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Abstract 
 

The several noise level estimation algorithms that have been developed for use in image 
processing and computer graphics generally exhibit good performance. However, there are 
certain special types of noisy images that such algorithms are not suitable for. It is particularly 
still a challenge to use the algorithms to estimate the noise levels of complex textured 
photographic images because of the inhomogeneity of the original scenes. Similarly, it is 
difficult to apply most conventional noise level estimation algorithms to images rendered by 
the Monte Carlo (MC) method owing to the spatial variation of the noise in such images. This 
paper proposes a novel noise level estimation method based on histogram modification, and 
which can be used for more accurate estimation of the noise levels in both complex textured 
images and MC-rendered images. The proposed method has good performance, is simple to 
implement, and can be efficiently used in various image-based and graphic applications 
ranging from smartphone camera noise removal to game background rendition. 
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1. Introduction 

Noise level estimation is an important aspect of image processing. This is because of the 
inevitability of noise generation during the acquisition of image data and the processing and 
transmission of the image. Various denoising-based noise estimation algorithms have thus 
been developed. With respect to the adopted denoising approach, such algorithms can be 
classified chronologically into four groups, namely, filter-based, block-based, patch-based, 
and transform-based algorithms. In filter-based algorithms [1][2][3][4], low-pass filtering is 
used to blur the noisy image to suppress its structure. A difference image is then generated by 
subtracting the filtered image from the original one, and the difference is used to estimate the 
noise level. In the block-based algorithms, the image is partitioned into a sequence of blocks, 
and the noise level is estimated by calculating the weighted noise level, namely, the average of 
the noise levels of the most homogeneous blocks [5][6][7]. Incidentally, a hybrid algorithm 
that combines the methods of the two preceding algorithms has also been proposed [8][9]. In 
the patch-based algorithms [10][11][12], principle component analysis (PCA) is used to divide 
the noisy image into strongly textured and weakly textured patches. The main idea is to use the 
weakly textured patches in the noisy image to estimate the noise level. In the transform-based 
algorithms [13][14][15], singular value decomposition (SVD) is used to separate the noise 
from the image. The noise level can then be easily estimated in the SVD domain using the 
artificial noise addition technique.  

However, it is difficult to use these algorithms to accurately determine the noise level in 
complex textured images. This is because such images do not contain sufficient homogeneous 
regions from which the noise can be easily extracted. Moreover, the algorithms cannot be 
easily used to estimate the noise level in computer graphics. Generally, Monte Carlo (MC) 
rendering can be better used to generate photorealistic images compared to other rendering 
techniques. However, the low sampling rate of MC rendering causes noise contamination of 
the image. Moreover, most of the powerful denoising algorithms used for image processing 
can only handle spatially invariant noise, which is noise that does not globally change across 
the image. This makes them unsuitable for MC-rendered images, which often contain local 
and spatially varying noise. Nevertheless, an algorithm for estimating spatially invariant noise 
has been successfully used to denoise MC-rendered images [16]. This involves, firstly, 
accurate determination of the noise level standard deviation in every local region of the noisy 
image. This requires segmentation and localization of the noise because of its spatial variation 
[17]. Subsequently, multilevel spatially invariant denoising is performed on the entire image 
using a small set of noise parameters. Finally, the noise-free image is produced by combining 
the results for the different segments. The method is a post-process filtering method wherein a 
sample image is first generated by MC rendering, and then denoised. 

This paper proposes a noise level estimation method based on histogram modification in a 
correlated color space. The proposed method is robust and applicable to difficult noise 
estimation environments such as in complex textured images or MC-rendered images. The 
method may be used to reduce noise-induced streak artifacts by filtering prior to 3D 
reconstruction [18][19][20], and also to improve the quality of 3D game backgrounds [21].  

The rest of this paper is organized as follows. Section 2 offers a detailed description of the 
proposed noise level estimation algorithm. Section 3 presents the results of a computer 
simulation of the application of the proposed method, and compares the results with those of 
certain representative noise estimation methods currently in use. Finally, the conclusions of 
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the study are presented in Section 4. 

2. Proposed Noise Level Estimation Algorithm 
This section will first address the drawbacks of current methods for estimating the noise level 
in digital images. How the proposed method is used to overcome these drawbacks will then be 
discussed. 
 

2.1 Categorization of Images 
Image noise is generally regarded as zero mean additive white Gaussian noise with an 
unknown standard deviation. The standard deviation is considered as a good representation of 
the noise level, and most conventional methods were designed to estimate it. Usually, the 
standard deviation of the noise in an image is estimated by considering the homogeneous 
regions of the image. This is because any fluctuation in the image intensity in such regions is 
mainly caused by noise. The various conventional methods used to estimate the noise standard 
deviation generally involve the following steps: 
 

Step 1: Detection of the homogeneous regions in the noisy image. (As implied earlier, this is 
because the fluctuations in the flat area pixels are supposed to be exclusively due to 
noise.) 

Step 2: Computation of the local standard deviation in the detected homogeneous regions. 
Step 3: Repetition of steps 1 and 2 until the entire image has been processed. 
Step 4: Estimation of the noise level (or standard deviation of the noise) by averaging the 

computed local standard deviations. 
 

This procedure has two major drawbacks. Firstly, if the homogeneous (or flat) regions in the 
noisy image are too small, their detection would be difficult, and an insufficient number of 
detected homogeneous regions may result in overestimation or underestimation of the noise 
level. Secondly, the process of detecting the homogeneous regions requires a high number of 
computations. Incidentally, the detection of the non-homogeneous regions in an image and 
using such to estimate the noise level is highly unreliable. These drawbacks originate from the 
fact that most conventional noise estimation methods presuppose the existence of many 
homogeneous regions in the image. Towards solving this problem, we categorized noisy 
images into the three following types: 
 

1. Homogeneous images: contain many homogeneous (flat) regions.  
2. Complex textured images: the original noise-free images have very complex 

structures, the local fluctuations of which make it difficult to detect the homogeneous 
regions. 

3. MC-rendered images: contain spatially varying noise due to the low sampling rate 
during the generation of the image.  
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(a)                                        (b)                                              (c) 

 
(d)                                        (e)                                              (f) 

Fig. 1. Three types of images: (a) homogeneous image, (b) complex textured image, and (c) 
MC-rendered image. Also shown are the homogeneous regions of the (d) homogeneous image, (e) 

complex textured image, and (f) MC-rendered image. 
 

Fig. 1 shows examples of the three different types of images based on the homogeneity and 
spatial variation of the noise.  There are homogeneous regions in Figs. 1(a), (b), and (c), but 
those in Figs. 1(b) and (c) are not easy to detect by conventional methods. Fig. 1(c) 
particularly contains spatially variant noise. Figs. 1(d), (e), and (f) show the homogenous 
regions detected by a block-based algorithm; the violet blocks in each image indicate the 
detected regions. As can be seen from Figs. 1(e) and (f), the complex textured and 
MC-rendered images do not contain sufficient homogeneous regions for estimation of their 
noise level. As noted earlier, traditional high-performance noise level estimation algorithms 
generally used for homogeneous-type noisy images are not suitable for accurate determination 
of the noise level in these two special types of images. 
 

2.2 Proposed noise level estimation algorithm 
This subsection describes how the proposed noise estimation method is used to overcome the 
drawbacks of conventional noise estimation methods. The proposed method utilizes histogram 
compression of the image intensity to exploit the correlation among the R, G, and B 
components of the noisy colored image regardless of the number of its homogeneous regions. 
The best means of accurately determining the noise level in an image is to make the image 
homogeneous without affecting its noise deviation. In other words, if the variance in the 
original noise-free image can be suppressed without changing the noise deviation in the noisy 
image, it would be possible to more accurately estimate the noise level from the suppressed 
noisy image. 
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Fig. 2. Acquisition of colored digital image  

 
Fig. 2 shows the structure of the current digital image acquisition system. Most digital 

images today are colored and each pixel of the image has red (R), green (G), and blue (B) 
components, and an RGB color model is mainly used for their processing for denoising [22]. 
Each RGB component of a colored image may be corrupted by noise due to faulty image 
sensors, environmental interference, and faulty communication. The noise tends to have a 
Gaussian distribution in a digital image acquisition system and can thus be modeled by a white 
Gaussian noise with the same standard deviation σW  [23]. To reduce the correlation among the 
RGB components, a conversion from the RGB color space to a YUV color space is 
implemented using the following: 

 
Yi (Luminance) = 0.3Ri + 0.6Gi + 0.1Bi 
Ui (Chrominance1) = Bi - Yi 
Vi (Chrominance2) = Ri – Yi 

 
However, if the noise components are uncorrelated in the RGB space, they will be 

correlated in the YUV space. The noise components and RGB components are independent of 
each other and are thus uncorrelated in the RGB space. However, a linear operation such as 
histogram modification in the YUV space may affect the uncorrected RGB components and 
the correlation of the noise components. Histogram compression, which is one of several 
histogram modification methods, is useful for suppressing the deviation of the RGB 
components without affecting the deviation of the noise components.  

In the fields of image processing and computer graphics, noise is generally modeled with a 
Gaussian distribution, and the noisy image Y is typically expressed as  

 
                                                             Y = X + W                                                                              (1) 

Noisy Image Orginal Image 

Dichroic 
Mirros 

Color filter 

R – channel : X
R
 + W

R
 

G – channel : X
G
 + W

G
 

B – channel : X
B
 + W

B
 

     (σ
WR 

=
 
σ

WG 
= σ

WB 
) 

X = 0.3X
R
 

      + 0.6X
G
 

      + 0.1X
B
 

Y = 0.3(X
R 

+ W
R
) 

    + 0.6(X
G 

+ W
G
) 

    + 0.1(X
B 

+ W
B
) 

X Y 



386                                   I-Gil Kim : Estimation of Noise Level in Complex Textured Images and Monte Carlo-Rendered Images 

 
where X represents the original noise-free image and W is the additive white Gaussian noise, 
which has a standard deviation σ that is constant for all the pixels of the image. As can be seen 
from Fig. 3, the main difference between a complex textured image and an MC-rendered 
image is that the noise in the latter is spatially variant. 

 

 
 

Fig. 3. Noises in complex textured and MC-rendered images 
 

A noisy image Y has red (R), green (G), and blue (B) components in the RGB color space, 
and there is some correlation among these RGB components in other color spaces such as the 
YUV space: 

 
Y = αYR + βYG + γYB             

= α (XR + WR) + β(XG + WG) + γ(XB + WB)                                (2) 
                                                  

where the variable subscripts indicate the RGB components, and the coefficients α, β, and γ are 
the correlation parameters. Because X and W are independent of each other, the variations of Y 
and X are related as follows: 

 
σY

2 = σX
2 + σW

2                                                            (3) 
 

Modification of the histogram of the noisy image Y using (1) gives 
 

Z = aY - b                                                                                             (4) 
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= Y – ((1 – a)Y + b) = Y – T                                                         
                                                = αYR + βYG + γYB  – (α + β + γ )T                                                (5) 
 

where Z is the histogram-modified noisy image, and T = ( 1 – a)Y + b. If α + β + γ = 1, (5) can 
be rewritten as  

 
                             Z = α(YR – T) + β(YG – T) + γ(YB – T),  if α + β + γ = 1                                  (6) 
 
From (5) and (6), the R component of Z, ZR, can be expressed as follows:    
 

ZR  = YR – T = XR + WR – (1 – a)Y – b  
= XR + WR – (1 – a)(X + W) – b 
= [XR – (1 – a)X – b] + [WR – (1 – a)(αWR + βWG + γWB)] 

 
If a and b in the histogram modification equation (4) have values of 0.01 and 128, 

respectively, the term (1 − a) can be approximated to 1. Compression of the histogram thus 
gives 

 
ZR ≈ (XR – X – 128) + ((1 – α)WR – βWG – γWB) = P + Q                                  (7) 

 
where P = XR – X – 128, and Q = (1 –  α)WR – βWG – γWB. Hence, ZR can be divided into RGB 
component term P and noise term Q. From (4), using a = 0.01, the variance relationship 
between Z and Y is   

 
σZ

2 = 0.01σY
2     σZ

2 <<  σY
2                                                     (8) 

   
Equation (8) indicates that the variation of Y is much higher than that of Z, and the 

deviations of the R components of Y and Z vary similarly. From (2), (3), and (7), we have 
 

σZR
2 << σYR

2 ↔ σP
2 + σQ

2 << σXR
2 + σW

2  
↔ σP

2 + (1 - α)2σWR
2 + β2σWG

2 + γ2σWB
2 << σXR

2 + σW
2        (9) 

 
Because the standard deviations of a white Gaussian noise are the same (σW  = σWR = σWG = 

σWB), (9) becomes 
                                          σP

2 + ((1 – α)2 + β2 + γ2)σW
2 << σXR

2 + σW
2   

 
If (1 – α)2 + β2 + γ2 =1, the noise term σW

2 can be eliminated by approximation. Hence,  
 

σP
2  << σXR

2   and    σQ  ≈ σW                                               (10) 
 
The variance relationship (8) thus becomes  
 

σZR
2 = σP

2 + σQ
2 ≈ σP

2 + σW
2                                                 (11) 

 
Equations (10) and (11) indicate that the standard deviation of the R component is 

suppressed by histogram compression in the converted color space, whereas the standard 
deviation is not suppressed. To summarize, after the histogram compression of a noisy image, 
if the following two conditions of the correlation parameters of the RGB components are 
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satisfied, the deviation of the original noise-free image can be suppressed without affecting the 
deviation of the contaminated white Gaussian noise:   

 
α + β + γ = 1 , (0 < α, β, γ < 1)                 
(1 – α)2 + β2 + γ2 = 1 

 
The application of the proposed noise level estimation method involves the following steps: 
 

Step 1: Histogram compression of the intensity of the noisy image. 
Step 2:  Detection of the homogeneous regions in the image after performance of step 1. The 

homogeneous blocks can be detected by local standard deviations that are less than a 
given threshold value. 

Step 3:  Estimation of the noise level based on the detected homogeneous regions. The 
estimation is done by averaging the local standard deviations of the detected 
homogeneous blocks, or identifying the most frequent local standard deviation by 
histogram approximation. 

3. Experimental Results and Analysis 

3.1 Graphical Analysis 
The proposed method can be better understood by more clearly visualizing the effect of 

histogram compression using a graphical analysis based on the correlation among σX, σY, and 
σW in (3). The correlation is illustrated in Fig. 4, where the value of σY  for each pixel of the 
noisy image is given by the distance from the origin, as determined by the Pythagoras 
relationship between σX  and  σY.  Each blue point defines the relative local standard deviations 
σX, σY, and σW of the 3×3 blocks of the R components.  Even if  σX and σW are unknown in a 
given noisy image, the local standard deviation σX can be determined before the noise level σW 
is added to the original noise-free image. Closeness of the blue points to the vertical axis 
indicates homogeneity of the local blocks of the points, including in the homogeneous regions 
in the noisy image. The homogeneous blocks in Fig. 4 are many because the noisy image is 
homogeneous, for which reason there are also many blue points near the vertical axis.    

 
Fig. 4.  Correlation among σX, σX, and σW.  Each blue pixel in the right panel defines the relative local 

standard deviation of a 3×3 block. 
 

However, the results of this graphical analysis may differ for the three types of images 
mentioned in the previous section.  In the cases of complex textured and MC-rendered images, 
most of the blue points may be farther from the vertical axis. Fig. 5 shows the results of the 
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graphical analysis for the three different types of images, as well as the effects of the histogram 
compression on the R components. The red boxes indicate where the local blocks of the blue 
points are homogeneous. In the cases of the complex textured and MC-rendered images, there 
are very few homogeneous blocks, and it is not easy to detect the homogeneous regions by 
conventional noise estimation methods. However, after histogram compression, σX can be 
suppressed without affecting the distribution of σW in all three types of images. Moreover, the 
compression increases the number of points in the red box for the complex textured and 
MC-rendered images. In other words, histogram compression increases the homogeneous 
regions in a noisy image. 

 
(a) 

 
(b)  

 
(c) 

Fig. 5.  Graphical analysis of the results of histogram compression: (a) homogeneous image, (b) 
complex textured image, (c) MC-rendered image 

 
Another means of illustrating the effect of histogram compression is to compare the local 
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noisy image Y, and the image W with added white Gaussian noise, respectively. The 
Comparisons are done in Fig. 6. In Figs. 6(a) and (b), it is apparent that the local standard 
deviation of the original noise-free image σX can be suppressed by histogram compression. 
However, the compression does not affect the local standard deviations of the white Gaussian 
noise. In the case of the MC-rendered image in Fig. 6(c), histogram modification appears to 
strengthen the localization of the scene details. This enables easy detection of spatially variant 
noise using local noise level estimation algorithms. 
 

 
(a) 

 
(b) 
 

 
(c) 

Fig. 6. 3D graphical analysis of (a) homogeneous image, (b) complex textured image, and (c) 
MC-rendered image 
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3.2 Experimental Results 
The results of the proposed algorithm were compared with those of four other algorithms 
representative of block-based [6], hybrid (filter- and block-based) [8], SVD [11], and PCA 
algorithms [14], respectively. Thirty test images were used, comprising homogenous images, 
complex textured images, and MC-rendered images. Examples of the images are shown in Fig. 
7. To evaluate the performance of each algorithm, the estimation error Ek = |σn – σe| was 
calculated for different noise levels between 0 and 20 (increments of 1). The estimation error 
Ek is the difference between the true and estimated noise levels, and the average value for each 
group of images was calculated. Fig. 7 compares the performance results for the three groups 
of test images. As can be observed, the conventional noise level estimation algorithms 
performed well because there were many homogeneous regions. However, underestimation or 
overestimation began to appear at low and high noise levels. Conversely, the proposed 
algorithm performed well and better at both low and high noise levels. In the cases of the 
complex textured and MC-rendered images, as shown in Figs. 7(b) and (c), the conventional 
algorithms overestimated at low noise levels and underestimated at high noise levels. However, 
the proposed algorithm maintained its good performance. The estimation error of the proposed 
algorithm was confirmed to be lower than those of the other noise level estimation algorithms 
for all noise levels and all three image types. The proposed noise level estimation method is 
thus significantly better for complex textured and MC-rendered images. 

 
(a) 

 
(b) 

Block-based 
Filter+Block 
PCA 
SVD 
Proposed 

Block-based 
Filter+Block 
PCA 
SVD 
Proposed 

noise level 

 M
ea

n 
of

 a
bs

ol
ut

e 
er

ro
r (

ho
m

og
en

eo
us

 Im
ag

es
) 

noise level 

 

M
ea

n 
of

 a
bs

ol
ut

e 
er

ro
r (

Co
m

pl
ex

 T
ex

tu
re

 Im
ag

es
) 

 



392                                   I-Gil Kim : Estimation of Noise Level in Complex Textured Images and Monte Carlo-Rendered Images 

 
(c) 

Fig. 7. Comparison of the results of various noise level estimation algorithms for (a) homogeneous 
images, (b) complex textured images, and (c) MC-rendered images 

 
The peak signal-to-noise ratios (PSNRs) of the restored images were measured using the 

proposed method, conventional noise estimation methods, and the general bilateral filtering 
method. Table 1 summarizes the results. As can be seen, the proposed method produced better 
PSNR gains compared to the other methods for all three types of the test images.  
 

Table 1. PSNR of the test images 
 

Image type 
PSNR (dB) 

Block-based Filter + Block PCA SVD Proposed 
Homogeneous 34.3265 34.5678 34.3648 34.5876 34.6348 

Complex-Structure 27.7783 27.4972 27.9456 28.0290 28.2095 
MC rendered 28.9424 29.8578 29.2289 29.5327 30.0160 

4. Conclusion 
This paper proposed and described a novel noise level estimation algorithm. The proposed 
algorithm uses histogram modification to suppress the variance in the original noise-free 
image without affecting the noise level. The advantage of the method is that it enables more 
accurate determination of the noise level in complex textured images and images containing 
spatially variant noise, to which current noise level estimation algorithms are generally 
difficult to apply. In addition, the application of the proposed method requires fewer 
computational resources because it is not necessary to detect the homogeneous regions or 
segment the image to strengthen localization. Experimental results confirmed the higher 
accuracy of the proposed method for noise level estimation.  
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