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Abstract 
 

In this paper, we study the problem of network utility maximization in a CSMA based 
multi-hop wireless network. Existing work in this aspect typically adopted continuous time 
Markov model for performance modelling, which fails to consider the channel conflict impact 
in actual CSMA networks. To maximize the utility of a CSMA based wireless network with 
channel conflict, in this paper, we first model its weighted network capacity (i.e., network 
capacity weighted by link queue length) and then propose a distributed link scheduling 
algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the 
weighted network capacity. We derive the upper and lower bounds of network utility based on 
C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work 
in a distributed wireless network. Simulation results show that the joint optimization based on 
C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are 
chosen and also show that the derived utility upper bound is very tight. 
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1. Introduction 

Network Utility Maximization (NUM) is an important design consideration for the design of 
wireless multi-hop networks from both economic and cost perspectives [1][2]. In general, 
utility is a concept for characterizing the satisfaction or benefit derived by consuming a 
product or service. Different from the amount consideration when consuming a product or 
service, utility is usually conformed to the law of diminishing marginal utility, which means 
that the first unit of consumption of a product or service yields more utility than the second and 
subsequent units, with a continuing reduction for greater amounts. In a wireless multi-hop 
network, flow rate (i.e., user bandwidth) is treated as the service provisioned to network users 
and in this paper we aim to maximize the resulting network utility by optimizing the flow rates 
assigned to different network users. 

By using a utility optimization framework, the NUM can be decomposed into a 
cross-layered problem, one is congestion control at the transport layer, another is link 
scheduling at the MAC layer. In the literature, there has been much work in this area including 
optimization framework designing [3][4][5], link scheduling [6][7][8], and utility modeling 
[9]. Recently, design of effective cross-layered optimization frameworks has become mature. 
However, how to achieve efficient link scheduling and maximum utility modeling in a 
distributed wireless network are still hot research topics.  

1.1 Wireless link scheduling 
Regarding wireless link scheduling, existing work in this aspect can be roughly categorized 
into the following three types: back-pressure based, persistence probability based, and CSMA 
based. In the following, we will introduce typical work belonging to different types, 
respectively.   

The first type adopts the strategy of back-pressure based scheduling and they usually 
assume that the capacities of wireless links are time-varying [8]. Specifically, at each slot, they 
work to choose the maximum independent transmission link set, which contains those links 
leading to the maximum sum of link queue backlog differentials, to transmit data. Due to the 
NP-Hard nature of the problem, heuristic algorithms (e.g., [10]) were often used for seeking 
efficient non-conflicting transmission link sets with the assistance of global network state 
information.  

The second type assumes deterministic interference relation among wireless links and they 
build mathematical models to derive the optimal persistence probability associated with each 
link for transmissions via cross-layered optimization [6][7]. However, in either of the models 
in [6][7], medium access operations are purely determined by the statistical persistence 
probability instead of instantaneous conflict relation among neighbor links as detected via 
channel sensing. Such operations may even cause more channel conflicts than naive CSMA 
(Carrier Sensing Multiple Access).  

The third type is CSMA and its variants. The naive CSMA purely work at the MAC layer 
for medium access and it is known to have low performance in multi-hop wireless networks. 
Recently, how to incorporate various non-MAC-layer factors into CSMA to achieve improved 
performance has received great attention. In [11], Jiang and Walrand proposed an adaptive 
CSMA based link scheduling algorithm, which tunes mean back-off time and also mean 
channel holding time for each link to maximize the global network throughput. In [11], the 
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authors showed that such a way of link scheduling can yield the maximum possible throughput 
of a multi-hop wireless network. Adaptive CSMA based link scheduling has the following 
salient features: It is fully distributed and each node only needs to keep local information; It 
takes full advantage of channel sensing to relieve potential channel conflict; It can be 
embedded into a cross-layered optimization to achieve a higher network utility. In [12], Liu et 
al. extended the work in [11] to achieve total link utility maximization, where link utility is 
used for describing the scenario where communication pairs are restricted to be direct 
neighbors.  

Since [11], much work has been carried out in the field of adaptive CSMA based link 
scheduling. Ref. [13] study the scheduling algorithm when the sensing time cannot be 
negligible. Ref. [14] computes the desired link access intensity (ratio of its mean transmission 
time to its mean back-off time) for each link when the link is unsaturated. Ref. [15] uses 
distributed learning mechanism based on game theory for link scheduling in order to achieve 
total link utility maximization. Ref. [16] studied the impact of channel conflict and proposed 
an improved version of CSMA by using link activation probability based on queue lengths. 
For time-varying channels, [17] adjusts the CSMA parameters such as back-off-time and 
channel holding times, as certain functions of channel capacity, in order to achieve maximal 
throughput. In [18], the authors studied signal to interference-plus-noise (SINR) based MIMO 
networks. Among all the above existing work, [14][15] studied networks without conflicts and 
[13][16][17][18] studied networks with conflicts, [13][14][16][17][18] aimed to maximize 
network throughput, and [12][15] aimed to maximize total link utility. Different from the 
above work, in this paper, we shall design a link scheduling algorithm that incorporates 
Adaptive CSMA with cross-layer design, in order to achieve maximum network utility and 
further we focus on studying networks where peer-to-peer communications via multihop paths 
are considered and transmission conflicts can occur. 

1.2 Utility modeling 
Utility modeling of joint (cross-layered) optimization of congestion and medium access 
control has been an attractive paradigm. Since any layer (including MAC layer) may affect the 
performance of the joint optimization, utility modeling must work with explicit link 
scheduling mechanism, in the following, we shall divide existing work in this area based on 
how link scheduling is performed at the MAC layer.   

Existing work in this aspect can again be categorized like those done for addressing the link 
scheduling issue as introduced in the preceding subsection. For this first type (i.e., 
back-pressure based), in [9], the authors modeled the network utility in the context of 
centralized back-pressure based scheduling with the assistance of global network state 
information. For the second type (i.e., persistence probability based), in [6][7], the authors 
analyzed the optimality of utility based on the link persistence probability based model, which, 
however, may cause more channel conflicts. For the third type (i.e., adaptive CSMA based), in 
[11], the authors analyzed the utility maximization based on adaptive CSMA, and they 
concluded that the maximal utility can be achieved when parameters such as transmission 
aggressiveness and algorithm scalar are both infinite. However, in reality, these parameters (or 
some of them) are not infinite and also they are not independent. That means when one of the 
parameters has to be chosen to be finite, other parameters will have to be finite as well, which 
can cause degradation in network utility. Although the authors of [11] further considered the 
applicability of their continuous-time utility model in scenario with channel conflicts and 
discrete time, they did not analyze the resulting performance in network utility. In this paper, 
we shall study the utility modeling based on adaptive CSMA and analyze the impact of various 
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algorithm parameters with finite values when channel conflict is considered.  
Network capacity modeling is also a hot topic that is closely relevant to utility modeling 

[19]. Thus, a good review of existing work for network capacity modeling can provide good 
references for studying utility modeling. In this aspect, Ref. [20] builds a model for calculating 
the capacity of IEEE 802.11 DCF network based on the assumption of conflicts with constant 
probability and independent probability, respectively. In [21][22], the authors analyzed the 
capacity of IEEE 802.11 networks when hidden terminals exist. Ref. [23] modified the ideal 
CSMA model and obtained a product-form stationary distribution incorporating queue length 
that is associated with the corresponding link delay. Ref. [24] formulated the link capacity 
when channel sensing fails.  

1.3 Our work in this paper 
In this paper, we study how to maximize the utility of a CSMA based wireless network with 
channel conflict. For this purpose, we first model the weighted network capacity of such a 
network (i.e., network capacity weighted by link queue length), and then propose a distributed 
CSMA based Maximal-Weight link Scheduling algorithm (C-MWS) to maximize the 
weighted network capacity. We deduce the utility upper and lower bounds based on the 
weighted network capacity model and analyze the impact of various parameters, where the 
utility bounds can help network operator/users to learn the maximal network capacity and 
evaluate the effectiveness of an network optimization algorithm. 

Our work in this paper is based on the following assumptions, which were also used in 
[11][25][26]: 1) there exist no hidden nodes in the network; 2) channel sensing is 
instantaneous. One way of resolving the issue of hidden nodes is to use separate signaling 
channel for medium access control and resource allocation decision making. In addition, we 
assume that the network under study is saturated.  

The major contributions in this paper are listed as follows. 
1) We model the weighted network capacity for a wireless network with channel conflicts 

and then present the design of C-MWS to maximize the weighted network capacity.  
2) We build a mathematical model to derive the utility upper and lower bounds via joint 

optimization of congestion control and link scheduling based on C-MWS.  Through this 
model, we can learn how the C-MWS parameters affect the network utility and also 
how to tune them to improve the network utility.  

3) Simulation results show that the joint optimization based on C-MWS can achieve 
near-optimal network utility when appropriate algorithm parameters are chosen and 
also show that the derived utility upper bound is very tight. 

The rest of the paper is structured as below. Section 2 gives system model and then deduces 
the joint optimization structure. Section 3 models the weighted network capacity and proposes 
the C-MWS algorithm for achieving the weighted network capacity. Section 4 derives the 
utility bounds and analyzes the network stability. Section 5 presents simulation results for 
performance evaluation. Finally, in Section 6, we conclude this paper. 

2. System Model 
In this section, we focus on studying wireless multi-hop networks, which can be modeled by a 
directed graph =(, ), where represents the set of nodes and  represents the set of 
directional links connecting nodes in the graph. l(m, n)∈() means that there exist a link from 
node m∈() to its neighbor node n∈() −{m}. Notations used in the rest of this paper are 
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listed in Table 1. 
Next, we adopt a widely used interference model in our study, which can be described as 

follows. It is realistic to assume that a node n∈() cannot transmit traffic while any other 
node within its sensing range is transmitting. The directed graph  is associated with a 
unidirectional conflict graph =(, ), where each node in  represents a link in the original 
graph , and each link in  represents a symmetric interference relation. For example, v1, 
v2∈() are neighbor vertices and e(v1, v2)∈() is the edge connecting v1 and v2. The 
existence of such a link represents that the two links that v1 and v2 represent in the original 
graph interfere with each other. In addition, for a link l(m, n)∈(), let Cl,max  represent its 
theoretical maximum capacity when it is not interfered by any other link and external 
environment. 

 
 

Table 1. NOTATIONS. 

Notations Definitions 

=(, ) The original graph; 
|| Number of links in the original graph; 
=(, ) Conflict graph of the original graph ; 

s
rx ; ( )s opt

rx ; (*)s
rx   Flow rate; flow rate by centralized optimal scheduling; an arbitrary flow rate 

by C-MWS. All these variables are for a sub-path r for session s; 

lp ; ( )opt
lp  The Lagrange Multiplier (also called weight) and the optimal Lagrange 

Multiplier obtained by centralized scheduling for link l, respectively;  

lc ; ( )opt
lc ; (*)

lc ; ( )e
lc ;  Link rate, optimal link rate by centralized scheduling, stationary link rate by 

C-MWS, and empirical link rate by C-MWS. All are for link l;  
Cl,max Theoretical maximal link capacity for link l; 

γr; γl Joint optimized flow rate and queue step size for a sub-flow r; 

1/δ l ;  1/µ l Mean back-off time and transmission time for link l; 

T Duration of scheduling cycle; 

τ ;  Duration of a mini timeslot for channel access;  

 is; is′; iss; All are independent sets. is′ and is represent a pair of left and right states, 
respectively, where the right one has one more extra link l;   

Pis;  Fraction of time when the network under study is in state is; 

Psl 
is 

Probability that a packet is successfully transmitted over link l when the 
network state is is; 

α A scalar for the C-MWS algorithm; 

minCW ; maxCW ; Minimal mean contention window size ( CW ); maximal CW ; 

BFl; 
Back-off time (which is integer multiple of a mini timeslot) for packet 
transmission over link l; 

rl ; rmin; rmax; Transmission Aggressiveness (TA) for link l; minimal TA; maximal TA; 

;; Network capacity without conflict; network capacity with conflict; weighted 
network capacity; 
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xmax ; Umax Upper bound of s
rx  (∀r, s ) and ( )s

sU x (∀s); 

Lmax ;  fmax  
The number of links in the longest path among all the sub-paths by different 
sessions; maximal number of flows traversing a link; 

∆(p, rmax, rmax, α ) Difference between the optimal weighted network capacity by centralized 
scheduling and that by our C-MWS algorithm;  

∆ Analytical deviation due to approximation of Lagrange Multiplier;  

∆ Deviation in network capacity due to non-ideal steady implementation in each 
scheduling cycle; 

∆ Analytical deviation due to cumulative steady state error. 
 
In this paper, CSMA-based back-off process is performed by using a counter with memory 

function. Specifically, a link l that has traffic to transmit will generate an integer , τ=   l l bcBF T  
which represents the number of mini-timeslots (MTS), denoted by τ, for backoff in channel 
access;  Tl , bc  is  a  var iable r epresent ing the back-off time that link l chooses for its next 
transmission and it is  exponentially distributed with mean of E [Tl , b c], satisfying 

,[ ] τ=   l l bcCW E T , where lCW  represents the mean contention window size for link l. Each 
link can sense the channel state (idle or busy) only at the beginning of a mini-timeslot: If the 
channel is idle, the link l starts a countdown process based on the current counter. When the 
counter reaches zero, the link l initializes a transmission; If the channel is busy during the 
countdown process of link l, the counter is frozen. The countdown process re-starts after link l 
senses the channel is idle.  

Let s∈ denote a traffic session with flow rate sx , where  denotes the set of traffic sessions 
in the network. Each session may take multiple paths from the session source to the destination. 
Let r|s denote the set of all sub-paths for a session s∈, each of which transmits part of the 
traffic for the session. Let s

rx denote the flow rate for session s on sub-path r, satisfying 
|∑ =s s

rr s x x , which is the aggregated rate of all the sub-paths belonging to session s∈. ( )s
sU x  

is the utility associated with session s. The utility function ( )⋅sU  is assumed to be twice 
differential, strictly concave, and non-decreasing with mean flow rate.   

Accordingly, the joint optimization problem of link scheduling at the MAC layer and 
end-to-end congestion control at the transport layer for achieving network utility 
maximization can be brought together as follows: 

|

max ( )

    . .          
∈

≤ ∀

∑

∑
s
r

s
s

x s
s
r l

r l

U x

s t x c l
  

                                                      ,max           =        π ∀l l lC c l                                           (1) 
where πl and cl denote the link transmission probability and link rate, respectively, and r|l is a 
set containing all the sub-paths passing through link l∈. The link rate cl is the maximum rate 
at which data packets are allowed to be transmitted through link l during the current 
scheduling cycle as returned by a link scheduling algorithm. In this sense, in this paper, we 
also treat cl as the capacity of link l. The first constraint in (1) is the rate capacity constraint for 
each link. The second is the link scheduling constraint for link transmission probability of each 
link.  

By relaxing the capacity constraint in (1), we have (still subject to the second constraint): 
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|

|

( , ) ( ) ( )

             = ( ( ) )

= − −

− +

∑ ∑ ∑

∑ ∑ ∑

s s
s l r l

s l r l

s s
s r r l l

s r s l

L x p U x p x c

U x q x p c
                                       (2)

 where pl is the Lagrange multiplier, which can be interpreted as the queue size for link l. We 
define | ,∑=r ll rq p  which denotes the sum of queue backlogs on all the links belonging to 
sub-path r. In the second line of (2), it should be noted that the first term is separable in s

rx , and 
the second term is separable in cl. Thus, the objective function of the dual problem is as 
follows:  

0
( ) max ( , )

≥
= = +∑ s

p s
D x L x p V W  

where 

|
= max( ( ) )− ∑s

r

s s
s s r r

x r s
V U x q x                                      (3a) 

,max = max    . . C = ,  .π ∀∑
l

l l l l l
c l

W p c s t c l                         (3b) 

The sub-problems (3a) and (3b) can be realized by flow control and MAC layer scheduling, 
respectively, which are coupled by the Lagrange multiplier p. Specifically, (3a) shows that the 
source node of each session should generate its traffic at a rate to maximize its own profit that 
is the difference between its achieved utility and the cost spent for the corresponding 
bandwidth usage. (3b) shows that all links should try to maximize the weighted network 
capacity (i.e., network capacity weighted by pl) under the condition of equilibrium of network 
queues. In other words, in (3b), the network maximizes its weighted network capacity subject 
to the constraint that a link has higher priority of transmission when its link queue backlog is 
larger than those on its neighbor links for mitigating network congestion. For simplicity of 
representation, hereafter, the terms “Lagrange multiplier” and “weight” will be used 
interchangeably unless otherwise stated. Thus, the joint optimization problem in (3) can be 
interpreted in a way such that a network tries to obtain the flow rate that makes the global 
profit maximum, under the condition that the weighted network capacity is maximal.  

The flow control sub-problem (3a) can be easily solved by using the following gradient 
descent method. 

( )[( 1) ] ( ( ( )) ( ))γ +′+ = − s
r

s s
r r s r x nTx n T U x nT q nT                            (4) 

where γr >0 is flow rate step size, T denotes the duration of scheduling cycle, and (·)+ 
v  is a 

positive projection, which verifies (·)+ 
v = 0 whenever v≤0, or otherwise (u)+ 

v =u. 
For the MAC scheduling control sub-problem (3b), the function max∑l|r plcl is not strictly 

concave, so it is difficult to obtain its optimal solution. Here, we adopt a fully CSMA based 
distributed algorithm for obtaining approximate solution. The algorithm details can be found 
in Section 3.  

In each iteration of the joint optimization, the Lagrange multiplier gradient is updated as 
follows: 

( )
( )

|
[( 1) ]   ( ( ) - ( ))γ ++ = ∑ l

s e
l l r l p nT

r l
p n T x nT c nT                                                 (5) 

where γl >0 is queue step size. At the beginning of each scheduling cycle, we calculate the 
average empirical link rate ( )e

lc  for each link l for the link to transmit traffic. Thus, the 
Lagrange multiplier updating process reflects the change in link load over time.  
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3. Weighted Network Capacity Model and C-MWS Algorithm 

From the preceding section, we can see that solving the sub-problem of weighted network 
capacity in (3b) is the key for solving the joint optimization problem. Furthermore, it will be 
seen in Section 4 that weighted network capacity is directly correlated to the ultimate network 
utility. In this section, we shall model the weighted network capacity and then present the 
design of C-MWS algorithm for pursuing maximal weighted network capacity. Specifically, 
we will first describe how to model the weighted capacity of a network without conflict, and 
then extend the result to weighted network capacity for networks with channel conflict. Finally, 
by using the derived network capacity, we propose the C-MWS algorithm. 

3.1 Modeling of network capacity without conflict 
In this subsection, we start from the modeling of network capacity, and then extend the results 
to weighted network capacity without conflict and analyze its characteristics. In here, we 
assume that Cl,max (∀l) are identical and are normalized to 1.  

1) Network capacity without conflict  
Network capacity without channel conflict have been studied in [11][25][26]. For the 

integration of description, we introduce their results in the following.  
Let  denote all the independent sets whose links can transmit simultaneously without 

conflict. Assume that a state is'∈ has n links, and state is∈ contains an additional link l 
besides the n links in state is'. In other words, is, is'∈ can be seen as a pair of right and left 
states, where the right state contains exactly one more link than the left one. 
 

Table 2. Operator Notations. 

Notations Definitions 

( )∑ ⋅is f ; ( )∑ ⋅iss f  Sum of f(⋅) for all states, is, iss ∈. f(⋅) is a function that characterizes a 
specific property of a state.  

| ( )∑ ⋅l is f  Sum of f(⋅) for all links belonging to state is; 
| ( )∑ ⋅is l f  Sum of f(⋅) for all states that contain link l; 
| ( )∑ ⋅is l f  Sum of f(⋅) for all states that do not contain link l. 

 
Let 1/δ l  =E[Tl , bc] and 1/µ l =E[Tl,tr], where Tl,tr represents the transmission time for each 

packet transmission over link l. Furthermore, we assume that the distribution of Tl,bc is 
exponential. Thus, the state transition from is' to is happens at rate δ l , and the state transition 
from is to is' happens at rate µ l. Since all the states in form a continuous time Markov 
chain and the detailed balance equations hold [27]. That is, θl  =µ l  /δ l  represents the link 
transition rate for link l. Let Pis represent the fraction of time when the network stays in state 
is. We have  

1P P  .
θ

′=is is
l

                                                                            (6) 

For simplicity of exposition, let exp(rl)=θl , where rl is the “transmission aggressiveness” 
(TA) of link l [11]. Some operator notations used later are further summarized in Table 2. 

For a given TA vector r ={r1, r2, r3, …r||}, where || is the total number of links in the 
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original network, by using the time-reversibility of Markov process, the stationary distribution 
of Pis (∀is) can be characterized as follows [25][26]: 

|

|

exp( )
P

exp( )′
′

∑
=

∑ ∑

l
l is

is
l

iss l iss

r

r
,                                         (7) 

where the summation ∑iss is over all feasible states in , and ∑l|is denotes the summation over 
all the links belonging to state is. Based on the above results, we can see that the network 
capacity can be calculated by the sum of the attainable capacities of all links and the attainable 
capacity of a link l equals to the sum of the fraction of time of all states that contain the link. 
That is, the network capacity can be calculated as follows: 

|( P  )= ∑ ∑ isl is l( )r ,                                               (8) 

where the summation ∑is|l is over all feasible states, which contain link l. Substituting (7) into 
(8), we can obtain the network capacity (r) as follows: 

|

|

exp( )

exp( )′
′

∑ ∑
=

∑ ∑

is l
is l is

l
iss l iss

K r
 ( )

r
r                                              (9) 

where Kis denotes the number of links in state is.  

2) Weighted network capacity without conflict  
Now, we go back to the optimization objective in (3b). We assume a weight vector 

1 2 3 | |{ , , .... }= p p p pp  , where pl is the weight associated with link l, 1≤l≤||. According to (9), 
we deduce the weighted network capacity  (p, r) as follows: 

|

|

exp( )

exp( )′
′

∑ ∑
=

∑ ∑

is l
is l is

l
iss l iss

W r
 ( , )

r
p r ,                                           (10) 

where Wis= |∑ ll is p  denotes the sum of the weights of all links in state is. In order to inspect 
how a particular link affects the weighted network capacity, we present the following 
proposition.  

Proposition 1: Assume that the TA associated with a link l, rl is adjustable. Then, we have 
that the weighted network capacity by (10) increases with rl as rl →+∞, when the link l 
satisfies the following condition. 

| |
| |

| |
| |

exp( ) exp( )

exp( ) exp( )

′ ′′
′ ′′

′ ′′
′ ′′

∑ ∑ ∑ ∑
≥

∑ ∑ ∑ ∑

is l lisis l is l
l is l is

l lis l is l
l is l is

W r K r

r r
,                                (11) 

where the summation | ( )⋅∑ is l  is over all feasible states that do not contain link l. Otherwise, the 
network capacity by (10) decreases with rl as rl →+∞. 

Proof:  We increase rl by β (β≥0) for  the l ink l . Accordingly, the change in the weighted 
network capacity will be as follows. 

| |
| | | | | |

| | | |
| | | |

{( )exp( )} {( )exp( )} {( )exp( )}

exp( ) exp( ) exp( ) exp( )

β

β

′ ′ ′′ ′′ ′ ′
′ ′ ′′ ′′ ′ ′

′ ′′ ′ ′′
′ ′′ ′ ′′

+ +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
−

+ + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

l l l l l lis l is l is
l is l is l is l is l is l is

l l l lis l is l is l is l
l is l is l is l is

p r p r p r

r r r r
             (12) 
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Here, to ease the description, we use ω, ω≥1, to represent exp(β). Transform the above 
expression to a common denominator by directly multiplying the two denominators, the 
corresponding numerator will become the following.  

| | | |
| | | |

( 1)(( exp( ))( exp( )) ( exp( ))( exp( ))ω ′ ′′ ′′ ′
′ ′′ ′′ ′

− −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
is is

is l l l lisis l is l is l is l
l is l l l is

W r r W r r    (13) 

It can be easily derived when the above expression is greater than 0, (10) increases as rl 
increasing. In addition, we calculate the derivative of (13) over ω,  it can be seen that (12) 
monotonely increases with ω, which means (10) increases with rl as rl →+∞. Otherwise, when 
β < 0, it can be seen that ω < 1. Thus, (10) decreases with rl as rl →−∞. So (11) follows.     ■ 

Proposition 1 also reveals a clear correlation between weighted network capacity and the 
range of link TA. Suppose rmin ≤rl ≤rmax (∀l),  the attainable maximal weighted network 
capacity is positively correlated to r max for a fixed rmin. That is, the larger rmax is, the larger the 
attainable maximal weighted network capacity will be, provided that there exist no 
transmission conflict in the network.  

3.2 Modeling of weighted network capacity with conflicts 
The model in the preceding subsection, however, is not suitable for real CSMA networks. In 
the above model, back-off time is assumed to be continuous, while the back-off time in real 
CSMA networks is slotted and it is an integer multiple of MTS.  

Due to the time reversibility of CSMA Markov chain, (7) is an equally valid expression for 
different distributions of back-off time [21][26]. Thus, it can be seen that when back-off  
t ime is integer , (7) is still valid. We again assume that is, is'∈ are a pair of right and left 
states, respectively, where the right state contains exactly one more link l than the left one. 
When the network time is slotted, a link l may be activated simultaneously with one of its 
interfering links (say l') after its backoff counter drops to zero. If the effect of link conflict by l' 
was ignored, the state transition probability from is' to is (is'∪l) would be consistent with (6); 
If so, the state transition probability from is (is'∪l) to state is' would also be consistent with (6). 
In that case, (7) would also be valid for a discrete-time CSMA network. However, the truth is 
that transmission conflict can happen in a discrete-time network.    

The capacity of a state is is the sum of effective link rates of all the links in the state. Thus, 
the weighted capacity of a network with transmission conflict, denoted by (p, r), can be 
expressed as the sum of the capacity of all its states as follows.  

|( P Ps  ),= ∑ ∑ l
is is isis l is( , ) Wp r                                                  (14) 

where Psl 
is is the probability that a packet is successfully sent over the link l when the network 

state is is.  
Let us again focus on a pair of states is, is'∈. In the continuous time Markov model, after 

the activation of link l, the network state changes from is' to is. Thus, Psl
is is the sum of all the 

probabilities for link l to take all possible back-off time m (∀m) for successful transmissions 
when the network works in state is (is'∪l). Specifically, when back-off time BFl of link l picks 
an integer m, the link l can successfully transmit data when the BF value of any other link 
conflicting with link l does not pick the same integer. Thus, we have 

0 |
Ps P{ } (1 P{ })

+∞
′

′=
= = − =∑ ∏l

is l l
m l l

BF m BF m                                           (15) 

where l'|l denotes a set of all the links, each of which conflicts with link l but not any link in is'.   
Since the back-off time Tl , bc  is assumed to be exponentially distributed with E[Tl , bc] = 1/δ l  

javascript:void(0);
javascript:void(0);
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and further time is slotted, link l picks the integer BFl = Tl,bc/τ when the back-off time picks 
the value Tl,bc. Therefore, the probability at which BFl equals to integer m is as follows. 

P{ } exp(- ) - exp(- ( 1)).δ τ δ τ= = + ∀l l lBF m m m l                                     (16) 
Let minCW  (resp., maxCW ) is the minimal (resp., maximal) mean contention window size. 

The introduction of minCW  and maxCW  in this paper is partially motivated by the IEEE 802.11 
standards, where minimal and maximal contention window sizes for medium access are used 
to control the channel conflict and delay for each transmission. The differences are that here 
we use the mean value instead of absolute value and use exponentially distribution instead of 
uniform distribution.  

Assume r min ≤rl ≤r max (∀l), rmin is fixed, and rmax is adjustable. Suppose Proposition 1 still 
holds, the maximal attainable weighted network capacity would increase as rmax increasing. 
However, larger rmax also means smaller minCW , and decrease of minCW  will cause more 
conflicts in the network and thus degradation in the maximal attainable weighted network 
capacity. Thus, it is rational to conclude that there must exist an optimal rmax (correspondingly 
optimal minCW ) that maximizes (14). 

To this end, we can derive the weighted network capacity as defined in (3b) by using (14) 
via centralized scheduling. However, in reality, even given rmin and rmax, it is still difficult to 
determine the optimal TA for each link in a distributed manner. Next, we will present a 
distributed link scheduling algorithm C-MWS. 

3.3 C-MWS algorithm  
Before presenting the detailed link scheduling algorithm, we firstly discuss the importance of 
introducing rmax (resp., minCW ) and rmin (resp., maxCW ). 

For given mean transmission time, larger TA means smaller mean back-off time. Smaller 
mean back-off time means increase of channel conflict. Thus, how to set the upper bound of 
TA has critical impact on the performance of an interfering network. On the other hand, as the 
mean back-off time increases, the waste of channel resource increases. Thus, the TA also 
needs a lower bound. In C-MWS, each link (say l) in the network independently calculates its 
TA value based on its weight pl. Intuitively, given lower and upper bounds rmin (resp., maxCW ) 
and rmax (resp., minCW ), link l should have higher probability to transmit when it has larger 
weight pl. Accordingly, for a link l, its TA for the next scheduling cycle is calculated as 
follows.  

min min max

max min max

        
( )

  
α α

α
+ + <

=  + ≥

l l
l l

l

r p r p r
r p

r r p r        
, ∀l                         (17) 

where α is a scalar. By substituting (7), (15), (16), and (17) into (14), we can obtain a weighted 
network capacity. (17) is the core of C-MWS based link scheduling and how it works will be 
presented in following subsection 3.5. For simplicity of presentation, hereafter, rmax (resp., 

minCW ), rmin (resp., maxCW ), and α altogether will also be called C-MWS parameters.   
Through extensive simulation results, we find that the weighted network capacity by (14) is 

non-monotonous over the above C-MWS parameters. Thus, different C-MWS parameters can 
lead to different weighted network capacities.  

Due to the introduction of the C-MWS parameters, the difference between the optimal 
solution by centralized scheduling and that by C-MWS can be calculated as follows.  

min max ,max min max( , , ) ( , )α α∆ = −isr ,r p r ,r ,p p                              (18) 
where ,max |max( )

∈
∑=is ll isis

p p


 denotes the maximal state weight among all the states and the 
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weight of a state is the sum of the link weights associated with all the links belonging to the 
state.  

3.4 Impact of duration of scheduling cycle  
According to [11], given finite TA, the stationary distribution of transmission probability will 
maximize the network capacity as time evolves. Thus, the duration of scheduling cycle affects 
the network capacity. The convergence time of CSMA Markov chain is bounded as follows 
[28].  

( ) (*)− ≤e
l l

Cs s
T

                                                    (19) 

where C is a network parameter, which is a constant depending on the network scale and rmax, 
T is duration of a scheduling cycle, ( )e

ls is the empirical service rate, and (*)
ls  is the stationary 

service rate. Then, the difference between weighted service rate for infinite time and that for 
finite T can be obtained as follows. 

( ) (*)
≥ −∑ ∑ ∑e

l l l l l
l l l

Cp s p s p
T

                         (20) 

3.5 C-MWS implementation   
C-MWS works as follows. Each link l in the network uses its TA value rl returned by (17) to 
calculate its mean back-off time E[Tl , bc],  based on which the link generates its back-off time 
BFl for transmitting each packet. Furthermore, each link needs to count the number of 
already-served packets over the link in the current scheduling cycle. Equation (21) establishes 
a bridge between C-MWS and the objective in (3b).  

( ) ( )=e e
l lc s                                                     (21) 

3.6 Achievable bounds of weighted network capacity 
In order to analyze the utility bound of the joint optimization problem (1), we first need to 
know the bounds of weighted network capacity by C-MWS in each scheduling cycle. 
Regarding this, we have the following proposition. 

Proposition 2: The empirical weighted network capacity ( )− ∑=C MWS e
ll lW p c  resulted by (22) 

is bounded. In particular 
, , ,*

min max( ) ( )α−− ∆ ≤ ≤ − ∆C MWS optW T W  W r rp                                 (22) 
where * (*)∑= ll lW p c  denotes the stationary weighted network capacity based on C-MWS for 
given link weights; ( )∑=opt opt

ll lW p c denotes the optimal weighted network capacity by 
centralized scheduling; ( ) ( )∑∆ = llT C T p .  

Proof: Since (*)
lc  is the stationary link rate, according to (18), we have 

*
min max( , , )α− = ∆optW W r ,rp . According to (20), we have * ( )− ≥ − ∆C MWSW W T . In addition, 

*− ≤C MWSW W . So (22) follows.                                                                                                   ■ 

4. Network Stability and Utility Bounds 
In the preceding section, we have modelled the weighted network capacity and deduced its 
achievable bounds based on C-MWS. Next, we will introduce these results into the analysis of 
the joint optimization problem defined in (1). It is necessary to define the notation of stability 
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before analysis. 
Definition 1 [3][9]: A network is stable in the mean or simply stable if  

1

1lim sup [ ( )]
τ

τ
→+∞ =

< ∞∑
M

l
M

E p T
M

                                                (23) 

over joint optimization cycles {1, 2, 3, …, M}, where M is a positive integer. In addition, it is 
easy to derive that a sub-path flow rate s

rx  has non-tight upper bound xmax, i.e., xs 
r ≤ xmax. To 

analyze the utility and stability of the joint optimization, we firstly introduce a Lyapunov drift 
with utility function that enables our analysis to be decomposed into the congestion and 
scheduling control sub-problems.  

4.1 Lyapunov drift with utility 

Define the Lyapunov function L(p[kT]) = ∑l pl
2[kT]. Then, define the conditional Lyapunov 

drift ∆L(p[kT]) as follows [3][7]. 
( [ ]) { ( [( 1) ]) ( [ ]) [ ]}}∆ = + −L kT L k T L kT kTp p p p                                   (24) 

where the conditional expectation is in terms of the Lagrange multiplier dynamics based on 
(5).   

Substitute the pl[(k+1)T] item in (24) by (5), we have 
2 2( [ ]) { [( 1) ] [ ] [ ]}∆ = + −∑ ∑l l

l l
L kT E p k T p kT kTp p  

( ) 2

|
              {2 [ ]( [ ] ) [ ]} { [ ] [ ]}γ= − +∑ ∑ ∑ 

es
l l r l l

l r l l
E p kT x kT c kT E p kT kTp p  

Since 2 2
max max{ [ ]} ( ) ,γ≤ l lE p kT f x  where fmax denotes the maximal number of flows that 

traverses a link, we have 
( )

|
( [ ]) {2 [ ] [ ] [ ]} {2 [ ] [ ] [ ]}γ γ∆ ≤ ∆ + −∑ ∑ ∑s e

l l r l l l
l r l l

L kT E p kT x kT kT E p kT c kT kTp p p (25) 

where 2
max max( ) ,γ∆ max l= L f x  Lmax represents the maximal number of links that have traffic to 

transmit for different sub-paths. 
Subtracting the expression 2 { ( [ ]) | [ ]}γ ∑ s

l ssE U x kT kTp  from both sides of (25), we have  

( [ ]) 2 { ( [ ]) [ ]}γ∆ − ∑ s
l s

s
L kT E U x kT kTp p  

( )

/
   2 { ( [ ]) [ ] [ ] [ ]} {2 [ ] [ ] [ ]}γ γ γ≤ − − + ∆∑ ∑∑ ∑s s e

l s l l r l l l
s r l r l

E U x kT p kT x kT kT E p kT c kT kTp p 

  2 ( [ ]) 2 ( [ ])γ ψ γ φ≤ − + ∆l lkT kTp p                                                                              (26) 
where ψ (p[kT]) and φ(p[kT]) denote the flow rate function and the MAC scheduling control 
function, respectively. Specifically, 

/
( [ ]) { ( [ ]) [ ] [ ] [ ]}ψ = −∑ ∑∑s s

s l r
s r l r

kT E U x kT p kT x kT kTp p                      (27a) 

( )( [ ]) { [ ] [ ] [ ]}φ = ∑ e
l l

l
kT E p kT c kT kTp p                                     (27b) 

Since (27a) is a standard expression in previous work [2][6], the sub-gradient algorithm 
function (4) can solve the flow rate control function ψ (p[kT]). In the meantime, the scheduling 
control function φ(p[kT]) is solved by C-MWS. 
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4.2 Network stability and utility bounds 
To analyze the utility and stability of the joint optimization, the following three lemmas are 
presented.  

Lemma 1: Let (*)s
rx  denote an arbitrary flow rate for sub-path r of session s (subject to (1)), 

then, the cumulative flow rate control function over joint optimization cycles {1, 2, 3,…, M} 
satisfies  

(*) (*)

1 1 /
{ ( [ ])} ( ) [ ]

τ τ

ψ τ τ
= =

≥ − + ∆∑ ∑ ∑∑∑
M M

s s
s l r

s r l r
T M U x p T xp                        (28) 

where (*) ( [ ] [ ])η∆ = − −∑ s s s
r r r rr x x MT x T , ,min(1 ) 0η γ ′′= + >r r sU . ,min′′sU  is the minimal value of 

( )′′ s
sU x .  
Proof: We first calculate the following expression     

(*) (*)

/
( [ ]) ( [ ]) {( ( ) [ ] ) | [ ]}ψ ψ∆ = − −∑ ∑∑s s

s l r
s r l r

kT kT E U x p kT x kTp p p . 

Taking expectation over p[kT] for ( [ ])ψ∆ kTp and using the Lagrange mean value theorem 
for the first term of the expression in the following line, we have 

(*) (*) (*)( ( [ ]) ( )) [ ]( [ ])− + −∑ ∑s s s s
s s r r r

s r
U x kT U x q kT x x kT  

(*) (*) (*)    = ( [ ] ) ( ) [ ]( [ ])ζ′− + −∑ ∑s s s s
s r r r

s r
x kT x U q kT x x kT  

(*)= ( [ ] )( ( ) [ ])ζ′− −∑ s s
r r s r

r
x kT x U q kT                                       (29) 

where there exists (*)( [ ], )ζ ∈ s sx kT x  satisfying the above expression.  
We then calculate the expression { ( [ ])}ψ∆E kTp  for each sub-path r of (29). ( )′ ⋅sU  is a 

decreasing function. Analyzing the first term of the second line in (29), if (*) [ ]≤s sx x kT , then 
(*)( [ ]) ( ) ( )ζ′ ′ ′≤ ≤s s

s s sU x kT U U x ; If (*)[ ] ≤s sx kT x , then (*)( ) ( ) ( [ ])ζ′ ′ ′≤ ≤s s
s s sU x U U x kT . Thus, we 

have 
(*){ ( [ ])} ( ( [ ]) [ ])( [ ] )ψ ′∆ ≥ − −s s s

r s r r rE kT U x kT q kT x kT xp  

Substituting [ ] [( 1) ] [ ]= − + s s s
r r rx kT x k T x kT  for ( [ ])′ s

s rU x kT , and then using the mean value 
theorem and (4), yields 

(*){ ( [ ])} ( ( [( 1) ]) [ ] ( ) [ ])( [ ] )ψ ξ′ ′′∆ ≥ − − + −

s s s s
r s r s r r rE kT U x k T q kT U x kT x kT xp  

(*)1                        [ ]( ( ))( [ ] )ξ
γ

′′= + −

s s s
r s r r

r
x kT U x kT x  

(*)                        ( [ ] [( 1) ])( [ ] )η≥ − − −s s s s
r r r r rx kT x k T x kT x  

where there exists ( [( 1) ], [ ])ξ ∈ −s sx k T x kT  satisfying the above expression, then let ( )ξ′′sU  
equal to ,min′′sU . It is possible to find a suitable γr, satisfying ,min(1 ) 0γ ′′+ >r sU . However, it 
should be noted that the condition is not a tight constraint. Multiplying every term of the above 
expression, yields  

2 (*){ ( [ ])} {( [ ]) [ ] [( 1) ] [ ]}ψ η∆ ≥ − − − 

s s s s s
r r r r r r rE kT x kT x kT x k T x x kTp                        (30) 

Because (30) holds for every scheduling cycle and sub-path r, summing over all cycles in {1, 
2, 3,…, M}, yields 
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2 (*)

1 1
{ ( [ ])} {( [ ]) [ ] [( 1) ] [ ]}

τ τ

ψ τ η τ τ τ τ
= =

∆ ≥ − − −∑ ∑ ∑ 

M M
s s s s s

r r r r r r
r

E T x T x T x T x x Tp   

Expanding the above expression, then substituting 
2 2 2( [ ]) ( [( 1) ]) 2 [ ] [( 1) ] ( [ ])+ − − − = 

s s s s s
r r r r rx kT x k T x kT x k T x kT , and rearranging the expression, yields  

2 2 2 2 2 (*)

1

1{ ( [ ])} {( [ ]) ( [ ]) ( [( 1) ]) ... ( [2 ]) ( [ ]) 2 ( [ ] [ ])} 
2τ

ψ τ α
=

∆ ≥ + + − + + + − −∑ ∑   

M
s s s s s s s s

r r r r r r r r r
r

E T x MT x MT x M T x T x T x x MT x Tp

            (*)         ( [ ] [ ])    η≥ − −∑ s s s
r r r r

r
x x MT x T  

so (28) follows.                                                                                                                                 ■ 
Lemma 2: The MAC scheduling control function satisfies 

(*)

|
( [ ]) [ ] ( ) ( )φ ε≥ + − ∆∑ ∑ s

l r
l r l

kT p kT x Tp                                             (31) 

where ε is a small positive number.  
Proof: Since in any scheduling cycle, the network will converge to stability. According to 

the Proposition 2, we have  
( ) (*)[ ] [ ] [ ] ( )≥ − ∆∑ ∑e

l l l l
l l

p kT c kT p kT c T  

It is impossible to empirically inject a flow rate into a link to be greater than the link rate. Thus, 
we have 

(*) (*)

|
c ( )ε≥ +∑ s

l r
r l

x  

so (31) follows.                                                                                                                                                    ■ 
Lemma 3: Let ( )s opt

rx and p(opt) 
 ={p(opt) 

1 , p(opt) 
2 , p(opt) 

3 ,… p(opt) 
|| } denotes the flow rate and Lagrange 

multiplier based centralized optimal scheduling. The utility based on C-MWS is upper 
bounded. Specifically,  

, , ,s ( ) ( )
min max( ) ( ) ( )α≤ − ∆∑ ∑ s opt opt

s s
s s

U x U x r rp                                       (32) 

Proof: Taking the difference between empirical utility and optimal utility, and using 
Lagrange mean value theorem, yields 

( ) ( )( ( ) ( ))= ( ) ( )    ζ′− −∑ ∑s s opt s s opt
s s s

s s
U x U x x x U  

where there exists ( )( , )ζ ∈ s s optx x  satisfying the above expression. Since it is impossible that 
( )=s s optx x for all sessions in conflict network,  similar to Lemma 1’s proof, we have  

( ) ( ) ( )( ( ) ( )) ( ) ( )s s opt s s opt s opt
s s s

s s
U x U x x x U x′− < −∑ ∑  

When the network achieves the optimal utility through centralized optimal scheduling, it is 
an equilibrium network. That is, ( ) ( )( )′ =s opt s opt

s rU x q . In addition, since |∑=r ll rq p , we get  
(o ) ( ) ( ) ( )

| |
( ( ) ( ))s s pt opt s opt s opt

s s r rl l
s l r l l r l

U x U x p x p x− < −∑ ∑ ∑ ∑ ∑  

It is rational to assume that the maximal usable resource on each link can always be realized 
by a centralized optimal scheduling, i.e., ( ) ( )

|∑=opt s opt
rr llc x . Thus, according to Proposition 2, we 

have 
(o ) ( ) ( ) ( ) ( )

min max( ( ) ( )) ( )s s pt opt opt opt opt
s s ll l l

s l l
U x U x p c p c r r α− < − = −∆∑ ∑ ∑ p , , ,  
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so (32) follows.                                                                                                                                                      ■ 
According to (20), it should be noted that the above lemma have an implied condition, 

which is that when the duration of scheduling cycle is infinite. 
Since all flows’ rates are upper bounded by xmax, the network utility is upper bounded (not 

necessarily tight) by Umax, i.e., ∑s E{Us
 (xs 

 [kT])}≤ Umax. 
Proposition 3: A network is simply stable if it satisfies the following condition over joint 

optimization cycles {1, 2, 3,…, M}:  
2

max max max max

1

1 0.5 ( ) + +lim { [ ]} 
τ

γτ
ε→+∞

=

∆
≤∑∑

M
l

l
M l

L f x (T) UE p T
M

 ,                   (33) 

furthermore, the time average utility of such a network (i.e., the expression in the middle line, 
see below) meets the following bounds: 

, , ,

 (*) 2
max max max

1
( ) ( )

min max

1( )  ( +0.5 ( ) ) lim { ( [ ])}

                                                                          ( ) ( )
τ

γ τ

α

→+∞
=

− ∆ ≤

< − ∆

∑ ∑∑

∑

M
s s

s l s
Ms s

s opt opt
s

s

U x (T) L f x E U x T
M

U x r rp




           (34) 

where ∆ and ∆ have been defined in (18) and (22), respectively.  
Proof: Summing the Lyapunov drift with utility function over all cycles, and then taking 

expectation over the distribution of p[τT], the result is represented by ∆. 

1 1 1
{ ( [ ])} { ( [ ])} 2 { ( [ ])} 2 { ( [ ])} 2 { ( [ ])}

τ τ τ

γ τ γ ψ τ γ φ τ
= = =

∆ = − − ≤ ∆ − −∑ ∑ ∑ ∑
M M M

s
l s l l

s
E L MT E L T E U x T M E T E Tp p p p  

Substituting the result of Lemma 1 and that of Lemma 2 and rearranging the expression, 
yields 

(*)(2 + ) 2 2 ( ) 2 ( [ ])γ γ γ γ ε∆ ≤ ∆ ∆ − ∆ − −∑ ∑s
l l l s l l

s l
M (T) M U x M E p kT    

Taking the limit over M for ( [ ])∑ ll E p kT , (33) is proved. Taking the limit over M for 
{ ( [ ])}∑ s

ss E U x kT , and according to the result of Lemma 3, so (34) follows.                           ■ 
It can be seen that the lower bound of time average utility is decided by the value of 

expression 2
max max( ) ( ) ,γ∆ max lT +0.5L f x  where the first term decreases with increase of T, the 

second term decreases with decrease of γl. That means the lower bound is tight. According to 
Lemma 3, the realization of the upper bound have an implied condition (i.e., T = ∞). More 
importantly, the upper bound is decided by ( )

min max( , , ).α∆ opt r ,rp  When the network topology, 
flow route(s), rmin, rmax, and α are determined, the upper bound is determined. Furthermore, 
according to the proof of Lemma 3, we can conclude that the difference between the upper 
bound of utility and average empirical utility is decided by the relationship between sx and 

( )s optx for each session s. Specifically, when sx  is far from ( )s optx , the average empirical utility is 
far from its utility upper bound; when sx approaches to ( )s optx , ∀s, the average empirical utility 
approaches to the maximal utility upper bound. Thus, we can use the maximal upper bound of 
utility to evaluate whether the current C-MWS parameter setting (rmin, rmax and α) are optimal. 
Although the upper bound is not perfectly tight, the simulation results shown later show that 
the derived upper bound is very tight. 

Furthermore, it is seen that empirical utility approaches to the maximal utility upper bound 
(34) as the C-MWS parameters are tuned to approach their optimal values. That is, before 
actual flow assignment, we can use simulation based on centralized optimal scheduling and Eq. 
(34) to tune the C-MWS parameters to find near-optimal utility.  
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5. Numerical Results 
In this section, extensive simulations were conducted to evaluate the accuracy and 
performance of our model and the C-MWS algorithm under different parameters including T, 
α, θmin, and θmax. For fairness in terms of resource allocation, we let the utility function follows 
a form of (1 )( ) ( ) (1 )ω ω−= −s s

sU x x , where ω=1.1. We assume the joint optimization parameters 
as follows: The step size of congestion control γr = 0.1 and that for scheduling γl =0.01. In our 
simulations, each node independently works for channel access based on given C-MWS 
parameters. The link capacity Cl,max is 1Mbps, the mean transmission time for a packet is 10ms. 
The duration of a mini-slot (MTS) for back-off is 50us.  

In the simulations, we also realized the standard CSMA (CSMA) for medium access [20] 
for comparison purpose. To be fair, in the implementation of standard CSMA, the assumptions 
made in Section 1 (i.e., 1) non-existence of hidden nodes in the network and 2) instantaneous 
channel sensing) are also assumed to hold. Also, when realizing the standard CSMA, we also 
implemented the same congestion control algorithm as used for C-MWS for flow control. In 
addition, we set the initial contention window size for standard CSMA to minCW , and set its 
maximum backoff stage to 6.  

5.1 3×3 network  
Fig. 1(a) shows a 3×3 grid network and flow directions for simulations. We assume that there 
are two sessions in the network. Sessions 1 and 2 are from source nodes S1 and S2 to 
destination nodes D1 and D2, respectively, where the two sub-paths for session 1 are 
represented by blue solid line, and those for session 2 are shown in red dotted line.  
 

        

S1S2

D1

D2

                       
(a) A network topology and flow directions                            (b) Conflict topology 

                         
(c) Utility upper bound and empirical utility vs minCW  (d) Utility upper bound and empirical utility vs α   

Fig. 1. Numerical results for 3 ×3 Network. 
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In the first test, maxCW =1024, minCW  =8, α =10, and T = 0.8s. Fig. 1(b) shows the 
convergence of flow rates. It can be seen that the flow rate for each session converge to a small 
range. 

In the second test, we compare the upper bound of utility derived by (34) with the empirical 
utility obtained via simulations. In this test, T = 0.8s, and maxCW =1024. Fig. 1(c) shows how 
the utility changes with minCW  when α =10. In Fig. 1(c), it can be seen that both utility upper 
bound and empirical utility based on C-MWS reach the maximum when minCW =8. Note that 
there exists insignificant difference between the theoretical upper bound and the empirical 
utility based on C-MWS when minCW =8 because of the finiteness of T and near-optimality of 
C-MWS parameters. However, in standard CSMA, channel accessing by different links has 
not considered their queueing sizes (resulted by the flow assignment/control algorithm at the 
transport layer), and the resulting empirical utility by standard CSMA is thus significantly 
lower than that by C-MWS. Fig. 1(d) shows how the utilities change with α when minCW  = 8 
and T = 0.8s. In Fig. 1(d), it is seen that the utility reaches the maximum when α =10.  

Fig. 1(c) shows that the upper bound is a non-increasing function of minCW . The reason is as 
follows. According to Proposition 1, by using (14), we can obtain the maximal weighted link 
capacities when minCW  is very small because in this case it has negligible impact on the 
per-link TA by (17). With the increase of minCW , the weighted link capacity by (14) decreases 
due to the increase of rmax in (17). Furthermore, it can be clearly seen that the upper bound by 
(34) is positively correlated to the weighted network capacity by (14). Thus, we can obtain that 
the upper bound is a non-increasing function of minCW . In addition, in Fig. 1(c), it is seen that 
the empirical utility based on C-MWS scheduling is very close to the utility upper bound when 
appropriate parameters are chosen, thus, we can say that the upper bound is very tight and that 
the empirical utility is very close to the maximal network utility in this case because the upper 
bound > maximal network utility > empirical utility based on C-MWS.  

5.2 5×5 network  
Fig. 2(a) shows a more complex 5×5 grid network and three sessions, where sessions 1, 2, and 
3 have 2, 2, and 3 sub-paths from their source nodes to destination nodes, respectively. In this 
topology, there are 36 directional links involved. These links can construct 4956 mutually 
non-included independent sets and more than one hundred thousand independent sets in total. 
Assume maxCW =1024, minCW  =16, α =30, and T = 0.8s, Fig. 2(b) shows the convergence of 
flow rates of different sessions and sub-paths.  

In the test, we calculate the upper bound of utility by (34) based on various independent sets. 
Setting T = 0.8s, and maxCW =1024. Fig. 2(c) shows how the utility changes with minCW  when 
α =30. Fig. 2(c) shows that empirical utility based on C-MWS reaches the maximum, and the 
gap between the theoretical upper bound and the empirical utility based on C-MWS reaches 
the minimum when minCW =16. Since the 5×5network has more channel conflicts than the 3×3 
network in the preceding subsection, the optimal C-MWS parameter ( minCW ) for the former is 
larger than its counterpart for the latter. Again, in Fig. 2(c), it can be clearly seen that the utility 
by standard CSMA is much lower than that by C-MWS. Fig. 2(d) shows how the utilities 
change with α  when minCW  = 16. Fig. 2(d) shows that the utility reaches the maximum when 
α =30. Again, Fig.2(c) shows that the upper bound is very tight when appropriate parameters 
are chosen and also the empirical utility based on C-MWS can achieve near-optimal network 
utility when related parameters are well tuned.  
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S3

D3

S1
D2

D1
S2

                        

(a) 5×5 network and flow directions                                (b) Flow rate 

                 

(c) Utility upper bound and empirical utility vs minCW  (d) Utility upper bound and empirical utility vs α             

Fig. 2. Numerical results for 5 ×5 Network. 

6. Conclusion 
In this paper, we extended traditional continuous time Markov model by discretizing the 
network time and modeled the weighted network capacity for CSMA wireless networks with 
consideration of channel conflict. We further proposed a C-MWS algorithm for achieving this 
capacity and discussed how to tune its parameters. We proved the network stability under our 
model and C-MWS, and derived lower and upper bounds of corresponding network utility. 
Simulation results showed that the joint optimization based on C-MWS can achieve 
near-optimal network utility when appropriate parameters are chosen, and the derived utility 
upper bound is very tight. 
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