
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, Jan. 2017 18
Copyright ⓒ2017 KSII

Experience in Practical Implementation of
Abstraction Interface for Integrated Cloud

Resource Management on Multi-Clouds

Huioon Kim, Hyounggyu Kim, Kyungwon Chun and Youngjoo Chung
School of Electrical Engineering and Computer Science, GIST

123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005 – Republic of Korea
[e-mail: pcandme@gist.ac.kr, khg@gist.ac.kr, ruddyscent@gmail.com, ychung@gist.ac.kr]

*Corresponding author: Youngjoo Chung

Received September 20, 2016; revised November 26, 2016; accepted November 30, 2016;
published January 31, 2017

Abstract

Infrastructure-as-a-Service (IaaS) clouds provide infrastructure as a pool of virtual resources,
and the public IaaS clouds, e.g. Amazon Web Service (AWS) and private IaaS cloud toolkits,
e.g. OpenStack, CloudStack, etc. provide their own application programming interfaces
(APIs) for managing the cloud resources they offer. The heterogeneity of the APIs, however,
makes it difficult to access and use the multiple cloud services concurrently and collectively.
In this paper, we explore previous efforts to solve this problem and present our own
implementation of an integrated cloud API, which can make it possible to access and use
multiple clouds collectively in a uniform way. The implemented API provides a RESTful
access and hides underlying cloud infrastructures from users or applications. We show the
implementation details of the integrated API and performance evaluation of it comparing the
proprietary APIs based on our cloud testbed. From the evaluation results, we could conclude
that the overhead imposed by our interface is negligibly small and can be successfully used for
multi-cloud access.

Keywords: Cloud computing, multi-cloud, cloud resource management interface

https://doi.org/10.3837/tiis.2017.01.002 ISSN : 1976-7277

https://doi.org/10.3837/tiis.2017.01.001

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 19

1. Introduction

It is within bounds to say that we are now living in the Cloud Computing era. Since the term
and concept of cloud computing first appeared, its popularity has been growing rapidly not
only in the IT world but also in business and scientific areas during decade [1]–[5]. Giants in
the IT industry such as Amazon [6], Google [7], Apple [8] and Microsoft [9] already started
the cloud computing business and have successfully deployed their own cloud services. As a
result, infrastructure such as CPU and storage, platform and even software can be provided to
users as a service on a pay-per-use basis over the Internet [10]–[12].

Among the typical categories by the offerings, Infrastructure as a Service (IaaS)-style
clouds provide users with exclusive infrastructure that usually consists of computing resources
such as virtual machine (VM) instances, storage and network. Users build and deploy their
own services or applications on the resources and easily scale up and down the virtual
infrastructure by adding more resources and paying only for the additions [13]. Most of the
tasks in managing a cloud, therefore, reduce to the management of the resource lifecycle. This
resource lifecycle management is done through a certain software stack of each type of
resource, whose interfaces are usually provided as the form of application programming
interfaces (APIs) by the cloud providers or third-party developers.

As the number of clouds available per user grows and as issues of using a single cloud only
have been introduced, it has come to the fore to utilize multiple clouds concurrently and
collectively. This new type of usage of cloud computing called Inter-Cloud Computing has
been proposed and explored by pioneering researchers [14]–[17]. Users who rely solely on a
single cloud are at risks ranging from resource unavailability to vendor lock-in. The use of the
inter-clouds can help to remove or at least mitigate these risks. One of the inter-cloud types is
Multi-Cloud where multiple clouds are used independently by a user or a service, which is the
primary topic of this paper. More details about the inter-cloud and multi-cloud will be
described in the next section.

One of the issues of the use of multiple clouds is heterogeneity of the interface. Different
clouds provide different APIs for accessing and managing the virtual infrastructure they offer,
which makes it difficult to develop an application for deploying across multiple clouds.
Developers should learn how to use different APIs when they switch from one cloud to
another, which would contribute to the increase of the development cost. In order to address
this interoperability issues in using multi-clouds, there have been many efforts and research
including cloud interface standards [18]–[20], multi-cloud abstraction libraries [21]–[23] and
integrated management of clouds [13], [24]–[32]. In this paper, we explore the previous
approaches and present our own solution, an integrated interface for multi-clouds with
emphasis on the resource lifecycle management that plays a role as an abstraction API for the
underlying multi-clouds. This abstraction interface provides a uniform and integrated way for
accessing and using resources over the multiple clouds, playing a role as a single entry point.
We also show the implementation of the integrated interface and evaluation of its performance
compared with the interfaces dedicated to each cloud in our testbed.

This paper is organized as follows: Section 2 reviews the previous efforts for the cloud
interoperability, Section 3 gives background information on Inter-cloud and Multi-cloud, and
Section 4 shows our motivations for this work. The implementation details of our idea are

20 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

presented in Section 5, and the evaluation results are shown in Section 6. Finally, the
conclusions and the directions of future work are given in Section 7.

2. Related Work

2.1 Cloud Interface Standards
Not long after the cloud computing emerged, a movement toward standard for cloud interface
has initiated such as Open Cloud Computing Interface (OCCI) [18], Cloud Infrastructure
Management Interface (CIMI) [19], Topology and Orchestration Specification for Cloud
Applications (TOSCA) [20] and so forth.

The OCCI is an open standard for cloud interface providing a specification that defines a
high level of RESTful protocol and API, which was proposed by the OCCI working group in
the Open Grid Forum. It is a flexible API covering all kinds of management jobs that has high
interoperability and extensibility leading generic implementations such as rOCCI (Ruby) [33],
pySSF (Python) [34] and erocci (erlang) [35] and many adoptions by cloud providers such as
OpenStack [36], CloudStack [37] and OpenNebula [13].

CIMI is an alternative of OCCI, which is a logical model and RESTful HTTP-based
protocol specification for the management of resources within IaaS domain, defined and
published by Distributed Management Task Force (DMTF) Cloud Management working
group. The main purpose of CIMI is to provide lifecycle management of cloud infrastructure
such as creation, deletion, information retrieval and alteration of the cloud resources. The
representative implementation is Deltacloud [21], which will be described in the following
subsection.

TOSCA, produced by TOSCA Technical Committee in Organization for the Advancement
of Structured Information Standards (OASIS), has a little bit different aspects from the
standards mentioned above. Its aim is to improve the portability of cloud applications and
services, and the goal is facilitated by providing a language to describe a topology of cloud
applications and services and relationships and operations of them independently of the
service providers. One benefit of this is interoperable management of cloud resources from
different service providers.

2.2 Multi-cloud abstraction libraries
There are also some implementations for a middle layer that abstracts underlying cloud
resources and services and provides a uniform API for the management of the resources from
multiple cloud services. The examples of these multi-cloud abstraction libraries include
Deltacloud [21], jclouds [22] and LibCloud [23].

Deltacloud consists of the API server and drivers for different cloud providers. It supports
three kinds of APIs: Deltacloud REST API, DMTF CIMI REST API, and AWS (EC2 and S3)
API. These APIs work as a wrapper for a large number of clouds with drivers for each cloud
that interact with the native cloud APIs.

The jclouds and LibCloud are programming libraries that provide portable abstraction APIs,
which can be accessed using Java or Clojure (jclouds) and Python (LibCloud). Both abstract
differences among the interface libraries of multiple clouds and have a large number of
supporting cloud services, but unlike Deltacloud, they do not provide a development
environment for a new cloud service [24].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 21

2.3 Integrated Management of Clouds
Lots of research and efforts have been made for the integrated management and
interoperability of clouds. Here, we describe some of them which investigated integrated
management and provider-independent use of clouds, architecture for interoperable clouds,
standardization efforts for cloud interoperability.

Harmer et at. [25] developed an abstraction layer to provide a common resource API for
computing resource providers enabling cloud-provider neutral applications to be developed.
The abstraction layer provides a consistent and simplified resource usage model so that users
can go through the same steps, find, instantiate, mange, discard, to access and use a multitude
of providers without having to know about the unnecessary details of the providers in use.

Surveys of integrated management of IaaS resources were performed and a cloud driver was
developed based on Deltacloud [21] to build an interoperable solution that incorporates
OpenNebula, OpenStack and Parallels Automation for Cloud Infrastructure (PACI) and
provides a web dashboard and a Representational State Transfer (REST) interface library in
[24]. They did performance evaluation of the exchanged data payload and time response and
showed the integrated management of IaaS clouds was possible with negligible overhead
avoiding the vendor lock-in problem.

The authors in [26] tried to integrate two EU-funded cloud frameworks, RESERVOIR [38]
and SLA@SOI [39], using a cloud standard, OCCI. This work shows that cloud frameworks
with different architectures can interoperate and how a standard approach can be used for the
purpose.

Loutas et at. [27] proposed an architecture for semantically interoperable clouds, Reference
Architecture for Semantically Interoperable Clouds (RASIC), with focuses on resolving the
existing semantic interoperability issues and introducing a user-centric way for applications
built on and deployed in clouds. In order to do that, they combined three computing paradigms,
cloud computing, Service Oriented Architecture (SOA) and lightweight semantics.
Furthermore, a common cloud API model was also proposed to reduce the switching costs
between different clouds and remove the vendor lock-in problem together with RASIC.

Another architectural approach is presented in [28], in which the authors proposed a
three-step model: discovery, match-making and authentication and an architectural solution
based on the Cross-Cloud Federation Manager (CCFM) complying with the three-step model.
Overview of the possible practical implementation of the three agents and enabling
technologies were also presented.

The three-step model mentioned above was applied to the establishment of a federation
using the decentralized and dynamic brokerage approach in [29]. Difficulties and challenges
of the decentralized approach were also identified focusing on the federation establishment.

An overview of IaaS cloud architecture and a concept of cloud federation were described in
[13]. The core components of an IaaS cloud were identified and the cloud federation
architectures were classified based on the level of coupling.

Cloud interoperability and portability issues are described and categorized according to
various levels: application, platform, storage, management and configuration in [30]. The
common cloud infrastructure tasks are also identified and classified.

The authors in [31] presented the interoperability issues between heterogeneous IaaS clouds
and emphasized the importance of standards for enabling interoperable IaaS clouds. They also
described several cloud and non-cloud standards that can address the open issues effectively
by combined use of them.

22 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

Heilig et al. [32] propose an algorithm to address the cloud resource management problem
in multi-cloud environments that is an optimization problem for reducing the cost and time of
user applications using multiple IaaS clouds. They present experimental results based on real
cloud market resources and show that their approach is good enough compared to the existing
approaches.

3. Use of Multiple Cloud Services
Since the concept of cloud computing was introduced, it has rapidly spread over both of
industrial and academic worlds, and a number of clouds have been built and are in use
independently and separately by the entities belonging to those worlds. Ability to access a
multiple available clouds and limited capability of a single cloud has brought researchers new
challenges and possibilities: concurrent and collective use of multiple clouds. For this reason,
the term, Inter-cloud, was coined and started to gain popularity with the cloud people not long
after the advent of cloud computing. One aspect of how an inter-cloud is constructed and used
is Multi-cloud. More details are given in the following paragraphs.

Definition of Inter-cloud. Briefly, an inter-cloud is an interconnected cloud of clouds [40].
The inter-cloud computing is interconnecting multiple clouds over a local private network or
public network, i.e. Internet. More formal definition of the inter-cloud computing is presented
in [15], [17]:

A cloud model that, for the purpose of guaranteeing service quality, such as the
performance and availability of each service, allows on-demand reassignment of
resources and transfer of workload through a [sic] interworking of cloud systems of
different cloud providers based on coordination of each consumer’s requirements for
service quality with each providers SLA and use of standard interfaces.

This definition solely offers that the inter-cloud computing collectively uses multiple clouds

to overcome the limitations of a single cloud use and does not specify who is responsible for
it—that is, the principal operating body between the cloud providers or the clients.

Types of Inter-cloud. Inter-clouds shown in the previous literature and implementations
mostly fall into the following two categories by the principal operating body [17]:

 Federation clouds: Inter-clouds where a set of clouds forming the federation
voluntarily interconnect to and share their infrastructures with each other. Cloud
providers are the main agents in this type of inter-clouds, and their will does matter to
establish a federation.

 Multi-clouds: Inter-clouds where a set of clouds are used independently by a user or a
service. The cloud providers here do not play a key role—no voluntary
interconnecting to and sharing infrastructures with each other unlike the federation
clouds, and users or services are directly responsible for the usage and management
of each cloud involved in the aggregation.

Benefits and Possibilities. Basically, the benefits of the inter-cloud computing come from
utilizing multiple clouds concurrently. Relying solely on a single cloud can introduce various

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 23

administrative and functional issues across users and providers. A single cloud has limited
resources and once all the resources are exhausted, the users cannot be provided with the
resources any longer until the capacity is recovered. Inter-cloud computing can address this
resource limitation problem by using other clouds’ resources such as computing power,
storage, and other types of infrastructures. It can also give geographical location flexibility. A
cloud can suffer from a region-wide unavailability problem such as power outage, and this
directly prejudices the customers who rely on the cloud located in that region. There may be
other regional issues across the borders of countries, cities, and so forth, for example,
legislative requirements of applications on a cloud. Not every cloud provider can establish a
cloud in every country or administrative region, and therefore this type of problems is hard to
solve with a single cloud/provider and can be effectively mitigated with inter-cloud computing
where multiple clouds in different regions are interconnected to each other. Another issue and
possibility is the vendor lock-in problem. By using multiple clouds, the vendor lock-in
problem can be easily avoided—in other words, the cloud users can move their workloads
from one cloud to another provided by a different provider (vendor) with ease in case the cloud
provider in use changes a policy or pricing and that change can create negative impact on the
users and their applications.

4. Motivations
As mentioned above, the need for concurrent and collective use of multiple clouds is on the
increase. There is, however, not a high possibility that customers can do that out of the box.
Not all cloud providers comply with the open standards for their cloud interface and no open
standard has been widely accepted nor hold a dominant position over the others. In the early
stage of cloud computing emergence, the need for and importance of the standard way to
access and use multiple clouds were not stressed, and nowadays the popular public cloud
providers do not actively adopt the open standards partially because of competition—in other
words, they want to lock their customers in their services, so-called vendor lock-in problem,
with their proprietary and incompatible interfaces. This is, however, getting considered as a
negative feature by the cloud users. Open-source private cloud toolkits tend to support the
market leader’s interface such as AWS API or not so commonly adopt a popular open standard
such as OCCI, but mostly have their own interface incompatible with others as their primary
interface, too.

Table 1 shows the existing resource management APIs of several popular public and
private clouds by two categories: Web APIs and language-specific APIs. Language-specific
APIs are divided into two groups, first- and third-party, according to the main agent of the
development. Note that the multi-cloud abstraction libraries described in the previous section
are commonly included in the list of the third-party APIs for each cloud, and the exceptions are
OpenNebula (jclouds does not support) and Nimbus (Deltacloud and jclouds do not support).
Note also that if a cloud provider provides the AWS-compatible API layer, then most of
language specific APIs compatible with AWS can be used for the provider to the extent that it
supports.

Our work was greatly inspired by the interface compatibility solutions for uniform
management of multi-cloud resources identified in Table 1. The uniform access and
management is the first step of the cloud interoperability [31]. A uniform interface provides a
single and consistent way to manage the cloud resources on multiple clouds so that the users
do not need to learn a new API when they switch from one cloud to the other. As shown in
Table 1, AWS-compatible API, OCCI and multi-cloud libraries can cover most of the cloud

24 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

providers listed. If we use the OCCI API, for example, we can access and manage cloud
resources on OpenStack, CloudStack and OpenNebula in the same manner, without the need
to change the API. Also, once we build an application or service based on the OCCI API, the
application or service can be deployed on any cloud that supports the OCCI API.

Table 1. Cloud resource management APIs

 Web APIs Language-Specific APIs
First party Third party

AWS Query API (EC2),
REST API (S3)

Java, PHP, Python, Ruby,
.Net, Node.js, Go

Deltacloud (Ruby), jclouds
(Java), LibCloud (Python),
RightScale AWS (Ruby),

boto (Python), typical
(Java)

OpenStack

OpenStack API (REST),
OCCI API,

AWS-compatible API
(EC2, S3)

Python

jclouds (Java), PHP
OpenCloud (PHP), LibCloud

(Python), Deltacloud, Fog
(Ruby), .Net, pkgcloud

(Node.js)

CloudStack

CloudStack API (REST),
OCCI API (rOCCI),

AWS-compatible API
(EC2, S3)

- Deltacloud (Ruby), jclouds
(Java), LibCloud (Python)

OpenNebula
XML-RPC, OneFlow,

OCCI API,
AW-compatible API (EC2)

Ruby, Java
(OpenNebula Cloud API)

Deltacloud (Ruby),
LibCloud (Python)

Nimbus
WSRF-based API,

AWS-compatible API
(EC2)

- LibCloud (Python)

Eucalyptus AWS-compatible API -

Deltacloud (Ruby), jclouds
(Java), LibCloud (Python),
RightScale AWS (Ruby),

boto (Python), typical
(Java)

The existing solutions, however, place more emphasis on the uniform accessibility and

usability than on the integrated use of multi-clouds. We argue that in order to realize the
integrated use of multi-clouds the users or applications need to be able to view the cloud
resources from multi-clouds as a large and single pool of resources. The above-mentioned
cloud interfaces usually treat the resources separately, i.e. as each individual pool of a cloud
provider. For example, the driver for a specific provider must be described before being used
in the case of Deltacloud, and the management operations perform only on the resources
provided through the driver. In the case of OCCI, the entry point for each provider to be used
must be specified, which means the caller knows which cloud will be used. The users or
applications do not need to know the underlying cloud infrastructures—in other words, the
cloud infrastructures are hidden from the viewpoint of the interface. This is called
cloud-agnostic. We believe it is one of the key enabling concepts for the integrated use of
multi-cloud. With a cloud-agnostic interface, users or applications have the capability to
launch management operations on the cloud resources without knowing where they belong to.
This kind of interface is one step forward from the interfaces that only provide uniformity.
This is one reason why we developed our interface in this work.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 25

The other reason is to make it fit for our purpose. In our previous work [41], we proposed a

workflow-based interface for the VM lifecycle management on clouds, which provides an
integrated interface that is easy-to-use and still has enough flexibility, alleviating the problems
found on the existing typical cloud interfaces: APIs, command-line tools and Web UIs. The
abstraction layer in the work supports only EC2-compatible clouds and management of the
VM lifecycle, and therefore we felt the necessity for an interface for non-EC2-compatible
clouds and management of other types of resources. We could choose one of the
aforementioned multi-cloud abstraction libraries or just adopt one of the well-known standards,
but we decided to developed our own because 1) the cloud-agnostic feature is needed for the
integrated use of multi-cloud as mentioned above, and 2) an enough level of simplicity is
required to be invoked by workflow tasks. To summarize, the result of this work will replace
the abstraction layer of the system we proposed previously, thereby making it easy-to-use and
flexible resource management interface for multi-clouds based on the multi-cloud abstraction
layer and workflow management system, which is our future work.

5. Implementation

5.1 Cloud Testbed
In order to develop the integrated API and test it, we built two different private clouds:
OpenStack and CloudStack, as well as made use of AWS as a public cloud testbed. OpenStack
is one of the most popular open-source private IaaS-cloud toolkits that has a highly modular
architecture, and each resource type is backed up by separate projects and the corresponding
communities. It has a fast-growing community and many non-profit and for-profit
organizations as members, and the aim of it is to play a role of operating system (OS) in the
cloud ecosystem. CloudStack is another example of the private IaaS-cloud toolkit which is
supported by Apache Software Foundation, and therefore distributed under the Apache license.
It has a modular architecture and built-in high availability (HA) for the resource hosts and
VMs. AWS is the dominant commercial public cloud service in the cloud world and provides
full-featured cloud services including complicated and combined services as well as the basic
services such as compute, storage and network. Our testbed configuration is shown in Fig. 1.

As shown in Fig. 1, the OpenStack cloud consists of two physical machines: head node and
compute node and was built with Ubuntu 12.04 and OpenStack Havana (v2013.2.3). The
CloudStack cloud has four physical machines: one head node and three compute nodes and
built with CentOS 6.0 and CloudStack v4.3.2. The two private clouds are connected by
internal network, and the public cloud, AWS, is connected with them by external network over
the Internet. The RESTful API server is based on Thin web server [42] and Sinatra web
application library [43] and plays a role of the entry point of the integrated API.

26 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

Fig. 1. Testbed overview

5.2 Design and Implementation Considerations
As mentioned in Section 4, there are two main design principals for the implementation of our
integrated API: uniformity and cloud agnosticism. In this subsection, we describe some
considerations about the implementation with regard to the design principals.

In the context of cloud API, uniformity means that a single set of methods is provided for all
of the underlying clouds, and one method for a specific task is used in the same manner. In
order to achieve this, we first identified and classified common types of the cloud resources.

The types of resources or services provided by clouds vary, but there are essential types of
resources: Compute, Storage and Network. The compute resource is usually provided as a
form of VM instance, which is a core resource of a computing system. The storage resource
can be divided into two types: block storage and object storage. The block storage is provided
as a form of a disk volume, and the object storage acts like an online file storage we can upload
and download files. The network resource service usually provides virtual networking to
isolate a network from another network or to group a bunch of VM instances to form a virtual
cluster, etc. Corresponding to these basic resource types, there are three essential cloud
management tasks: compute management, storage management and network management.
Compute management includes listing sizes (hardware profiles) and VM images and
managing VM instance’s lifecycle. Storage management includes managing volumes (block
storage) and containers/objects (object storage). Network management is managing virtual
networks and subnets. Details of each management task are shown in Table 2, and one of our
implementation goals was to cover all of the tasks in the table.

The common terms of the cloud resources identified above are mostly denoted differently
among the clouds. For example, the size of a VM instance is denoted as type (AWS), flavor
(OpenStack) and service offering (CloudStack), respectively. The differences of the terms
between the cloud providers are given with service or project names in Table 3. This
inconsistency must be resolved in order to provide the uniform access and management of the
target cloud resources.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 27

Table 2. Essential cloud management tasks

Management tasks Details

Compute management
• List sizes (hardware profiles)
• List images
• List/create/reboot/terminate VM instances

Storage management
• List/create/attach/detach/delete volumes
• List/create/delete containers
• List/upload/download/delete objects

Network management
• List/create/delete virtual networks
• List/create/delete subnets

Table 3. Terminology comparisons

 AWS OpenStack CloudStack

Size
(hardware profile)

Type
(Elastic Compute

Cloud, EC2)

Flavor
(Nova)

Service offering

Image Amazon Machine
Image (AMI)

Image
(Glance)

Template

VM instance
Instance

(Elastic Compute
Cloud, EC2)

Server
(Nova)

Virtual machine

Block storage
(volume)

Volume
(Elastic Block
Storage, EBS)

Volume
(Cinder)

Volume

Object storage
(container/object)

Bucket/Object
(Simple Storage

Service, S3)

Container/Object
(Swift)

-

Network
(vnet/subnet)

Virtual Private
Cloud/Subnet

Network/Subnet
(Neutron)

Virtual Private
Cloud/Virtual

Network

A cloud-agnostic interface means that the underlying cloud services are hidden from the

interface so that users and applications do not need to know which cloud service will provide
the requested resources, and therefore they can be separated from concerns about the
underlying clouds. This puts together all cloud resources from underlying cloud
infrastructures to form a large and single pool of the resources virtually, which is one of the
key enabling technologies for integrated use of multi-cloud computing as mentioned above.

In order to implement the cloud-agnostic feature, firstly it needs to streamline the method
parameters and make them identical between different clouds and remove what is related to a
specific cloud. It also needs ID translation between low-level cloud-specific APIs and the
integrated API, namely conversion between local IDs and global IDs for target resources.

28 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

Global IDs are used to distinguish cloud resources one another globally and uniquely identify
one of them on the interface level, and the local IDs are not seen by users and applications.
Last but not least, how to select a cloud for a specific resource is also of importance when more
than two clouds are available for the desired resource. This is not an issue for the collective
operations like listing, or operations that have targets specified like deleting because such
operations are performed on all cloud services or a subset of clouds selected by given
conditions. In the case of the operation like creating, however, it is often required that a cloud
should be selected among any available clouds. This selection strategy can be various from the
random choice and round-robin to the intelligent choice based on dynamic information on
cloud such as capacity, utilization, etc. For simplicity, the random choice was used in this
work.

5.3 Implementation Details
Our implementation was written in the Ruby programming language based on Sinatra web
application library in combination with dedicated cloud APIs to access each of the clouds in
our testbed. Sinatra is an open-source web application framework that provides a
domain-specific language (DSL) to build web applications or services with which a RESTful
API can also be developed. We made use of dedicated cloud APIs for each cloud in our testbed,
which include OpenStack RESTful API [44], CloudStack Ruby client [45] and AWS Ruby
SDK [46]. The overview of the implementation is shown in Fig. 2.

There are wrappers that handle the dedicated APIs directly and contain cloud-specific stuffs
such as connection, authentication, and so on. The wrappers get user and target cloud
information including credentials and entry point for the target cloud from the integrated API
and try to establish a connection with the target cloud and authenticate the users. The methods
included in each wrapper directly call the corresponding methods of the dedicated API, and
therefore they must use the cloud-specific form of the method call. For that reason, they need
the local ID of a certain resource of the target cloud instead of global ID. The ID Mapper holds
the local ID – global ID map for conversion, and the methods in the wrappers query a local ID
with a global ID as needed. The ID Map is saved as a file for persistency.

The Integrated API has a set of methods corresponding to each of the cloud management
tasks shown in the previous subsection. It makes a method call with a global ID and options
forwarded from the REST API, collects information on a user and the clouds registered to the
user from user catalog, and supplies the information to the wrappers. It holds a list of
registered clouds and select all or a subset of them by a certain selection algorithm as needed.
It also uses the ID Mapper to get a name of a cloud when needed, but the name is not directly
exposed to the user in any case.

The RESTful API is made with Sinatra DSL. It forwards user’s input to the integrated API
via a web request and gets the output as eXtensible Markup Language (XML) format by the
help of XML Builder to make a response body for the web request. Its structure and examples
are given in a following subsection in more detail.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 29

Fig. 2. Implementation overview

5.4 RESTful API
The REST stands for Representational State Transfer, which was first introduced in [47],
which defines the architectural styles and design of a software architecture based on the
Internet. Since its introduction, it has been widely adopted by web developers to build
lightweight, scalable and reliable web services during the last decade. A RESTful API is the
API built based on the REST architectural styles and design. Many cloud interface standards,
multi-cloud abstraction libraries and dedicated cloud interfaces we described above also
adopted the REST architecture, and therefore we also made our management interface comply
with the RESTful style and design.

The structure of the implemented RESTful API web methods is shown in Fig. 3 with some
custom syntactic expressions. A service request can include additional options as query
parameters or payloads. One example is creating a new instance as follows:

- HTTP verb and URI

POST http://localhost:4567/instances

30 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

- Payloads (URL encoded)
 image_id=img-53c8800b&size_id=size-417719c2&number=1

Rebooting an instance is another example:

- HTTP verb and URI

PUT http://localhost:4567/instances/inst-41f7caf9/reboot

Note that the POST verb is used for creation, and the PUT verb is used for modification of a

resource state. The most frequently used HTTP verbs, GET, POST, PUT and DELETE, have
corresponding create, read, update and delete (CRUD) operations, respectively, which enables
uniform interface, one of the RESTful design principles. In our implementation, the GET verb
is used for listing existing resources with details, the POST method is used for creating a new
resource, the PUT method is used for performing an action with resources, and the DELETE
verb is used for terminating or deleting a resource. The list of methods and resources supported
by our implementation is shown in Table 4.

Fig. 3. Implemented RESTful API method structure

Table 4. RESTful API web methods

Resource
type

HTTP
verb Resource Description

Compute

GET /sizes Retrieve list and information of
supported sizes

GET /images Retrieve list and information of
supported images

GET /instances Retrieve list and information of
running instances

POST /instances Create a new instance with payloads

PUT /instances/{id}/reboot Reboot an instance specified by
{id}

DELETE /instances/{id} Terminate an instance specified by
{id}

Storage
GET /volumes Retrieve list and information of

existing volumes
POST /volumes Create a new volume with payloads

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 31

PUT /volumes/{id}/attach_to/{inst_id} Attach a volume with {id} to an
instance with {inst_id}

PUT /volumes/{id}/detach Detach a volume with {id} from an
instance

DELETE /volumes/{id} Delete a volume specified by {id}

GET /containers Retrieve list and information of
existing containers

POST /containers Create a new container with
payloads

DELETE /containers/{id} Delete a container specified by {id}

GET /objects Retrieve list and information of
uploaded objects

POST /objects/{filename}/upload_to/{cont_id} Upload a file to a container with
{cont_id}

GET /objects/{id}/download_from/{cont_id} Download a file with {id} from a
container with {cont_id}

DELETE /objects/{id}/from/{cont_id} Delete a uploaded object in a
container with {cont_id}

Network

GET /vnets Retrieve list and information of
existing virtual networks

POST /vnets Create a new virtual network with
payloads

DELETE /vnets/{id} Delete a virtual network specified
by {id}

GET /subnets Retrieve list and information of
existing subnets

POST /subnets/in/{vnet_id}
Create a new subnet in a virtual
network with {vnet_id} and
payloads

DELETE /subnets/{id} Delete a subnet specified by {id}

5.5 How It Works
A user or an application calls one of the REST API methods in a standard way with a resource
name and options, and the web server gets the request and invokes an appropriate method that
handles the request in the Integrated API. The method in turn validates and parses the input
values, selects target cloud(s), and then calls a wrapper method in the target cloud(s) with the
input values in order to perform the actual task. The wrapper method uses the ID conversion
before calling a dedicated API method. The entry point information is used for the dedicated
API method call, with which the method interacts with the API server of the target cloud.

The wrapper method gets the execution result from the dedicated API method and
streamlines the data by extracting common and necessary values only. At this point, the local
ID is converted to a global ID. A global ID is created only if it does not exist yet and returned
from the ID map if it exists. The returned data are in turn converted to the XML format and
delivered to the user or application.

32 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

6. Evaluation
In order to show the performance comparison between the individual cloud API calls and the
integrated API calls, we measured total response time of each method on our testbed. The
experiments are intended to reveal the overhead imposed by the integrated cloud API, not to
evaluate the performance of each cloud API, and therefore the actual measured values are not
a matter of interest, but the differences are of importance. API method calls and time
measurement were performed using Ruby scripts, in which appropriate libraries (or Ruby
Gems) were used such as REST Client for the RESTful API method call and built-in
Benchmark module for the time measurement. Note that the response time does not
necessarily mean the total elapsed time to complete a resource provisioning.

The experimental results are presented in Table 5. The blanks in the dedicated APIs column
mean that the clouds in our testbed do not support those type of resources, for example, the
CloudStack cloud does not support the object storage and virtual networking, and the
OpenStack cloud partially supports the network resource type. The limited networking feature
of our OpenStack cloud was supplemented by our implementation, but it was excluded for the
measurement because it is not a part of the dedicated API. Similarly, the time for List Sizes
operation for AWS could not be measured because the AWS API does not officially support a
programmatic way to get the instance types it provides. We implemented the feature by
ourselves. In the implemented API column, the time measurement is divided into two parts:
time for operations that target each cloud individually and time for collective operations such
as listing resources. Our API is cloud-agnostic as mentioned in the previous section, but we
can indirectly designate a target cloud, for example by using a size or an image that is
supported by the target cloud only in the case of Create an Instance. On the other hand, the
listing operations retrieve list and information of all the resources of a certain type on the cloud
testbed collectively and therefore can’t be used separately. In the case of object storage and
network resources, the target cloud can be chosen by a certain scheme, which is random in the
current implementation, so it is not possible to choose the target cloud arbitrarily.

Fig. 4, 5, 6 and 7 show the results obtained for listing operations and operations on
OpenStack, CloudStack, and AWS, respectively, which compare the response times measured
from the dedicated APIs and the implemented API. As mentioned above, the listing operations
get the information of each resource collectively from all clouds, the comparison was
performed with the average values of the response times measured from the two sets of APIs.
Instance- and volume-related operations were compared one on one and the results obtained
for object storage resources were compared between method calls to AWS because only AWS
provides the resource type in our testbed. The response times normally tend to increase in most
cases due to the overhead imposed by the integrated API, but in some cases, the measured
values decreased even though the integrated API plays a sort of wrapper role for the original
APIs, so the results seem not to be correct. We suspect this is due to the network latency and
the negligibly small overhead. Such cases mostly occurred in the operations on AWS that is
located in the external network unlike other local private clouds, which supports our
conjecture. Another possibility is that the overhead is so small that it may be within the margin
of latency, and thus its impact is hidden from the final total response time. Indeed, the
integrated API does not have so many functionalities as the dedicated APIs do, just
collectively forwards and translates a request to access and manage a cloud resource into a
suitable format for the target cloud and get the response message to show or transfer to other
services. Therefore, the overhead imposed by the integrated API can be negligibly small.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 33

Table 5. Experimental results (seconds)
 Dedicated APIs Implemented API

 OpenStack CloudStack AWS OpenStack CloudStack AWS (Collective)

List Sizes 0.017 0.013 - - - - 0.045

List Images 0.042 0.020 0.065 - - - 0.144
List Instances 0.052 0.022 0.274 - - - 0.716
Create an Instance 0.493 0.454 0.853 0.559 0.448 0.890 -
Reboot an Instance 0.221 0.137 0.554 0.217 0.148 0.278 -
Terminate an Instance 0.286 0.134 0.495 0.295 0.145 0.464 -
List Volumes 0.060 0.016 0.445 - - - 0.485
Create a Volume 0.339 0.250 0.497 0.363 0.285 0.659 -
Attach a Volume 0.370 0.134 0.297 0.384 0.144 0.396 -
Detach a Volume 0.259 0.136 0.291 0.378 0.176 0.240 -
Delete a Volume 0.127 0.585 0.178 0.126 0.430 0.165 -
List Containers - - 0.703 - - - 0.520
Create a Container - - 1.429 - - - 1.146
Delete a Container - - 1.019 - - - 1.169
List Objects - - 0.701 - - - 1.283
Upload an Object - - 0.680 - - - 0.639
Download an Object - - 0.019 - - - 0.026
Delete an Object - - 0.600 - - - 0.666
List Virtual Networks - - 0.521 - - - 0.332
Create a Virtual Network - - 0.129 - - - 0.148
Delete a Virtual Network - - 0.469 - - - 0.304
List Subnets 0.013 - 0.495 - - - 0.604
Create a Subnet 0.366 - 0.150 - - - 0.141
Delete a Subnet 0.112 - 0.131 - - - 0.130

Fig. 4. Results of listing operations

Fig. 5. Results of operations on OpenStack

34 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

Fig. 6. Results of operations on CloudStack

Fig. 7. Results of operations on AWS

7. Conclusions

7.1 Summary
The number of clouds per person is increasing, risks to solely rely on a single cloud service are
getting higher, and users and applications are required to have the capability to interact with a
multiple number of clouds more and more. To remove the heterogeneity and to facilitate the
interoperable use of such multi-clouds, integrated and uniform accessibility to the
multi-clouds is indispensable. In this paper, we surveyed existing interoperable solutions for
multi-clouds including cloud interface standards, multi-cloud abstraction libraries and
previous studies on integrated management of clouds.

Through the survey, we realized the issues and were inspired by the existing solutions, and
finally we decided to develop our own integrated and uniform cloud management API for
multi-clouds, due to the lack of some required features for our purpose: cloud-agnostic and
simplicity for the future use of another research.

In order to develop our cloud abstraction API and evaluate it, we built a cloud testbed that
consisted of two local private clouds, OpenStack and CloudStack, and the remote public cloud,
AWS, provided by the cloud market leader, Amazon. We also identified the basic cloud
resource types and defined common terms for the resources to reduce the confusion caused by
the difference of terminologies. Our implementation is based on the existing dedicated cloud
APIs such as OpenStack RESTful API, CloudStack Ruby client, and AWS Ruby SDK as well
as the RESTful web service framework, Sinatra. We have successfully developed an
integrated API for the management of basic cloud resource types, Compute, Storage and
Network, and RESTful web methods to provide the integrated API to the users or applications
in a uniform way.

Performance evaluation was also conducted and the results showed that there was no
significant degradation generated by the implemented API, but rather some results showed the
total response times were reduced, which was supposedly due to the network latency at the
moment of the experiments implying the possibility that the overhead was too small to have
impact on the overall response time. This is mainly due to the streamlined functionality of our
implementation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 35

7.2 Future Work
As we mentioned in previous sections, we will combine the implemented API with the
workflow-based cloud interface we proposed previously in place of the existing abstraction
API that can only support EC2-compatible clouds to provide easy-to-use and integrated cloud
interface for non-EC2-compatible multi-clouds. To prove its usefulness, we are planning to
compose various patterns of cloud management workflows as many as possible.

Another work to do is an improvement of the integrated API. It lacks advanced features
provided by the cloud providers as well as portability, which is one of the key enabling
technologies for the use of multi-clouds. In the experiments, we could choose a desired cloud
by using a resource restricted to the target cloud such as size and image. This is, however, not
desirable feature. Instead, any resource should be able to work on any cloud no matter what
resource a user or an application chooses to use, which is called cloud portability. We will
study on the enabling technologies for the cloud portability such as Open Virtualization
Format (OVF), and we will try to apply the technologies to our implementation and the testbed
if needed.

References
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation
Computer Systems, vol. 25, no. 6, pp. 599–616, Jun. 2009. Article (CrossRef Link)

[2] Yogesh Simmhan, Catharine van van Ingen, Girish Subramanian, and Jie Li, “Bridging the Gap
between Desktop and the Cloud for eScience Applications,” in Proc. of 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD), pp. 474–481, 2010.
Article (CrossRef Link)

[3] F. Hu et al., “A Review on Cloud Computing: Design Challenges in Architecture and Security,”
CIT. Journal of Computing and Information Technology, vol. 19, no. 1, pp. 25–55, May 2011.
Article (CrossRef Link)

[4] M. Keller, D. Meister, A. Brinkmann, C. Terboven, and C. Bischof, “eScience Cloud
Infrastructure,” in Proc. of 2011 37th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), pp. 188–195, 2011. Article (CrossRef Link)

[5] J. L. Hellerstein, K. J. Kohlhoff, and D. E. Konerding, “Science in the Cloud: Accelerating
Discovery in the 21st Century,” IEEE Internet Computing, vol. 16, no. 4, pp. 64–68, 2012.
Article (CrossRef Link)

[6] “Amazon Web Services (AWS) - Cloud Computing Services,” Amazon Web Services, Inc.
[Online]. Available: https://aws.amazon.com/. [Accessed: 02-Dec-2016].

[7] “Google Compute Engine,” Google Cloud Platform. [Online]. Available:
https://cloud.google.com/compute/. [Accessed: 02-Dec-2016].

[8] “Apple iCloud,” Apple. [Online]. Available: http://www.apple.com/icloud/. [Accessed:
02-Dec-2016].

[9] “Microsoft Azure: Cloud Computing Platform & Services.” [Online]. Available:
https://azure.microsoft.com/en-us/. [Accessed: 02-Dec-2016].

[10] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner, “A break in the clouds:
towards a cloud definition,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55,
Jan. 2009. Article (CrossRef Link)

[11] Borja Sotomayor, Rubén S. Montero, Ignacio M. Llorente, and Ian Foster, “Virtual Infrastructure
Management in Private and Hybrid Clouds,” IEEE Internet Computing, vol. 13, no. 5, pp. 14–22,
Oct. 2009. Article (CrossRef Link)

https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1109/cloud.2010.72
https://doi.org/10.2498/cit.1001864
https://doi.org/10.1109/seaa.2011.38
https://doi.org/10.1109/MIC.2012.87
https://doi.org/10.1145/1496091.1496100
http://dx.doi.org/10.1109/MIC.2009.119

36 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

[12] P. M. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National Institute of
Standards & Technology, Gaithersburg, MD, United States, SP 800-145, 2011.
Article (CrossRef Link)

[13] Rafael Moreno-Vozmediano, Rubén S. Montero, and Ignacio Martín Llorente, “IaaS Cloud
Architecture: From Virtualized Datacenters to Federated Cloud Infrastructures,” Computer, vol.
45, no. 12, pp. 65–72, Dec. 2012. Article (CrossRef Link)

[14] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud: Utility-Oriented Federation of Cloud
Computing Environments for Scaling of Application Services,” in Proc. of Algorithms and
Architectures for Parallel Processing, C.-H. Hsu, L. T. Yang, J. H. Park, and S.-S. Yeo, Eds.
Springer Berlin Heidelberg, pp. 13–31, 2010. Article (CrossRef Link)

[15] Global Inter-Cloud Technology Forum, “Use Cases and Functional Requirements for Inter-Cloud
Computing,” Global Inter-Cloud Technology Forum, White Paper, Aug. 2010. Available:
http://www.ttc.or.jp/files/8614/1214/5480/GICTF_Whitepaper_20100809.pdf. [Accessed: 02-De
c-2016].

[16] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected Cloud Computing Environments:
Challenges, Taxonomy, and Survey,” ACM Computing Surveys, vol. 47, no. 1, pp. 1–47, May 2014.
Article (CrossRef Link)

[17] N. Grozev and R. Buyya, “Inter-Cloud architectures and application brokering: taxonomy and
survey,” Softw. Pract. Exper., vol. 44, no. 3, pp. 369–390, Mar. 2014. Article (CrossRef Link)

[18] T. Metsch and A. Edmonds, “Open Cloud Computing Interface - RESTful HTTP Rendering.”
Open Grid Forum, 21-Jun-2011. Available: https://www.ogf.org/documents/GFD.185.pdf.
[Accessed: 02-Dec-2016].

[19] Jacques Durand, Marios Andreou, Doug Davis, and Gilbert Pilz, Eds., “Cloud Infrastructure
Management Interface (CIMI) Model and RESTful HTTP-based Protocol.” Distributed
Management Task Force, 20-Mar-2015. Available:
http://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0c.pdf. [Accessed:
02-Dec-2016].

[20] “OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA).” [Online].
Available: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca. [Accessed:
02-Dec-2016].

[21] “Deltacloud API.” [Online]. Available: https://deltacloud.apache.org/. [Accessed: 02-Dec-2016].
[22] “Apache jclouds.” [Online]. Available: https://jclouds.apache.org/. [Accessed: 02-Dec-2016].
[23] “Apache Libcloud,” Apache Libcloud. [Online]. Available: https://libcloud.apache.org/.

[Accessed: 02-Dec-2016].
[24] F. Meireles and B. Malheiro, “Integrated Management of IaaS Resources,” in Proc. of Euro-Par

2014: Parallel Processing Workshops, L. Lopes, J. Žilinskas, A. Costan, R. G. Cascella, G.
Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S.
Hunold, S. L. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander, Eds.
Springer International Publishing, pp. 73–84, 2014. Article (CrossRef Link)

[25] T. Harmer, P. Wright, C. Cunningham, and R. Perrott, “Provider-Independent Use of the Cloud,”
in Proc. of Euro-Par 2009 Parallel Processing, H. Sips, D. Epema, and H.-X. Lin, Eds. Springer
Berlin Heidelberg, pp. 454–465, 2009. Article (CrossRef Link)

[26] Thijs Metsch, Andy Edmonds, and Victor Bayon, “Using Cloud Standards for Interoperability of
Cloud Frameworks,” SLA@SOI, Technical Report. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.462.5624. [Accessed: 02-Dec-2016].

[27] N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis, and K. Tarabanis, “Towards a
Reference Architecture for Semantically Interoperable Clouds,” in Proc. of 2010 IEEE Second
International Conference on Cloud Computing Technology and Science (CloudCom), pp. 143–150,
2010. Article (CrossRef Link)

[28] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to Enhance Cloud Architectures to Enable
Cross-Federation,” in Proc. of 2010 IEEE 3rd International Conference on Cloud Computing
(CLOUD), pp. 337–345, 2010. Article (CrossRef Link)

https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.1109/MC.2012.76
https://doi.org/10.1007/978-3-642-13119-6_2
https://doi.org/10.1145/2593512
https://doi.org/10.1002/spe.2168
https://doi.org/10.1007/978-3-319-14313-2_7
https://doi.org/10.1007/978-3-642-03869-3_44
https://doi.org/10.1109/CloudCom.2010.38
https://doi.org/10.1109/cloud.2010.46

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 37

[29] N. M. Calcavecchia, A. Celesti, and E. Di Nitto, “Understanding Decentralized and Dynamic
Brokerage in Federated Cloud Environments,” in Proc. of Achieving Federated and
Self-Manageable Cloud Infrastructures: Theory and Practice, IGI Global, 2012.
Article (CrossRef Link)

[30] G. Arunkumar and N. Venkataraman., “A Novel Approach to Address Interoperability Concern in
Cloud Computing,” Procedia Computer Science, vol. 50, pp. 554–559, 2015.
Article (CrossRef Link)

[31] Á. López García, E. Fernández del Castillo, and P. Orviz Fernández, “Standards for enabling
heterogeneous IaaS cloud federations,” Computer Standards & Interfaces, vol. 47, pp. 19–23, Aug.
2016. Article (CrossRef Link)

[32] L. Heilig, E. Lalla-Ruiz, and S. Voß, “A cloud brokerage approach for solving the resource
management problem in multi-cloud environments,” Computers & Industrial Engineering, vol. 95,
pp. 16–26, May 2016. Article (CrossRef Link)

[33] “rOCCI - A Ruby OCCI Framework,” GitHub. [Online]. Available:
https://github.com/gwdg/rOCCI. [Accessed: 02-Dec-2016].

[34] “Service Sharing Facility.” [Online]. Available: http://pyssf.sourceforge.net/. [Accessed:
02-Dec-2016].

[35] “erocci.” [Online]. Available: http://erocci.ow2.org/ - !/main. [Accessed: 02-Dec-2016].
[36] “OpenStack Open Source Cloud Computing Software.” [Online]. Available:

https://www.openstack.org/. [Accessed: 02-Dec-2016].
[37] “Apache Cloudstack,” Apache Cloudstack. [Online]. Available: https://cloudstack.apache.org/.

[Accessed: 02-Dec-2016].
[38] B. Rochwerger et al., “The RESERVOIR model and architecture for open federated cloud

computing,” IBM Journal of Research and Development, vol. 53, no. 4, p. 4:1-4:11, Jul. 2009.
Article (CrossRef Link)

[39] “The SLA at SOI project.” [Online]. Available: http://sla-at-soi.eu/. [Accessed: 02-Dec-2016].
[40] Kevin Kelly, “The Technium: A Cloudbook for the Cloud.” [Online]. Available:

http://kk.org/thetechnium/a-cloudbook-for/. [Accessed: 02-Dec-2016].
[41] H. Kim, K. Chun, H. Kim, and Y. Chung, “Utilization of workflow management system for virtual

machine instance management on cloud,” Concurrency Computat.: Pract. Exper., vol. 27, no. 17,
pp. 5350–5373, Dec. 2015. Article (CrossRef Link)

[42] “Thin - yet another web server.” [Online]. Available: http://code.macournoyer.com/thin/.
[Accessed: 02-Dec-2016].

[43] “Sinatra.” [Online]. Available: http://www.sinatrarb.com/. [Accessed: 02-Dec-2016].
[44] “OpenStack API Documentation.” [Online]. Available:

http://developer.openstack.org/api-guide/quick-start/index.html. [Accessed: 02-Dec-2016].
[45] “Cloudstack ruby client.” [Online]. Available:

https://chipchilders.github.io/cloudstack_ruby_client/. [Accessed: 02-Dec-2016].
[46] “AWS SDK for Ruby.” [Online]. Available: https://aws.amazon.com/sdk-for-ruby/. [Accessed:

02-Dec-2016].
[47] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,”

University of California, Irvine, 2000. Available:
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. [Accessed: 02-Dec-2016].

https://doi.org/10.4018/978-1-4666-1631-8.ch003
https://doi.org/10.1016/j.procs.2015.04.083
https://doi.org/10.1016/j.csi.2016.02.002
https://doi.org/10.1016/j.cie.2016.02.015
http://dx.doi.org/10.1147%2FJRD.2009.5429058
https://doi.org/10.1002/cpe.3579

38 Kim et al.: Experience in Practical Implementation of Abstraction Interface for
 Integrated Cloud Resource Management on Multi-Clouds

Huioon Kim received the B.S. degree in Computer Engineering from Dong-a
University, Korea, in 2005 and M.S. degree in Information and Communications from
Gwangju Institute of Science and Technology, Korea, in 2008. He is currently a Ph.D.
candidate in the School of Electrical Engineering and Computer Science, Gwangju
Institute of Science and Technology, Korea. His research interests include cloud
computing, eScience research environment and high-performance computing.

Hyounggyu Kim received the B.S. and M.S. degrees in Physics from Sejong
University, Korea, in 2006 and 2008, respectively. He is currently a Ph.D. candidate in
the School of Electrical Engineering and Computer Science, Gwangju Institute of Science
and Technology, Korea. His research interests include particle simulations using cloud
computing, high-performance computing based on GPGPU and system integration.

Kyungwon Chun received the B.S. degree in Physics from Chung-Ang University,
Korea, in 2001 and the M.S. and Ph.D. degrees in Information and Communications from
Gwangju Institute of Science and Technology, Korea, in 2004 and 2013, respectively. His
research interests include numerical simulations, high-performance computing and
programming algorithms.

Youngjoo Chung received the B.S. degree in Physics from Seoul National University,
Korea, in 1982 and the M.S. and Ph.D. degrees in Plasma Physics from Princeton
University, USA, in 1985 and 1989, respectively. He is currently a full professor of the
School of Electrical Engineering and Computer Science, Gwangju Institute of Science
and Technology, Korea. His research interests include Computer-aided mathematics,
mathematical analysis based on high-performance computing and E-education for
mathematics.

