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Abstract 
 

Dynamically checking the integrity of software at run-time is always a hot and difficult spot 
for trusted computing. Control-flow integrity is a basic and important safety property of 
software integrity. Many classic and emerging security attacks who introduce illegal 
control-flow to applications can cause unpredictable behaviors of computer-based systems. In 
this paper, we present a software-based approach to checking violation of control flow 
integrity at run-time. This paper proposes a high-performance and low-overhead software 
control flow checking solution, control flow checking at virtual edges (CFCVE). CFCVE 
assigns a unique signature to each basic block and then inserts a virtual vertex into each edge at 
compile time.  This together with insertion of signature updating instructions and checking 
instructions into corresponding vertexes and virtual vertexes. Control flow faults can be 
detected by comparing the run-time signature with the saved one at compile time. Our 
experimental results show that CFCVE incurs only 10.61% performance overhead on average 
for several C benchmark programs and the average undetected error rate is only 9.29%. 
Compared with previous techniques, CFCVE has the characteristics of both high fault 
coverage and low memory and performance overhead. 
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1. Introduction 

Distributed computing and worldwide business transactions over open networks, such as the 
Internet, increasingly demand for secure communication and secure operation due to rising 
online fraud and software attacks [1]. Some of these vulnerabilities are due to the complexity 
and architectural constraints of the underlying execution environment (CPU hardware and 
commodity operating systems), some are due to poor software development practices and lack 
of software security in applications [2]. In this context, the integrity of system software and 
applications is a fundamental requirement and necessary consequence in order to ensure trust 
in the computing infrastructure [3]. 

Trusted Computing as proposed by the Trusted Computing Group (TCG) offers a 
technology that is able to verify the integrity of executable content through remote attestation. 
The cores of trusted computing technology are trusted computing base and trusted chain [4, 5], 
and trusted measurement is a key problem of this technology [6, 7]. Trusted computing treats 
the integrity as a fundamental attribute of trust. However, such attestation mechanisms provide 
only integrity verification at load-time but not at run-time: An attacker can change the flow of 
execution of a program, e.g., via buffer overflow attacks that are despite numerous counter 
measures still a great security concern in software systems today.  

  Some attacks do not need to inject new code, but instead use code that already exists in the 
process's memory. Existing protection mechanisms such as marking the stack as 
non-executable cannot detect this class of attacks because only instructions are executed that 
reside in valid code pages. Moreover, the new attacks generalize the original return-into-libc 
attack by allowing the attacker arbitrary computation without calling any functions [8]. In a 
traditional return-into libc attack, an attacker could execute only straight-line code without 
using branching, and could only invoke functions that reside in libc. In the new attacks, an 
attacker overwrites the stack with return addresses that point to existing code fragments in the 
program or system libraries.  

SEU-induced soft errors have been known as one of the major threats to functionality and 
reliability of space-borne computers and their host spacecrafts. Soft errors may be explicit bit 
flips in latches or memories, or glitches in combinational logics that can propagate and be 
captured in latches [9]. If not handled properly, such errors can cause illegal accesses to 
peripherals, memory overflow, data corruption, false and sometimes fatal data or action outputs, 
and so on. Therefore, it is necessary to detect and correct errors in control flows hopefully 
before damages are caused. 

Various control-flow checking techniques have been proposed in the literature. These 
techniques are suggested in literature that would fall into two general classes, hardware [10, 11, 
and 12] or software [13, 14, 15, 16, and 17] redundancy. The methods based on hardware 
redundancy have a better fault coverage but need additional hardware or modification of the 
existing hardware and cannot guarantee portability to various platforms. Software-based 
techniques have less fault coverage and larger delay; however, mean lower cost and overhead 
on the system and can be utilized in different types of industrial systems due to their flexibility. 
The basic idea of software control flow checking is to partition the program into basic blocks 
(branch-free parts of code) [14]. For each block a deterministic signature is calculated and 
saved somewhere during compile time; then errors can be detected by comparing the run-time 
signature with the saved one. This method does not require any additional hardware and can be 
automatically applied for software control flow checking. It should be noted that, in 
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practical industrial applications, whatever approach is used, whether it is software-based or 
hardware-based, it should be able to handle the errors mentioned above as much as possible 
and, in doing so, impose as little memory overhead and as little increase in execution time as 
possible. 

We propose a control flow checking technology based on updating a signature at the 
directed edges called CFCVE, which assigns a unique signature occupying the least bit of each 
basic block and updating the signatures at the virtual edges of the control flow graph, allowing 
it to detect all the single inter-block control flow error. CFCVE is comparable in performance 
overhead incurred with CFCSS. However, its fault coverage is always higher than CFCSS and 
is comparable with RSCFC. Furthermore it overcomes the limitations of CFCSS with less 
memory than RSCFC. This solution is inspired by [13, 14, 15, 16, and 17] and incorporates 
their advantages. The contributions of this work are as follows: 
   Our work is the first to update the signatures at the directed edges instead of at the nodes 

of control flow graph. 

   We propose a novel fitness factor in this paper that can compare different approaches, 
based on their fault coverage, memory overhead，performance overhead and error 
detection latency. 

   We assess control flow checking technology based on updating a signature at the 
directed edges under novel fitness factor. 

The remainder of the paper is organized as follows. In Section 2 the related works on 
software control flow checking methods are reviewed, while Section 3 describes the proposed 
approach. In Section 4 we introduce how to further enhance the error detection capability of 
the proposed method. The capabilities of the proposed technique are analyzed in Section 5. 
Section 6 reports the experimental results we gathered and finally section 7 draws some 
conclusions. 

2. Related Work 
A variety of defense mechanisms are proposed to detect and correct control flow errors (e.g., 
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20]). Clearly, this is a crowded, important research 
area. Next we elaborate on some of the pieces of work most closely related to ours. 

The most important three software-based solutions proposed in the literature are the 
techniques called Enhanced Control Flow Checking Using Assertions (ECCA) [13] and 
Control Flow Checking by Software Signatures (CFCSS) [15] and On-line control flow error 
detection using relationship signatures among basic blocks (RSCFC) [14].  

ECCA, firstly, assigns a unique prime number identifier (BID) to each basic block of a 
program; then a test assertion and a set assignment, which are composed of a global integer 
variable (id) and the BID, are individually inserted into the beginning and the end of each basic 
block. During the execution, the id is dynamically updated and it can transfer a control flow 
error into a divide by zero error. ECCA is able to detect all the single inter-block control flow 
error, except the faults that cause an incorrect decision on a conditional branch. Due to its 
complexity of the test and set assertions, ECCA has higher memory and time overhead than 
CFCSS. 

 CFCSS assigns a unique signature is to each basic block and uses a global variable (G) to 
contain the run-time signature. When control transfers from one basic block to another, 
CFCSS uses the first instruction to compute the signatures of the destination block from the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017                                      399 

signature of the source block and a pre-computed variable d, which is the EXOR difference 
between the signatures of the source and destination blocks, and updates G with the value at 
the beginning of the basic block; in the following instruction, CFCSS then tests whether G is 
equal to the destination block’s signature. If the control can enter from multiple blocks, then an 
adjusting signature (D) is assigned in each source block and used in the destination block to 
compute the signature. In absence of errors, the signature contained in G is equal to the 
signature of destination block. However, CFCSS cannot cover control flow errors if multiple 
source blocks share multiple branch-fan-in blocks as their destination blocks, aliasing could 
occur between legal and illegal branches. 

One of the works in this field is Relationship Signature CFC (RSCFC) in which the program 
is divided into some basic blocks. In the first stage, the relationship between blocks is 
extracted and then based on the kind of the relationship, a signature is assigned to each block 
in which the existing relationships are coded in it. The faults in the control flow of the program 
are detected by logic AND the run-time signatures with the information at the beginning and 
end of the blocks. In comparison to the previous works, this method has more fault coverage 
and a better efficiency. However, RSCFC, codes the transfer relationship among basic blocks 
into each block’s signature, which leads to the signature of each block have many bits 
exceeding the limitation of machine word possibly, consumes more memory than CFCSS. 
Although this situation can be cooperated by grouping basic blocks, however, error detection 
latency will be increased.  

3. Methodology 
To start with, definitions of relevant concepts are presented in table 1 for the sake of clarity. 
CFCVE checks the control flow of the program using a dedicated register called the global 
signature register (GSR), which contains the run-time signatureG associated with the current 
node (the node that contains the instruction currently executed) in the program flow graph. 
Every basic block (represented by a node iv in the program flow graph) is identified and 
assigned a unique signature is when the program is compiled. Let iG be the run-time value 
of G when the program flow is at node iv . Under normal execution of the program (no 
errors), iG should be equal to is . IfG contains a number different from the signature associated 
with the current node, it means an error has occurred in the program [13]. 
 

Table 1. Definitions of relevant concepts used in this paper 
Concept Definition 

Basic Block 

A Basic Block (BB) is a maximal set of ordered non-branching instructions 
(except in the last instruction) or branch destinations (except in the first 
instruction) in which the execution always enters at the first instruction and 
leaves via the last instruction [13]. 

Control Flow Graph 

A program P  can be represented with a directed graph composed of a set 
of node V and a set of edges {V,E}E,P = , where  }……{ ,,,,2,1 mi vvvvV =  
and }e,…,e,…,,{ mi21 eeE =  Each node iv  represents a basic block and 
each edge ie represents the branch jibr , from iv to jv . This directed graph is 
called the control flow graph (CFG). 

Vertex 

Basic blocks are denoted by vertexes }),…,2,1{( Nivi ∈  in the control flow 
graph CFG, where N is the total number of basic blocks. 

}},…,2,1{;{: NivV i ∈ , a set of vertexes denoting basic blocks. 
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A set of successors of in CFG, if and only if , then the node 

. 

 A set of predecessors of in CFG, only if , then the 
node .  

Virtual Vertex 

A Virtual Vertex (VV) denotes a basic block that does not contain any other 
effective instructions except an unconditional jump instruction and has only 
one successor vertex and one predecessor vertex. represents a virtual 
vertex whose predecessor vertex is vertex and successor vertex is . 

Edge 
A legal branch from one basic block to another is denoted by a directed edge 
between the two correspondent vertexes in CFG. 

Virtual Edge A Virtual Edge (VE) is an Edge in which a Virtual Vertex is embedded. 

Control-flow error 
A control-flow error (CFE) is said to have occurred if the sequence of 
instructions executed in presence of a fault is different from the fault-free 
sequence. 

Internode CFEs 
Internode CFEs occur if the program control before and after the illegal 
jump resides in different nodes.  

Intranode CFEs Intranode CFEs occur if the program control before and after the illegal 
jump resides in the same node. [22] 

XOR operation 
The xor-difference of a and b is the result of performing the bitwise XOR 
operation ( ) of a and b, i.e., xor-difference = a  b, where a and b are 
binary numbers. 

 

 
Fig. 1. A typical example of program and its CFG 

 

The structure of a program can be represented by a CFG, where nodes represent the Basic 
Blocks and the arcs represent the relations between the Basic Blocks. A typical example of 
program and its CFG are shown in Fig. 1 (a) and (b) respectively. 
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The CFCVE approach consists of the following steps: 

Algorithm A: 
1) Extracting the Basic Block and generating the CFG of the program.  
2) Assigning a signature , which is generated by a specific algorithm, to node , in 

which , where is the total number of nodes in the program.  
3) Inserting a Virtual vertex into each Edge and inserting the signature updating 

instructions into each Virtual Vertex. 
4) Inserting the appropriate instructions into the start and end of each Vertex in order to 

update the signature in run-time phase. 
5) Inserting the checking instructions into the end of each Vertex (Virtual Vertex) in order 

to detect the control flow errors. 
 
In this section the proposed scheme is explained in details. Subsection 1 explains the 

signature generation for the basic blocks and subsection 2 introduce the insertion of Virtual 
Vertexes into Edges and the insertion of updating instructions into a Vertex (Virtual Vertex) are 
introduced. Insertion of the checking instructions into each Vertex is described in subsection 3, and 
the control flow checking scenario is described in subsection 4. 

 

3.1 Signature Generation 

 
Fig. 2. The original CFG and the CFG with assigned signatures 

 

Memory overhead is an important indicator in a control flow checking algorithm. In order to 
guarantee the minimum memory overhead, the length of the signature for each basic block 
should be as short as possible and try to use the least bit of the registers. In CFCVE we assign a 
binary positive number to each BB, and the length of a signature Len can be obtained by 
equation (1), where N is the number of total BBs.  

                                                              (1) 

Fig. 2 shows an example of generation signature for each node of CFG. Fig. 2 (a) shows a 
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sample program and Fig. 2 (b) shows its corresponding program graph. A solid circle in the 
graph represents a basic block; the binary number on the right side of the solid circle is the 
signature of the corresponding node.  

 

3.2 Visual edges creation and insertion of the updating instructions 
CFCVE primarily focuses on internode CFEs. An illegal branch jibr , ( jibr , is not included 

in E) from iv to jv indicates a CFE, i.e., each edge in E uniquely determines a legal branch jibr , , 
therefore, the essence of a control flow checking technique is to determine whether the current 
branch jibr , is included in E. For this purpose, CFCVE transforms the structure of CFG by 
inserting a Virtual Vertex ijvv into each Edge jie , . Note that Edges pointing from the vertexes 
to themselves should not have Virtual Vertexes inserted. Fig. 3 shows an example of a control 
flow graph and the result of the transformation. The following is the complete description of 
Algorithm B, which creates a Visual Edge and inserts updating instructions into each Edge in a 
CFG. 

 
Algorithm B: 
For each Edge Njie ji ,…,2,1,,, = . 

1) Generate a Virtual Vertex jivv , whose successor vertex is jv  and predecessor vertex is 
iv  into jie ,  
2) Insert Virtual Vertex jivv , into jie , . 
3) Insert updating instructions isGG ⊕=  and jsGG ⊕= into Virtual Vertex jivv , . 
 

Suppose that we mark the inserted Virtual Vertex jivv , as pvv  and that is and js are the 
signatures of the source node iv and the destination node jv of branch jibr , . After inserting the 
Virtual Vertex jivv , , the original Edge jie , is divided into Edge ipe and Edge jpe , , i.e., the 
original branch jibr , is divided into branch pibr , and branch jpbr , . Since the Virtual 
Vertex pvv  contain no other instructions except an unconditional jump instruction (the 
destination node is jv ), once branch pibr , is taken, the control flow will transfer to Vertex jv . 
Thus, the original Edge jie , can be observed as a Virtual Edge in which a Virtual Vertex pvv is 
embedded.  An example of creating a virtual edge is showed in Fig. 3. The dotted circle in Fig. 
3 shows a Virtual Vertex. After inserted a Virtual Vertex, the original edge is transformed into 
a virtual edge. Virtual edges indicate that as execution of their origins completes, control flow 
continues from their terminals. In other words, they do not damage the control flow nature of 
original edges. For example for Virtual Edge 2,1VE  of Fig. 3, the control flow transfer from 
node 1v , through the Virtual Vertex 2,1vv , and reach to the node 2v . Obviously, the control 
flow of 2,1e  is not affected. 
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Fig. 3. An example of creating a virtual edge  

 

 
Fig. 4. A Virtual Vertex with signature updating instructions 

 
In order to update the run-time signature associated with the current node of CFG, two 

signature updating instructions and , are inserted into Virtual Vertex .  

Before the branch is taken, is equal to , which is the same as . After the 
branch is taken, the control is transferred to , and the first signature updating 
instruction is executed.  Then, is updated with a new run-time signature , 

, and then the second signature updating instructions 
 is executed, after which . Thus, when the control 

transfers to , the run-time signature  is equal to the signature of node . A Virtual Vertex 
with signature updating instructions is shown in Fig. 4. 

 

3.3 Insertion of checking instructions into each vertex 
To check the control flow, the checking instruction ‘ ’ is inserted into the top 
of each BB. In other words, this checking instruction is executed prior to the execution of the 
original instructions in the BB; therefore, fault detection latency inside BB is avoided. As 
shown in Fig. 5, the basic block consists of the original instructions and with additional 
checking instruction located at its top. 
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Fig. 5. A basic block with checking instruction 

 

3.4 The control flow checking scenario 
When control is transferred from one Virtual Vertex  to its successor vertex , the 
program execution reaches the start of node  first. Before execution of the signature 
checking instruction, the value of is updated to , and then the signature checking 
instruction is executed. If  is not equal to the signature  of vertex , then a control flow 
error has occurred and control will be transferred to the error handling routine. On the other 
hand, if is equal to , it tells us there is no control flow error, then the rest instructions of 
vertex will be executed. After that, the control is transferred to Virtual Vertex , which is 
the successor vertex of . After the branch is taken, the first signature updating 
instruction is executed, and then is updated with a new run-time 
signature , , the value of is updated to 0. Then the second 
signature updating instructions is executed where is the successor vertex 
of , . Next, the unconditional jump instruction of Virtual Vertex is 
executed, and control is transferred to vertex .Thus, when the control is transferred to , the 
run-time signature is equal to the signature of node .  

4. Enhancement of Methodology 

4.1 The Entry/Exit bit 
It has been shown that illegal branches violating the control flow entered at the beginning of 
each Basic Block can be detected by CFCVE. However, there are cases where legal branches 
entering somewhere inside a basic block cannot be detected. For example, in Fig. 6, node is 
the predecessor of node . After executing the last instruction of node , the branch will 
take; the control will transfer to node v2. There is no problem when enters at the beginning 
of node ; however, intranode CFE occurs if enters at the middle of node , and this 
intranode CFE cannot be detected by current CFCVE. 
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Fig. 6. The example of control flow transfers to the middle of node 

 

 
Fig. 7. The structure of a new signature 

 
In order to enhance the Error detection capabilities of CFCVE, the Entry/Exit bit, which can 

detect the control flow errors that jump to or from the middle of a BB is introduced. The length 
of the Entry/Exit bit is 1 bit, and the value is set to 1/0 when the execution reaches to the 
entrance/exit of each BB. Thus, the new signature for each basic block consists of two sections; 
the Entry/Exit code and the original signature, i.e., Label of current BB (see the Fig. 7). 

We call the new signature when the value of the Entry/Exit bit is equal to 1/0. For 
each BB, a signature updating instruction  is inserted behind the original checking 
instruction and then a signature updating instruction is inserted into the end 
before the last instruction of Vertex . In addition, the original checking instruction 
‘ ’ is changed to ‘ ’. Moreover, the original signature 
updating instructions and  are changed to and  
respectively. 

4.2 Control flow checking scenario 
When control is transferred from one Virtual Vertex to its successor vertex , the signature 
checking instruction is executed. If is not equal to the signature of vertex , then a 
control flow error has occurred and control will be transferred to the error handling routine. 
However, if is equal to , there is no control flow error. Then the program execution 
reaches the start of node , before execution of the first signature updating instruction, the 
value of will be equal to in the absence of any errors. Then, the first signature updating 
instruction is executed, and the value of is updated to 0; next, the remaining instructions of 
node will be executed and after the second signature updating instruction is executed, the 
value of will be set to . When control is transferred from vertex to its successor Virtual 
Vertex , the program execution reaches the start of first. Before execution of the first 
signature updating instruction, the value of will be equal to in the absence of any errors. 
Next, the first signature updating instruction is executed and the value of  is updated to 0, 
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then the second signature updating instruction is executed, and the value of G will be set 
to jBS . 

5. Error detection capabilities 
As mentioned in section 3.2, CFCVE primarily focuses on internode CFEs. An internode CFE 
falls into one of the following two cases: 
   a branch jibr , to a basic block jv not belonging to )( ivsuc   
   a branch jibr , to somewhere inside a basic block jv belonging to )( ivsuc  

CFCVE is capable of detecting all internode CFEs. 
Proof:  

Type 1: a branch jibr , to a basic block jv not belonging to )( ivsuc  
Suppose that jibr , is an illegal branch, and )( ij vsucv ∉ .  
If iv is a Virtual Vertex, then at node iv G is equal to kBS , where )( ik vsucv ∈ . Before the 

branch jibr , is taken, the new run-time signature is generated, kkk BSBSBSGG =⊕=⊕= 0 . 
If jv is a Virtual Vertex and )( jm vsucv ∈ , after the branch is taken, the two signature updating 
instructions of node iv  are executed. Then, the branch mjbr ,  is taken, and the checking 
instruction ‘ error)(br mBSG ≠ ’ of node mv is executed. G is not equal to mBS , because the 
signature of CFCVE is unique. Control is then transferred to the error handler, thus the error is 
detected. If jv is not a Virtual Vertex, then after the branch jibr , is taken, the checking 
instruction ‘ error)(br jBSG ≠ ’ is executed. Since jk BSBSG ≠=  control is transferred to the 
error handler, thus the mismatch is detected. 

The situation of iv is not a Virtual Vertex is similar with above. 
Type 2: a branch to somewhere inside a basic block jv belonging to )( ivsuc  
Suppose that jibr ,  is an illegal branch and the branch is taken to the middle of the node jv , 

i.e., skipping the signature checking instruction and the first signature updating instruction.  
If iv  is a Virtual Vertex, then jv  is not a Virtual Vertex, and at node iv  G  is equal to jBS . 

After the branch is taken, the run-time signature is still equal to jBS , and then the remaining 
instructions including the second signature updating instruction are executed, and the new 
run-time signature is generated, jjj ESBSESGG ⊕=⊕= . After the instructions in node jv  
are executed, kjbr , is taken, where )( jk vsucv = , and kv is a Virtual Vertex. The signature 
updating instructions in kv update the value of jjj ESESBSG ⊕⊕=  mBS⊕ , where 

)( km vsucv = and mv is not a Virtual Vertex. After mkbr ,  is taken, the checking instruction 
‘ error)(br mBSG ≠ ’ is executed. Thus, the error is detected due 
to mmjmjjj BSBSBSBSESESBS ≠⊕=⊕⊕⊕ .  

 If iv  is not a Virtual Vertex, then jv  is a Virtual Vertex, and at node iv  G= is equal to iES . 
After the branch is taken, G  will be updated to kBS  in the absence of control errors, where 

)( jk vsucv =  and kv  is not a Virtual Vertex, by the signature updating instructions of jv . 
Suppose that jibr , is taken to the second signature updating instruction and skipping the first 
signature updating instruction. Then, kik BSESBSGG ⊕=⊕=  is generated, and the 
unconditional jump instruction is executed. The control is transferred to mv , where 

)( km vsucv =  and mv  is not a Virtual Vertex. At node mv , the checking instruction 
‘ error)(br mBSG ≠ ’ is executed. Since mki BSBSESG ≠⊕= , the error is detected. 
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6. Experimental evaluation 
In order to assess the effectiveness of the proposed approach, four benchmark programs are 

chosen for the experiment: Quick sort (QS), Bubble Sort (BS), Matrix Multiplication (MM), 
Fast Fourier Transformation (FFT). These target programs are chosen for a certain set of 
reasons. Firstly, they present certain varieties of control flow graph patterns. QS and BS are 
branch intensive programs. They have small size Basic Blocks and take a lot of branching 
among relatively simple calculations, resulting in more substantial overheads. MM and FFT 
are calculation intensive programs that perform substantial time-consuming multiplication and 
much less branching. Thus, the overhead of checking instructions is smaller compared to 
branch intensive programs. At the same time, these target programs use almost all instructions 
available, including the ones for arithmetic and logic calculations, and branching. Meanwhile, 
the target programs are merely the most common standardized algorithms that see a large 
number of applications, which makes them even more representative.  

The proposed solution is experimentally evaluated on an ARM920T microprocessor 
machine running Linux kernel 2.6.32. The microprocessor has 3GB SDRAM and  runs at a 
frequency of 400 MHz. Memory overhead, performance overhead,  error detection latency and 
error detection coverage are imperative parameters for evaluating our approach.  Thus, all of 
these parameters are measured and reported. First, the memory overhead and performance loss 
results of the presented scheme are evaluated, and then the average error detection latency of 
the presented scheme is analyzed and the last part allotted to error detection coverage. We 
considered four versions for each benchmark: 
   the original code, 
   a safe one, obtained by applying the CFCSS [15] technique to the original code, 
   a safe one, obtained by applying the RSCFC [14] technique to the original code, 
   a safe one, obtained by applying the CFCVE technique to the original code. 

Each program (totally 16) is compiled and executed for 500 times. Memory overhead and 
performance overhead  are compared between the hardened programs and the original ones , 
we determined the overheads recorded in Table 2.  

As shown in Table 2, CFCVE incurs the least memory overhead (2.21%) compared with 
CFCSS (2.44%) and RSCFC (2.35%). In terms of performance overhead, the CFCVE (10.60%) 
is comparable to the CFCSS (10.55%), but less than the RSCFC (18.45). The memory 
overhead is mainly caused by signature overhead of these target programs. This memory 
overhead also affect on program performance. The extra execution time for the signature 
updating and signature checking instructions of these target programs is considered 
performance overhead.  

 
Table 2. Memory overhead, performance overhead and error detection latency comparison 

Program Memory overhead (%) Performance overhead (%) Detection latency (cycle) 
CFCSS RSCFC CFCVE CFCSS RSCFC CFCVE CFCSS RSCFC CFCVE 

QS 2.42 2.93 2.24 14.50 25.0 11.0 4.70 5.72 5.20 
BS 2.71 2.13 2.46 11.00 16.30 10.50 4.56 5.51 5.40 
MM 2.17 1.36 1.94 6.50 14.20 5.51 5.63 7.16 6.51 
FFT 2.47 2.96 2.25 10.20 18.30 15.42 5.37 7.37 7.12 

 
In CFCSS, each node is assigned a unique signature and has two additional instructions. 

When the node is a branch-fan-in node a run-time adjusting signature and another two 
additional instructions are introduced to solve the aliasing of signatures. In CFCVE, only one 
unique signature is employed to identify each node, and three additional instructions are used to 
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detect control flow errors.  In order to solve the aliasing of signatures, a Virtual Vertex 
containing three instructions is inserted into each Edge. Thus, due to the introduction of the 
run-time adjusting signature, the memory overhead of CFCSS is larger than for CFCVE; the 
instructions overhead is considerable, even the number of instructions is relatively small. In 
RSCFC, each block takes one bit in the signatures of basic blocks. When the total number of 
basic blocks in a program is large, the signature of each block will have many bits, possibly 
exceeding the limitation of machine word possibly. In order to deal with this situation, basic 
blocks are grouped into multiple hierarchies. Thus, a hierarchy signature is introduced and 
hierarchy signature should be checked in each node. This process leads to a higher memory 
overhead than CFCVE. In addition, the local cumulative signature checking instructions 
increase the performance overhead greatly. Therefore, RSCFC incurs more performance 
overhead than CFCVE. 

The error detection latency is the latency between fault occurrence and error detection. It 
may cause erroneous output and can directly affect rollback recovery. Therefore, the errors 
should be detected and addressed before erroneous output occurs. Detection latency can be 
quantified in processor cycles, and is defined here as the number of processor cycles to run 
between the terminal of the illegal branching and the line detecting the error here. The detection 
latency result in Table 2 is calculated according to the equation 2 and 3 of [17]. Table 2 shows 
that the detection latency of CFCVE is comparable to RSCFC, but much higher than for 
CFCSS. The reason is that the number of additional instructions in CFCSS is 2-4, 6 in CFCVE 
and 7 in RSCFC. 

We adopted a method in which the faults are injected into the program through modifying the 
assembly codes of the source file [23, 24]. For each program (totally 16), the source file is 
compiled and assembly code is generated firstly. Secondly, one of the branch deletion, branch 
creation or branch operand changes was randomly applied to the assembly codes. Finally, the 
resulting assembly code is compiled and executed. Each kind of fault is injected 2000 times into 
the original program.  

The results of fault injection and fault detection we gathered during fault injection 
experiments are reported in Tables 3 and 4. Transient faults injected into the unhardened 
programs are categorized according to their effects (Table 3) and then compared with the 
results of injection into the 3 safe versions (CFCSS, RSCFC and CFCVE), as reported in Table 
4. Fault detection effects are classified as follows: 
   Wrong Result (WR): the fault modifies the results of the program without being 

detected. 
   OS detection (OS): the fault is detected by the operating system or the hardware. 
   Software Detection (SD): the fault is detected by the software detection mechanisms 

employed. 
The undetected incorrect outputs are gotten by WR and error detection coverage is gotten by 

SD. Fig. 8 was generated based on the WR in Tables 3 and 4 and illustrates the fraction of 
faults that are not detected for the original programs and the hardened programs with CFCSS, 
RSCFC and CFCVE under each fault types. 

 
Table 3. Experiment results of fault detection effects in original programs. 

Original Program Del (2000#) (%) Change (2000#) (%) Insert (2000#) (%) 
OS WR  OS WR OS WR 

QS 31.2 36.7 71.2 25.4 52.4 28.7 
BS  35.1 48.7 67.9 26.7 57.9 16.7 
MM  32.5 40.3 65.1 25.3 58.6 25.3 
FFT 36.6 40.9 64.5 30.9 64.5 26.5 
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Table 4. Experiment results of fault detection effects in programs with CFCSS, RSCFC and CFCVE. 

Programs Del (2000#) (%) Change (2000#) (%) Insert (2000#) (%) 
OS WR  SD OS WR SD OS WR SD 

QS-CFCSS 22.3 17.4 38.2 21.8 10.5 58.2 25.1 7.46 56.2 
BS-CFCSS 14.2 6.73 38.6 12.7 16.9 68.1 15.2 8.64 64.3 
MM-CFCSS 19.4 12.7 37.5 16.1 5.30 65.4 28.7 14.5 50.4 
FFT-CFCSS 13.4 20.3 53.2 11.5 13.4 73.7 21.4 11.6 60.1 
QS-RSCFC 19.3 15.1 43.5 15.6 7.82 65.7 17.1 6.20 65.4 
BS-RSCFC 4.63 5.34 60.2 8.64 13.2 76.3 12.5 4.24 71.4 
MM-RSCFC 15.2 7.60 47.8 13.1 4.83 69.4 23.5 13.3 54.6 
FFT-RSCFC 9.82 15.4 62.3 8.16 11.6 76.3 13.7 8.64 65.5 
QS-CFCVE 21.4 15.5 49.0 14.4 8.34 64.6 16.5 4.75 67.7 
BS-CFCVE 6.40 4.20 55.5 8.25 14.5 75.4 12.8 4.64 72.2 
MM-CFCVE 13.6 8.92 48.1 15.5 5.35 67.7 22.5 12.9 55.4 
FFT-CFCVE 13.1 14.9 59.5 7.12 10.8 78.6 15.8 6.78 61.3 
 
 

As it can be seen in Fig. 8, the average undetected incorrect outputs for CFCSS, RSCFC and 
CFCVE are 12.11%, 9.44% and 9.29% respectively. The figures of average error detection 
coverage are 55.32%, 63.20%, and 62.91%, respectively.  As mentioned before, memory 
overhead, performance overhead, error detection latency and error detection coverage are 
imperative parameters for evaluating our approach. In order to balance these parameters a new 
parameter, called Evaluation Factor (EF), is introduced in Literature [25]. However, the error 
detection latency is not taken into account. We redefined the Evaluation Factor; the new 
definition of Evaluation Factor is showed in equation 2. 

 

latencydetection Error Overhead ePerformancOverheadMemory 
coveragedetection Error EF

××
=            (2) 

 
The averages of the Evaluation Factors are 0.42, 0.23 and 0.44 respectively. Thus, CFCVE is 
comparable in fault coverage the best of the previously proposed techniques. Meanwhile it has 
a higher evaluation factor because of the lower memory overhead and performance overhead 
compared with other methods.  

The following reasons can account for the excellent performance of CFCVE. First, in 
CFCSS, if multiple nodes are sharing multiple branch-fan-in nodes as their destination nodes, 
aliasing may occur between legal and illegal branches, and cause an undetectable control flow 
error. CFCVE can solve the aliasing by updating signature at the directed edges instead of at the 
nodes of control flow graph. Thus, the error detection coverage is higher than CFCSS. Second, 
in RSCFC, each block takes one bit in the signatures of basic blocks. 
The length of signature and the total number of basic blocks are in the direct ratio. This will 
incur substantial memory overhead when the quantity is large. Therefore, CFCVE incurs less 
memory overhead than RSCFC. Third, the memory overhead and error detection latency are 
lower due to the moderate additional instructions of CFCVE. 
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Fig. 8. The comparison of undetected incorrect outputs percentage under three fault types 

7. Conclusions and Future Research 
This article proposes a software-based control flow checking technique CFCVE. This method 
assigns a unique signature occupying the least bit to each basic block and updates the 
signatures at the virtual edges of the control flow graph. A Virtual Edge is introduced to 
resolve the signature aliasing. Fault and error injection experiments were conducted to assess 
the effectiveness of the proposed approach. The experiments showed that the CFCVE 
technique incurs the least memory overhead and performance overhead. The error detection 
latency is moderate. Error injection experiments on benchmarks showed that CFCVE can 
detect all the single inter-block control flow errors and has higher method efficiency [26] than  
previous techniques. However, Virtual Vertex introduces addition branches into the code, 
which may be affected by faults themselves.  

 Research is being conducted to develop excellent methods to protect checking instruction 
and signature updating instructions themselves in order to improve error coverage without 
increasing performance overhead. The trade-off between error detection latency and 
performance overhead is also a new research topic for our research group. 
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