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Abstract 
 

In this paper, an innovative robust feature detection and matching strategy for visual odometry 
based on stereo image sequence is proposed. First, a sparse multiscale 2D local invariant 
feature detection and description algorithm AKAZE is adopted to extract the interest points. A 
robust feature matching strategy is introduced to match AKAZE descriptors. In order to 
remove the outliers which are mismatched features or on dynamic objects, an improved 
random sample consensus outlier rejection scheme is presented. Thus the proposed method 
can be applied to dynamic environment. Then, geometric constraints are incorporated into the 
motion estimation without time-consuming 3-dimensional scene reconstruction. Last, an 
iterated sigma point Kalman Filter is adopted to refine the motion results. The presented 
ego-motion scheme is applied to benchmark datasets and compared with state-of-the-art 
approaches with data captured on campus in a considerably cluttered environment, where the 
superiorities are proved. 
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1. Introduction 

An accurate self-localization module is the core component of autonomous navigation 
system. The technology has received widespread attention from researchers in the 
development of intelligent mobile robot. The traditional positioning methods include compass 
[1], inertial measurement unit [2], wheel odometer [3], GPS [4] and their combinations [5-7], 
etc. The positioning system has rigid requirements as the application environment of 
intelligent mobile robot is becoming complex. Accuracy, real-time, robustness, portability, 
and energy consumption jointly restrict the performance of the positioning system. No matter 
which one fails, this one will be the shortest board as barrel effect shows. However, there are 
some disadvantages or limitations of traditional localization methods, e.g., the drift error 
increases quickly when wheels slip in uneven terrain or other adverse conditions [8]. The 
degree of GPS accuracy for civilian use may be close to meter while the cost of high precision 
GPS is too much. What’s more, in GPS-denied environment (e.g., in cities with skyscrapers, 
forests, tunnels, outer space, etc.), GPS is ineffective because of invalid or absent signals [9]. 
In 1960s, NASA designed the mobile robot prototype for lunar exploration [10]. Then, the 
Soviet Union launched the remote lunar exploration robot Lunokhod No.1 and No.2. The 
rigorous working environment (e.g., Odometer misjudgment caused by wheel slip or lock, no 
signal of GPS) of planetary exploration robot puts forward unprecedented challenges for 
localization algorithms.  

In order to solve the problems above, methods based on visual odometry (VO) have 
received great attentions. In 1983, Moravec [11] introduced the stereo visual odometry in the 
intelligent planetary exploration robot. Then, Matthies and Shafer [12] implemented the visual 
localization algorithm in 1987. American Jet Propulsion Laboratory first designed an 
autonomous robot under unstructured environment based on visual odometry [13]. Visual 
localization algorithms improved the positioning precision of the planetary exploration robot, 
also greatly expanded the scope of action of the robot, and ensured the robot completing task 
more safe and efficient. In 2004, planetary exploration robots Spirit and Opportunity 
successfully landed on Mars. They extracted 3D information from stereo vision system to 
estimate the camera pose, which couldn’t be accurately estimated by traditional wheel 
odometer [14]. Mars Science Laboratory launched Mars exploration robot, which was 
equipped with several high-definition cameras. They further improved the consistency of the 
vision system. European Space Agency (ESA) and China National Space Administration 
(CNSA) also carried out lunar exploration programs, in which visual odometer module was 
very critical to self-localization. 

Unmanned autonomous vehicle is a hot research topic in the field of intelligent mobile robot. 
In order to promote the development of related technologies, DARPA organized the DARPA 
Ground Challenge. In 2004 and 2005, the Challenge was held in outdoor environment while 
the third Challenge was held in urban environment in 2007. The positioning and navigation 
system based on vision played an important role in the whole process [15]. From 2012 to 2015, 
DARPA requested the participating teams to use the humanoid robot to complete some tasks, 
e.g., driving cars, climbing stairs, moving across clutter terrains. The provided humanoid robot 
Atlas perceived the environment information mainly with stereo camera rig. Google Company 
was not satisfied with the modified car used for autonomous driving, and he launched a new 
generation car with no steering wheel, brake and accelerator pedal. Up till the end of 2015, the 
prototype car had run about 2 million km and got the permission from several states in the 
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United States. Except the wheeled mobile robots mentioned above, there are some mobile 
robots (e.g., walking robot, flying robot, etc.) who don’t support wheel odometer. Boston 
Dynamics’ Big Dog can load 150Kg and walk on rough road at the rate of 8Km/h, aiming at 
material transportation in the war or the disaster. JPL installed a stereo vision system on the 
Big Dog to reconstruct the 3D terrain and look for passable road [16]. Also it contained a 
visual odometer to determine the pose of the robot.  

In this study, we build on the main ideas of the Andreas Geiger’s LIBVISO2 [31] and the 
robust feature AKAZE [41], to design an ego-motion estimation method for mobile vehicles, 
especially ones involving stereo camera rig and robust invariant feature scheme whose main 
contributions are as follows. 

1) The introduction of robust feature AKAZE into visual odometry. We compare several 2D 
invariant feature algorithms from stability, accuracy and efficiency, and then AKAZE is 
adopted to implement feature detection and description. 

2) Improvement on the RANSAC. The conventional RANSAC algorithm requires 
numerous iterations, which increases computational complexity. We explore the relationship 
between feature points on the consecutive image to accelerate the convergence procedure. 

3) Highlight the iteration process in filtering work. The iterated sigma point Kalman Filter is 
suitable for vehicle motion refinement, a non-linear problem. Especially, we apply the 
iteration for convergence, which is faster than non-iterative process. 

4) Experiments are conducted on public data set and data captured with our mobile platform. 
We analyze the results from quantitative and qualitative aspects to demonstrate the superiority 
of our proposed method. 

The reminder of this manuscript is organized as follows: Section II is dedicated to review of 
related work. Section III briefly explains the system model of our platform. An outline of the 
overall algorithm, which includes the robust invariant feature AKAZE , the outlier removal 
procedure based on the improved RANSAC algorithm, motion estimation based on the 
geometric constraint, and the iterated sigma point Kalman Filter based refinement, are detailed 
in Section IV. Finally, our experiments and results are presented in Section V, and our 
conclusion is in Section VI. 

2. Related Work 
In general, there are two ways to estimate ego-motion in map, which are visual odometry and 
visual simultaneous localization and mapping (SLAM) [17]. Also, ego-motion estimation 
based on visual information can be roughly divided into two classes, namely monocular visual 
odometry (single camera architecture) and multiocular visual odometry (two or more cameras 
architecture) [18]. In other aspect, these approaches can be further separated into feature based 
methods, appearance based methods and hybrid methods [19]. 

In computer vision, techniques of camera pose estimation and 3-dimensional scene 
reconstruction based on image sequences belong to SFM (Structure from motion) [20-21]. VO 
can be thought of as a special case of SFM. SFM focuses on the 3-dimensional reconstruction 
as well as camera pose estimation and usually refines with bundle adjustment, while VO 
devotes to the real-time and accurate estimation of camera movement. The research on VO 
began with Moravec [22], who designed a planetary rover equipped with what he termed a 
slider stereo [8]. His innovative work also include Moravec corner detector [23]. Compared 
with sparse feature method, optical flow always requires tracking a set of frames [24]. The 
accuracy decreases dramatically if the movement between the adjacent images is too large. 
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Makadia [25] provided a dense matching method based on harmonic Fourier transform to 
calculate the relative motion. This method performs well with little texture, but calculation 
cost is high. Generally, the optical flow method is applied in monocular VO, while the 
binocular VO mainly uses the method based on features. Monocular and stereo VO are the two 
pipelines of visual research. Stereo VO can eliminate scale ambiguity and measure the 
movement of 6DOF(degree of freedom). Shafer [12] and Matthies [26] employed stereo VO to 
demonstrate its superiority of accuracy and robustness. Olson [27] extended this work by 
incorporating the global attitude sensors (e.g., compass and panoramic camera) , which 
reduced the accumulative error to a degree.  

The concept of VO was formally put forward by Nister [28] and realized with a real-time 
VO system. The later researches were mostly based on his VO framework. The most 
successful VO applications were NASA's Mars Exploration Rover, Spirit and Opportunity 
[14]. Image pyramid was introduced to help feature tracking in 2011 on Curiosity.  Howard 
[29] implemented a stereo VO with adopted Harris and Fast feature to ensure the real-time 
performance, and employed feature matching method [30] to find the corresponding feature 
points. Geiger [31-32] used a simple Sobel template operator to detect feature. They tested the 
VO algorithm on the KITTI benchmark dataset and obtained the positioning result with high 
efficiency and accuracy. KITTI vision benchmark suite was established by Andreas (MPI 
Tubingen), Philip Lenz (KIT), Christoph Stiller (KIT) and Raquel Urtasun (University of 
Toronto), etc. Bellavia [33] proposed the key frame matching and loop matching strategy to 
build stereo camera SLAM system. Badino [34] integrated features from multiple frames to 
improve the accuracy of the motion estimation. Jwu-Sheng [17] combined a monocular and an 
inertial measurement unit(IMU) to form an visual odometer. They employed trifocal tensor 
geometry information and multi-state constraint Kalman filter in the algorithm architecture to 
reduce the time consuming and enhance the accuracy of the algorithm. Besides the fusion 
applications of visual information and IMU, visual odometry is usually used as supplement to 
global positioning system (GPS) [35-37]. Fusion approaches are becoming the mainstream of 
research about the practical positioning and navigation system. 

We have so far discussed some of the pioneering works in VO area. The mentioned similar 
works lay a good foundation on the development of VO, but they suffer from a low accuracy 
and high computational complexity. All of the aforementioned works devote to balance these 
two aspects, but they haven’t achieved unprecedented performance. Our work not only 
focuses on accuracy, but also tries to reduce algorithm complexity. Then we balance these two 
aspects to achieve the optimal performance. 

3. Stereo Based System Model 
In this section, the system model and motion parameterisation are briefly introduced as the 
base of next section. Fig. 1 shows our experimental platform equipped with a high-resolution 
stereo camera rig (Basler Ace1600 GigE, image size 1600×1200 pixels, 30 Hz) and 
differential GPS (NovAtel OEM6TM GNSS). Data are captured in a considerably cluttered 
environment on campus.  
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Fig. 1. Experimental platform with vehicular stereo camera rig and DGPS. 

3.1 System Model 
In general, the stereo camera rig we use in our method can be viewed as a linear pinhole model 
camera that conforms to the central projection [38-39]. The geometrical relationships of 
images involve four coordinate systems: the world coordinate system, the camera coordinate 
system, the physical coordinate system of the image, and the pixel coordinate system. 
According to the definition of the right-hand spiral rule, the model of the pinhole camera is 
shown in Fig. 2. 

 
Fig. 2.  The pinhole camera model. 

 
The transformation between point P  in the world coordinate system and its projection 
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where α β、  are the effective focal lengths along the u -axis and the v -axis, respectively. A 
correction parameter γ  is needed for the highly accurate camera model. tanγ α θ= , where θ  
is the deviation in degrees of the axis of the CCD array. 1M  is the intrinsic parameter and 2M  
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is the extrinsic parameter. ( )R r  and t  are respectively the rotation matrix and translation 

vector , with t
×    the skew symmetric matrix of t . 

3.2 Motion Parameterization 
Motion parameterization, i.e., determining the spatial position of the camera coordinate 
system relatives to the world reference system, is expressed by a rotation matrix t

×    and a 
translation vector ( )R r . 

The rotation matrix is defined in (4) and the rotation angle is parameterized by the Euler 
angle:                                                
                                                  ( ) ( ) ( ) ( ), , =R R RZ X YR θ θΦ Ψ ⋅ Φ ⋅ Ψ                                  (4) 

In spatial motion, when the ego-motion vector ( ), , , , ,X Y Z X Y ZV V V w w w  of a wheeled car 
platform and the time difference T∆  between consecutive frames are known, the values of t  
and ( )R r  in each time step can be obtained using (5) and (6). Here, iV  and iw  represent the 
speed of translation and rotation, respectively: 
                                                     ( ), , T

X Y Zt V T V T V T= ⋅∆ ⋅∆ ⋅∆                                               (5)  
                                                   ( )( ) , ,X Y ZR r w T w T w T= ⋅∆ ⋅∆ ⋅∆                                             (6)  

4. Algorithm Overview 
This section reveals the algorithm, mainly including robust feature detection and matching, the 
improved RANSAC and iterated sigma point Kalman Filter-based refinement. The overall 
algorithm is depicted in detail with the flow chart (as seen in Fig. 3). 
 

 
Fig. 3. Sketch of the algorithm architecture. It is explained in detail in the flowing sections. 
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4.1 Robust Feature 
SIFT and SURF algorithms are multiscale 2D invariant features in nonlinear space. 

However, Gaussian blurring obtains the invariance and robustness, spoiling accuracy and 
distinctiveness. Alcantarilla [40] presented a 2D feature in a nonlinear scale space by means of 
nonlinear diffusion filtering. Even though Alcantarilla enhanced the accuracy and robustness 
of 2D invariant features, the efficiency was not significantly improved compared with SURF. 
Next year, the author proposed a novel and fast multiple invariants feature AKAZE [41] based 
on KAZE [40]. 

The paper of KAZE described three conductivity functions. Here we choose conductivity 
function 2g  which reserves wider region: 

                                                 2 2

2

1

1
g

Lσ

λ

=
∇

+

                                                               (7) 

where λ  is the contrast factor that determines the level of diffusion. ∇  and div  are 

respectively the gradient and divergence, and L  is the image luminance. Lσ∇ is the gradient 
of a Gaussian smoothed L . σ indicates the Gaussian transformation of L . 

Since the Additive Operator Splitting (AOS) is computationally intense, a numerical 
scheme called Fast Explicit Diffusion (FED) is introduced into the feature detection procedure 
in nonlinear space. What’s more, a Modified-Local Difference Binary descriptor is used as 
scale and rotation invariant with low storage requirements. From these two innovation, 
AKAZE shows outstanding performance compared to the state-of-the-arts. To demonstrate the 
excellent performance of AKAZE, we present comparison of experiment results obtained on 
the evaluation set of Mikolajczyk [42]. et al.  

4.1.1 Repeatability  
The detector repeatability [42] reveals a significant evaluation criterion of local invariant 

features. Repeatability is defined as the ratio between the corresponding points of two images 
and the number of the less features of one image. In our case, when the overlap error is smaller 
than 40%, we consider a correspondence between two regions, defined by: 

                                                 1
t

t

A H BH
A H BH

λ− <




                                                          (8) 

where A and B  are the two regions. H  is the corresponding homography between the two 
images. λ  determines the overlap error and 0.4λ =  
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Fig. 4. Repeatability score under different transformation. 

 
Fig. 4 depicts the repeatability scores in the Oxford dataset [42-43] with different 

photometric and geometric transformations, likes Gaussian blur, lighting variation, scale and 
rotation changes. Each sequence contains 6 images and the first image is regarded as the 
reference, so we can get 5 group histograms in each graph. 

No matter with what kind of transformation, the repeatability of AKAZE scores top 
compared with other local invariant features, e.g., ORB [44], BRISK [45], SIFT [46], SURF 
[47], MSER [48]. SIFT and SURF have a good anti-noise ability and perform similar in 
lighting variation, scale and rotation changes, while the repeatability scores of ORB, BRISK 
and MSER decline rapidly in different conditions. 

4.1.2 Precision-Recall 
Precision-Recall [43] curve represents the whole performance of the local invariant feature 

algorithm. Eq.(9 ) shows the definition of recall and precision: 

                                            
Trecall
P

= ,
Tprecision
F

=                                          (9) 

where T  is the correct matching points. P and F  are the all correspondences and matches, 
respectively. 

 
Fig. 5. Precision-Recall curve. 
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Fig. 5 shows the recall versus 1-precision relationship curve combined detection and 
description performance. So besides the detection process, feature descriptors and feature 
matching procedures are also adopted to finish this evaluation. With FREAK [49], we descript 
the MSER feature detector. From this curve, we can see that AKAZE performs best with 
different transformations, and SURF and KAZE have similar performance. 

4.1.3 Efficiency 
Considering the requirement of some real-time systems for local invariant features 

algorithms, high execution efficiency is an essential matter that we have to consider. We test 
the whole algorithm execution efficiency, including feature detection, feature description and 
feature matching three main steps, on a i7-4790 CPU 3.6 GHz computer, as shown in Fig. 6. 

 
Fig. 6. Execution efficiency of different local invariant features. 

 
Only considering the efficiency, KAZE is not appropriate for rigorous real-time system. 

ORB and BRISK score high in average time per frame and average time per keypoint, 
however they are not robust in view of repeatability and precision-recall curve. MSER and 
SIFT perform similar in average time per frame, while they are time-consuming because of 
fewer feature points. SURF and AKAZE perform well both in average time per frame and 
average time per keypoint, which can satisfy the needs of the real-time system. 

4.2 Circle Match and Bucketing 
We employ the Euclidean Distance to measure the similarity between AKAZE descriptors. 

The K-Nearest-Neighbor (KNN) is adopted to perform the matching procedure between 
consecutive frames. The ratio test is introduced to remove the mismatches to get a robust 
feature matching set. When the ratio between the best candidate matching point distance and 
the second best candidate matching point distance is smaller than the threshold, we take it as a 
safe match, otherwise we remove the match. In our case, we set the ratio threshold 0.6λ = . A 
bucket concept [18] is adopted to choose a subset of the matching feature points. A small 
number and uniform distribution of feature points reduce the computational complexity of the 
overall algorithm.  

Fig. 7 shows the strategy of circle matching. ,L kI  and ,R kI  are the current left and right 

frame, , 1L kI −  and , 1R kI −  are the last left and right frame and , 2L kI −  and , 2R kI −  are the left and 

right frame before the last. 
( ), ( 1, 2)

( )
L R k k k

P
− −

′  are the feature point in corresponding frame images as 
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Fig. 7 shows. Only when start point L kP，  and end point L kP′，  is the same feature point 

( )L k L kP P′=， ， , we declare a successful match, otherwise we delete the current feature point.  
 

 
Fig. 7. Feature matching between image triples. 

 
 

4.3 Outlier Removal Based on the Improved RANSAC 
The result of feature matching in last section contains features of static as well as dynamic 

objects. In order to maintain the accuracy of subsequent calculations of vehicle position, 
further elimination of mismatches is needed. The traditional method for the elimination of 
erroneous matching is the RANSAC algorithm [50]. However, this method requires numerous 
iterations, which increases computational complexity. Moreover, it often fails to eliminate 
mismatching. To avoid these shortcomings of traditional RANSAC, we propose an improved 
RANSAC algorithm based on geometrical constraints.  

There are relationships between two matching points set: (1) the slope of each matching pair 
is equal or close to each of the others, and (2) the length of each matching pair is equal or close 
to each of the others. We obtain the set of matching points of the frame 

{ }1 1 1 1( , ) | ( 0,1,..., 1)i iP p x y p I i n= ∈ = −  and the corresponding set of matching points of 

the given frame { }2 2 2 2( , ) | ( 0,1,..., 1)j jP p x y p I j n= ∈ = − , where n  is the sum of 

matching points. A tuple ( ),M E C represents a geometric constraints model, i.e., there is a 

constraint ( )| 0,1,...jC c j m= =  with regard to a finite set of elements ( )| 0,1,...iE e i n= = . 

To calculate the geometrical relationship between 1P  and 2P , we assume a point set P : 

                                      { }1 2( [ ], [ ]) | 0,1,...,. 1P P i P j i j n= = = −                                          (10) 
Each element of P is a matching point pair. Based on the geometrical constraint model M , 

we search the matching point set 1 2( [ ], [ ])P i P j  that satisfies the geometrical constraints C and 
reject the matching point pair that does not satisfy it. 

Experiments show that our proposed algorithm eliminates either mismatching points or 
points on dynamic objects, reducing the number of iterations and improves computational 
efficiency compared with the traditional RANSAC algorithm. Thus it improves the efficiency 
of the image matching algorithm to a greater degree, as shown in Table 1. 
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Table 1. Comparison between conventional RANSAC and the improved RANSAC 
Group 

No. oriN  (%)correct
oriP  ( )oriT ms  ourN  (%)correct

ourP  ( )ourT ms  
1 245 80.0 29.0 162 100.0 18.3 
2 178 84.6 20.8 112 100.0 12.8 
3 156 84.4 18.9 104 99.9 12.3 
4 99 87.7 11.6 82 100 10.1 

 
In the above table, oriN  is the number of matching points and oriT  is the average 

computation time for the conventional RANSAC. ourN  is the number of matching points and 

oriT  is the average computation time for the improved RANSAC. The definition of correct
oriP  

and correct
ourP  is as follows: correct

oriN  is the number of correct matching points for conventional 

RANSAC, and correct
ourN  is the number of correct matching points for the improved RANSAC. 

                                            
correct

correct ori
ori

ori

NP
N

=    ,    
correct

correct our
our

our

NP
N

=                              (11) 

 The improved RANSAC reduces the overall running time, meanwhile enhance the 
algorithm accuracy. 

After the procedure of outlier removal, we get a robust inlier matching set which is the 
prerequisite of ego-motion estimation. Performing minimization using equation (12) obtains 
the estimation of [ ( ), ]R r t .  

                                           22
1 1( , ) arg ( ( ) )

Inliersn

k k k k
i

c P P min P R r P t− −= − +∑                          (12) 

where i  is a feature point. k  is the time instant. kP  and 1kP −  are triangulated 3D points at 
instants k  and 1k − , respectively. 

Combining motion parameterization in Section 3.2 and Equation (12), we can calculate the 
initial estimation of 6DOF motion parameters. 

4.4 The Iterated Sigma Point Kalman Filter Refinement 
The theory of Kalman Filter is widely applied into dynamic system to estimate the 

instantaneous state. It provides a solution that may directly reduce the effects of disturbance 
noises including system and measurement noises. The errors in the parameters can also 
normally be handled as noise [51]. In traditional case, the relation between the instantaneous 
state ( ), , , , , T

X Y Z X Y ZV V V w w w  and disturbed measurement is linear, namely, the Kalman 
filter is a linear filter that provides a prediction and an update step [52]. The Extended Kalman 
Filter [EKF] [53] is an extension of Kalman Filter, which provides the non-linear solutions 
using a first order Taylor expansion [54]. However, this reduces the accuracy of estimation 
result. A better choice is the usage of Kalman Filter based on the Unscented Transform (UT) 
[55]. Such filters propagate mean and covariance based on sigma points, like Unscented 
Kalman Filtef (UKF) [56] or Sigma Point Kalman Filter (SPKF) [57]. We highlight the 
importance of iteration in update step, which leads to a faster convergence. 

Comparing the statistically linear error propagation and first order Taylor expansion error 
propagation, statistically linear error propagation is more accurate [57]. In the Sigma Points 
methods, regression points are selected by: 
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where γ  is parameter that determines the state space. s  is the mean matrix and P  is the state 
error covariance. i  is the index of sigma point and we set L=5 in our case. 

The system state mean and covariance are calculated by linear weighted regression from the 
Sigma points X  and the transformed regression points Z : 
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where ( )a

iω  and ( )c
iω  are used to compute the state mean and covariance [58].  

 
1

1
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                (15) 

 
where K  is the Kalman gain. P  and R  are respectively state and measurement error 
covariance matrices.  

   The ISPKF measurement update is defined by Eq.(13) to Eq.(15), which is benefited from 
iteration process and statistically linearized error propagation.  

5. Experimental Classification Results and Analysis 
To illustrate the advantage of our proposed method (Proposed method-AKAZE), we 

evaluate our stereo motion estimation method on the KITTI dataset [32]. This benchmark 
consists of 22 stereo sequences and we randomly take the sequence 05 and sequence 09 as 
comparison data sets. The result of GPS/IMU from OXTS RT 3003 is regarded as the ground 
truth and the trajectory of VISO2 [31] and Proposed Method-SURF are used as references. 
The Proposed Method-SURF is the same pipeline with the Proposed Method-AKAZE and the 
only change is replacing the feature AKAZE with SURF. We test our proposed method on this 
dataset and draw the trajectories of ours with the references and ground truth in the same 
graph. 
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Fig. 8. Motion estimation on sequence 05 with ground truth, VISO2 stereo and our Proposed 

Method-AKAZE/-SURF. 
 

 
Fig. 9. Translation and rotation error of VISO2 stereo VO and our Proposed 

Method-AKAZE/-SURF on sequence 05. 
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Fig. 10. Motion estimation on sequence 09 with ground truth, VISO2 stereo and our Proposed 

Method-AKAZE/-SURF. 
 

 
Fig. 11. Translation and rotation error of VISO2 stereo VO and our Proposed 

Method-AKAZE/-SURF on sequence 09. 
 

    From Fig. 8 and Fig. 10, it can be seen that our method is closer to the ground truth than 
VISO2 stereo method. No matter with regard to rotation error or translation error, our method 
performs better, as shown in Fig. 9 and Fig. 11. In Section 4.1, taking into consideration of 
accuracy, stability and efficiency, the feature SURF and AKAZE perform more similar. So we 
compare these two features’ performance in application of VO. The trajectory of Proposed 
Method-SURF is close to the Proposed Method-AKAZE and they almost have the same 
varying trend. Clearly, the latter is more accurate in terms of rotation and translation.  

To further demonstrate that our method was suitable for practical application, we used the 
vehicle platform presented in Section II to capture image data. Our approach was tested with 
one high-resolution stereo camera rig mounted on top of the vehicle. The distance from the 
center of the camera lens to the ground was 1.56m. The speed of the vehicle ranged from 0 
km/h to 50 km/h. 
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(a) Trajectory estimated using different methods    (b) Estimated velocity along x-, y-, and z-axes 
Fig. 12. Comparison of the Proposed Method-AKAZE with other ego-motion estimation methods 

(DGPS, VISO2 stereo and Proposed Method-SURF). 
 

The trajectories recovered using the proposed method and other methods are shown in 
Fig.12. The trajectory was approximately 1.3 km and lasted 203s. Further, we compared the 
velocities along the x-, y-, and z-axes, and calculated the Euler angles relative to each axis. We 
regard the trajectory of DGPS as the ground truth. The Proposed Method-AKAZE is closer to 
the ground truth than the stereo method of VISO2 and the Proposed Method-SURF. Moreover, 
our method has less drift than DGPS in a GPS-resistant environment, which ensures a more 
reliable performance. As shown in Table 2, the proposed method outperforms other methods 
in terms of overall RMSE and end-point error. 
 

Table 2. Overall RMSE and end-point error results of our experiment 

Algorithm 
Overall 

position 
RMSE (m) 

Overall 
orientation 

RMSE (deg) 

End-point  
position 

RMSE (m) 

End-point  
orientation 

RMSE (deg) 
Proposed 

Method-AKAZE 3.5371 2.0632 1.6548 2.4521 

Proposed 
Method-SURF 5.3167 3.8189 6.1054 3.8367 

VISO2 stereo 6.4820 4.5281 11.6634 6.4937 

5. Conclusion 
In this work, we present a novel approach for 6DoF ego-motion of stereo visual odometry 
based on robust features. A new method for vehicle positioning based on stereo vision is 
proposed and compared with traditional visual odometry techniques. With our key 
enhancements to the adopted approach and algorithm, overall the proposed method can 
generate highly accurate ego-motion estimation results in a manner suited to real-time 
applications. To further improve our research, we are working on a better model of the system 
by combining it with the DGPS method.  In our future research, the local positioning method 
and global localization method will be invariably combined in a practical navigation system. 
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