Computing from Anna University,
Chennai. He is currently working as an Associate Professor of Department of Information
Science and Technology, College of Engineering Campus, Anna University, Chennai,
India. He has more than 20 years of teaching and research experience. He has carried out
various funded projects. He has published more than 60 papers in reputed journals and
conference proceedings. His research interest includes Distributed Computing, Semantic
Web and Web Mining.

http://dx.doi.org/10.1007/978-3-642-22327-3_15
http://dx.doi.org/10.1006/ijhc.1995.1081
http://dx.doi.org/10.1109/SKG.2012.49
http://dx.doi.org/10.1016/j.knosys.2013.10.006
http://dx.doi.org/10.1007/978-3-319-14717-8_48
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1207/s15516709cog1304_2
http://dx.doi.org/10.1007/s10115-013-0723-x
http://dx.doi.org/10.1016/j.jnca.2014.05.007
http://dx.doi.org/10.1109/TMC.2014.2334592
http://dx.doi.org/10.1049/iet-com.2013.1188

