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Abstract 
 

Image distortions are typically characterized by degradations of structures. Dictionaries 
learned from natural images can capture the underlying structures in images, which are 
important for image quality assessment (IQA). This paper presents a general-purpose 
no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A 
dictionary is first constructed based on gradients of natural images using K-means clustering. 
Then image features are extracted using the dictionary based on Euclidean-norm coding and 
max-pooling. A distortion classification model and several distortion-specific quality 
regression models are trained using the support vector machine (SVM) by combining image 
features with distortion types and subjective scores, respectively. To evaluate the quality of 
a test image, the distortion classification model is used to determine the probabilities that the 
image belongs to different kinds of distortions, while the regression models are used to 
predict the corresponding distortion-specific quality scores. Finally, an overall quality score 
is computed as the probability-weighted distortion-specific quality scores. The proposed 
metric can evaluate image quality accurately and efficiently using a small dictionary. The 
performance of the proposed method is verified on public image quality databases. 
Experimental results demonstrate that the proposed metric can generate quality scores 
highly consistent with human perception, and it outperforms the state-of-the-arts.  
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1. Introduction 

Digital images are easily subject to distortions during their acquisition, processing and 
transmission, such as noise, blurring, blocking artifacts, etc. Image quality assessment (IQA) 
is of great importance in real-world applications, such as image/video coding [1, 2, 3], image 
recognition [4], image forensics [5, 6,7] and image enhancement [8]. Objective IQA aims to 
build computational models for meauring image quality, and meantime keeps consistent with 
the human visual system (HVS) [9]. According to the necessity and amount of reference 
information, the existing IQA metrics can be categorized into full-reference (FR), 
reduced-reference (RR) and no-reference (NR). FR/RR metrics require complete/partial 
information of a reference image, which is usually not available in practice. By contrast, NR 
metrics evaluate the quality of an image without any reference  [10], so they are more useful in 
real-world scenarios. Most of the current NR-IQA metrics are designed for specific distortions, 
such as blockiness  [11, 12, 13] and blur [14, 15, 16]. Generally, these distortion-specific 
metrics are limited in application scopes. By contrast, general-purpose NR quality metrics 
have much wider applications, because they can evaluate image quality without any prior 
information. Recently, general-purpose NR-IQA has attracted extensive attention.  

Most of the existing general-purpose NR-IQA metrics are based on Natural Scene 
Statistics (NSS). Moorthy et al. first extracted NSS features in the wavelet domain [17, 18]. 
Then support vector machine (SVM) was utilized for model training and the subsequent 
quality evaluation. Saad et al. extracted NSS features in DCT domain [19]. The generalized 
Gaussian distribution (GGD) was used to characterize the distribution of DCT coefficients, 
and the estimated parameters of GGD were combined to produce the quality score. In [20], 
Mittal et al. modeled the distortion-induced decrease in image “naturalness” by locally 
normalized luminance in the spatial domain. Then image quality was estimated by quantifying 
the decreased naturalness. In [21], Mittal et al. first extracted NSS features for measuring the 
statistical regularities in undistorted natural images. The parameters of the multivariate 
Gaussian (MVG) model were used to characterize the naturalness. For a distorted image, the 
MVG parameters were computed, and the distance between the MVG parameters was 
computed as the quality score. Liu et al. extracted NSS features based on image entropy in 
both spatial and spectral domains [22]. The SVM was then employed for model training and 
quality evaluation. Besides the NSS-based approaches, machine learning-based approach has 
also been investigated recently. In [23], Ye at al. addressed the unsupervised feature learning 
framework for NR-IQA. Specifically, a visual codebook was first trained using raw image 
patches. Image features were then extracted based on the codebook. The quality score of an 
image was generated based on support vector regression (SVR). This metric performs 
consistently well on a variety of databases. However, it is sensitive to the size of the codebook. 
Typically, a 10000-dimensional codebook is needed to achieve satisfactory results, which 
requires much memory.  

Unsupervised feature learning has been proved to be able to extract highly discriminative 
features for image analysis [24, 25]. This paper presents a new feature learning-based 
general-purpose NR-IQA metric using a GRadient-Induced Dictionary (GRID). A dictionary 
is first trained from gradients of natural image patches based on K-means clustering. With the 
dictionary, image features are then extracted using Euclidean-norm coding and max-pooling. 
By combining these features with image distortion types and subjective scores respectively, a 
distortion classification model and several distortion-specific quality regression models are 
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trained using the SVM. In the quality evaluation stage, features are first extracted from 
distorted images. Then they are input to the two kinds of models, producing the probabilities 
that the image belongs to different distortions and the corresponding distortion-specific quality 
scores. The final quality score is defined as the probability-weighted distortion-specific scores. 
The proposed method can evaluate image quality accurately using a small dictionary with low 
computational complexity. Experiments on public image quality databases demonstrate the 
advantages of the proposed method.  

2. Proposed Quality Model 
The diagram of the proposed method is shown in Fig. 1. The proposed quality metric is a 
two-stage approach, which consists of distortion classification and distortion-specific quality 
assessment. To achieve this goal, a distortion classification model and several quality 
regression models are trained based on image features, which are extracted with a pre-trained 
dictionary using Euclidean-norm coding and max-pooling. SVM is utilized for the model 
training and quality evaluation. In the following subsections, we will introduce key steps of the 
proposed method in detail.  

 
Fig. 1. Diagram of the proposed quality metric. 

2.1 Gradient-induced Dictionary 
It has been widely acknowledged that natural images share underlying structures, which can 
be represented using a dictionary [26]. With such a dictionary, image features can be extracted 
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with appropriate coding and pooling. Traditionally, raw patches from natural images are used 
to train such a dictionary. However in practice, image structures are usually present in the form 
of edges and gradients. Therefore, training the dictionary using raw image patches may not be 
sufficient. In order to highlight structure components in the dictionary, we propose to train the 
dictionary in the gradient domain instead of the spatial domain. This gradient-induced 
dictionary is then employed to design the quality model in this work. 

 
Fig. 2. Diagram of dictionary learning. 

 
Fig. 2 illustrates how the dictionary is constructed in this paper, which consists of several 

key steps, namely computing image gradient, preprocessing and K-menas clustering. For 
natural images, the gradients are first computed using the Scharr operator [27]:   
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where xh  and yh  denote the Scharr operators in horizontal and vertical directions, respectively. 
The gradient of an image I  is defined as: 
 

                          2 2( ) ( ) ,x yh h= ⊗ + ⊗G I I                                                 (2) 
 
where ⊗  denotes the convolution.  

Once the gradient of an image is obtained, a large number of local patches are randomly 
selected for training the dictionary. For each patch, it is normalized by first subtracting the 
mean value and then dividing by its standard deviation  [28]: 
 

( , )( , ) ,
1

x yx y µ
σ

−
=

+
GG                                                 (3) 

 
where ( , )x yG  is the normalized patch, ( , )x yG  denotes the gradient patch, µ  denotes the 
mean of the patch and σ denotes the standard deviation. By conducting the normalization, the 
produced dictionary can represent image structures better. In implementation, 10,000 patches 
with size 7×7 are selected from each gradient image to train the dictionary. It should be noted 
that since these patches are randomly selected from the image, they may overlap. 

In implementation, the patches with size d d d= ×  ( 7 7× in this work) are first 
randomly selected. Then they are normalized and rearranged into row vectors, producing the 



292                                                            Li et al.: No-reference Image Quality Assessment With A Gradient-induced Dictionary  

training signals 1 2[ ; ; ...; ] N d
N

×= ∈X x x x R , where N denotes the number of patches. Then 

K-means clustering is employed to generate the dictionary 1 2[ ; ; ...; ] K d
K

×= ∈C c c c R , 
where , 1, 2, ...,i i K=c , denote the K clustering centers. 

In this paper, ten natural images are used for dictionary training, and 100,000 local patches 
(10,000 from each image) are selected to generate the dictionary. Fig. 3 shows the training 
images and an 800-dimensional dictionary, which has been visualized for better understanding. 
It is observed from the figure that the atoms in the dictionary are typically edge patterns. These 
atoms have been proved effective in representing image structures [26], which are important 
for image quality assessment.  

  
(a) Training images                                              (b) Dictionary (800) 

Fig. 3. Training images and the dictionary. 

2.2 Feature Generation 
In this work, an image is represented by a feature vector, which is extracted from local patches 
of the image itself using the dictionary. For an image, the gradient is first computed and a large 
number of local patches are selected followed by normalization, producing the signals 

1 2[ ; ; ...; ] n d
n

×= ∈Y y y y R , where iy  denotes the processed signal of a local patch, and n 

denotes the patch number. Then with the dictionary K d×∈C R , n d×∈Y R  is converted into a 
feature vector 1

1 2[ , , ..., ] K
Kf f f ×= ∈F R using Euclidean-norm coding and max-pooling.  

In [28], Euclidean-norm coding has been proved effective in generating discriminative 
features in K-means based dictionary. In this paper, we employ Euclidean-norm coding to 
generate the feature vector. To this end, the distance between 1 2[ ; ; ...; ] n d

n
×= ∈Y y y y R  and 

the dictionary 1 2[ ; ; ...; ] K d
K

×= ∈C c c c R  is computed : 
 

     2 2
2|| || 2 T= − = − ∗ +D Y C Y Y C C ,                                     (4) 

 
where 1 2[ , , ..., ] n K

K
×= ∈D d d d R  denotes the Euclidean distance between n d×∈Y R  and 
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K d×∈C R . Then the average distance 1( ) nµ ×∈D R  beween each patch and the dictionary is 
computed. Finally, the difference between n K×∈D R  and 1( ) nµ ×∈D R  is computed and 
denoted by 1 2[ , , ..., ] n K

K
×= ∈Z z z z R .  

With n K×∈Z R , the feature vector of an image is generated based on pooling. In IQA, 
pooling is very useful for making the predicted quality scores consistent with subjective scores 
[29]. Generally, minimum-pooling, average-pooling and maximum-pooling can be used. In 
this paper, we employ max-pooling in this stage, which can produce better results. Specifically, 
each element of  n K×∈Z R  is first compared with zero, and the larger one is selected and 
denoted by 1 2[ , , ..., ] n K

K
×= ∈Z z z z R    . Then the maximum value of each column vector 

1 2( , , ..., ), 1, 2,...,i i i ni i Kα α α= =z in n K×∈Z R  is obtained, which is denoted 

by 1 2max{ } max{ , ,..., }, 1, 2,...,i i i i nif i Kaaa  = = =z . Then 1
1 2[ , ,..., ] K

Kf f f ×= ∈F R is 
the final feature vector, which is used for the subsequent quality assessment.  

2.3 Training and Testing 
The proposed method consists of two stages, namely model training and quality assessment. In 
the first stage, a distortion classification model and several quality-specific regression models 
are trained using the SVM. The distortion classification model is used to predict the 
probabilities that an image belongs to different kinds of distortions, and the quality regression 
models are used to predict the corresponding distortion-specific quality scores. In the quality 
assessment stage, the probabilities and distortion-specific quality scores are first generated 
using the trained models. Then an overall quality score of the test image is computed as the 
probability-weighted distortion-specific scores.  

For a group of k training images{ }, 1, 2, ...,i i k=I  together with their distortion types 

{ }, 1, 2, ...,il i k=  and subjective scores { }, 1, 2, ...,is i k= , the feature vectors are first 

extracted, which are denoted by { }, 1, 2, ...,i i k=F . Then { }, 1, 2, ...,i i k=F  and 

{ }, 1, 2, ...,il i k=  are used to train the distortion classification model, while 

{ }, 1, 2, ...,i i k=F  and { }, 1, 2, ...,is i k=  are used to train the distortion-specific regression 
models. In this paper, both kinds of models are trained using the SVM [30], and the Radial 
Basis Function (RBF) is used as the kernel. The distortion classification model is trained using 
the standard SVM classifier, and the regression models are trained using e-SVR [30]. 

For a test image, the feature vector is first extracted. Then it is input to the trained models, 
producing the probabilities of distortions { }, 1, 2, ...,jp j m=  and the corresponding 

distortion-specific quality scores { }, 1, 2, ...,jq j m= . Finally, an overall quality score is 
computed as follows: 

 

       
1

Score
m

j j
j

p q
=

= ⋅∑                                                        (5) 

where m denotes the number of distortion types considered.  
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3. Experimental Results and Analysis 

3.1 Experiment Settings 
Four commonly used image quality databases are used to test the performance of the proposed 
method, including LIVE [31], CSIQ [32], TID2008 [33] and TID2013 [34]. The LIVE 
database contains 29 reference images and 779 distorted images with five kinds of distortions: 
JPEG compression, JPEG2000 compression (JP2K), additive Gaussian white noise (WN), 
Gaussian blur (GB) and Fast Fading Rayleigh (FF).  The CSIQ database consists of 30 
reference images and 866 distorted images with six distortion types. In TID2008, there are 25 
reference images and the corresponding 1700 distorted images with 17 distortion types. 
TID2013 is an extended version of TID2008, which contains 3000 distorted images with 24 
distortion types. Table 1 summarizes the information of the four databases. In the table, MOS 
denotes the mean opinion score, and DMOS denotes the difference MOS, which are used as 
ground truth of subjective qualities. In our experiments, we focus on JPEG, JK2K, WN and 
GB, which are the most common distortion types and also shared by the four databases. 

 
Table 1. Database information for performance evaluation 

Database Reference 
images 

Distorted 
images 

Distortion 
types Subjects Subjective 

scores 
LIVE 29 779 5 161 DMOS 
CSIQ 30 866 6 35 DMOS 

TID2008 25 1700 17 838 MOS 
TID2013 25 300 24 971 MOS 

 
Three quantitative criterions are employed to measure the performance of the proposed 

method. Specifically, Pearson Linear Correlation Coefficient (PLCC) and Root Mean Squared 
Error (RMSE) are used to measure the prediction accuracy, and Spearman Rank Order 
Correlation Coefficient (SRCC) is used to measure the prediction monotonicity. Before 
computing these criterions, a five-parameter logistic mapping is conducted between the 
subjective and objective scores [35]: 

 

               ( ) ( )2 31 4 5
1 1
2 1 xf x x

eβ ββ β β
−

 = − + + + 
,                                      (6) 

where , 1, 2, 3, 4, 5i iβ =  are the the parameters to be fitted. Let the subjective and mapped 
objective scores of the ith image be denoted by is and iq , then PLCC, SRCC and RMSE are 
defined as follows:  
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               ( )2

1

1RMSE
N

i i
i

s q
N =

= −∑ ,                                                 (9) 

where s and q  denote the average values of the subjective and mapped objective sores, id  
denotes the difference between the ith image’s ranks in subjective and objective evaluations, 
and N denotes the total number of images  

In experiments, several parameters should be determined first, including the patch size, 
gradient operator, pooling method and the SVM kernels. In this work, these parameters are set 
as: patch size 7×7, Scharr gradient operator, max-pooling and RBF kernel, which are tuned 
based on LIVE database. A combination of them have achieved the best perfomance, and the 
corresponding PLCC  and SRCC values are 0.9735 and 0.9722, respectively.  

In order to have an intuitionistic view of the influences of these paramaters on the 
performances of the proposed method, we test the performances when different parameters are 
used. To be specific, for patch size, we test 5×5, 9×9, 7×7 and 11×11. For the gradient operator, 
we test the commonly used Roberts, Sobel, Prewitt and Scharr. For pooling, we test 
min-pooling, average-pooling and max-pooling. For SVM kernel, we test linear, polynomial, 
Sigmoid and RBF. In our experiment, 80% images in LIVE database are used for training and 
the other 20% images are used for test. The training-test procedure is repeated by 1,000 times, 
and the median result is employed for performance evaluation. It should be noted that in each 
iteration, the 80% training images are selected randomly. Since the LIVE database contains 29 
reference images, each time 23 reference images and the corresponding distorted images are 
used for model training, while the other  6 reference images and the corresponding distorted 
images are used for test. The experimental results in terms of PLCC and SRCC are 
summarized in Tables 2-5. 

 
Table 2. Performances of the proposed metric using different patch sizes on LIVE database. 

Patch size 5×5 7×7 9×9 11×11 
PLCC 0.9727  0.9735  0.9722  0.9733  
SRCC 0.9719  0.9722  0.9712  0.9717  

Table 3. Performances of the proposed metric using different gradient operators on LIVE database. 
Gradient  Roberts Sobel Prewitt Scharr 

PLCC 0.9669  0.9711  0.9681  0.9735  
SRCC 0.9645  0.9701  0.9668  0.9722  

 
Table 4. Performances of the proposed metric using different pooling methods on LIVE database. 

Pooling Min-pooling Average-pooling Max-pooling 
PLCC 0.7503  0.9490  0.9735 
SRCC 0.7129  0.9498  0.9722 

 
Table 5. Performances of the proposed metric using different SVM kernels on LIVE database. 

SVM kernel Linear Ploynominal Sigmoid RBF 
PLCC 0.5298  0.8234  0.2650  0.9735  
SRCC 0.4119  0.8258  0.1824  0.9722  

It is observed from the Tables 2-5 that patch size and gradient operator have little 
influences on the performance, while patch size 7×7 and Scharr operator produce slightly 
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better results. By contrast, the pooling method and SVM kernel have great influences on the 
performances, while max-pooling and RBF kernel produce the best results.   

3.2 Performance on LIVE Database 
In this subsection, the performance of the proposed method on LIVE database is evaluated. 

For comparison, eight state-of-the-art general-purpose NR quality metrics are also tested, 
including Blind Image Quality Index (BIQI) [17], Distortion Identification-based Image 
Verity and INtegrity Evaluation (DIIVINE) [18], BLind Image Integrity Notator using DCT 
Statistics (BLIINDS-II) [19], Blind/Referenceless Image Spatial Quality Evaluator 
(BRISQUE) [20], Natural Image Quality Evaluator (NIQE) [21], Spatial-Spectral Entropy 
based Quality (SSEQ) [22], COdebook Representation for No-reference Image quality 
Assessment (CORNIA) [23], and Quality-Aware Clustering (QAC) [36]. The source codes of 
these metrics are downloaded from the authors’ websites and the default parameters are used. 

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Predicted score by BIQI

D
M

O
S

0 20 40 60 80 100
0

20

40

60

80

100

120

Predicted score by DIIVINE

D
M

O
S

0 20 40 60 80 100
0

20

40

60

80

100

120

Predicted score by BLIINDS-II

D
M

O
S

 

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Predicted score by BRISQUE

D
M

O
S

 
0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

Predicted score by NIQE

D
M

O
S

 
0 20 40 60 80

0

20

40

60

80

100

120

Predicted score by SSEQ

D
M

O
S

 

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Predicted score by CORNIA

D
M

O
S

 
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

Predicted score by QAC

D
M

O
S

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Predicted score by GRID

D
M

O
S

 
Fig. 4. Scatter plots of subjective scores versus predicted scores of different metrics on LIVE database. 

Fig. 4 shows the fitting results of the nine metrics on LIVE database. A good quality metric 
is expected to produce a fitting curve with sample points gathering closely around it. It is 
observed from Fig. 4 that BRISQUE, CORNIA and the proposed GRID produce better fitting 
results than the other metrics. Furthermore, the fitting result of GRID is slightly better than 
those of BRISQUE and CORNIA.  

Based on the fitting results, PLCC, RMSE and SRCC can be calculated based on equations 
(7)-(9). Tables 6-8 summarize the experimental results. In the tables, the results on each 
distortion type as well as the overall performance are listed, and the best two results are 
marked in boldface. 
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Table 6. Performances in terms of PLCC on LIVE database. 
Metric JP2K JPEG WN GB FF All 

BIQI [17] 0.9270 0.9631 0.9928 0.9613 0.8197 0.9219 
DIIVINE [18] 0.9267 0.8041 0.9913 0.9600 0.8741 0.8443 

BLIINDS-II [19] 0.9352 0.9471 0.9654 0.9175 0.8453 0.9144 
BRISQUE [20] 0.9553 0.9866 0.9926 0.9720 0.9352 0.9670 

NIQE [21] 0.9261 0.9514 0.9763 0.9433 0.8792 0.9020 
SSEQ [22] 0.9222 0.9460 0.9812 0.9376 0.8704 0.8925 

CORNIA [23] 0.9684 0.9750 0.9823 0.9856 0.9545 0.9691 
QAC [36] 0.8648 0.9435 0.9180 0.9105 0.8248 0.8625 

GRID 0.9736 0.9834 0.9933 0.9771 0.9455 0.9735 
 

Table 7. Performances in terms of RMSE on LIVE database. 
Metric JP2K JPEG WN GB FF All 

BIQI [17] 9.4604  8.5675  3.3598  5.0897  16.3154  10.5832  

DIIVINE [18] 9.4794  18.9345  3.6818  5.1691  13.8372  14.6397  

BLIINDS-II [19] 8.9341  10.2213  7.2910  7.3470  15.2184  11.0587  

BRISQUE [20] 7.4622  5.1958  3.3897  4.3370  10.0873  6.9641  

NIQE [21] 9.5169  9.8124  6.0537  6.1307  13.5714  11.7949  

SSEQ [22] 9.7572  10.7414  5.3965  6.4237  14.0245  12.3245  

CORNIA [23] 6.2929  7.0799  5.2334  3.1236  8.4940  6.7445  

QAC [36] 12.6665  10.5550  11.0981  7.6359  16.1059  13.8259  

GRID 5.7854 5.7635 3.5623 3.8725 9.2315 6.3204 
 

Table 8. Performances in terms of SRCC on LIVE database. 
Metric JP2K JPEG WN GB FF All 

BIQI [17] 0.9221  0.9547  0.9903  0.9545  0.8199  0.9198  
DIIVINE [18] 0.9185  0.8141  0.9878  0.9581  0.8586  0.8560  

BLIINDS-II [19] 0.9299  0.9471  0.9597  0.9103  0.8348  0.9115  
BRISQUE [20] 0.9464  0.9816  0.9911  0.9744  0.9254  0.9654  

NIQE [21] 0.9186  0.9412  0.9718  0.9328  0.8635  0.9062  
SSEQ [22] 0.9213  0.9275  0.9815  0.9246  0.8602  0.8970  

CORNIA [23] 0.9612  0.9691  0.9730  0.9827  0.9486  0.9706  
QAC [36] 0.8621  0.9362  0.9508  0.9134  0.8231  0.8683  

GRID 0.9680  0.9759  0.9907  0.9751  0.9369  0.9722  

It is observed from Tables 6-8 that the proposed GRID outperforms BIQI, DIIVINE, 
BLIINDS-II, NIQE, SSEQ and QAC, in all kinds of distortion types. For JPEG and WN, 
BRISQUE produces slightly better results than GRID. For GB and FF, CORNIA produces 
slightly better results than GRID. For all distortions, the PLCC and SRCC values of the 
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proposed method are always among the top two. Furthermore, the overall performance of the 
proposed method is advantageous over all these state-of-the-art metrics. Therefore, the 
proposed method achieves the best performance on LIVE database. 

3.3 Cross-database Evaluation 
For learning-based image quality models, it is important to test the generalization ability, i.e., 
training the model in one database and testing it in other databases. In this experiment, the 
model is first trained using the whole LIVE database. Then the trained model is used to test the 
performances of the proposed method on TID2008, TID2013 and CSIQ databases. For the 
compared learning-based metrics, their models are also trained using the whole LIVE database 
so that the results are fair for comparison. In order to evaluate the overall performnaces, the 
average results across the three databases are also computed, including the direct average and 
database-size-weighted average. Tables 9-11 show the cross-database performances, where  
the best two results are marked in boldface.  
 

Table 9. Performances in terms of PLCC on TID2008, TID2013 and CSIQ databases. 

Metric TID2008 
(400 images) 

TID2013 
(500 images) 

CSIQ 
(600 images) 

Direct 
Average 

Weighted 
Average 

BIQI [17] 0.7370 0.7772 0.8225 0.7789 0.7846 

DIIVINE [18] 0.7532 0.7859 0.8543 0.7978 0.8045 

BLIINDS-II [19] 0.8613 0.8354 0.9026 0.8664 0.8692 

BRISQUE [20] 0.8801 0.8701 0.9245 0.8916 0.8945 

NIQE [21] 0.7978 0.8075 0.8886 0.8313 0.8374 

SSEQ [22] 0.8706 0.8611 0.8870 0.8729 0.8740 

CORNIA [23] 0.8916 0.8901 0.9251 0.9023 0.9045 

QAC [36] 0.7948 0.8051 0.8736 0.8245 0.8298 

GRID 0.9095 0.9131 0.9104 0.9110 0.9111 
 

Table 10. Performances in terms of RMSE on TID2008, TID2013 and CSIQ databases. 

Metric TID2008 
(400 images) 

TID2013 
(500 images) 

CSIQ 
(600 images) 

Direct 
Average 

Weighted 
Average 

BIQI [17] 1.0698 0.8777 0.1607 0.7027  0.6421 
DIIVINE [18] 1.0325 0.8798 0.1452 0.6858  0.6267 

BLIINDS-II [19] 0.8416 0.7531 0.1217 0.5721  0.5241 
BRISQUE [20] 0.7516 0.6875 0.1077 0.5156  0.4727 

NIQE [21] 0.9543 0.8228 0.1296 0.6356  0.5806 
SSEQ [22] 0.7788 0.7091 0.1305 0.5395  0.4962 

CORNIA [23] 0.7168 0.6357 0.1073 0.4866  0.4460 
QAC [36] 0.9825 0.8273 0.1375 0.6491  0.5928 

GRID 0.6428 0.6125 0.1169 0.4574  0.4223 
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Table 11. Performance in terms of SRCC on TID2008, TID2013 and CSIQ databases. 

Metric TID2008 
(400 images) 

TID2013 
(500 images) 

CSIQ 
(600 images) 

Direct 
Average 

Weighted 
Average 

BIQI [17] 0.7532 0.7886 0.7975 0.7798 0.7827 
DIIVINE [18] 0.7630 0.7878 0.8284 0.7931 0.7974 

BLIINDS-II [19] 0.8523 0.8165 0.8787 0.8492 0.8509 
BRISQUE [20] 0.8719 0.8472 0.9007 0.8733 0.8752 

NIQE [21] 0.7874 0.7964 0.8717 0.8185 0.8241 
SSEQ [22] 0.8314 0.8078 0.8484 0.8292 0.8303 

CORNIA [23] 0.8866 0.8747 0.8981 0.8865 0.8872 
QAC [36] 0.7980 0.8054 0.8416 0.8150 0.8179 

GRID 0.9005 0.8993 0.8639 0.8879 0.8855 
 
From the results, we know that in TID2008 and TID2013, the PLCC and SRCC values of 

GRID are higher than all the compared metrics. In CSIQ, the performance of GRID is slightly 
worse than CORNIA and BRISQUE. For the weighted results, the proposed method achieves 
the best overall prediction accuracy, while the overall prediction monotonicity is very close to 
CORNIA. It should be noted that the performance of CORNIA is tested using a codebook with 
10,000 dimensions. By contrast,  the dictionary size of the proposed method is only 800, which 
is much smaller than that of CORNIA. This is highly desired in practice, because the proposed 
method requires much less memory during the quality evaluation. From this perspective, the 
proposed method is advantageous over CORNIA. 

 
Fig. 5. Example images, their subjective scores, and objective scores predicted by GRID. Images are 

taken from the TID2008 database.  

Fig. 5 shows six images from the TID2008 database, together with their subjective and 
objective scores predicted by GRID. It is observed that with the increase of subjective scores 
(MOS), the corresponding objective scores (predicted DMOS) decrease accordingly. This 
indicates that the proposed metric can evaluate the qualities of the images consistently with 
human subjective ratings.  
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3.4 Statistical Performance Analysis 
In order to know the statistical significance of the state-of-the-art metrics against the proposed 
method, F-test is conducted [37]. F-test is conducted based on the prediction errors between 
the predicted scores and the corresponding subjective scores. Let the prediction error of a 
compared metric be denoted by 2

Xσ  and that of the proposed method be denoted by 2
GRIDσ , 

then F-score is defined as: 
 

               2 2
X GRIDscoreF ss = .                                                     (10) 

 
The significance of a metric can be determined by comparing scoreF  with a threshold 

criticalF , which is related to a confidence level and the number of images in a database. 
Specifically, if scoreF  is bigger than criticalF , the performance of the proposed method is 
significantly better than the compared metric. If scoreF  is smaller than 1 criticalF , the 
performance of the proposed method is significantly worse than the compared metric. 
Otherwise, their performances are competitive. In this paper, the confidence level is set to 99%, 
and the thresholds of criticalF  are 1.1802, 1.2095, 1.2624 and 1.2317, respectively for LIVE, 
CSIQ, TID2008 and TID2013 databases.  

 

 
(a) LIVE                                                                  (b) CSIQ 

  
(c) TID2008                                                               (d) TID2013 

Fig. 6. F statistics of the compared metrics against GRID on four databases. 
 
The results of F statistics are shown in Fig. 6 and Table 12. In Table 12, “1” indicates that 

the performance of GRID is significantly better than the compared metric, and “0” indicates 
that performance of a compared metric is competitive to GRID. It is observed from Fig. 6 that 
in LIVE, TID2008 and TID2013, the values of the bars are all higher than 1, which indicates 
that the compared metrics all produce bigger prediction errors than the proposed method. In 
CSIQ, only BRISQUE and CORNIA produce slightly smaller prediction errors than the 
proposed method. From Table 12, we know that the performance of GRID is significanly 
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better than BIQI, DIIVINE, BLIINDS-II, BRISQUE, NIQE, SSEQ and QAC in LIVE, 
TID2008 and TID2013 databases. In CSIQ database, the performances of BLIINDS-II, 
BRISQUE, and CORNIA are competitive to GRID, and GRID significantly outperforms  
BIQI, DIIVINE, NIQE, SSEQ and QAC. From this experiment, we know that the statistical 
performance of GRID is similar to CORNIA, and it is significanty better than the other 
state-of-the-arts. As aforementioned, CORNIA needs a 10,000-dimensional codebook for 
image representation, and the proposed method uses an 800-dimensional dictionary, which is 
much smaller. This indicates that the proposed method does not require too much memory in 
implementation, which is desired in real applications. From these results, we can conclude that 
the proposed method outperforms the state-of-the-art general-purpose NR quality metrics.  
 

Table 12. Statistical significance of the state-of-the-art metric against the proposed method. 
Metric LIVE TID2008 TID2013 CSIQ 

BIQI [17] 1 1 1 1 

DIIVINE [18] 1 1 1 1 

BLIINDS-II [19] 1 1 1 0 

BRISQUE [20] 1 1 1 0 

NIQE [21] 1 1 1 1 

SSEQ [22] 1 1 1 1 

CORNIA [23] 0 0 0 0 

QAC [36] 1 1 1 1 

3.5 Impact of Dictionary Size 
In this part, we investigate the impact of dictionary size on the performance of the proposed 
method. For comparison, we also provide the results of CORNIA, which is also a feature 
learning-based general-purpose NR quality metric with the state-of-the-art performance. In 
this experiment, the dictionary sizes are 200, 400, 800, 1200, 2500, 5000 and 10000, 
respectively. Fig. 7 shows the experimental results in terms of PLCC and SRCC on the LIVE 
database. 
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Fig. 7. Impacts of dictionary sizes on GRID and CORNIA (on LIVE database). 
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It is observed from Fig. 7 that for both methods, their performances improve with the 
increase of dictionary size. For the proposed GRID, its performance improves rapidly with the 
increase of dictionary size, and the best performance can be achieved when a small dictionary 
(around 800) is used. By contrast, the performance of CORNIA improves slowly with the 
dictionary size, and the best perofrmance is achieved when the distionary size is 10000. 
Therefore, the proposed method can produce very promising results with a small dictionary, 
but CONRIA requires a very large dictionary to produce satisfactory result.  In this paper, an 
800-dimensional dictionary is used in the proposed method. This further demonstrates that the 
proposed gradient-induced dictionary is more effective in representing quality-related image 
structures, thus facilitate image quality assessment. 

3.6 Computational Complexity 
For NR-IQA metrics, computational complexity is important, especially for real-time 
applications. In this part, we evaluate the computation costs of the proposed method and the 
state-of-the-art metrics. To be specific, the average time for generating the quality score of an 
image from the LIVE database is computed and used for measuring the computational 
complexity. This experiment is conducted on a 64-bit workstation with 8 Intel Xeon 3.7GHz 
CPUs and 8.0 GB RAM. The experimental results are listed in Table 13. 
 

Table 13. Average computational time for generating quality score of an image in LIVE database. 
Metric BIQI [17] DIIVINE [18] BLIINDS-II [19] BRISQUE [20]  

Time (s) 0.4080 19.9023 103.0710 0.1652  
Metric NIQE [21] SSEQ [22] CORNIA [23] QAC [36] GRID 

Time (s) 0.2469 1.3773 2.8240 0.0858 0.3108 
 
It is observed from Table 13 that QAC [36] is the fastest method, followed by BRISQUE 

[20] and NIQE [21]. The computational complexity of the proposed method ranks the fourth, 
and it is faster than the remaining metrics. DIIVINE [18] and BLIINDS-II [19] are very time 
consuming, which are mainly due to the feature extraction stages. The computational cost of 
CORNIA [23], another feature learning-based metric with competitive performance, is about 
nine times higher than the proposed method. From these results, we know that the complexity 
of the proposed method is low.  

3.7 Performances on Multiply-Distorted and Contrast-Changed Images 
The performance of the proposed method is further tested on two multiply-distorted image 

databases and a contrast-distorted  image database, namely LIVE Multiply-Distorted image 
database (LIVEMD) [38], Multiply-Distorted Image Database (MDID2014) [39] and 
Contrast-Changed Image Database (CCID2014) [40]. Table 14 lists the experimental results 
and comparisons with the general-purpose NR metrics.  

It is observed from Table 14 that the proposed method performs well on multiply distorted 
images. Specifically, among the 9 metrics, the proposed method ranks the second on LIVEMD 
database, and on MDID2014 it ranks the third. In LIVEMD, the images are distorted by either 
“blur and JPEG compression” or “blur and white Gaussian noise”. In MDID2014, the images 
are simultaneously distorted by blur, JPEG compression and noise injection. Since these 
distortions have been considered when training our quality model, the proposed method can 
efficiently evaluate the quality of multiply-distorted images in LIVEMD and MDID2014. 
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Table 14. Performances in terms of PLCC on LIVE MD, MDID2014 and CCID2014 databases. 
Database LIVE MD [38] MDID2014 [39] CCID2014 [40] 
Criterion PLCC SRCC PLCC SRCC PLCC SRCC 
BIQI [17] 0.7389 0.6109 0.3369  0.3108  0.1589 0.1692 

DIIVINE [18] 0.7183 0.6585 0.3707  0.4248  0.3346 0.2956 
BLIINDS-II [19] 0.2370 0.2503 0.2221  0.2057  0.5561 0.4014 
BRISQUE [20] 0.6049 0.6003 0.5901  0.5960  0.3574 0.2118 

NIQE [21] 0.8377 0.7725 0.5634  0.5446  0.4307 0.3655 
SSEQ [22] 0.3699 0.3021 0.4762  0.4349  0.3686 0.2908 

CORNIA [23] 0.8676 0.8298 0.7727  0.7819  0.1453 0.2088 
QAC [36] 0.3764 0.3579 0.1732  0.2270  0.3072 0.1451 

GRID 0.8389 0.8106 0.5657  0.5829  0.1369 0.1304 
 
Another observation from Table 14 is that the proposed method is not effective in 

evaluating the quality of contrast-distorted images. This is mainly because that when training 
our quality model, contrast-distorted images are not included. By including contrast-distorted 
images in the training the quality model, the performance on CCID2014 database can be 
improved. It should be noted that almost all of the tested quality metrics perform bad on 
CCID2014 database.  

4. Conclusion 
In this paper, we have presented a new general-purpose NR image quality metric based on 
feature learning. A gradient-induced dictionary, trained from gradients of natural images, is 
adopted to represent images and generate the feature vectors for quality assessment. The 
proposed method is a two-stage approach, which consists of distortion classification and 
distortion-specific quality assessment. Euclidean-norm coding and max-pooling have been 
adopted to generate image features using the dictionary. We have evaluated the performance 
of the proposed method on four popular image quality databases and compared it with the 
state-of-the-art general-purpose NR quality metrics. Experimental results have demonstrated 
that our method outperforms the state-of-the-art metrics with a relatively small dictionary and 
low computational cost. We have also tested it on multiply-distorted image databases, and 
very promising results are obtained. 

 In this work, the proposed method operates on gray-scale images. This means that for 
color images, they must be converted into gray scale before quality evaluation. In real-world 
scenarios, almost all images are in color format and color distortions also have significant 
influence on the perceived quality. Incorporating color in image quality modeling is expected 
to produce quality scores more consistent with subjective evaluations. Quaternion-based color 
image processing has attracted extensive attention recently [41]. As future work, we will try to 
incorporate quaternion-based color processing in image quality assessment. 
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