
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, Apr. 2016 1768
Copyright ⓒ2016 KSII

Server Side Solutions For
Web-Based Video

Arkadiusz Biernacki

Institute of Computer Science
Silesian University of Technology

Akademicka 16, 44-100 Gliwice, Poland
E-mail: arkadiusz.biernacki@polsl.pl

Received May 25, 2015; revised September 1, 2015; revised September 30, 2015;
accepted January 10, 2016; published April 30, 2016.

Abstract

In contemporary video streaming systems based on HTTP protocol, video players at the
client side are responsible for adjusting video quality to network conditions and user
expectations. However, when multiple video clips are streamed simultaneously, an intricate
application logic implemented in the video players overlays the TCP mechanism which is
responsible for a balanced access to a shared network link. As a result, some video players may
not obtain a fair share of network throughput and may be vulnerable to an unstable video
bit-rate.

Therefore, we propose to simplify the algorithms implemented in the video players, which
are responsible for the adjustment of video quality and constrain their functionality only to
sending feedback to a server about a state of the player buffer. The main logic of the system is
shifted to the server, which is now responsible for bit-rate selection and prioritisation of the
video streams transmitted to multiple clients.

To verify our proposition, we performed several experiments in a laboratory environment
which show that when the server cooperates with the clients, the video players experience
fewer quality switches and the system achieves better fairness when allocating network
throughput among the video players. However, this comes at the cost of worse utilisation of
network bandwidth.

Keywords: Video streaming, Adaptive Video, HTTP Video, Video scheduling, Multimedia
QoS, QoE

http://dx.doi.org/10.3837/tiis.2016.04.017 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1769

1. Introduction
Throughout the past years, web-based video sharing services such as YouTube, Hulu or
Dailymotion became very popular. YouTube users alone request millions of videos every day.
Consequently, the popularity of this kind of services results in a drastic shift in Internet traffic
statistics, which reports the increase of traffic for web-based video sharing services [1].

Video streaming in the above-mentioned services is either web-based or HTTP-based;
therefore, being transported using TCP. HTTP and TCP are general purpose protocols and
were not primarily designed for streaming of multimedia. Thus, attempts are being made to
adapt the delivery of multimedia content to the Internet environment. One of such attempts
tries to introduce an additional layer of application control to transmitted video traffic. An
application may limit the rate at which data is passed to a network stack for transmission. The
TCP control mechanisms still apply, although the effect of an application control flow may be
reduced if the connection is already limited by a receiver or a congestion window [2].

In the case of multimedia transmission, many HTTP servers limit the data rate by dividing
a file into chunks and writing them into a network socket at fixed time intervals [2][3]. As a
result, TCP is used to transport this traffic, but its transmission rate is controlled by an
application layer. If a video bit-rate is lower than end-to-end available bandwidth, the traffic
characteristics will not resemble a typical TCP flow. Instead, ON-OFF cycles are produced,
where during the ON time, a block of data is transferred at the end-to-end available bandwidth
that can be used by TCP, and during the OFF period, the TCP connection remains idle.

An HTTP server usually transmits multiple streams simultaneously. Such a situation takes
place when, for example, there are several concurrent sessions initiated by clients located
within an Internet service provider (ISP) network as shown in Fig. 1. The clients’ players
compete for bandwidth over the shared access link, which may become a bottleneck if the
bandwidth demand exceeds the link capacity.

On the one hand, on a network level, the capacity assignment is handled arbitrarily by the
control mechanism of TCP. Sometimes, it is possible that streams with similar needs get
strongly different shares of the available capacity. It may take place, for example when there
are differences in the RTT (round-trip time) between a server and the connected clients, what
is a quite common situation. As it was showed in [4], competing streams with higher RTT
times receive poorer bandwidth compared to those with lower RTT. Consequently, video
players located in wireless and mobile networks, which have usually higher RTT, may
struggle with low buffer levels and, in order to prevent play-out interruptions, will be forced to
reduce the quality of video. Moreover, the overlapped ON-OFF cycles produced by the video
players make things worse, for they increase traffic burstiness, which will lead to performance
degradation of the transmission [5].

On the other hand, the application level, the transmission is controlled by video players
which may implement the different logic of pulling video chunks from a server. A video stored
within the chunks have different quality; thus, the client software decides which chunks should
be downloaded, taking into account if network conditions allow to play-out the video at the
requested quality, e.g. by measuring network throughput or by observing a level of the player
buffer. It is said that the video player adjust or adapts video quality to the current network
environment. As it has been observed, multiple clients connected to a single server, left
without control, started competing among each other, what led to different performance issues,
e.g. video streams directed to the players having poorer network conditions were displaced by
those which were directed to the ones located in more favourable network environments [6][7].

1770 Biernacki: Server Side Solutions For Web-Based Video

Furthermore, the strategies implemented in clients’ software responsible for the adjustment of
video quality, i.e. pulling respected chunks from a web server, are beyond any external control.
Therefore, it is quite probable that if an algorithm implemented in a video player aims at
maximisation of video quality, its greedy behaviour will impact other players which employ
more fair strategies. As a result, some users can get a far better quality, compared to the others,
depending solely on a video player they are using.

In order to prevent the above undesirable scenarios, we propose to shift the adaptation logic
from a client to the side of an HTTP server. In our solution, the server has control over an
assignment of video chunks to the client. Thus, instead of pulling the video chunks from the
server by the client, the server pushes the chunks to multiple clients. Similarly to the
pull-based approach, the decision about the allocation of the chunks may be based on the
current network conditions. To simplify the implementation and to keep the number of
parameters at a minimum, in our work the decision is based on the state of the player buffer,
which to a certain extent reflects these conditions. Contrary to the pull-based technique, in
which players keep information about their buffer state only to themselves, in our push-based
approach, the server has global information about all ongoing streaming sessions and buffers
state of their respective receivers. The clients no longer decide about quality and timing of
downloaded video chunks but merely report their buffer state to the server. Thus, we are able
to avoid the scenario where clients implement competing play-out algorithms which try to
outsmart one another. Furthermore, as our experiments will show, the push-based technique
increases fairness among video players and, to a certain extent, stabilises quality of video
transmitted to users.

Fig. 1. Video streaming scenario employing HTTP

2. Traffic control at an application level

2.1 Client-side approach
As it was mentioned, the modern video players implement the technique of video bit-rate switching.
From the technical point of view, the content, which is stored at a web server, is encoded at
different bit-rate levels. Next, an adaptation algorithm selects a video level, which is to be
streamed, based on a state of a network environment or on a state of the video player. In the
former case, the video player estimates how fast the server can deliver video (i.e. the available
capacity), for example by measuring an arrival rate of video data. Then, the player chooses the
video bit-rate which corresponds to the estimated network throughput. In the latter case,
instead of estimating network capacity, the algorithm directly observes and controls the
playback buffer believing that the buffer occupancy reflects the end-to-end system capacity,
including current load conditions of the network [8]. Thus, when the buffer reaches a certain
size for a given quality level, the system is allowed to increase the video bit-rate. Similarly, the
selected video quality is reduced if the buffer shrinks below the threshold. Hence, the quality

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1771

no longer depends directly on bandwidth availability, and during network outages, buffer
under-runs and play-out interruptions may be avoided.
We translated the above idea into pseudo-code presented in Algorithm 1, which will be
exploited for our further analysis and comparisons. The algorithm conserves current video bit
rate q as long as the buffer occupancy b remains within the range denoted by maxB , line 1 and

minB , line 6. This buffer range plays a role of a cushion which absorbs rate oscillations. If the
buffer level reaches either high or low limit, the adaptation algorithm switches the bit-rate up
or down respectively. With the increasing quality, the video bit-rate rises non-linearly,
therefore, it is not practical for the buffer threshold to depend directly on the amount of data
accumulated in the buffer measured in bytes, but rather on the amount of data measured in
video frames, which may be translated into a number of seconds of video preloaded in the
player buffer.

Algorithm 1. Adaptive algorithm for HTTP video based on buffer observation implemented at a

client side

2.2 Server-side approach
The pull-based approach has some drawbacks, mainly concerning fairness and stability of
video quality resulting from competition among video players. In order to overcome these
disadvantages, we propose to shift the play-out logic presented in Algorithm 1 to the server
side, as shown in Fig. 2. This alteration allows us to deal with the problems of unfair sharing
and oscillations of video-bit rates by implementing the Weighted Round Robin (WRR)
scheduler at the server, which will be responsible for management of video chunks. The
players, instead of using network QoS parameters for planning and scheduling the download
of video chunks, merely report to the server a level of their buffers. On the base of this
feedback information, the WRR scheduler decides which clients should be treated with a
priority at a given time and which clients can wait for their service. It is assumed that the
clients send information about their buffers repeatedly with time interval Δt. The clients do not
implement any complex logic except measuring their buffer level; therefore, the
implementation of the client part is trivial.

1772 Biernacki: Server Side Solutions For Web-Based Video

Fig. 2. Based on the client feedback, the server decides on the scheduling of video chunks

The server side logic is based on modified Algorithm 1, which now includes elements of
the WRR scheduler responsible for handling of stream priorities. The logic is split into the
separate algorithms handling two primary conditions: the client reports that its buffer is either
below the specified threshold minB or above the specified threshold maxB .

We start with the short analysis of the Algorithm 2 which tests the former condition in line
1. Assuming that the player is at risk of a buffer under-run, we check in line 2 if it possible to
increase its service priority. In such a situation, the server sends more frequently video chunks
to this particular client than to the others. However, if the priority has been already increased
and apparently it did not help, as the algorithm returned again to line 5, the server tries to
switch the video-bit rate to a lower level. The server repeats these steps as long as the level of
the player buffer is higher than the threshold minB or the client receives the lowest possible
quality of video, simultaneously having privileged status denoted by a higher priority than the
others.

Algorithm 2. Decrease of a video bit-rate by the server.

The latter condition is handled by the Algorithm 3. After discovering in line 1 that the

level of the client buffer exceeds the threshold, the server checks the priority of the client in
line 2. If the priority is high, the server adjusts it to a neutral value, thereby depriving the client
of any special treatment. If the client still reports that its buffer level is above the threshold ,
the algorithm in its next call will try to increase the video-bit rate sent to the client, see line 6.
The algorithm will repeat the above steps as long as either the level of the client buffer does

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1773

not exceed the specified threshold or the client achieves the highest possible video-bit rate or
the server has not enough resources to further increase the video-bit rate.

The proposed scheduling mechanism may be implemented at an HTTP server side or in a
residential gateway as a network throughput manager, which can allocate the throughput for
individual sessions employing a shaping mechanism based on the WRR algorithm. We
assume that the gateway sees all traffic going through, is potentially capable of identifying the
streams belonging to different streaming sessions and takes appropriate actions on them.

Algorithm 3. Increase of a video bit-rate by the server.

3. Previous works
Due to the popularity of web-based video systems, play-out algorithms have became an active
area of research in the last few years. There are many proposition not only of new algorithms,
but also new architectures for whole streaming systems which should improve the
performance of video.

As it has been demonstrated, the classical pull-based approach has drawbacks that occur
particularly when multiple video players compete among themselves for available throughput
needed to transfer video chunks of variable size. The authors of [9] show that inaccurate
measurement of received data results in instabilities of a video play-out and a degradation of
video quality. They attribute the responsibility for this issue to the ON-OFF pattern of traffic
produced by the application layer: even if one video player obtained its fair share sufficiently
during the ON period, it could fail to correctly estimate available bandwidth due to the
overlapped ON periods with the other player. As a consequence, the former player would
switch to a lower rate than the network conditions allow, and network throughput remained
underutilised. The authors of [10] examined a video player competing against an another video
player, and against a long-lived TCP flow. Interestingly, they demonstrated that inaccurate
throughput estimation occurs even when the competing flow does not exhibit the ON-OFF
behaviour. Therefore, some research works, e.g. [11], try to improve the algorithm by
predicting the future bandwidth, while the others, e.g. [8][12][13], propose an algorithm based
on measurement of buffer occupancy. Although, the performance of the later approach has not
been examined to the same extend like in the case of the bandwidth estimation algorithms, the
buffer reactive algorithms perform fine in many cases, but sometimes they have tendency to

1774 Biernacki: Server Side Solutions For Web-Based Video

too frequent oscillation between video bit rates [8]. Thus, there are concepts of more
sophisticated buffer management, e.g. in [14] the authors present an algorithm which
eliminates ON-OFF periods from the traffic through two buffer management states. The
authors claim that the proposed scheme improves fairness in the system by 45% compared to
the conventional adaptive player. Some of the authors propose more elaborate and complex
pull-based strategies, e.g. FESTIVE [15] or PANDA [16] play-out strategies, which take not
only network bandwidth or a player buffer into account, but also consider stability, efficiency
and fairness. In [17], so called network control plane, designed to take into account scalability
and adaptiveness issues, is placed on top of the controlled network. The plane cooperates with
distributed buffer-based adaptation techniques implemented at the clients but does not interact
with a video server.

Some researches see a chance of overcoming the problems with the bit-rate instabilities
and an effective usage of throughput by an engagement of server side mechanisms. For
example, in [7] the authors suggested a traffic shaping method, implemented at home
gateways, to reduce an extent of observed instability and unfairness in competing video
players. Another proposition is a server-based method of traffic shaping that can reduce
oscillations of a video bit-rate received by a player [18]. Liu et al. in [19] follow a similar
approach where the rate is shaped according to the maximisation of a QoE metrics. The
authors of [20] presented a method of video pacing that reduces unnecessary traffic and
simultaneously conserves earlier video quality. In [21], the authors suggested to dynamically
adjusts a segment size of TCP and a number of video streams in order to optimize throughput
of a connection. Another proposal is to locate a traffic shaper between a video server and
users’ players in order to adaptively transform a video bit-rate to current network conditions;
however, this proposition requires a feedback from the players [22]. Finally, in [23] the
authors employ a complex strategy in which the use in-network quality optimization agents
monitoring the available throughput using sampling-based measurement techniques and
optimize QoE of each client. This in-network optimization is achieved by applying centralized
as well as distributed algorithms what requires coordination between a server and clients.

As mentioned, our proposition belongs to the category of push-based systems. The main
contribution of our work is a unique play-out strategy which employs scheduling and
prioritisation mechanisms at a web server what allows for a centralised and active
management of video streams. Furthermore, another advantage over the other mentioned
approaches is that the clients do not have to implement any elaborate play-out algorithms, for
they only report the state of their buffer to a server. The proposed approach improves received
video quality compared to traditional pull-based technique: the video streams experience
fewer quality switches and the whole system achieves better fairness when allocating network
throughput among the video players.

4. Traffic segmentation and scheduling

4.1 Paced streaming
As mentioned earlier, the flow control implemented at the application layer limits the
transmission rate of the video stream by a periodical transfer of video blocks separated by idle
periods. One of the methods used for transferring data blocks is the so-called “Zippy pacing”,
which delays a delivery of a new chunk after the video server finishes sending the former
chunk [24]. Technically, the video content is divided into N chunks, { }Nc,c …1, , where the

duration of chunk ic is id seconds ([s]). At first, the server sends the chunks with no delay

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1775

until the play-out buffer reaches a sufficient amount of video data. After the initial burst
delivery, “Zippy pacing” calculates the pacing delay iδ [s] assuming that it takes iτ [s] for
the video server to finish sending the chunk ic ,

 (1)

where minδ indicates the minimum delay time and should ensure a session fairness. Its
value may be configured, e.g. by a server administrator.

The video server tries to send the next chunk 1+ic , if available network throughput allows,
at the time iδ after the video server completes sending the chunk ic . This transmission
strategy does not require feedback on the client’s part, as the server algorithm alone
determines the parameters of the traffic pattern. Depending on the system, a different length of
the chunks has been observed, e.g. the dominant block size for Flash videos is 64 kB, and 256
kB for HTML5 on the Internet Explorer [3].

4.2 Multiplexed segments
Theoretically, the variable bit rate video additionally streamed with the “Zippy pacing”
algorithm can improve network utilization by exploiting the potential of statistical
multiplexing gains. However, this potential can be diminished when the transmitted video
chunks are not dispersed but overlap in a time domain.

In [2], it was suggested that the ON-OFF pattern of traffic induced by the application logic
is responsible for the packet loss, especially given that no loss was observed during the initial
buffering phase. The application pushes the video block onto the TCP stack, while the
congestion and receive windows are empty by the time the block has been written. As the idle
time prior to writing the block is not long enough for a reduction of the congestion window,
the entire block is transmitted immediately as a burst of packets, and, as a result creating
congestion [25]. Moreover, other competing streams may increase their congestion window in
the interim, further contributing to an overload of the network link. Such short-term
congestions lead to a much higher probability of packet loss and force TCP to reduce the
congestion window what reduces throughput for the video stream.

There is also the problem of a temporal overlap of ON-OFF periods among competing
players. In Fig. 3a, we may see the situation where the ON-OFF periods of the two players are
adjusted randomly and partially overlap. Statistically, without any special scheduling
mechanisms, this is the most common scenario and the players may not estimate in such a
scenario their fair share correctly [9]. Thus, the more desired situation is when the ON periods
do not overlap but are spatially separated, as shown in Fig. 3b. For this purpose, we use the
WRR algorithm which assigns a time slice for every video block in a circular order,
furthermore setting priority to some of the players when needed. The details of this mechanism
are presented in the next section.

1776 Biernacki: Server Side Solutions For Web-Based Video

(a) Random ON-OFF pattern

(b) Round Robin schedule for the ON periods

Fig. 3. Scenarios for the multiplexed ON-OFF periods of two video competing video players

4.3 Scheduling of video segments
Following the notation introduced in Eq. (1), the server now streams data to M players and
every stream is divided into N chunks. We assume that every video chunk ijc has length ijd
where i∈{1..M} and j∈{1..N}. Basically, the chunks in the video stream are treated as virtual
queues, what illustrates Fig. 4. In every turn, the WRR scheduler picks and transfers a single
chunk from the i-th queue. The selected chunk is followed by j+ic 1, until i=M, which denotes
that all the virtual queues completed their turn. Then the transmission starts again from the first
queue and the variables i and j receive new values: 1←i and 1+jj ← . The algorithm
continues as long as there are chunks to be send.

Fig. 4. “Zippy pacing” transmission of multiple video streams employing the WRR scheduling for
video chunks. Depending on the available network throughput, two variants of the transmission are

possible.

The pacing delay ijδ of a chunk is calculated as

 , (2)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1777

where, similarly to Eq. (1), ijτ is time needed by the server to finish sending the chunk ijc .
The video server sends the next chunk j+ic 1, at the time ijδ , after it completes the transfer of

the chunk ijc . The value of minδ is set in our experiments arbitrarily to 0.1 s.
From Eq. (2) we can deduce that two temporal scheduling patterns take place. In the first

case, when the available network bandwidth exceeds the aggregate video bit rate of all the
concurrently transmitted video streams, there are OFF gaps between the transmitted chunks,
see again Fig. 4. In the second case, the available network throughput is lower than the
aggregated video bit rate, and as a result, the second argument in Eq. (2) is taken into account,
i.e. minijij δτd ≤�− . In such circumstances, the transmission of each new chunk will start

every minδ seconds. The transmitted video chunks will overlap with each other and they will
compete for the limited network throughput, leaving no OFF gaps in the multiplexed data
transmission. However, the chunks are still scheduled deterministically; thus, compared to the
randomly adjusted chunks from Fig. 3, the risk of overlapped chunks which are perfectly
aligned due to the control mechanism of a server application, is minimised.

4.4 Prioritisation of video streams
As we previously described, Algorithms 2 and 3 may change the priority of the scheduled
video streams. Technically, when Algorithm 3 sets the priority of the i-th stream to „high”,
the scheduling mechanism sends an additional chunk of data to the respective player, as
presented in line 4 of Algorithm 4. If the priority of the stream is neutral, the scheduler sends
only one chunk of data, line 7. In the case of low priority, no chunk should be sent and the
service of the player should be skipped, line 10. As a result, after introducing the priorities, in
every turn, up to two chunks can be pulled from a virtual queue independently from the other
queues. Therefore, the chunk index now is no longer a global variable but is dependent on the
queue index, i.e. we replace ijc with []iji,c .

Algorithm 4. Prioritisation of video streams

1778 Biernacki: Server Side Solutions For Web-Based Video

In our work, for simplicity, we assumed that the transmission of the streams starts
simultaneously at the same time increased by additional time resulting from chunk scheduling
algorithm. Nonetheless, it is only matter of technical details to allow the described technique
to handle a churn of the streams.

5. Experiments

5.1 Laboratory set-up
In order to capture performance of the examined algorithms, we prepared a test environment
which was able to emulate operating parameters encountered in wire, wi-fi and mobile
networks. The environment consisted of: a web server, video players, a network emulator and
a measurement module implemented in the video player, as shown in Fig. 5.

We implemented the web server in Python using, among others, http.server module. We
extended its functionality by adding a transmission control at the application layer presented in
Algorithms 2, 3 and 4.

As a video player, we chose VLC media player with a web-streaming plug-in [26]. Both
the player and the plug-in have an open-source code, thus, we were able to manipulate and
completely change the adaptation logic without affecting the other components. As a
consequence, the plug-in allowed us to implement and to integrate Algorithm 1 with the
player.

The Linux kernel module netem [27] emulated the network environment. The module is
capable of altering network QoS parameters such as throughput or delay of a network link;
thus, it allowed us to test data transmission in different network environments.

Emulat or of network
environment

Web server

Fig. 5. Laboratory environment employed for the experiments

We transmitted several video files, acquired from [28] and presented in Table 1, through
the laboratory environment with variable network conditions. The bandwidth traces were
obtained from measurements conducted in wire, wi-fi and HSPA networks. For this purpose,
we implemented a custom made analysis tool that transferred data in a fixed, configurable rate
using UDP packets. Every transmitted packet had its sequence number, enabling the receiver
to precisely detect possible packet loss. The packets were sent at a fixed rate, and the packet
reception rate was logged. Because download performance is much more important than
upload performance for a one-way video streaming scenario, all tests measured the download
performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1779

Table 1. Video clips used for the experiments

Name Genre Bitrate levels

Big Buck Bunny
Elephants Dream
Red Bull Playstreets
The Swiss Account
Valkaama
Of Forest and Men

animation
animation
sport
sport
movie
movie

150 kbit/s – 320x240,
300 kbit/s – 480x360,
600 kbit/s – 854x480,
1.2 Mbit/s – 1280x720,
2.5 Mbit/s – 1920x1080

The captured log was used as a template for the bandwidth shaper implemented in the
mentioned earlier netem module. In addition to the bandwidth throttling, the netem module
also adds a delay of 5 ms to wire, 20 ms to wi-fi and 100 ms to HSPA connections to emulate
the average latency which was measured during the gathering of the bandwidth traces.
Furthermore, we used also the bandwidth traces as a source for reproducing packet losses.
Thus, the statistics of the losses and their distribution should mirror the losses in a real network.
In order to obtain desirable, average network throughputs, which were used in the experiments,
the traces were rescaled. Thus, having identical bandwidth traces, we were able to perform a
quite fair and realistic comparison of the pull- and push-based approaches.

We believe that the above-described methodology provides an attractive middle ground
between simulation and real network experiments. To a large degree, the emulator should be
able to maintain the repeatability, reconfigurability, isolation from production networks, and
manageability of simulation while preserving the support for real video adaptive applications.

Using our laboratory environment, we compared the pull- and push-based approaches.
Additionally, we added to the comparison two server-side algorithms presented in [19] and
[18] and mentioned in Section 3, further referred as Liu-Men and Akhshabi respectively. The
parameters of the algorithms are specified in Table 2. In all approaches, we played first 600 s
of every video clips presented in Table 1. Every experiment was repeated five times and its
results are presented as box plots which include information not only about average results of
the experiments but also about their variability.

Table 2. Algorithms and their parameters used in the experiments

Algorithm Parameters

Client side (Algorithm 1) s=Bmin 3 , s=Bmax 7 , skbit=Qmin /150 ,

sMbit=Qmax /2.5

Server side (Alg. 2 & 3)
minB , maxB , minQ , maxQ – as above,

s=ΔT 5
Liu-Men [19] the scenario clients with no grade

Akhshabi et al. [18] the scenario shaped

5.2 Performance measures
The quality of experience (QoE) is defined as the overall acceptability of an application or
service quality perceived by the end-user. The QoE, based on popular methods reflecting

1780 Biernacki: Server Side Solutions For Web-Based Video

human perception, is a subjective assessment of multimedia quality. A user is usually not
interested in performance measures such as packet loss probability or received throughput, but
mainly in the current quality of the received content. However, the quality assessment is
time-consuming and cannot be done in real time; therefore, we concentrate on these
parameters which we believe impact the QoE at most. In this respect, we assess the
performance of the play-out algorithms using the following measures: efficiency, stability,
fairness and bandwidth utilisation.

An adaptive algorithm based on the buffer assessment by its nature will avoid breaks in
video play-out occurring because of an empty buffer. The algorithm will rather decrease the
play-out quality, thus minimising the probability of the buffer under-run and simultaneously
keeping the stalling time at a possible minimum what will lead to relatively low video quality
and poor utilisation of available network bandwidth. Hence, in our work we assess how
effectively the algorithm utilises available network resources by computing a value of the
following formula

 (3)

Eq. (3) computes the relation between the quality level ijq of the chunk ijc (as introduced in
section 4.3) to the theoretical quality level ijq~ which is possible to achieve for the chunk in
given network conditions. The formula is computed and averaged for every player M
connected to the server. The minimum value of the formula is maxmin QQ / if the play-out
quality of every chunk ijc is minQ , although the network conditions allow for the maxQ
quality. The value of the formula can reach one if, and only if, for every chunk ijij q=q ~ .

The play-out algorithm may try to maximise the value of Eq. (3) by adjusting the play-out
quality to given network conditions as frequently as it is possible. Such behaviour will result in
rapid oscillations of video quality, what will be negatively perceived by users [29][30]. For
this reason, we introduce the second measurement, which sums the quality switches of every
player i and then counts their average number for M players connected to the server. We
compute the formula as follows

 (4)

We can imagine a scenario in which one of the players is selfish and demands from the
server, with above average frequency, video chunks of the highest quality. If the player has a
connection of high throughput, the traffic generated by this player will probably dominate the
shared link with other players, pushing aside their traffic. The selfish player may achieve quite
a good efficiency, however at the expense of the other players, especially situated in wireless
environments with less stable link performance. Therefore, we employ Jain’s fairness
index [31]

 (5)

where ijq is an average quality of video played by the i-th player. The result ranges from the worst case

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1781

equal to 1/M, when a single player dominates the others, to the best case equal to one, when all
users receive the same quality.
Finally, we investigate how the proposed solution influences network recourses. For this
purpose, we compute utilisation of network bandwidth as

utilisation = traffic / (bandwidth ∙ interval), (6)

where traffic is an number of bytes sent through the network in a given time interval interval,
which is set to 1 s.

6. Results
We start our experiment with a transient analysis of a scenario with M=24 players divided
equally into three groups. The players, which belong to these three groups, are located in wire,
wi-fi or wireless mobile networks respectively. Every player has a link with throughput up to
about 6000 kbit/s. In the transient analysis, we compare two groups of players where the first
group employs the pull-based approach and the second a group uses the push-based approach.
Both groups reside in a mobile network. The obtained traces, showing buffer occupancy and
video bit-rate, computed as averages from the results registered separately for every player, are
presented for each group.

As presented in Fig. 6, the registered bandwidth for the mobile network is quite variable
with several peaks reaching about 6000 kbps and several valleys during which network
collapsed and transferred no data. Buffer utilisation for the pull-based strategy shows a
correlation with the registered bandwidth for a mobile player: as denoted in the Fig. 6A,
during the periods where the throughput is relatively high, the buffer of the player stores about
9 s of the video clip, what was marked in the figure at about 20 s and 340 s of the video play.
Similarly, when the throughput drops significantly, the buffer become empty as marked at
about 550 s. The high volatility and ragged shape of the bandwidth trace translate into the high
variability of the video bit-rate received by the player, as depicted in Fig. 6B. Consequently,
abrupt changes between the lowest and the highest bit-rates of video are fairly common.

Fig. 6. Comparison of performance between streaming controlled by a client and a server: Buffer

utilisation (A) and streamed bit-rate (B) for the client controlled streaming; buffer utilisation (C) and
streamed bit-rate for the server controlled streaming (D).

1782 Biernacki: Server Side Solutions For Web-Based Video

When the streaming of video is controlled by a server, the buffer occupancy flattens,
especially within marked intervals, what was presented in Fig. 6C. The buffer stores up to 6 s
of the video, what is about 3 s less compared to the pull-based streaming. As a result, the video
bit-rate is smoother, and it hardly goes beyond the range of 250 kbit/s and 700 kbit/s, as
depicted in Fig. 6D. The push-based solution avoids buffer under-runs and rapid switches
between the lowest and highest video qualities; however, it comes at the expense of streaming
the video at a lower bit-rate compared to the pull-based scenario. Taking into account Eq. (4),
the number of bit-rate switches for the push-based approach is also lower compared to the
pull-based one.

As the performance of the push-based approach seems to be quite promising, we extend
our analysis and compute averaged performance measures: efficiency, number of switches,
fairness and bandwidth utilisation, defined in Eqs. (3)-(6) respectively, for all streams handled
by our experimental system. We consider the scenarios where the system transmits
simultaneously 12, 24 and 48 streams. Similarly to the first experiment, every player has at its
disposal a link with bandwidth up to about 6000 kbps; however, the variability of the
throughput, link delay and probability of packets loss are different and depend on the network
environment to which the link belongs.

As it could be expected from the transient analysis, the pull-based strategy in terms of
efficiency, defined in Eq. (3), dominates over the push-based one, what is presented in Fig. 7a.
However, the results reveal also certain trend: with more streams handled by the system, the
difference between the strategies decreases. And so, for 12 players the difference in the
efficiency is about 50% in favour of pull-based technique, however, it shrinks to about 30%
for 24 players and diminishes to less than 10 % for 48 sources. For 12 players involved, the
Liu-Man and Akhshabi strategies have similar performance to the proposed push-based
strategy. Nonetheless, with the increase of the players number, the efficiency of these
strategies slightly fall behind the push-based approach.

The number of bit-rate switches for the server-side strategy is significantly lower compared to
the client-side strategy, especially for the systems with a lower number of clients, as it was
presented in Fig. 7b. The pacing technique probably has better performance when the
available network bandwidth exceeds the aggregate video bit rate of all concurrently
transmitted video streams, i.e. minijij δ>τd − in Eq. (2). When this condition is met, video
chunks have a chance of being transmitted separately and isolated by periods of no data
transmission. Therefore, when the chunks are not overlaid (compare with Fig. 4), the
prioritisation mechanism proposed in Algorithm 3 may better handle scenarios with fewer
multiplexed streams. When the number of stream rises, the WRR scheduler, described in
section 4.3, is less effective as the service time between the virtual queues increases and may
be too long to maintain a bit-rate of the video streamed to the player connected to these queues.
For 12 video players, the Liu-Man and Akhshabi approaches are more stable compared to the
push-based approach. However, with an increasing number of the players, the difference
between the mentioned three approaches diminishes.

The push-based technique achieves also better fairness compared to the pull-based one as
demonstrated in Fig. 7c. For 12 players the difference is about 20%, then it shrinks to about
15% for 24 players, and about 10% for 48 players. For a dozen of players, the fairness of the
Akhshabi algorithm is better than the fairness of the Liu-Man strategy, however, the
push-based strategy clearly dominates both of them. For the higher number of players, the
Liu-Man and Akhshabi approaches have the similar score, which is nevertheless lower

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1783

compared to the push-based approach.

(a) Efficiency

(b) Bit-rate switches

(c) Fairness (d) Bandwidth utilisation

Fig. 7. Performance comparison for the client and server side strategies for a different number of
video players located in a mixed network environment

The utilization of network bandwidth, defined in Eq. (6), is quite similar for all the

examined approaches, as depicted in Fig. 7d. It oscillates between about 0.86 to 0.96 for 12
players, and between about 0.89 to 0.96 for 24 and 48 players. Although, the pull-based
approach achieves the highest score in all the scenarios, the difference among all the
approaches does not exceed several percent.

The preceding analysis showed differences between the client- and server-based
approaches; however, as mentioned, the players were located in a mixed network environment.
Therefore, the question arises: to what extent the environment influences the evaluated
algorithms? In the following experiments, we try to answer this question.

1784 Biernacki: Server Side Solutions For Web-Based Video

(a) Efficiency (b) Bit-rate switches

(c) Fairness (d) Bandwidth utilization

Fig. 8. Performance comparison for the client and server side strategies for 24 video players located
in different network environments

Compared to the push-based strategy, in the case of 24 video players, the pull-based one

achieves better efficiency in all types of network environment, what is shown in Fig. 8a.
Generally, the less stable network condition, the difference between the strategies rises in
favour of the client-side approach. Simultaneously, with the decrease of network stability, the
efficiency of both strategies drops from about 0.8 in average for a wired to about 0.5 to 0.6 in
average for a mobile network. The Liu-Man and Akhshabi strategies have similar scores in a
wired network, what places them between the scores of the client-side and the proposed
server-side strategies. In the wireless and mobile environments, the Liu-Man and Akhshabi
propositions achieve lower results compared to the push- and pull-based approaches.

For the players operating in a wired environment, there are minor differences between the
client- and server-side approaches in the number of bit-rate switches, as presented in Fig. 8b.
However, when we move to less stable network conditions, the gap between the approaches
widens. For the wi-fi environment, the pull-based strategy has over a dozen more switches
compared to the push-based one, while, in the mobile network, the difference increases to a
several dozen. Generally, the number of switches for the two other strategies presented in the
literature is similar to the push-based system; nevertheless, the strategies have slightly better
scores for wired networks, and a bit worse score for the wireless and mobile cases.
For 24 players placed in a wired environment, the fairness for the pull- and push-based

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1785

algorithms is quite similar and achieves about 0.8, what is depicted in Fig. 8c. After leaving
the stable environment, the fairness for both solution decreases. Nonetheless, the decrease is
more significant for the client-side approach, what is noticeable especially for the mobile
connections, as the server-side strategy achieves here about 15% better fairness. The score for
the Liu-Man and Akhshabi systems in all the cases is lower than the score of push-based
system.
The wired environment has the highest bandwidth utilisation, which is similar for all the
examined systems, see Fig. 8d. In the wireless and mobile networks, the highest result belongs
to the pull-based system. The score for push-based system is only little higher than the score
for the strategies proposed in literature.

(a) Efficiency

(b) Bit-rate switches

(c) Fairness

(d) Bandwidth utilization

Fig. 9. Performance comparison for the client and server side strategies for 48 video players located in
different network environments

In our last step, we try to assess, what will be performance of the proposed approach when we
engage 48 video players. Similarly to the experiment with 24 players, difference among
efficiency for 48 players for the wired network is statistically insignificant, see Fig. 9a. When
we move to the wireless and mobile environments, the pull-based approach still achieves the
best score, followed by the push-based system and the propositions acquired from literature.

1786 Biernacki: Server Side Solutions For Web-Based Video

The number of switches, Fig. 9b, is highest for the pull-based system. The other examined
systems achieve quite similar scores. Also similarly to the results presented for 24 players in
Fig. 8c, the push-based approach achieves the best fairness, see Fig. 9c.
In the case of 48 video players, the pull- and push-based approaches have in nearly all the
cases the highest bandwidth utilization, as presented in Fig. 9d. When we take into account the
mobile system, the Liu-Man and Akhshabi strategies have lower values.

Summarizing our experiments, the proposed push-based based strategy shows certain
advantages over the pull-based one. As the experiments show, the server-side approach results
in a more regular and predictable level of buffer occupancy of a video player, what translates
into a smaller number of video bit-rate switches and smoother play-out quality. It is especially
visible when the number of competing streams is about a dozen. When the number of
multiplexed stream increases to a few dozens, the benefits of server-side strategy are less
noticeable. When we compare the performance of client- and server-side approaches in wire,
wi-fi and mobile networks separately, the results for the wired network are fairly similar.
Nonetheless, the server-side strategy clearly shows its superiority in a less stable, wireless
network environment. For two and four dozens of players simultaneously streaming data from
a server, the server-side technique achieves a fairer distribution of video quality between the
players and this quality is more stable. Nevertheless, this comes at the price of lower efficiency
and lower utilisation of network bandwidth by the whole system.
The other two reference strategies acquired from the literature, Liu-Man [19] and Akhshabi
[18], in the most cases obtain lower efficiency and fairness compared to the push-based
algorithm. When taking into account stability of the examined propositions, the reference
strategies and our proposition achieve a fairly similar score, what is probably results from the
fact that a primary goal of these strategies is to avoid oscillations of video quality. The
utilisation of network bandwidth for the presented in the literature strategies is little lower
compared to the pull- and push-based propositions what may be a result of intensive traffic
shaping employed by the Liu-Man and Akhshabi implementations.

7. Conclusions

Usually, in the systems transmitting adaptive web-based video, a video player is responsible
for adjusting video quality to network conditions and user expectations. When single link
transfers multiple streams, they start competing for the same access capacity. The control
mechanism of TCP, responsible for fair bandwidth allocation among competing streams, is
overridden by an intricate application logic of the video players which try to outsmart one
another.

We showed that shifting the logic responsible for adjusting video quality from clients to a
server may solve some problems encountered in client driven systems: an improper estimation
of network throughput by video players, which consequently leads to selecting to high or too
low video quality; unstable video bit-rate leading to frequent switches of video quality and
unfair allocation of bandwidth among heterogeneous clients. In our work, video streams
controlled by the server-side approach experience more stable quality and better fairness when
allocating network throughput between video players. However, better stability comes at the
cost of worse utilisation of network bandwidth.

When we take two other approaches described in the literature which also rely on the
server-side support, our approach has similar efficiency and stability, but has better fairness.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1787

This may be a consequence that the proposed in the literature approaches focus rather on
stability of video quality and do not implement any global coordination mechanism among
video players.

Furthermore, simplification of client algorithms could prevent a race between developers
that are trying to implement new complex solutions which finally will lead only to outwitting
the other players when network resources are constrained. As our research shows that the
server side solutions has a plenty room for an improvement: one can experiment with
parameters of the proposed algorithm or replace them with a quite different type of an
algorithm which will judge network condition, e.g. by monitoring network throughput.

References

[1] Cisco, “Cisco visual networking index: forecast and methodology, 2014-2019,” Technical report,
2015. Article (CrossRef Link).

[2] S. Alcock and R. Nelson, “Application flow control in YouTube video streams,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 2, pp. 24-30, 2011.
Article (CrossRef Link).

[3] A. Rao, Y.S. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dabbous, “Network Characteristics
of Video Streaming Traffic,” CoNEXT, Tokyo, article no. 25, Japan, 2011.
Article (CrossRef Link).

[4] Lili Qiu, Yin Zhang, and Srinivasan Keshav, “Understanding the performance of many TCP
flows,” Computer Networks, vol. 37, no. 3, pp. 277-306, 2001. Article (CrossRef Link).

[5] Hans-Peter Schwefel and Lester Lipsky, “Impact of aggregated, self-similar ON/OFF traffic on
delay in stationary queueing models (extended version),” Performance Evaluation, vol. 43, no. 4,
pp. 203-221, 2001. Article (CrossRef Link).

[6] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation of rate-adaptation
algorithms in adaptive streaming over HTTP,” ACM MMSys, vol. 11 pp. 157-168, 2011.
Article (CrossRef Link).

[7] R. Houdaille and S. Gouache, “Shaping http adaptive streams for a better user experience,” in Proc.
of the 3rd Multimedia Systems Conference, pp. 1-9, 2012. Article (CrossRef Link).

[8] Te-Yuan Huang, Ramesh Johari, and Nick McKeown, “Downton abbey without the hiccups:
Buffer-based rate adaptation for http video streaming,” in Proc. of the 2013 ACM SIGCOMM
workshop on Future human-centric multimedia networking, pp. 9-14. ACM, 2013.
Article (CrossRef Link).

[9] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “What Happens When HTTP
Adaptive Streaming Players Compete for Bandwidth?,” in Proc. of NOSSDAV, pp. 9-14, 2012.
Article (CrossRef Link).

[10] T. Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Confused, timid, and unstable:
picking a video streaming rate is hard,” in Proc. of the 2012 ACM conference on Internet
measurement conference, pp. 225-238, 2012. Article (CrossRef Link).

[11] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik Jana, Xin Jin,
Jennifer Rexford, and Rakesh K. Sinha, “Can Accurate Predictions Improve Video Streaming in
Cellular Networks?” HotMobile, pp. 57-62, 2015. Article (CrossRef Link).

[12] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson, “Using
the Buffer to Avoid Rebuffers: Evidence from a Large Video Streaming Service,” arXiv preprint
arXiv:1401.2209, 2014. Article (CrossRef Link).

[13] Florian Wamser, David Hock, Michael Seufert, Barbara Staehle, Rastin Pries, and Phuoc Tran-Gia,
“Using buffered playtime for QoE-oriented resource management of YouTube video streaming,”
Transactions on Emerging Telecommunications Technologies, vol. 24, no. 3, pp. 288-302, 2013.
Article (CrossRef Link).

[14] Jiwoo Park and Kwangsue Chung, “Rate adaptation scheme for HTTP-based streaming to achieve
fairness with competing TCP traffic,” in Proc. of Information Networking (ICOIN), 2015
International Conference on, pp. 222-226. IEEE, 2015. Article (CrossRef Link).

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://dx.doi.org/10.1145/1971162.1971166
http://dx.doi.org/10.1145/2079296.2079321
http://dx.doi.org/10.1016/S1389-1286(01)00203-1
http://dx.doi.org/10.1016/S0166-5316(00)00046-8
http://dx.doi.org/10.1145/1943552.1943574
http://dx.doi.org/10.1145/2155555.2155557
http://dx.doi.org/10.1145/2491172.2491179
http://dx.doi.org/10.1145/2229087.2229092
http://dx.doi.org/10.1145/2398776.2398800
http://dx.doi.org/10.1145/2699343.2699359
http://arxiv.org/abs/1401.2209
http://dx.doi.org/10.1002/ett.2636
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7057886&tag=1

1788 Biernacki: Server Side Solutions For Web-Based Video

[15] Junchen Jiang, Vyas Sekar, and Hui Zhang, “Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive,” in Proc. of the 8th international conference on
Emerging networking experiments and technologies, pp. 97-108. ACM, 2012.
Article (CrossRef Link).

[16] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C. Begen, and David Oran, “Probe
and adapt: Rate adaptation for http video streaming at scale,” Selected Areas in Communications,
IEEE Journal on, vol. 32, no. 4, pp. 719-733, 2014. Article (CrossRef Link).

[17] Giuseppe Cofano, Luca De Cicco, and Saverio Mascolo, “A control architecture for massive
adaptive video streaming delivery,” in Proc. of the 2014 Workshop on Design, Quality and
Deployment of Adaptive Video Streaming, pp. 7-12. ACM, 2014. Article (CrossRef Link).

[18] Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis, and Ali C. Begen,
“Server-based traffic shaping for stabilizing oscillating adaptive streaming players,” in Proc. of the
23rd ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, pp.
19-24, 2013. Article (CrossRef Link).

[19] Xinying Liu and Aidong Men, “QoE-aware Traffic Shaping for HTTP Adaptive Streaming,”
International Journal of Multimedia & Ubiquitous Engineering, vol. 9, no. 2, pp. 96-115 2014.
Article (CrossRef Link).

[20] Kozo Satoda, Hiroshi Yoshida, Hironori Ito, and Kazunori Ozawa, “Adaptive video pacing
method based on the prediction of stochastic TCP throughput,” in Proc. of Global
Communications Conference (GLOBECOM), 2012 IEEE, pp. 1944-1950. IEEE, 2012. Article
(CrossRef Link).

[21] Yuan-Tse Yu and Sheau-Ru Tong, “Adaptive Transmission Control Protocol-trunking flow
control mechanism for supporting proxy-assisted video on demand system,” International Journal
of Communication Systems, vol. 25, no. 10, pp. 1363-1380, 2012. Article (CrossRef Link).

[22] Jenq-Shiou Leu and Sheng-Fu Chen, “TRASS: A transmission rate-adapted streaming server in a
wireless environment,” International Journal of Communication Systems, vol. 24, no. 7, pp.
852-871, 2011. Article (CrossRef Link).

[23] Niels Bouten, Ricardo de O. Schmidt, Jeroen Famaey, Steven Latre, Aiko Pras, and Filip De Turck,
“QoE-Driven In-Network Optimization for Adaptive Video Streaming Based on Packet Sampling
Measurements,” Computer Networks, vol. 81, no. C, pp. 96-115, 2015.

Article (CrossRef Link).
[24] K. J. Ma, R. Bartos, and S. Bhatia, “Scalability of HTTP pacing with intelligent bursting,” in Proc.

of Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on, pp. 798-801, 2009.
Article (CrossRef Link).

[25] M. Handley, J. Padhye, and S. Floyd, “RFC 2861. TCP congestion window validation,” 2000.
Article (CrossRef Link).

[26] Christopher Mueller and Christian Timmerer, “A VLC media player plugin enabling dynamic
adaptive streaming over HTTP,” in Proc. of the 19th ACM international conference on Multimedia,
pp. 723-726, 2011. Article (CrossRef Link).

[27] S. Hemminger, “Network emulation with NetEm,” in Linux Conf Au, pp. 18-23, 2005.
Article (CrossRef Link).

[28] Stefan Lederer, Christopher Mueller, and Christian Timmerer, “Dynamic adaptive streaming over
HTTP dataset,” in Proc. of the 3rd Multimedia Systems Conference, pp. 89-94, 2012.
Article (CrossRef Link).

[29] Michael Zink, Oliver Kuenzel, Jens Schmitt, and Ralf Steinmetz, “Subjective impression of
variations in layer encoded videos,” in Quality of Service IWQoS 2003, pp. 137-154. Springer,
2003. Article (CrossRef Link).

[30] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Fine-grained scalable streaming from
coarse-grained videos,” in Proc. of the 18th international workshop on Network and operating
systems support for digital audio and video, pp.103-108. ACM, 2009. Article (CrossRef Link).

[31] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness And Discrimination For
Resource Allocation In Shared Computer Systems,” arXiv preprint cs/9809099, 1998.
Article (CrossRef Link).

http://dx.doi.org/10.1145/2413176.2413189
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774592&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6774585%29
http://dx.doi.org/10.1145/2676652.2676655
http://dx.doi.org/10.1145/2460782.2460786
http://dx.doi.org/10.14257/ijmue.2014.9.2.04
http://dx.doi.org/10.1109/GLOCOM.2012.6503400
http://dx.doi.org/10.1109/GLOCOM.2012.6503400
http://dx.doi.org/10.1002/dac.1312
http://dx.doi.org/10.1002/dac.1194
http://dl.acm.org/citation.cfm?id=2782296
http://dx.doi.org/10.1109/icme.2009.5202615
https://datatracker.ietf.org/doc/rfc2861/
http://dx.doi.org/10.1145/2072298.2072429
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.1687&rep=rep1&type=pdf
http://dx.doi.org/10.1145/2155555.2155570
http://dx.doi.org/10.1007/3-540-44884-5_8
http://dx.doi.org/10.1145/1542245.1542269
http://arxiv.org/abs/cs/9809099

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016 1789

Arkadiusz Biernacki received his B.Eng. degree in Mathematics and the M.Sc. and
Ph.D degrees in Computer Science from the Silesian University of Technology, Poland,
in 2000, 2002 and 2007 respectively. From 2007 he is an Assistant Professor at the
Silesian University of Technology in Poland. His research interests focus on network
traffic modelling, computer system simulations and multimedia performance.

	Arkadiusz Biernacki
	Silesian University of Technology
	Akademicka 16, 44-100 Gliwice, Poland
	E-mail: arkadiusz.biernacki@polsl.pl
	2.1 Client-side approach
	2.2 Server-side approach
	4.2 Multiplexed segments
	The pacing delay of a chunk is calculated as
	, (2)
	4.4 Prioritisation of video streams
	5.1 Laboratory set-up
	5.2 Performance measures
	Finally, we investigate how the proposed solution influences network recourses. For this purpose, we compute utilisation of network bandwidth as
	7. Conclusions
	References

