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Abstract 
 
Users quite often experience volatile channel conditions which negatively influence multi-
media transmission. HTTP adaptive streaming has emerged as a new promising technology 
where the video quality can be adjusted to variable network conditions. Nevertheless, the new 
technology does not remain without drawbacks. As it has been observed, multiple video 
players sharing the same network link have often problems with achieving good efficiency 
and stability of play-out due to a mutual interference and competition among video players. 
Our investigation indicates that there may be another cause for under-performance of the 
streamed video. In an emulated environment, we implemented three algorithms of adaptive 
video play-out based on bandwidth or buffer assessment. As we show, traffic generated by 
players employing the same or similar play-out strategies is positively correlated and syn-
chronised (clustered), whereas traffic originated from different play-out strategies shows 
negative or no correlations. However, when some of the parameters of the play-out strategies 
are randomised, the correlation and synchronisation diminish what has a positive impact on 
the smoothness of the traffic and on the video quality perceived by end users. Our research 
shows that non-correlated traffic flows generated by play-out strategies improve efficiency 
and stability of streamed adaptive video. 
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1. Introduction 

During the past years, web-based video sharing services like YouTube, Hulu or Dailymo-
tion have become very popular. The users of YouTube, which allows for the distribution of 
user-produced multimedia content, alone request 6 billion hours of video every month [1]. 
Consequently, such popularity results in a drastic shift in Internet traffic statistic and leads to 
an increase of traffic generated by web-based video sharing services. It is estimated that this 
type of traffic will account for about 80% to 90% of the global Internet traffic in 2019 ac-
cording to the report published by Cisco [2].  
Video streaming in the above-mentioned services is HTTP-based; therefore, being trans-
ported using TCP. HTTP and TCP are general purpose protocols and were not primarily de-
signed for streaming of multimedia. Thus, attempts are being made to adapt the delivery of 
multimedia content to the Internet environment. One of such attempts tries to introduce an 
additional layer of application control to transmitted video traffic [3]. Since TCP is designed 
to deliver data at the highest available transmission rate, it may sometimes be reasonable for a 
sender to provide additional flow control if it is not necessary for application data to reach a 
receiver as fast as TCP would otherwise allow. Therefore, the application may limit the rate 
at which data is passed to a network stack for transmission producing ON-OFF cycles, where 
during the ON time a block of data is transferred at the end-to-end available bandwidth that 
can be used by TCP, and during the OFF time, the TCP connection remains idle.  
Furthermore, the players implement stream-switching (or multi-bit-rate): the content, which 
is stored on a web server, is encoded at different bit-rate levels, then an adaptation algorithm 
selects the video level, which is to be streamed, based on a state of a video player, for exam-
ple on the length of the player buffer, or on the state of a network environment, for example 
on an amount of available bandwidth [3]. In the current approaches, usually the video player 
alone chooses suitable video quality and is responsible for the adaptation to a network envi-
ronment. This allows the player to independently select its playback quality without the sup-
port of any additional control protocols and communication with a server.  
However, the above client-driven approach has some drawbacks. The players keep informa-
tion about their buffer state only to themselves, therefore, there is no coordination among 
clients. As each player strives to optimise its individual quality, they implement competing 
play-out algorithms which try to outsmart one another. Thus, when data streams which are 
downloaded by several players traverse the same path in the network, the players compete for 
the available bandwidth. Such scenario quite often takes place when there are several con-
current sessions initiated by video players located within an Internet Service Provider (ISP) 
network, as presented in Fig. 1. Some research also shows that when more video players 
share the same bottleneck link, due to the temporal overlap of their ON-OFF periods, the 
players may overestimate or underestimate the available bandwidth. This inaccurate assess-
ment negatively impacts on streamed video as the players repeatedly switch between different 
quality levels and inefficiently use available network bandwidth [4].  
In our work, we show that there is another possible cause of inefficiency and instability. 
When the same play-out strategies are shared among the video players, the traffic generated 
by these strategies tends to be positively correlated what leads to an increase in variability of 
whole aggregated traffic transmitted through a given network path. However, in the case 
when the play-out strategies are different, or at least, have different parameters, the positive 
correlation diminishes. Furthermore, with the decreasing correlation, the aggregated traffic is 
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less variable and oscillates in a tighter range what has a direct impact on perceived video 
quality. As our examination shows, less variable traffic improves efficiency and stability of 
video streaming.  
Our approach requires only very limited modification of play-out algorithms and basically no 
server-side support. We manipulate with values of some basic parameters of adaptive algo-
rithms and we try to estimate how they influence the characteristic of the network traffic. In 
the contrast to the popular techniques proposed, for example in [5], we do not operate on the 
level of aggregate traffic, but on the level of individual flows. Thus, to a certain extent, in-
stead of dealing with the effects of variability, we try to prevent its cause. For this purpose, 
we investigate inter-dependencies among traffic flows, i.e. we search for correlation in the 
traffic generated by particular video players. Moreover, we inspect visually traffic traces and 
compute popular traffic characteristics like variability or the long range dependence (LRD) 
parameter. Finally, we analyse how the randomisation of adaptive algorithms parameters im-
pact the quality of video play-out. The above analysis and their results are the main contribu-
tions of our work.  
We conduct the performance study using an emulation model what allows us to methodol-
ogically explore the behaviour of the examined system over a wide range of parameter set-
tings, which would be a challenging task to conduct such experiments only on a real-network. 
Simultaneously, as the emulation is performed in a laboratory environment, we are able to 
preserve much of the network realism because we conduct experiments, using real hardware 
and software, what permits us to maintain a decent level of accuracy for the obtained results. 
The players implement three different play-out algorithms. Two of them mimic the behaviour 
of real commercial video players and the other mimics a popular play-out strategy described 
in the literature. 

 
Fig. 1. HTTP streaming scenario. Video traffic is multiplexed on the ISP access link. 

 
The rest of the paper is organised as follows: in the next section, we describe algorithms en-
gaged in a traffic flow control at the application. Then, we review other related works to our 
proposition. After that, we present the methodology used in our experiments. In the further 
two chapters, we compare an interdependence among traffic flows and statistics of the whole 
aggregated traffic for two scenarios where the adaptive algorithms have fixed and randomised 
parameters values. Finally, we discuss how the diversification of parameters values influ-
ences the quality of streamed video. 

2. Application level flow control 
In most modern video systems based on HTTP, the video file is divided into chunks of fixed 
time and the server pushes them sequentially to the client at a rate little higher than the 
video-bit rate of the transmitted content. As a result, the transmitted traffic creates an 
ON-OFF pattern, where ON and OFF periods have a constant length [6]. The extension of 
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this idea is an adaptive streaming, which offers more flexibility when a network environment 
is less stable, for instance in wireless mobile networks. With this approach, it is possible to 
switch the media bit rate (and hence the quality) after each chunk is downloaded and adapt it 
to the current network conditions. This technique was adopted by Dynamic Adaptive 
Streaming over HTTP (DASH), which is a MPEG standard pursuing the interoperability be-
tween devices and servers of various vendors [3][7]. In this approach, a video stream is also 
divided into segments, but this time, they are encoded in multiple quality levels, called repre-
sentations. Based on an estimation of the available throughput, the client may request subse-
quent segments at different quality levels which depend on network conditions between the 
client and server, as drafted in Fig. 2. The algorithm deciding which segment should be re-
quested in order to optimize the viewing experience is the main component and a major chal-
lenge in adaptive streaming systems because the client has to properly estimate, and some-
times even predict, network conditions, for example, the dynamics of the available through-
put. Furthermore, the client has also to control a filling level of its local buffer in order to 
avoid underflows resulting in playback interruptions. The transmitted traffic also creates the 
ON-OFF pattern, but this time, the duration of the ON and OFF periods is not constant any-
more but is a discrete random variable, whose values are dependent on the logic of the 
play-out algorithm.  
 

 
Fig. 2. Architecture of a video adaptive system based on HTTP. 

 
The stream-switching technique is employed today less or more in some proprietary video 
players, among others in Apple HTTP-based streaming [8], Microsoft IIS Smooth Streaming 
[9] or Adobe Dynamic Streaming [10].  
As the above adaptive video systems do not share many details about the employed algo-
rithms, in our experiments we use the template of an adaptive streaming algorithm based on a 
bandwidth estimation which is implemented in the open-source software described in [11]. 
Moreover, we implemented two further adaptive algorithms which extend the idea proposed 
in the template, and apart from the network throughput, they take into account also the level 
of a player buffer or add some more elaborate features like throughput prediction. The im-
plemented hybrid strategies are employed in popular software [12] or, at least, gained a fair 
amount of publicity [13]. 

2.1 Play-out algorithms 
The bandwidth estimation algorithm tries to adjust a bit-rate of video to the measured net-
work throughput. It is employed by DASH plug-in which is a part of VLC media player [11].  
The approach is relatively simple and its main points were summarised in Algorithm 1. The 
algorithm calls a function which measures average network throughput xn  in a certain time 
window ΔT. This window can be considered as a parameter of the algorithm and it may be 
stretched or shortened in order to optimise streamed video quality. When the video bit-rate v, 
which is needed for a smooth video play-out, is lower than the computed average network 
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throughput xn  reduced by ΔL, line 1, the algorithm reports that the video quality level q 
should be increased, i.e. the chunk download module asks the server for bigger chunks, en-
coded in higher quality. When the throughput is not sufficient for the given level of video 
quality, line 4, the opposite situation takes place: the quality level q is decreased and the 
download module is instructed to obtain chunks of poorer quality what simultaneously de-
mands less network throughput. The parameter ΔL marks a region of network throughput for 
which there is no need to switch the quality to a higher level. As a result, the parameter plays 
a stabilising role and prevents switching the quality levels too frequently, what could have a 
negative impact on the overall video quality perceived by users. The constants minQ  and 

maxQ define a range of available levels of the quality. 

 
Algorithm 1. Adaptation based on a bandwidth estimation 

 
Algorithm 1 has some problems related to accurate bandwidth estimation and stability. 
Therefore, in order to overcome the drawbacks, the algorithms proposed in the literature base 
their estimation additionally on the level of a player buffer and on more elaborate assessment 
of network throughput using for this purpose, for example, prediction techniques. We imple-
mented two such strategies presented in literature in the recent years. 
The first implementation, and our second test algorithm, uses the Microsoft Smooth Stream-
ing (MSS) algorithm, which is based on the open source version of the algorithm of the MSS 
video player and is extensively described in [12].The algorithm evaluates the status of the 
play-out buffer and its decision based on the results of measurement of network throughput 
and comparison of the buffer state. The buffer is divided into three thresholds denoted by the 
authors as: a lower, an upper threshold and a panic threshold. 
The second heuristic, and our third test algorithm, relies on the PANDA (Probe AND Adapt) 
algorithm proposed in [13]. The algorithm takes TCP download throughput as an input to the 
adaptive algorithm only if the measurement is an accurate indicator of the fair-share band-
width. The video quality is not directly related to network throughput but to its average, 
which in turn determines the selected video bit-rate and the request time between video 
chunks. 
We examined the multiplexed traffic generated by the above-mentioned algorithms taking 
into account two scenarios. In the first scenario, the algorithms have the same, fixed parame-
ters, i.e. video players employ exact copies of the three respective algorithms. In the second 
scenario, we assign to some of the algorithms parameters uniformly distributed random val-
ues chosen from a constrained set. Thus, in this case, the players employ varied strategies. 
The list of the parameters with their fixed and randomised values is presented in Table 1. The 
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intervals are set as the minimum and maximum parameters values, for which we did not ob-
serve a significant degradation in performance of the examined algorithms during the labora-
tory experiments. 
 
Table 1. Default values and ranges of randomisation for the selected parameters of the analysed algo-

rithms. 

Sym. Algorithm 
Parameters 

Description Default Randomised 

A Algorithm 1 

∆L – region of network throughput for 
which there is no need to switch the 
quality to a higher level; 
∆T – time window for measurement of 
network throughput 

25%nx 
 
 

45 s 

15%-75%nx 

 

 

15-90s 

B MSS [12],  
Algorithm 1 

P – buffer state; 
time window for measurement of net-
work throughput 

12 s 
20 s 

8-24s 
14-60 s 

C PANDA [13], 
Algorithm 2 

∆ – quantization margin; 
moving average of past n measure-
ments for the estimation of network 
throughput 

25%nx 
10 

15%-75%nx 

4-16 

3. Related works 
Some researchers observed that multiple video players compete among themselves for avail-
able throughput needed to transfer video chunks. The authors of [14] show that inaccurate 
measurement of received data results in instabilities of a video play-out and a degradation of 
video quality. They attribute the responsibility for this issue to the ON-OFF pattern of traffic 
produced by the application layer: even if one video player obtains its fair share sufficiently 
during the ON period, it can fail to correctly estimate available bandwidth due to the over-
lapped ON periods with the other player. As a consequence, the former player will switch to a 
lower rate than the network conditions allow, and network throughput remains underutilised. 
The authors of [15] examined a video player competing against another video player, and 
against a long-lived TCP flow. Interestingly, they demonstrated that inaccurate throughput 
estimation occurs even when the competing flow does not exhibit the ON-OFF behaviour. 
Therefore, some research works, e.g. [16], try to improve the algorithm by predicting the fu-
ture bandwidth, while the others, e.g. [17][18][19], propose an algorithm based on measure-
ment of buffer occupancy. Nevertheless, the buffer reactive algorithms perform fine in many 
cases, but sometimes they have a tendency to too frequent oscillation between video bit rates 
[17]. Thus, there are concepts of more sophisticated buffer management, e.g. in [20] the au-
thors present an algorithm which eliminates ON-OFF periods from the traffic through two 
buffer management states. The authors claim that the proposed scheme improves fairness in 
the system by 45% compared to the conventional adaptive player.  
Some of the authors propose more elaborate strategies, e.g. FESTIVE [21] or PANDA [13] 
play-out strategies, which take not only network bandwidth or a player buffer into account 
but also consider stability, efficiency and fairness. Additionally, FESTIVE includes an ele-
ment of randomness – its scheduler ensures that the request time of a player is independent of 
its start time.  In [22] the so-called network control plane, designed to take into account 
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scalability and adaptiveness issues, is placed on top of the controlled network. The plane co-
operates with distributed buffer-based adaptation techniques implemented in clients but does 
not interact with a video server. 
Some researchers see a chance of overcoming the problems with the bit-rate instabilities and 
an effective usage of throughput by an engagement of server-side mechanisms. For example, 
in [23] the authors suggested a traffic shaping method, implemented at home gateways, to 
reduce an extent of observed instability and unfairness among competing video players. An-
other proposition is a server-based method of traffic shaping that can reduce oscillations of a 
video bit-rate received by a player [24]. Liu et al. in [25] follow a similar approach where the 
rate is shaped according to the maximisation of a QoE metrics. The authors of [26] presented 
a method of video pacing that reduces unnecessary traffic and simultaneously conserves ear-
lier video quality. In [27], the authors suggested to dynamically adjusts a segment size of 
TCP and a number of video streams in order to optimize throughput of a connection. Another 
proposal is to locate a traffic shaper between a video server and users’ players in order to 
adaptively transform a video bit-rate to current network conditions; however, this proposition 
requires a feedback from the players [28]. Finally, in [29] the authors employ a complex 
strategy in which the use in-network quality optimization agents monitoring the available 
throughput using sampling-based measurement techniques and optimize QoE of each client. 
This in-network optimization is achieved by applying centralized as well as distributed algo-
rithms what requires coordination between a server and clients. 
Taking into account the above issues with fairness, efficiency and stability, one of the possi-
ble approach to a video quality improvement is to focus on the traffic engineering methods 
which may to some extent alleviate the mentioned problems with competition among video 
players and correct bandwidth estimation. Though the transfer rate control implemented at 
the application level in video adaptive systems may appear analogous to the TCP congestion 
control, there are some key differences between these two logics, which may have an impact 
on a traffic characteristic: the two control algorithms operate at different levels in the protocol 
stack; TCP is a connection-oriented protocol while video adaptation is a connectionless pro-
tocol and TCP operates at the packet level whose size is about 1 KB, while video system op-
erates at the level of segments, whose size is usually hundreds of kilobytes. Nevertheless, the 
amount of work focusing on traffic characteristics generated by adaptive video systems and 
its impact on video quality is quite limited. Some of the works tried to investigate details of 
traffic characteristics, for example in [30] the authors the examine the periodic behaviour of 
traffic generated by Microsoft Smooth Streaming and Netflix. In [31] the authors provide 
formulas for average intensity of network traffic and its variability. However, the proposed 
analytical model takes into account only non-adaptive streaming. Variability of non-adaptive 
video traffic based on HTTP in small timescales (below 1 ms) and methods to eliminate this 
undesirable phenomenon is studied also in [32]. To our best knowledge, none of the work has 
been focused on an investigation of how video play-out algorithms impact the traffic charac-
teristics and how this characteristics influences on the quality of video. 

4. Laboratory set-up 
In order to capture traffic traces, which were generated by an adaptive video system, we pre-
pared a test environment emulating content distribution network (CDN), which in a real 
world is applied to deliver video to multiple users. The environment consists of network en-
vironment emulators (NEE), web servers, video players and a measurement point located in 
an edge router, as shown in Fig. 3. 
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As the NEE, we used a network emulation node based on the built-in Linux Kernel module 
netem [33]. The module is capable of altering the network QoS parameters such as network 
bandwidth or packet delays; thus, it allows for testing data transmission in different network 
environments.  
 

 
Fig. 3. An emulated CDN network which consist of network environment emulators, web servers, 

video players and a measurement point located in an edge router. 
 
The role of the web server plays Apache [34], which stores the video clips as a set of chunks. 
Each of the three Apache servers used in the experiment has assigned an NEE which mimics 
a different network environment so that there are different packet delays and network band-
width between the servers and the edge router. The delays are described by the Weibull dis-
tribution [35][36] with an average of 0.03 s. The network bandwidth is uniformly distributed 
and takes its values 4 MB/s to 12 MB/s. We assume that the servers in the CDN are con-
nected by a high-performance wired network, therefore, the packet losses are negligent. Tak-
ing into account that according to [2] about 65%-80% of current network traffic is generated 
by video services, we allocated a quote of 25% of the bandwidth for background traffic which 
was generated by the tool presented in [37]. 
As a video player, we chose the VLC media player with the DASH plug-in [11]. Both the 
player and the plug-in have an open-source code, thus, it is possible to manipulate or com-
pletely change the adaptation logic without affecting the other components. As a consequence, 
the plug-in enables integration of a variety of adaptation logics making it attractive for per-
formance comparison of different adaptive streaming algorithms and their parameters. As it 
was mentioned, we implemented here Algorithm 1 and two other algorithms acquired from 
literature. The players were divided into three groups and each group had assigned an NEE 
which imposed on the groups different network properties so that the NEE of the first group 
emulated properties of a wired network, the NEE of the second group emulated a wireless 
network and the NEE of the third group mimicked a wireless mobile network. Taking into the 
account the findings presented in [38], the content was divided into 2 s length segments and 
the size of the player buffer was set to 6 s. Similarly to the server-side, on the client-side 
packet delays have the Weibull distribution while the bandwidth is distributed uniformly. 
Table 2 summarises the basic parameters of the experiment. 
From several video files, acquired from [39] and presented in Table 3, every player repeat-
edly chose a random file to download. The duration of each of the experiment was set to 
twenty minutes. Using the edge router with installed capturing software, based on Tcpdump 
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and Libcap [40], we obtained aggregated traffic traces. These traces were converted into time 
series represented by a point process. As we were interested in the properties of relatively 
short time traces of about several minutes, we did not introduce users’ churn or take into ac-
count switching of the players between different CDN servers. For the same reason, we also 
did not take into account video length distribution, its popularity or the patterns of users’ ac-
cess, which could possibly lead to a more complex model of aggregated video traffic in a 
macro-scale. We repeated the experiment five times and averaged the results of the analysis. 
 

Table 2. Simulation parameters 
Parameter Value(s) 

Number of webservers 3 
Number of NEE 6 

Number of video players 120 
Bandwidth at the edge routers 16, 20, 24 MB/s 

Bandwidth at the server side (per a server) 4 - 12 MB/s 
Packet delays at the server side 0.03 s in average 

Bandwidth at the client side (per a player) 0.16 - 1 MB/s 
Packet delays at the client side 0.06 s in average 
Packet losses at the client side max 1% 

Video segment length 2 s 
Buffer size of players 6 s 

 
Table 3. Video clips used during the experiments. 
Name Genre Bit-rate levels 

Big Buck Bunny animation 
100 kbit/s - 320x240, 
300 kbit/s - 480x360, 
700 kbit/s - 854x480, 

1.2 Mbit/s - 1280x720, 
2.5 Mbit/s - 1920x1080 

Elephants Dream animation 
Red Bull Playstreets sport 
The Swiss Account sport 

Valkaama movie 
Of Forest and Men movie 

 
We believe that the above-described methodology provides an attractive middle ground be-
tween a simulation and real network experiments. To a large degree, the emulator should be 
able to maintain the repeatability, reconfigurability, isolation from production networks, and 
manageability of a simulation while preserving the support for real video adaptive applica-
tions.  

5 Analysis of traffic correlations 
In the last decade, much of research focused on the investigation of statistical properties of 
natural or social systems. Some of the works showed that the correlation between different 
entities belonging to a system and topological characteristics of links connecting these enti-
ties cannot be described in terms of random graphs. For example, the distribution of a degree 
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of nodes in graphs describing entities in the World Wide Web, the Internet, or social net-
works is power-law rather than Poisson-type, and cannot be constructed by randomly con-
necting previously unconnected pairs of nodes until a predefined total number of edges in the 
network is reached [41][42]. Taking into account heterogeneity of players in video systems 
and their adaptiveness, the analysis of the interaction between these entities may allow 
achieving a broader view of the nature of the system and contributing to its better under-
standing. Furthermore, the analysis may be a foundation for developing physical models 
which will be able to capture more details of network traffic compared to purely mathemati-
cal models describing aggregated traffic traces. 
In the first step of our analysis, we are interested in a correlation of traffic generated by par-
ticular video players. While adjusting video bit-rate to a current network environment, each 
of the players generates time series representing respective quality levels qi (or correspond-
ing video bit-rates), see also Algoritm 1, which presents examples of negative and positive 
correlation among particular players. From the above set of time series, we computed the 
correlation coefficient between any pair of players as  

 

 

(1) 

where { }maxmin ,,, QQQQ ji ∈  represent a stochastic process whose elements are quality 
levels of video received by players i and j respectively, and 〈Qi〉 is an average of the vector 

Qi. By definition, ijρ  can vary from -1, what denotes completely negative correlated (or 
anti-correlated) video bit-rates, to 1, what denotes completely positive correlated video qual-
ity levels. When 0=ijρ , the quality of video streamed to i-th and j-th players are uncorre-
lated.  
The positive correlation between singular flows will increase the variability of aggregated 
traffic. Single traffic flows can be considered synchronised and will simultaneously increase 
and decrease their intensity. However, the increase will be confined to the network bandwidth 
– when the aggregated traffic reaches the network capacity, the players will simultaneously 
decrease the quality. The decrease will be restrained by the play-out algorithms, which will 
report that higher network throughput is available than currently being utilised or that their 
buffer level allows increasing the quality. Thus, the flows will simultaneously start increasing 
their intensity, and the above pattern will repeat. Such synchronous flows lead to oscillations 
of the aggregated traffic which are responsible for packet losses and a decrease of network 
throughput [43]. 
In the case of the negative correlations, an increase of one flow intensity is compensated by a 
decrease of the other flow intensity. Thus, the aggregated network traffic should remain more 
or less at the similar level preserving its smoothness, what is desirable from a traffic engi-
neering point of view. 
 

5.1 Analysis of the cross-correlation matrix 

The correlation coefficient ijρ (1) is computed between all the possible pairs of players 
downloading video from the emulated CDN. The goal of the present study is to obtain the 
taxonomy of the play-out algorithms using only the time series representing the quality of 
streamed video. As a result, we obtain a symmetrical matrix characterised completely by 



384                            Biernacki: Improving Video Quality by Diversification of Adaptive Streaming Strategies 

n(n−1)/2 correlation coefficients with 1=iiρ  in the main diagonal. In order to present such 
a large correlation matrix, we averaged the correlation coefficient between the analysed 
groups. 
The graphical representation of the cross-correlation matrix for groups of players engaged in 
the experiment is presented in Figs. 5 and 6, where the darker the specified region, the higher 
the absolute value of the averaged correlation coefficients ijρ ; and, respectively, the lighter 

the specified region, the absolute value of ijρ  is lower. Taking into account that we exam-
ine correlations between the quality levels of video players employing three different play-out 
algorithms, to facilitate the analysis, we divided the matrix into nine regions. Every region 
represents the dependency between groups of players using a particular play-out algorithm. 
As the matrix is symmetrical, it is sufficient to analyse only half from nine regions. 
In order to enhance visibility, we analyse negative, see Fig. 5, and positive correlations, see 
Fig. 6, separately. The regions laid on the diagonal of the matrix show correlation between 
groups of players employing the same algorithm. Furthermore, the analysis takes into account 
two scenarios denoted as Fixed and Random. The set-up of both scenarios is similar and con-
sists of three groups of players, each counting 40 players, employing its play-out strategy and 
downloading simultaneously video content. However, in the former scenario, the respective 
play-out algorithms are exact copies of each other, i.e. their parameter values are the same. In 
the latter scenario, the parameter values of the respective algorithms are randomly selected as 
presented in Table 1. Thus, with great probability, each player has its own unique play-out 
strategy. 
We may notice, that there are some negative dependencies introduced by PANDA strategy in 
the relation to the bandwidth-based and MSS algorithms, as presented in Fig. 5A. When the 
parameters of the play-out strategies have random values, the negative correlation between 
PANDA and MSS strategies disappears. The negative dependencies may be probably ex-
plained by the internal characteristics of the examined strategies. The strategies presented in 
Algorithm 1 and MSS include common elements of estimation of network throughput based 
on direct measurement. However, the PANDA strategy is based not on direct measurement of 
the network throughput, but instead, it tries to estimate more accurately network conditions 
by eliminating the influence of throughput fluctuations, see Algorithm 2 in [13].  
 

 
Fig. 5. Averaged negative correlations for 120 video players.  

Table 1 presents a legend for the algorithm symbols. 
 
The above interpretation becomes even more evident when we start to analyse positive de-
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pendencies, which are even more substantial. Pure bandwidth based and MSS strategies are 
mutually positively correlated. Thus, we may confirm the observation made during the analy-
sis of the negative correlations – the strategies sharing common ideas tend to be positively 
correlated. Therefore, the pure bandwidth-based estimation strategy, presented in Algorithm 
1, is correlated with the MSS strategy and, rather weakly, with PANDA strategy, what was 
denoted in Fig. 6A. After randomisation of the algorithms parameters, the positive correlation 
is significantly weaker for all pairs of the play-out algorithms, as presented in Fig. 6B. In the 
case of PANDA strategy, the positive correlation ceases to exist at all. 
 

 
Fig. 6. Averaged positive correlations for 120 video players. 

5.2 Analysis of clusters 
The cross-correlation matrix is a common way to investigate the interaction between entities 
of the system. However, as any statistical estimator, the sample correlation matrix is un-
avoidably affected by statistical uncertainty due to the finite size of the sample. In order to 
mitigate this nuisance, one needs to apply filtering methods which are able to remove from 
the correlation matrix, at least, part of the noise. From the abundance of different methods 
dedicated for this purpose, we chose the minimum spanning tree (MST) algorithm, which is 
relatively simple to describe and allows to get an insight into the most important relations in 
the examined system. Using the correlation matrix defined from the coefficients in (1), we 
can obtain a fully connected graph with vertices corresponding to the video players and edges 
weight corresponding to the correlation coefficients. Then applying the MST algorithm, we 
can eliminate the less relevant information by removing the weakest edges.  
The MST algorithm operates on a concept of a distance identified as edges weight. Given a 
connected and undirected graph, a spanning tree of that graph is a subgraph that is a tree and 
connects all the vertices together. After assigning a weight to each edge, the MST algorithm 
computes the sum of the weights of the edges and chooses the tree with a sum of the weights 
less than or equal to the weight of every other spanning tree. However, we cannot build the 
graph directly from the correlation matrix because its elements in their original form are not 
suitable for a weight of the graph edges, for example a distance between the same two ele-
ments would have been one ( 1=ijρ ) instead of zero. Generally, the elements of the correla-
tion matrix do not fulfil the three axioms that define a metric: minimality, symmetry and tri-
angle inequality. Hence, the matrix must be transformed in order to define a genuine metric. 
Following [44] we use the transformation  

  (2) 
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With this choice dij fulfils the three axioms of a metric distance: a) dij=0 if and only if i=j; 
b) dij=dji and c) dij≤dik+dkj. 

The distance matrix D, composed from elements defined in (2), is then used to determine the 
MST connecting the bit-rate requested by n players. When we assign a weight to each edge 
which represents the distance dij, we can compute a weight of the spanning tree by comput-
ing the sum of the weights of the edges in that spanning tree. A spanning tree is then a graph 
without loops connecting all the n vertices with n−1 edges. As the original fully connected 
graph is metric with distance dij which is decreasing with ijρ , therefore the MST algorithm 
selects the n−1 stronger (i.e. shorter) links which span all the nodes. For the generation of the 
MST we applied Prim’s algorithm [45] implemented as minimum.spanning.tree function in 
the R statistical environment [46]. 
 

  
(a) (b) 

Fig. 7. Fragment of a MST connecting 120 video players for adaptive algorithm with parameters set to 
a) fixed, b) random values. Regions 1, 2 and 3 present clusters consisting of more than four players 
employing the same play-out strategies. Region 4 presents a cluster formed by players employing dif-
ferent strategies. Table 1 presents a legend for the algorithm symbols. 
 
The MST for our analysis is presented in Fig. 7. Players employing the same play-out algo-
rithm are represented as nodes of the same colour and symbol, see also Table 1. In the case, 
when all values of the play-out algorithms parameters are set to fixed values, see Fig. 7a, we 
can infer that most of its parts are composed of vertices representing the same play-out 
strategies. Other words, players employing the same strategy tend to form clusters. Larger 
clusters are formed by the players using PANDA strategy what was denoted as Region 1. in 
The strategies described in Algorithm 1 and MSS form smaller clusters denoted as Region 2 
and 3 respectively. However, as the two above strategies share a common idea (non-filtered 
bandwidth estimation), therefore players employing these strategies form also one bigger 
cluster denoted as Region 4. Such a connection indicates that sometimes there can be a strong 
correlation even between players implementing different strategies. These dependencies are 
not directly captured by the correlation analysis, presented in Figs. 5 and 6, as it shows only 
averaged results. 
After assigning random values to the parameters of the adaptive strategies, the monolithic 
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group consisting of players implementing PANDA strategy is split into three smaller clusters, 
see Fig.7b. Also, the randomisation reduces larger groups of players implementing band-
width-based and MSS strategies. The decrease of a cluster size results in a lower correlation 
and synchronisation among traffic flows. 
Summarising the above dependency analysis, there is a clear correlation between the quality, 
and thereby also the amount of traffic received by video players. Furthermore, the positive 
correlation can be also observed, when the play-out algorithms even partially base their deci-
sions on the same ideas, for example on the network throughput estimation. The negative 
correlation is visible when there are clear differences in methodology of throughput estima-
tion, for example direct measurement versus prediction. One of the possible explanations for 
this dependence is that when the predictor correctly estimates future network bandwidth, 
transmission generated by PANDA algorithm fills the recess left by the two other algorithms. 
Thus, not a simple direct measurement, but a more advanced estimation of network band-
width allows PANDA to escape from synchronisation bounds which are shared by the other 
algorithms. However, as the multiple players share common network path and employ 
PANDA approach, consequently their algorithms will provide quite a similar prediction. 
Therefore, a certain level of positive synchronisation among PANDA players in inevitable. 

6 Analysis of aggregated traffic 
The packets of the different video flows are usually placed on a single physical link – for 
example, a packet is transmitted for one connection, then a packet for a second, another for 
the first, then two packets in a row for a third, and so forth. This intermingling is referred to 
as “statistical multiplexing” in the packet network literature or as “superposition” in the 
mathematical literature of stochastic processes.  
As it was shown in many research works, statistical properties of the stochastic process which 
forms the network traffic have a significant influence on the network functionality and effi-
ciency. Network performance, as captured by throughput, packet delay and loss rate, de-
grades gradually with increased variance and LRD of aggregated traffic [32][47]. Contrary to 
the classical assumptions that aggregated network traffic forms a compound Poisson process 
which is very smooth, LRD traffic does not smooth out but is bursty over many time scales 
(self-similar). Consequently, network routers and other middle-boxes servicing such traffic 
experience larger queuing delay and response time [48]. Generally, statistical properties of 
network traffic fluctuations are a topic of interest as they allow for better understanding of the 
complex structure and dynamics as well as performance evaluation of adaptive video systems. 
In practice, this knowledge is usually applied for a design of systems which are able to guar-
antee the suitable quality of service (QoS) for users [16][29][49]. 
The amount of multiplexed traffic sent within a certain time period is represented in our work 
as a counting process. From a mathematical point of view, let Nt be a stochastic process 
whose values represent a cumulative number of bytes sent until time t. Assuming that Nt>0 
and Nt∈I, we are interested in the relation  

 
 

(3) 
 

which is to be interpreted as a number of bytes sent within a Δt period.  
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6.1 Variability 
The variability of time series is popularly measured by the coefficient of variation (CV), 
which is defined as 

 
𝐶𝑉 =

Std(𝐶𝑡)
E(𝐶𝑡)

, (4) 

where Std() denotes the standard deviation and E() denotes the mean of the examined time 
series Ct. Thus, (4) shows the extent of the variability in relation to the mean of time series. 

6.2 Long-memory processes 
There are several ways of characterising long-memory processes. A widespread definition is 
in terms of the autocorrelation function γ(k). We define a process as long-memory if in the 
limit k→∞ 

  (5) 
 

where 0<α<1 and L(k) is a slowly varying function at infinity. The degree of long-memory is 
given by the exponent α; the smaller α, the longer the memory. By contrast, one speaks of 
short range dependent process if the autocorrelation function decreases at a geometric rate 
and α>1.  
Long-memory is also discussed in terms of the Hurst exponent H, which is simply related to 
α from (5). For a stochastic process, H=1−α/2 or α=2−2H. When H∈(.5,1] the process is 
positively correlated which implies that it is persistent and is characterised by long-memory 
effects on all time scales, i.e. the realisation of the process has been up or down in the last 
period then the chances are that it will continue to be up or down, respectively, in the next 
period. On the other hand, when H∈[0,0.5), we have long-term anti-persistence what means 
that whenever the realisation of the process has been up in the last period, it is more likely 
that it will be down in the next period. With increasing H, the persistence increases, while 
with decreasing H, the anti-persistence increases, see (5). When H=1/2, and the autocorrela-
tion function decays faster than k−1, then the process has no memory. Examples of the com-
pound Poisson and LRD processes are presented in Fig. 8. 
 

 
Fig. 8. Example of stochastic processes: a) compound Poisson, b) LRD with H<1/2, c) LRD with 

H>1/2. Mean set to 50. 
 
In this paper, to the estimate Hurst exponent, we employ well-known R/S technique. There is 
a freely available code for the R/S algorithm implemented, among others, in the Rmetrics 
software [50], which is a part of the Cran R environment [46].  
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6.3 Results 
A visual assessment indicates that both captured traces defined in (3) and presented in Fig. 9 
have an irregular structure. However, in the case of the fixed values of the algorithm parame-
ters, see Fig. 9A, the traffic remains in a broader range compared to the traffic generated by 
the algorithms with random parameters, see Fig. 9B. Moreover, the traffic presented in Fig. 
9A forms more visible trends and frequency of its oscillations is lower compared to the traffic 
depicted in Fig. 9B.  

 
Fig. 9. Intensity of aggregated traffic generated by the adaptive video algorithm with parameters set to 

a) fixed, b) random values. 
 

  
(a) Coefficient of variation (b) Hurst parameter 

Fig. 10. Variability measures for aggregated traffic generated by algorithms with fixed values and 
random values of some of the parameters as listed in Table 1. 

 
In order to obtain more objective measures, we computed the coefficient of variation (4) and 
the Hurst parameter (5). Randomisation of the parameters values listed in Table 1 signifi-
cantly reduces the coefficient of variation, from little above 0.10 to about 0.06, see Fig. 10a. 
When it comes to the assessment of the LRD, the values of the Hurst parameter drop from 
about 0.66 to about 0.42, as presented in Fig. 10b. Thus, the randomisation not only de-
creases Hurst parameter, but also changes the traffic characteristics from persistent to 
anti-persistent, as defined in section 6.2.  
In a consequence, the randomisation changes important parameters of the traffic characteris-
tics. It reduces traffic amplitude, variability and persistence, what, from the traffic engineer-
ing point of view, usually has a positive impact on network infrastructure. Smoother traffic 
reduces queues length in buffers of network middle-boxes and, consequently, reduces packet 
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delays and probability of packets loss. 

7. Impact on quality of video 
The quality of experience (QoE) is defined as the overall acceptability of an application or 
service quality perceived by the end-user. The QoE, based on popular methods reflecting 
human perception, is a subjective assessment of multimedia quality. A user is usually not 
interested in performance measures such as packet loss probability or received throughput, 
but mainly in the current quality of the received content. However, the quality assessment is 
time-consuming and cannot be done in real time; therefore, we concentrate on these parame-
ters which we believe significantly impact the QoE. In this respect, we assess efficiency and 
stability of the play-out algorithms, which were, among others, employed also in [13].  
The efficiency measures how effectively the algorithm utilises available network resources 
by computing a value of the following formula 

 

 

(6) 
 

Eq. (6) computes the relation between the quality level qij of the chunk to the theoretical 

quality level ijq~  which is possible to achieve for the j-th chunk in given network conditions. 
The theoretical quality level is computed as max{𝑞: 𝑞 ≤ 𝑛𝑥  }.  The formula is computed 
and averaged for every player i from M players connected to the server. The minimum value 
of the formula is zero if the play-out of the video stalls, although, the network conditions al-

low for at least minQ  quality. The value of the formula can reach one if for every chunk

ijij qq ~= . The periods during which minQnx <  (see Algoritm 1 for the symbols description) 

result in 0~ =iq  and, therefore, are excluded from the summation in (6). To avoid unneces-
sary penalty, we also did not take into account in the summation the cases when 𝑞𝑖𝑗 = 0  
and the player buffer level is at least half filled. In such cases, there may be no need to 
download data. 
The play-out algorithm may try to maximise the value of (6) by adjusting the play-out quality 
to given network conditions as frequently as it is possible. Such behaviour will result in rapid 
oscillations of video quality, what will be negatively perceived by users [51][52]. For this 
reason, we introduce the second measurement, which sums the quality switches of every 
player i and then counts their average number for M players connected to the server. We 
compute the formula as follows  

 
 

(7) 

Comparing the perceived video quality, we consider five scenarios. In the base scenario, de-
noted in Fig. 11a as Fix., all the parameters of the play-out algorithms have fixed values. In 
the second scenario, denoted as Rand. the selected parameters listed in Table 1 have random 
values. In the remaining three scenarios, denoted as Band., MSS and PANDA, only parame-
ters of one selected algorithms are randomised and the other two algorithms operate with 
fixed values of their parameters. The general set-up of the experiment is as in the previous 
investigations and as in the description given in section 4. 
The examination shows that the assignment of random values to the parameters of the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017                    391 

play-out algorithms not only decreases dependency among traffic flows and variability of the 
aggregated traffic but also improves efficiency and stability of video play-out, see Fig. 11b. 
When the randomisation is applied to all play-out strategies, the efficiency of the streaming 
measured by (6) improves in average about 25%. When the randomisation is applied only to 
selected algorithms, the improvement is lower but still significant. It ranges from about 20% 
for pure bandwidth-based strategy presented in Algorithm 1 to about 8% for PANDA ap-
proach. The randomisation of parameter values of the simplest bandwidth-based approach 
provides the most visible gain in efficiency. While the randomisation is applied to more ad-
vanced strategies like MSS and PANDA especially, the improvement is lower.  
Generally, the efficiency measure (6) has much better improvement compared to the stability 
measure (7). When applying randomisation to the parameters of all three strategies, the aver-
age number of quality switches drops about 10%. When the randomisation is applied selec-
tively, the most visible improvement achieves the bandwidth-based strategy. The gain for the 
most elaborate PANDA approach is marginal. However, it is the good news: the improvement 
in throughput utilisation is a result of the employment of the randomisation of algorithms 
parameters and does not come at the cost of a decrease of play-out stability. Indirectly, the 
quality improvement may also be a result of smoother and more manageable aggregated traf-
fic produced by the video system.  

  
(a) efficiency of the play-out (b) stability of the play-out 

Fig. 11. Performance of a video system using adaptive play-out algorithms.  

8. Conclusions 
Our investigation shows that the traffic generated by clients employing the same or similar 
play-out strategies is positively correlated and synchronised, whereas traffic originated from 
different play-out strategies shows negative or no correlations. However, when some of the 
parameters of the play-out strategies are randomised, the correlation and synchronisation di-
minish what has a positive impact on the video quality perceived by end users. Our research 
shows that non-correlated traffic flows generated by play-out strategies improve efficiency 
and stability of streamed adaptive video. 
In the case of correlated streams, the worse video efficiency and quality may have its roots in 
the mentioned in section 3 inaccurate throughput estimation while a video player competes 
against the other player. Furthermore, the correlated streams increase traffic variability, what, 
as stated is many works, may result in larger queueing delays and response time. Finally, 
these conclusions are supported by other research which shows that traffic correlation origi-
nating from multiple connections are responsible for packet losses and decrease of network 
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throughput. 
The presented results open new and interesting questions. Firstly, currently, it is unknown 
whether randomly assigned values to the parameters of adaptive algorithms provide the best 
possible efficiency and stability of video play-out. More probably, there exists an optimal 
solution to this problem in which the parameters should acquire values according to some 
mathematical formula. Moreover, this formula may depend on particular play-out strategy 
and on other parameters, for example on network configuration or on an amount of video 
players. 
Secondly, to perform diversification, one needs to find a robust solution which is able to as-
sign different parameters for the active play-out algorithms. In one possible scenario, a web 
server providing video content can participate in this operation, however, this requires feed-
back from the players.  
Finally, the presented approach does not stay in opposition to other proposed solutions in the 
literature. In contrary, it can be applied to any advanced play-out algorithms as well as it can 
be employed simultaneously with server-side ideas. However, more analyses are needed to 
examine the performance of such hybrid solutions.  
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