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Abstract 
 

Infrastructure-as-a-Service (IaaS) clouds provide infrastructure as a pool of virtual resources, 
and the public IaaS clouds, e.g. Amazon Web Service (AWS) and private IaaS cloud toolkits, 
e.g. OpenStack, CloudStack, etc. provide their own application programming interfaces 
(APIs) for managing the cloud resources they offer. The heterogeneity of the APIs, however, 
makes it difficult to access and use the multiple cloud services concurrently and collectively. 
In this paper, we explore previous efforts to solve this problem and present our own 
implementation of an integrated cloud API, which can make it possible to access and use 
multiple clouds collectively in a uniform way. The implemented API provides a RESTful 
access and hides underlying cloud infrastructures from users or applications. We show the 
implementation details of the integrated API and performance evaluation of it comparing the 
proprietary APIs based on our cloud testbed. From the evaluation results, we could conclude 
that the overhead imposed by our interface is negligibly small and can be successfully used for 
multi-cloud access. 
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1. Introduction 

It is within bounds to say that we are now living in the Cloud Computing era. Since the term 
and concept of cloud computing first appeared, its popularity has been growing rapidly not 
only in the IT world but also in business and scientific areas during decade [1]–[5]. Giants in 
the IT industry such as Amazon [6], Google [7], Apple [8] and Microsoft [9] already started 
the cloud computing business and have successfully deployed their own cloud services. As a 
result, infrastructure such as CPU and storage, platform and even software can be provided to 
users as a service on a pay-per-use basis over the Internet [10]–[12]. 

Among the typical categories by the offerings, Infrastructure as a Service (IaaS)-style 
clouds provide users with exclusive infrastructure that usually consists of computing resources 
such as virtual machine (VM) instances, storage and network. Users build and deploy their 
own services or applications on the resources and easily scale up and down the virtual 
infrastructure by adding more resources and paying only for the additions [13]. Most of the 
tasks in managing a cloud, therefore, reduce to the management of the resource lifecycle. This 
resource lifecycle management is done through a certain software stack of each type of 
resource, whose interfaces are usually provided as the form of application programming 
interfaces (APIs) by the cloud providers or third-party developers. 

As the number of clouds available per user grows and as issues of using a single cloud only 
have been introduced, it has come to the fore to utilize multiple clouds concurrently and 
collectively. This new type of usage of cloud computing called Inter-Cloud Computing has 
been proposed and explored by pioneering researchers [14]–[17]. Users who rely solely on a 
single cloud are at risks ranging from resource unavailability to vendor lock-in. The use of the 
inter-clouds can help to remove or at least mitigate these risks. One of the inter-cloud types is 
Multi-Cloud where multiple clouds are used independently by a user or a service, which is the 
primary topic of this paper. More details about the inter-cloud and multi-cloud will be 
described in the next section. 

One of the issues of the use of multiple clouds is heterogeneity of the interface. Different 
clouds provide different APIs for accessing and managing the virtual infrastructure they offer, 
which makes it difficult to develop an application for deploying across multiple clouds. 
Developers should learn how to use different APIs when they switch from one cloud to 
another, which would contribute to the increase of the development cost. In order to address 
this interoperability issues in using multi-clouds, there have been many efforts and research 
including cloud interface standards [18]–[20], multi-cloud abstraction libraries [21]–[23] and 
integrated management of clouds [13], [24]–[32]. In this paper, we explore the previous 
approaches and present our own solution, an integrated interface for multi-clouds with 
emphasis on the resource lifecycle management that plays a role as an abstraction API for the 
underlying multi-clouds. This abstraction interface provides a uniform and integrated way for 
accessing and using resources over the multiple clouds, playing a role as a single entry point. 
We also show the implementation of the integrated interface and evaluation of its performance 
compared with the interfaces dedicated to each cloud in our testbed. 

This paper is organized as follows: Section 2 reviews the previous efforts for the cloud 
interoperability, Section 3 gives background information on Inter-cloud and Multi-cloud, and 
Section 4 shows our motivations for this work. The implementation details of our idea are 
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presented in Section 5, and the evaluation results are shown in Section 6. Finally, the 
conclusions and the directions of future work are given in Section 7. 

2. Related Work 

2.1 Cloud Interface Standards 
Not long after the cloud computing emerged, a movement toward standard for cloud interface 
has initiated such as Open Cloud Computing Interface (OCCI) [18], Cloud Infrastructure 
Management Interface (CIMI) [19], Topology and Orchestration Specification for Cloud 
Applications (TOSCA) [20] and so forth. 

The OCCI is an open standard for cloud interface providing a specification that defines a 
high level of RESTful protocol and API, which was proposed by the OCCI working group in 
the Open Grid Forum. It is a flexible API covering all kinds of management jobs that has high 
interoperability and extensibility leading generic implementations such as rOCCI (Ruby) [33], 
pySSF (Python) [34] and erocci (erlang) [35] and many adoptions by cloud providers such as 
OpenStack [36], CloudStack [37] and OpenNebula [13]. 

CIMI is an alternative of OCCI, which is a logical model and RESTful HTTP-based 
protocol specification for the management of resources within IaaS domain, defined and 
published by Distributed Management Task Force (DMTF) Cloud Management working 
group. The main purpose of CIMI is to provide lifecycle management of cloud infrastructure 
such as creation, deletion, information retrieval and alteration of the cloud resources. The 
representative implementation is Deltacloud [21], which will be described in the following 
subsection. 

TOSCA, produced by TOSCA Technical Committee in Organization for the Advancement 
of Structured Information Standards (OASIS), has a little bit different aspects from the 
standards mentioned above. Its aim is to improve the portability of cloud applications and 
services, and the goal is facilitated by providing a language to describe a topology of cloud 
applications and services and relationships and operations of them independently of the 
service providers. One benefit of this is interoperable management of cloud resources from 
different service providers. 

2.2 Multi-cloud abstraction libraries 
There are also some implementations for a middle layer that abstracts underlying cloud 
resources and services and provides a uniform API for the management of the resources from 
multiple cloud services. The examples of these multi-cloud abstraction libraries include 
Deltacloud [21], jclouds [22] and LibCloud [23]. 

Deltacloud consists of the API server and drivers for different cloud providers. It supports 
three kinds of APIs: Deltacloud REST API, DMTF CIMI REST API, and AWS (EC2 and S3) 
API. These APIs work as a wrapper for a large number of clouds with drivers for each cloud 
that interact with the native cloud APIs. 

The jclouds and LibCloud are programming libraries that provide portable abstraction APIs, 
which can be accessed using Java or Clojure (jclouds) and Python (LibCloud). Both abstract 
differences among the interface libraries of multiple clouds and have a large number of 
supporting cloud services, but unlike Deltacloud, they do not provide a development 
environment for a new cloud service [24]. 
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2.3 Integrated Management of Clouds 
Lots of research and efforts have been made for the integrated management and 
interoperability of clouds. Here, we describe some of them which investigated integrated 
management and provider-independent use of clouds, architecture for interoperable clouds, 
standardization efforts for cloud interoperability. 

Harmer et at. [25] developed an abstraction layer to provide a common resource API for 
computing resource providers enabling cloud-provider neutral applications to be developed. 
The abstraction layer provides a consistent and simplified resource usage model so that users 
can go through the same steps, find, instantiate, mange, discard, to access and use a multitude 
of providers without having to know about the unnecessary details of the providers in use. 

Surveys of integrated management of IaaS resources were performed and a cloud driver was 
developed based on Deltacloud [21] to build an interoperable solution that incorporates 
OpenNebula, OpenStack and Parallels Automation for Cloud Infrastructure (PACI) and 
provides a web dashboard and a Representational State Transfer (REST) interface library in 
[24]. They did performance evaluation of the exchanged data payload and time response and 
showed the integrated management of IaaS clouds was possible with negligible overhead 
avoiding the vendor lock-in problem. 

The authors in [26] tried to integrate two EU-funded cloud frameworks, RESERVOIR [38] 
and SLA@SOI [39], using a cloud standard, OCCI. This work shows that cloud frameworks 
with different architectures can interoperate and how a standard approach can be used for the 
purpose. 

Loutas et at. [27] proposed an architecture for semantically interoperable clouds, Reference 
Architecture for Semantically Interoperable Clouds (RASIC), with focuses on resolving the 
existing semantic interoperability issues and introducing a user-centric way for applications 
built on and deployed in clouds. In order to do that, they combined three computing paradigms, 
cloud computing, Service Oriented Architecture (SOA) and lightweight semantics. 
Furthermore, a common cloud API model was also proposed to reduce the switching costs 
between different clouds and remove the vendor lock-in problem together with RASIC. 

Another architectural approach is presented in [28], in which the authors proposed a 
three-step model: discovery, match-making and authentication and an architectural solution 
based on the Cross-Cloud Federation Manager (CCFM) complying with the three-step model. 
Overview of the possible practical implementation of the three agents and enabling 
technologies were also presented. 

The three-step model mentioned above was applied to the establishment of a federation 
using the decentralized and dynamic brokerage approach in [29]. Difficulties and challenges 
of the decentralized approach were also identified focusing on the federation establishment. 

An overview of IaaS cloud architecture and a concept of cloud federation were described in 
[13]. The core components of an IaaS cloud were identified and the cloud federation 
architectures were classified based on the level of coupling. 

Cloud interoperability and portability issues are described and categorized according to 
various levels: application, platform, storage, management and configuration in [30]. The 
common cloud infrastructure tasks are also identified and classified. 

The authors in [31] presented the interoperability issues between heterogeneous IaaS clouds 
and emphasized the importance of standards for enabling interoperable IaaS clouds. They also 
described several cloud and non-cloud standards that can address the open issues effectively 
by combined use of them. 
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Heilig et al. [32] propose an algorithm to address the cloud resource management problem 
in multi-cloud environments that is an optimization problem for reducing the cost and time of 
user applications using multiple IaaS clouds. They present experimental results based on real 
cloud market resources and show that their approach is good enough compared to the existing 
approaches. 

3. Use of Multiple Cloud Services 
Since the concept of cloud computing was introduced, it has rapidly spread over both of 
industrial and academic worlds, and a number of clouds have been built and are in use 
independently and separately by the entities belonging to those worlds. Ability to access a 
multiple available clouds and limited capability of a single cloud has brought researchers new 
challenges and possibilities: concurrent and collective use of multiple clouds. For this reason, 
the term, Inter-cloud, was coined and started to gain popularity with the cloud people not long 
after the advent of cloud computing. One aspect of how an inter-cloud is constructed and used 
is Multi-cloud. More details are given in the following paragraphs. 

Definition of Inter-cloud. Briefly, an inter-cloud is an interconnected cloud of clouds [40]. 
The inter-cloud computing is interconnecting multiple clouds over a local private network or 
public network, i.e. Internet. More formal definition of the inter-cloud computing is presented 
in [15], [17]: 

 
A cloud model that, for the purpose of guaranteeing service quality, such as the 
performance and availability of each service, allows on-demand reassignment of 
resources and transfer of workload through a [sic] interworking of cloud systems of 
different cloud providers based on coordination of each consumer’s requirements for 
service quality with each providers SLA and use of standard interfaces. 

 
This definition solely offers that the inter-cloud computing collectively uses multiple clouds 

to overcome the limitations of a single cloud use and does not specify who is responsible for 
it—that is, the principal operating body between the cloud providers or the clients. 

 
Types of Inter-cloud. Inter-clouds shown in the previous literature and implementations 
mostly fall into the following two categories by the principal operating body [17]: 

 Federation clouds: Inter-clouds where a set of clouds forming the federation 
voluntarily interconnect to and share their infrastructures with each other. Cloud 
providers are the main agents in this type of inter-clouds, and their will does matter to 
establish a federation. 

 Multi-clouds: Inter-clouds where a set of clouds are used independently by a user or a 
service. The cloud providers here do not play a key role—no voluntary 
interconnecting to and sharing infrastructures with each other unlike the federation 
clouds, and users or services are directly responsible for the usage and management 
of each cloud involved in the aggregation. 

 
Benefits and Possibilities. Basically, the benefits of the inter-cloud computing come from 
utilizing multiple clouds concurrently. Relying solely on a single cloud can introduce various 
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administrative and functional issues across users and providers. A single cloud has limited 
resources and once all the resources are exhausted, the users cannot be provided with the 
resources any longer until the capacity is recovered. Inter-cloud computing can address this 
resource limitation problem by using other clouds’ resources such as computing power, 
storage, and other types of infrastructures. It can also give geographical location flexibility. A 
cloud can suffer from a region-wide unavailability problem such as power outage, and this 
directly prejudices the customers who rely on the cloud located in that region. There may be 
other regional issues across the borders of countries, cities, and so forth, for example, 
legislative requirements of applications on a cloud. Not every cloud provider can establish a 
cloud in every country or administrative region, and therefore this type of problems is hard to 
solve with a single cloud/provider and can be effectively mitigated with inter-cloud computing 
where multiple clouds in different regions are interconnected to each other. Another issue and 
possibility is the vendor lock-in problem. By using multiple clouds, the vendor lock-in 
problem can be easily avoided—in other words, the cloud users can move their workloads 
from one cloud to another provided by a different provider (vendor) with ease in case the cloud 
provider in use changes a policy or pricing and that change can create negative impact on the 
users and their applications. 

4. Motivations 
As mentioned above, the need for concurrent and collective use of multiple clouds is on the 
increase. There is, however, not a high possibility that customers can do that out of the box. 
Not all cloud providers comply with the open standards for their cloud interface and no open 
standard has been widely accepted nor hold a dominant position over the others. In the early 
stage of cloud computing emergence, the need for and importance of the standard way to 
access and use multiple clouds were not stressed, and nowadays the popular public cloud 
providers do not actively adopt the open standards partially because of competition—in other 
words, they want to lock their customers in their services, so-called vendor lock-in problem, 
with their proprietary and incompatible interfaces. This is, however, getting considered as a 
negative feature by the cloud users. Open-source private cloud toolkits tend to support the 
market leader’s interface such as AWS API or not so commonly adopt a popular open standard 
such as OCCI, but mostly have their own interface incompatible with others as their primary 
interface, too. 

Table 1 shows the existing resource management APIs of several popular public and 
private clouds by two categories: Web APIs and language-specific APIs. Language-specific 
APIs are divided into two groups, first- and third-party, according to the main agent of the 
development. Note that the multi-cloud abstraction libraries described in the previous section 
are commonly included in the list of the third-party APIs for each cloud, and the exceptions are 
OpenNebula (jclouds does not support) and Nimbus (Deltacloud and jclouds do not support). 
Note also that if a cloud provider provides the AWS-compatible API layer, then most of 
language specific APIs compatible with AWS can be used for the provider to the extent that it 
supports. 

Our work was greatly inspired by the interface compatibility solutions for uniform 
management of multi-cloud resources identified in Table 1. The uniform access and 
management is the first step of the cloud interoperability [31]. A uniform interface provides a 
single and consistent way to manage the cloud resources on multiple clouds so that the users 
do not need to learn a new API when they switch from one cloud to the other. As shown in 
Table 1, AWS-compatible API, OCCI and multi-cloud libraries can cover most of the cloud 
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providers listed. If we use the OCCI API, for example, we can access and manage cloud 
resources on OpenStack, CloudStack and OpenNebula in the same manner, without the need 
to change the API. Also, once we build an application or service based on the OCCI API, the 
application or service can be deployed on any cloud that supports the OCCI API. 

 
Table 1. Cloud resource management APIs 

 Web APIs Language-Specific APIs 
First party Third party 

AWS Query API (EC2), 
REST API (S3) 

Java, PHP, Python, Ruby, 
.Net, Node.js, Go 

Deltacloud (Ruby), jclouds 
(Java), LibCloud (Python), 
RightScale AWS (Ruby), 

boto (Python), typical 
(Java) 

OpenStack 

OpenStack API (REST), 
OCCI API, 

AWS-compatible API 
(EC2, S3) 

Python 

jclouds (Java), PHP 
OpenCloud (PHP), LibCloud 

(Python), Deltacloud, Fog 
(Ruby), .Net, pkgcloud 

(Node.js) 

CloudStack 

CloudStack API (REST), 
OCCI API (rOCCI), 

AWS-compatible API 
(EC2, S3) 

- Deltacloud (Ruby), jclouds 
(Java), LibCloud (Python) 

OpenNebula 
XML-RPC, OneFlow, 

OCCI API, 
AW-compatible API (EC2) 

Ruby, Java 
(OpenNebula Cloud API) 

Deltacloud (Ruby), 
LibCloud (Python) 

Nimbus 
WSRF-based API, 

AWS-compatible API 
(EC2) 

- LibCloud (Python) 

Eucalyptus AWS-compatible API - 

Deltacloud (Ruby), jclouds 
(Java), LibCloud (Python), 
RightScale AWS (Ruby), 

boto (Python), typical 
(Java) 

 
The existing solutions, however, place more emphasis on the uniform accessibility and 

usability than on the integrated use of multi-clouds. We argue that in order to realize the 
integrated use of multi-clouds the users or applications need to be able to view the cloud 
resources from multi-clouds as a large and single pool of resources. The above-mentioned 
cloud interfaces usually treat the resources separately, i.e. as each individual pool of a cloud 
provider. For example, the driver for a specific provider must be described before being used 
in the case of Deltacloud, and the management operations perform only on the resources 
provided through the driver. In the case of OCCI, the entry point for each provider to be used 
must be specified, which means the caller knows which cloud will be used. The users or 
applications do not need to know the underlying cloud infrastructures—in other words, the 
cloud infrastructures are hidden from the viewpoint of the interface. This is called 
cloud-agnostic. We believe it is one of the key enabling concepts for the integrated use of 
multi-cloud. With a cloud-agnostic interface, users or applications have the capability to 
launch management operations on the cloud resources without knowing where they belong to. 
This kind of interface is one step forward from the interfaces that only provide uniformity. 
This is one reason why we developed our interface in this work. 
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The other reason is to make it fit for our purpose. In our previous work [41], we proposed a 

workflow-based interface for the VM lifecycle management on clouds, which provides an 
integrated interface that is easy-to-use and still has enough flexibility, alleviating the problems 
found on the existing typical cloud interfaces: APIs, command-line tools and Web UIs. The 
abstraction layer in the work supports only EC2-compatible clouds and management of the 
VM lifecycle, and therefore we felt the necessity for an interface for non-EC2-compatible 
clouds and management of other types of resources. We could choose one of the 
aforementioned multi-cloud abstraction libraries or just adopt one of the well-known standards, 
but we decided to developed our own because 1) the cloud-agnostic feature is needed for the 
integrated use of multi-cloud as mentioned above, and 2) an enough level of simplicity is 
required to be invoked by workflow tasks. To summarize, the result of this work will replace 
the abstraction layer of the system we proposed previously, thereby making it easy-to-use and 
flexible resource management interface for multi-clouds based on the multi-cloud abstraction 
layer and workflow management system, which is our future work. 

 

5. Implementation 

5.1 Cloud Testbed 
In order to develop the integrated API and test it, we built two different private clouds: 
OpenStack and CloudStack, as well as made use of AWS as a public cloud testbed. OpenStack 
is one of the most popular open-source private IaaS-cloud toolkits that has a highly modular 
architecture, and each resource type is backed up by separate projects and the corresponding 
communities. It has a fast-growing community and many non-profit and for-profit 
organizations as members, and the aim of it is to play a role of operating system (OS) in the 
cloud ecosystem. CloudStack is another example of the private IaaS-cloud toolkit which is 
supported by Apache Software Foundation, and therefore distributed under the Apache license. 
It has a modular architecture and built-in high availability (HA) for the resource hosts and 
VMs. AWS is the dominant commercial public cloud service in the cloud world and provides 
full-featured cloud services including complicated and combined services as well as the basic 
services such as compute, storage and network. Our testbed configuration is shown in Fig. 1. 

As shown in Fig. 1, the OpenStack cloud consists of two physical machines: head node and 
compute node and was built with Ubuntu 12.04 and OpenStack Havana (v2013.2.3). The 
CloudStack cloud has four physical machines: one head node and three compute nodes and 
built with CentOS 6.0 and CloudStack v4.3.2. The two private clouds are connected by 
internal network, and the public cloud, AWS, is connected with them by external network over 
the Internet. The RESTful API server is based on Thin web server [42] and Sinatra web 
application library [43] and plays a role of the entry point of the integrated API. 
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Fig. 1. Testbed overview 

 

5.2 Design and Implementation Considerations 
As mentioned in Section 4, there are two main design principals for the implementation of our 
integrated API: uniformity and cloud agnosticism. In this subsection, we describe some 
considerations about the implementation with regard to the design principals. 

In the context of cloud API, uniformity means that a single set of methods is provided for all 
of the underlying clouds, and one method for a specific task is used in the same manner. In 
order to achieve this, we first identified and classified common types of the cloud resources. 

The types of resources or services provided by clouds vary, but there are essential types of 
resources: Compute, Storage and Network. The compute resource is usually provided as a 
form of VM instance, which is a core resource of a computing system. The storage resource 
can be divided into two types: block storage and object storage. The block storage is provided 
as a form of a disk volume, and the object storage acts like an online file storage we can upload 
and download files. The network resource service usually provides virtual networking to 
isolate a network from another network or to group a bunch of VM instances to form a virtual 
cluster, etc. Corresponding to these basic resource types, there are three essential cloud 
management tasks: compute management, storage management and network management. 
Compute management includes listing sizes (hardware profiles) and VM images and 
managing VM instance’s lifecycle. Storage management includes managing volumes (block 
storage) and containers/objects (object storage). Network management is managing virtual 
networks and subnets. Details of each management task are shown in Table 2, and one of our 
implementation goals was to cover all of the tasks in the table. 

The common terms of the cloud resources identified above are mostly denoted differently 
among the clouds. For example, the size of a VM instance is denoted as type (AWS), flavor 
(OpenStack) and service offering (CloudStack), respectively. The differences of the terms 
between the cloud providers are given with service or project names in Table 3. This 
inconsistency must be resolved in order to provide the uniform access and management of the 
target cloud resources. 
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Table 2. Essential cloud management tasks 

Management tasks Details 

Compute management 
• List sizes (hardware profiles) 
• List images 
• List/create/reboot/terminate VM instances 

Storage management 
• List/create/attach/detach/delete volumes 
• List/create/delete containers 
• List/upload/download/delete objects 

Network management 
• List/create/delete virtual networks 
• List/create/delete subnets 

 
Table 3. Terminology comparisons 

 AWS OpenStack CloudStack 

Size 
(hardware profile) 

Type 
(Elastic Compute 

Cloud, EC2) 

Flavor 
(Nova) 

Service offering 

Image Amazon Machine 
Image (AMI) 

Image 
(Glance) 

Template 

VM instance 
Instance 

(Elastic Compute 
Cloud, EC2) 

Server 
(Nova) 

Virtual machine 

Block storage 
(volume) 

Volume 
(Elastic Block 
Storage, EBS) 

Volume 
(Cinder) 

Volume 

Object storage 
(container/object) 

Bucket/Object 
(Simple Storage 

Service, S3) 

Container/Object 
(Swift) 

- 

Network 
(vnet/subnet) 

Virtual Private 
Cloud/Subnet 

Network/Subnet 
(Neutron) 

Virtual Private 
Cloud/Virtual 

Network 
 
A cloud-agnostic interface means that the underlying cloud services are hidden from the 

interface so that users and applications do not need to know which cloud service will provide 
the requested resources, and therefore they can be separated from concerns about the 
underlying clouds. This puts together all cloud resources from underlying cloud 
infrastructures to form a large and single pool of the resources virtually, which is one of the 
key enabling technologies for integrated use of multi-cloud computing as mentioned above. 

In order to implement the cloud-agnostic feature, firstly it needs to streamline the method 
parameters and make them identical between different clouds and remove what is related to a 
specific cloud. It also needs ID translation between low-level cloud-specific APIs and the 
integrated API, namely conversion between local IDs and global IDs for target resources.  
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Global IDs are used to distinguish cloud resources one another globally and uniquely identify 
one of them on the interface level, and the local IDs are not seen by users and applications. 
Last but not least, how to select a cloud for a specific resource is also of importance when more 
than two clouds are available for the desired resource. This is not an issue for the collective 
operations like listing, or operations that have targets specified like deleting because such 
operations are performed on all cloud services or a subset of clouds selected by given 
conditions. In the case of the operation like creating, however, it is often required that a cloud 
should be selected among any available clouds. This selection strategy can be various from the 
random choice and round-robin to the intelligent choice based on dynamic information on 
cloud such as capacity, utilization, etc. For simplicity, the random choice was used in this 
work. 

 

5.3 Implementation Details 
Our implementation was written in the Ruby programming language based on Sinatra web 
application library in combination with dedicated cloud APIs to access each of the clouds in 
our testbed. Sinatra is an open-source web application framework that provides a 
domain-specific language (DSL) to build web applications or services with which a RESTful 
API can also be developed. We made use of dedicated cloud APIs for each cloud in our testbed, 
which include OpenStack RESTful API [44], CloudStack Ruby client [45] and AWS Ruby 
SDK [46]. The overview of the implementation is shown in Fig. 2. 

There are wrappers that handle the dedicated APIs directly and contain cloud-specific stuffs 
such as connection, authentication, and so on. The wrappers get user and target cloud 
information including credentials and entry point for the target cloud from the integrated API 
and try to establish a connection with the target cloud and authenticate the users. The methods 
included in each wrapper directly call the corresponding methods of the dedicated API, and 
therefore they must use the cloud-specific form of the method call. For that reason, they need 
the local ID of a certain resource of the target cloud instead of global ID. The ID Mapper holds 
the local ID – global ID map for conversion, and the methods in the wrappers query a local ID 
with a global ID as needed. The ID Map is saved as a file for persistency. 

The Integrated API has a set of methods corresponding to each of the cloud management 
tasks shown in the previous subsection. It makes a method call with a global ID and options 
forwarded from the REST API, collects information on a user and the clouds registered to the 
user from user catalog, and supplies the information to the wrappers. It holds a list of 
registered clouds and select all or a subset of them by a certain selection algorithm as needed. 
It also uses the ID Mapper to get a name of a cloud when needed, but the name is not directly 
exposed to the user in any case. 

The RESTful API is made with Sinatra DSL. It forwards user’s input to the integrated API 
via a web request and gets the output as eXtensible Markup Language (XML) format by the 
help of XML Builder to make a response body for the web request. Its structure and examples 
are given in a following subsection in more detail. 
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Fig. 2. Implementation overview 

 

5.4 RESTful API 
The REST stands for Representational State Transfer, which was first introduced in [47], 
which defines the architectural styles and design of a software architecture based on the 
Internet. Since its introduction, it has been widely adopted by web developers to build 
lightweight, scalable and reliable web services during the last decade. A RESTful API is the 
API built based on the REST architectural styles and design. Many cloud interface standards, 
multi-cloud abstraction libraries and dedicated cloud interfaces we described above also 
adopted the REST architecture, and therefore we also made our management interface comply 
with the RESTful style and design. 

The structure of the implemented RESTful API web methods is shown in Fig. 3 with some 
custom syntactic expressions. A service request can include additional options as query 
parameters or payloads.  One example is creating a new instance as follows: 

 
- HTTP verb and URI 

POST http://localhost:4567/instances 
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- Payloads (URL encoded) 
 image_id=img-53c8800b&size_id=size-417719c2&number=1 

 
Rebooting an instance is another example: 
 
- HTTP verb and URI 

PUT http://localhost:4567/instances/inst-41f7caf9/reboot 

 
Note that the POST verb is used for creation, and the PUT verb is used for modification of a 

resource state. The most frequently used HTTP verbs, GET, POST, PUT and DELETE, have 
corresponding create, read, update and delete (CRUD) operations, respectively, which enables 
uniform interface, one of the RESTful design principles. In our implementation, the GET verb 
is used for listing existing resources with details, the POST method is used for creating a new 
resource, the PUT method is used for performing an action with resources, and the DELETE 
verb is used for terminating or deleting a resource. The list of methods and resources supported 
by our implementation is shown in Table 4. 

 

 
Fig. 3. Implemented RESTful API method structure 

 
Table 4. RESTful API web methods 

Resource 
type 

HTTP 
verb Resource Description 

Compute 

GET /sizes Retrieve list and information of 
supported sizes 

GET /images Retrieve list and information of 
supported images 

GET /instances Retrieve list and information of 
running instances 

POST /instances Create a new instance with payloads 

PUT /instances/{id}/reboot Reboot an instance specified by 
{id} 

DELETE /instances/{id} Terminate an instance specified by 
{id} 

Storage 
GET /volumes Retrieve list and information of 

existing volumes 
POST /volumes Create a new volume with payloads 
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PUT /volumes/{id}/attach_to/{inst_id} Attach a volume with {id} to an 
instance with {inst_id} 

PUT /volumes/{id}/detach Detach a volume with {id} from an 
instance 

DELETE /volumes/{id} Delete a volume specified by {id} 

GET /containers Retrieve list and information of 
existing containers 

POST /containers Create a new container with 
payloads 

DELETE /containers/{id} Delete a container specified by {id} 

GET /objects Retrieve list and information of 
uploaded objects 

POST /objects/{filename}/upload_to/{cont_id} Upload a file to a container with 
{cont_id} 

GET /objects/{id}/download_from/{cont_id} Download a file with {id} from a 
container with {cont_id} 

DELETE /objects/{id}/from/{cont_id} Delete a uploaded object in a 
container with {cont_id} 

Network 

GET /vnets Retrieve list and information of 
existing virtual networks 

POST /vnets Create a new virtual network with 
payloads 

DELETE /vnets/{id} Delete a virtual network specified 
by {id} 

GET /subnets Retrieve list and information of 
existing subnets 

POST /subnets/in/{vnet_id} 
Create a new subnet in a virtual 
network with {vnet_id} and 
payloads 

DELETE /subnets/{id} Delete a subnet specified by {id} 

 

5.5 How It Works 
A user or an application calls one of the REST API methods in a standard way with a resource 
name and options, and the web server gets the request and invokes an appropriate method that 
handles the request in the Integrated API. The method in turn validates and parses the input 
values, selects target cloud(s), and then calls a wrapper method in the target cloud(s) with the 
input values in order to perform the actual task. The wrapper method uses the ID conversion 
before calling a dedicated API method. The entry point information is used for the dedicated 
API method call, with which the method interacts with the API server of the target cloud. 

The wrapper method gets the execution result from the dedicated API method and 
streamlines the data by extracting common and necessary values only. At this point, the local 
ID is converted to a global ID. A global ID is created only if it does not exist yet and returned 
from the ID map if it exists. The returned data are in turn converted to the XML format and 
delivered to the user or application. 
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6. Evaluation 
In order to show the performance comparison between the individual cloud API calls and the 
integrated API calls, we measured total response time of each method on our testbed. The 
experiments are intended to reveal the overhead imposed by the integrated cloud API, not to 
evaluate the performance of each cloud API, and therefore the actual measured values are not 
a matter of interest, but the differences are of importance. API method calls and time 
measurement were performed using Ruby scripts, in which appropriate libraries (or Ruby 
Gems) were used such as REST Client for the RESTful API method call and built-in 
Benchmark module for the time measurement. Note that the response time does not 
necessarily mean the total elapsed time to complete a resource provisioning. 

The experimental results are presented in Table 5. The blanks in the dedicated APIs column 
mean that the clouds in our testbed do not support those type of resources, for example, the 
CloudStack cloud does not support the object storage and virtual networking, and the 
OpenStack cloud partially supports the network resource type. The limited networking feature 
of our OpenStack cloud was supplemented by our implementation, but it was excluded for the 
measurement because it is not a part of the dedicated API. Similarly, the time for List Sizes 
operation for AWS could not be measured because the AWS API does not officially support a 
programmatic way to get the instance types it provides. We implemented the feature by 
ourselves. In the implemented API column, the time measurement is divided into two parts: 
time for operations that target each cloud individually and time for collective operations such 
as listing resources. Our API is cloud-agnostic as mentioned in the previous section, but we 
can indirectly designate a target cloud, for example by using a size or an image that is 
supported by the target cloud only in the case of Create an Instance. On the other hand, the 
listing operations retrieve list and information of all the resources of a certain type on the cloud 
testbed collectively and therefore can’t be used separately. In the case of object storage and 
network resources, the target cloud can be chosen by a certain scheme, which is random in the 
current implementation, so it is not possible to choose the target cloud arbitrarily. 

Fig. 4, 5, 6 and 7 show the results obtained for listing operations and operations on 
OpenStack, CloudStack, and AWS, respectively, which compare the response times measured 
from the dedicated APIs and the implemented API. As mentioned above, the listing operations 
get the information of each resource collectively from all clouds, the comparison was 
performed with the average values of the response times measured from the two sets of APIs. 
Instance- and volume-related operations were compared one on one and the results obtained 
for object storage resources were compared between method calls to AWS because only AWS 
provides the resource type in our testbed. The response times normally tend to increase in most 
cases due to the overhead imposed by the integrated API, but in some cases, the measured 
values decreased even though the integrated API plays a sort of wrapper role for the original 
APIs, so the results seem not to be correct. We suspect this is due to the network latency and 
the negligibly small overhead. Such cases mostly occurred in the operations on AWS that is 
located in the external network unlike other local private clouds, which supports our 
conjecture. Another possibility is that the overhead is so small that it may be within the margin 
of latency, and thus its impact is hidden from the final total response time. Indeed, the 
integrated API does not have so many functionalities as the dedicated APIs do, just 
collectively forwards and translates a request to access and manage a cloud resource into a 
suitable format for the target cloud and get the response message to show or transfer to other 
services. Therefore, the overhead imposed by the integrated API can be negligibly small. 
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Table 5. Experimental results (seconds) 
  Dedicated APIs Implemented API 

  OpenStack CloudStack AWS OpenStack CloudStack AWS (Collective) 

List Sizes 0.017 0.013 - - - - 0.045 

List Images 0.042 0.020 0.065 - - - 0.144 
List Instances 0.052 0.022 0.274 - - - 0.716 
Create an Instance 0.493 0.454 0.853 0.559 0.448 0.890 - 
Reboot an Instance 0.221 0.137 0.554 0.217 0.148 0.278 - 
Terminate an Instance 0.286 0.134 0.495 0.295 0.145 0.464 - 
List Volumes 0.060 0.016 0.445 - - - 0.485 
Create a Volume 0.339 0.250 0.497 0.363 0.285 0.659 - 
Attach a Volume 0.370 0.134 0.297 0.384 0.144 0.396 - 
Detach a Volume 0.259 0.136 0.291 0.378 0.176 0.240 - 
Delete a Volume 0.127 0.585 0.178 0.126 0.430 0.165 - 
List Containers - - 0.703 - - - 0.520 
Create a Container - - 1.429 - - - 1.146 
Delete a Container - - 1.019 - - - 1.169 
List Objects - - 0.701 - - - 1.283 
Upload an Object - - 0.680 - - - 0.639 
Download an Object - - 0.019 - - - 0.026 
Delete an Object - - 0.600 - - - 0.666 
List Virtual Networks - - 0.521 - - - 0.332 
Create a Virtual Network - - 0.129 - - - 0.148 
Delete a Virtual Network - - 0.469 - - - 0.304 
List Subnets 0.013 - 0.495 - - - 0.604 
Create a Subnet 0.366 - 0.150 - - - 0.141 
Delete a Subnet 0.112 - 0.131 - - - 0.130 

 

 
Fig. 4. Results of listing operations 

 
Fig. 5. Results of operations on OpenStack 
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Fig. 6. Results of operations on CloudStack 

 
Fig. 7. Results of operations on AWS 

7. Conclusions 

7.1 Summary 
The number of clouds per person is increasing, risks to solely rely on a single cloud service are 
getting higher, and users and applications are required to have the capability to interact with a 
multiple number of clouds more and more. To remove the heterogeneity and to facilitate the 
interoperable use of such multi-clouds, integrated and uniform accessibility to the 
multi-clouds is indispensable. In this paper, we surveyed existing interoperable solutions for 
multi-clouds including cloud interface standards, multi-cloud abstraction libraries and 
previous studies on integrated management of clouds. 

Through the survey, we realized the issues and were inspired by the existing solutions, and 
finally we decided to develop our own integrated and uniform cloud management API for 
multi-clouds, due to the lack of some required features for our purpose: cloud-agnostic and 
simplicity for the future use of another research. 

In order to develop our cloud abstraction API and evaluate it, we built a cloud testbed that 
consisted of two local private clouds, OpenStack and CloudStack, and the remote public cloud, 
AWS, provided by the cloud market leader, Amazon. We also identified the basic cloud 
resource types and defined common terms for the resources to reduce the confusion caused by 
the difference of terminologies. Our implementation is based on the existing dedicated cloud 
APIs such as OpenStack RESTful API, CloudStack Ruby client, and AWS Ruby SDK as well 
as the RESTful web service framework, Sinatra. We have successfully developed an 
integrated API for the management of basic cloud resource types, Compute, Storage and 
Network, and RESTful web methods to provide the integrated API to the users or applications 
in a uniform way. 

Performance evaluation was also conducted and the results showed that there was no 
significant degradation generated by the implemented API, but rather some results showed the 
total response times were reduced, which was supposedly due to the network latency at the 
moment of the experiments implying the possibility that the overhead was too small to have 
impact on the overall response time. This is mainly due to the streamlined functionality of our 
implementation. 
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7.2 Future Work 
As we mentioned in previous sections, we will combine the implemented API with the 
workflow-based cloud interface we proposed previously in place of the existing abstraction 
API that can only support EC2-compatible clouds to provide easy-to-use and integrated cloud 
interface for non-EC2-compatible multi-clouds. To prove its usefulness, we are planning to 
compose various patterns of cloud management workflows as many as possible. 

Another work to do is an improvement of the integrated API. It lacks advanced features 
provided by the cloud providers as well as portability, which is one of the key enabling 
technologies for the use of multi-clouds. In the experiments, we could choose a desired cloud 
by using a resource restricted to the target cloud such as size and image. This is, however, not 
desirable feature. Instead, any resource should be able to work on any cloud no matter what 
resource a user or an application chooses to use, which is called cloud portability. We will 
study on the enabling technologies for the cloud portability such as Open Virtualization 
Format (OVF), and we will try to apply the technologies to our implementation and the testbed 
if needed. 
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