
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, Jan. 2017 396
Copyright ⓒ2017 KSII

Control Flow Checking at Virtual Edges

LiPing Liu1*, LinLin Ci1, Wei Liu1, Hui Yang1
1 Computer department, Beijing Institute of Technology

Beijing China
[e-mail: liuliping_bit@163.com, cilinlin_bit@126.com, cilinlin_bit@126.com, zlj-1943@163.com]

*Corresponding author: LiPing Liu

Received October 2, 2016; revised May 8, 2016; accepted November 29, 2016;
published January 31, 2017

Abstract

Dynamically checking the integrity of software at run-time is always a hot and difficult spot
for trusted computing. Control-flow integrity is a basic and important safety property of
software integrity. Many classic and emerging security attacks who introduce illegal
control-flow to applications can cause unpredictable behaviors of computer-based systems. In
this paper, we present a software-based approach to checking violation of control flow
integrity at run-time. This paper proposes a high-performance and low-overhead software
control flow checking solution, control flow checking at virtual edges (CFCVE). CFCVE
assigns a unique signature to each basic block and then inserts a virtual vertex into each edge at
compile time. This together with insertion of signature updating instructions and checking
instructions into corresponding vertexes and virtual vertexes. Control flow faults can be
detected by comparing the run-time signature with the saved one at compile time. Our
experimental results show that CFCVE incurs only 10.61% performance overhead on average
for several C benchmark programs and the average undetected error rate is only 9.29%.
Compared with previous techniques, CFCVE has the characteristics of both high fault
coverage and low memory and performance overhead.

Keywords: Trusted computing, Dynamic measurement, Control-flow errors, Error detection,
Virtual edges.

https://doi.org/10.3837/tiis.2017.01.021 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 397

1. Introduction

Distributed computing and worldwide business transactions over open networks, such as the
Internet, increasingly demand for secure communication and secure operation due to rising
online fraud and software attacks [1]. Some of these vulnerabilities are due to the complexity
and architectural constraints of the underlying execution environment (CPU hardware and
commodity operating systems), some are due to poor software development practices and lack
of software security in applications [2]. In this context, the integrity of system software and
applications is a fundamental requirement and necessary consequence in order to ensure trust
in the computing infrastructure [3].

Trusted Computing as proposed by the Trusted Computing Group (TCG) offers a
technology that is able to verify the integrity of executable content through remote attestation.
The cores of trusted computing technology are trusted computing base and trusted chain [4, 5],
and trusted measurement is a key problem of this technology [6, 7]. Trusted computing treats
the integrity as a fundamental attribute of trust. However, such attestation mechanisms provide
only integrity verification at load-time but not at run-time: An attacker can change the flow of
execution of a program, e.g., via buffer overflow attacks that are despite numerous counter
measures still a great security concern in software systems today.

 Some attacks do not need to inject new code, but instead use code that already exists in the
process's memory. Existing protection mechanisms such as marking the stack as
non-executable cannot detect this class of attacks because only instructions are executed that
reside in valid code pages. Moreover, the new attacks generalize the original return-into-libc
attack by allowing the attacker arbitrary computation without calling any functions [8]. In a
traditional return-into libc attack, an attacker could execute only straight-line code without
using branching, and could only invoke functions that reside in libc. In the new attacks, an
attacker overwrites the stack with return addresses that point to existing code fragments in the
program or system libraries.

SEU-induced soft errors have been known as one of the major threats to functionality and
reliability of space-borne computers and their host spacecrafts. Soft errors may be explicit bit
flips in latches or memories, or glitches in combinational logics that can propagate and be
captured in latches [9]. If not handled properly, such errors can cause illegal accesses to
peripherals, memory overflow, data corruption, false and sometimes fatal data or action outputs,
and so on. Therefore, it is necessary to detect and correct errors in control flows hopefully
before damages are caused.

Various control-flow checking techniques have been proposed in the literature. These
techniques are suggested in literature that would fall into two general classes, hardware [10, 11,
and 12] or software [13, 14, 15, 16, and 17] redundancy. The methods based on hardware
redundancy have a better fault coverage but need additional hardware or modification of the
existing hardware and cannot guarantee portability to various platforms. Software-based
techniques have less fault coverage and larger delay; however, mean lower cost and overhead
on the system and can be utilized in different types of industrial systems due to their flexibility.
The basic idea of software control flow checking is to partition the program into basic blocks
(branch-free parts of code) [14]. For each block a deterministic signature is calculated and
saved somewhere during compile time; then errors can be detected by comparing the run-time
signature with the saved one. This method does not require any additional hardware and can be
automatically applied for software control flow checking. It should be noted that, in

398 Liu et al.: Control Flow Checking at Virtual Edges

practical industrial applications, whatever approach is used, whether it is software-based or
hardware-based, it should be able to handle the errors mentioned above as much as possible
and, in doing so, impose as little memory overhead and as little increase in execution time as
possible.

We propose a control flow checking technology based on updating a signature at the
directed edges called CFCVE, which assigns a unique signature occupying the least bit of each
basic block and updating the signatures at the virtual edges of the control flow graph, allowing
it to detect all the single inter-block control flow error. CFCVE is comparable in performance
overhead incurred with CFCSS. However, its fault coverage is always higher than CFCSS and
is comparable with RSCFC. Furthermore it overcomes the limitations of CFCSS with less
memory than RSCFC. This solution is inspired by [13, 14, 15, 16, and 17] and incorporates
their advantages. The contributions of this work are as follows:
 Our work is the first to update the signatures at the directed edges instead of at the nodes

of control flow graph.

 We propose a novel fitness factor in this paper that can compare different approaches,
based on their fault coverage, memory overhead，performance overhead and error
detection latency.

 We assess control flow checking technology based on updating a signature at the
directed edges under novel fitness factor.

The remainder of the paper is organized as follows. In Section 2 the related works on
software control flow checking methods are reviewed, while Section 3 describes the proposed
approach. In Section 4 we introduce how to further enhance the error detection capability of
the proposed method. The capabilities of the proposed technique are analyzed in Section 5.
Section 6 reports the experimental results we gathered and finally section 7 draws some
conclusions.

2. Related Work
A variety of defense mechanisms are proposed to detect and correct control flow errors (e.g.,
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20]). Clearly, this is a crowded, important research
area. Next we elaborate on some of the pieces of work most closely related to ours.

The most important three software-based solutions proposed in the literature are the
techniques called Enhanced Control Flow Checking Using Assertions (ECCA) [13] and
Control Flow Checking by Software Signatures (CFCSS) [15] and On-line control flow error
detection using relationship signatures among basic blocks (RSCFC) [14].

ECCA, firstly, assigns a unique prime number identifier (BID) to each basic block of a
program; then a test assertion and a set assignment, which are composed of a global integer
variable (id) and the BID, are individually inserted into the beginning and the end of each basic
block. During the execution, the id is dynamically updated and it can transfer a control flow
error into a divide by zero error. ECCA is able to detect all the single inter-block control flow
error, except the faults that cause an incorrect decision on a conditional branch. Due to its
complexity of the test and set assertions, ECCA has higher memory and time overhead than
CFCSS.

 CFCSS assigns a unique signature is to each basic block and uses a global variable (G) to
contain the run-time signature. When control transfers from one basic block to another,
CFCSS uses the first instruction to compute the signatures of the destination block from the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 399

signature of the source block and a pre-computed variable d, which is the EXOR difference
between the signatures of the source and destination blocks, and updates G with the value at
the beginning of the basic block; in the following instruction, CFCSS then tests whether G is
equal to the destination block’s signature. If the control can enter from multiple blocks, then an
adjusting signature (D) is assigned in each source block and used in the destination block to
compute the signature. In absence of errors, the signature contained in G is equal to the
signature of destination block. However, CFCSS cannot cover control flow errors if multiple
source blocks share multiple branch-fan-in blocks as their destination blocks, aliasing could
occur between legal and illegal branches.

One of the works in this field is Relationship Signature CFC (RSCFC) in which the program
is divided into some basic blocks. In the first stage, the relationship between blocks is
extracted and then based on the kind of the relationship, a signature is assigned to each block
in which the existing relationships are coded in it. The faults in the control flow of the program
are detected by logic AND the run-time signatures with the information at the beginning and
end of the blocks. In comparison to the previous works, this method has more fault coverage
and a better efficiency. However, RSCFC, codes the transfer relationship among basic blocks
into each block’s signature, which leads to the signature of each block have many bits
exceeding the limitation of machine word possibly, consumes more memory than CFCSS.
Although this situation can be cooperated by grouping basic blocks, however, error detection
latency will be increased.

3. Methodology
To start with, definitions of relevant concepts are presented in table 1 for the sake of clarity.
CFCVE checks the control flow of the program using a dedicated register called the global
signature register (GSR), which contains the run-time signatureG associated with the current
node (the node that contains the instruction currently executed) in the program flow graph.
Every basic block (represented by a node iv in the program flow graph) is identified and
assigned a unique signature is when the program is compiled. Let iG be the run-time value
of G when the program flow is at node iv . Under normal execution of the program (no
errors), iG should be equal to is . IfG contains a number different from the signature associated
with the current node, it means an error has occurred in the program [13].

Table 1. Definitions of relevant concepts used in this paper
Concept Definition

Basic Block

A Basic Block (BB) is a maximal set of ordered non-branching instructions
(except in the last instruction) or branch destinations (except in the first
instruction) in which the execution always enters at the first instruction and
leaves via the last instruction [13].

Control Flow Graph

A program P can be represented with a directed graph composed of a set
of node V and a set of edges {V,E}E,P = , where }……{ ,,,,2,1 mi vvvvV =
and }e,…,e,…,,{ mi21 eeE = Each node iv represents a basic block and
each edge ie represents the branch jibr , from iv to jv . This directed graph is
called the control flow graph (CFG).

Vertex

Basic blocks are denoted by vertexes }),…,2,1{(Nivi ∈ in the control flow
graph CFG, where N is the total number of basic blocks.

}},…,2,1{;{: NivV i ∈ , a set of vertexes denoting basic blocks.

400 Liu et al.: Control Flow Checking at Virtual Edges

A set of successors of in CFG, if and only if , then the node

.

 A set of predecessors of in CFG, only if , then the
node .

Virtual Vertex

A Virtual Vertex (VV) denotes a basic block that does not contain any other
effective instructions except an unconditional jump instruction and has only
one successor vertex and one predecessor vertex. represents a virtual
vertex whose predecessor vertex is vertex and successor vertex is .

Edge
A legal branch from one basic block to another is denoted by a directed edge
between the two correspondent vertexes in CFG.

Virtual Edge A Virtual Edge (VE) is an Edge in which a Virtual Vertex is embedded.

Control-flow error
A control-flow error (CFE) is said to have occurred if the sequence of
instructions executed in presence of a fault is different from the fault-free
sequence.

Internode CFEs
Internode CFEs occur if the program control before and after the illegal
jump resides in different nodes.

Intranode CFEs Intranode CFEs occur if the program control before and after the illegal
jump resides in the same node. [22]

XOR operation
The xor-difference of a and b is the result of performing the bitwise XOR
operation () of a and b, i.e., xor-difference = a b, where a and b are
binary numbers.

Fig. 1. A typical example of program and its CFG

The structure of a program can be represented by a CFG, where nodes represent the Basic
Blocks and the arcs represent the relations between the Basic Blocks. A typical example of
program and its CFG are shown in Fig. 1 (a) and (b) respectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 401

The CFCVE approach consists of the following steps:

Algorithm A:
1) Extracting the Basic Block and generating the CFG of the program.
2) Assigning a signature , which is generated by a specific algorithm, to node , in

which , where is the total number of nodes in the program.
3) Inserting a Virtual vertex into each Edge and inserting the signature updating

instructions into each Virtual Vertex.
4) Inserting the appropriate instructions into the start and end of each Vertex in order to

update the signature in run-time phase.
5) Inserting the checking instructions into the end of each Vertex (Virtual Vertex) in order

to detect the control flow errors.

In this section the proposed scheme is explained in details. Subsection 1 explains the

signature generation for the basic blocks and subsection 2 introduce the insertion of Virtual
Vertexes into Edges and the insertion of updating instructions into a Vertex (Virtual Vertex) are
introduced. Insertion of the checking instructions into each Vertex is described in subsection 3, and
the control flow checking scenario is described in subsection 4.

3.1 Signature Generation

Fig. 2. The original CFG and the CFG with assigned signatures

Memory overhead is an important indicator in a control flow checking algorithm. In order to
guarantee the minimum memory overhead, the length of the signature for each basic block
should be as short as possible and try to use the least bit of the registers. In CFCVE we assign a
binary positive number to each BB, and the length of a signature Len can be obtained by
equation (1), where N is the number of total BBs.

 (1)

Fig. 2 shows an example of generation signature for each node of CFG. Fig. 2 (a) shows a

402 Liu et al.: Control Flow Checking at Virtual Edges

sample program and Fig. 2 (b) shows its corresponding program graph. A solid circle in the
graph represents a basic block; the binary number on the right side of the solid circle is the
signature of the corresponding node.

3.2 Visual edges creation and insertion of the updating instructions
CFCVE primarily focuses on internode CFEs. An illegal branch jibr , (jibr , is not included

in E) from iv to jv indicates a CFE, i.e., each edge in E uniquely determines a legal branch jibr , ,
therefore, the essence of a control flow checking technique is to determine whether the current
branch jibr , is included in E. For this purpose, CFCVE transforms the structure of CFG by
inserting a Virtual Vertex ijvv into each Edge jie , . Note that Edges pointing from the vertexes
to themselves should not have Virtual Vertexes inserted. Fig. 3 shows an example of a control
flow graph and the result of the transformation. The following is the complete description of
Algorithm B, which creates a Visual Edge and inserts updating instructions into each Edge in a
CFG.

Algorithm B:
For each Edge Njie ji ,…,2,1,,, = .

1) Generate a Virtual Vertex jivv , whose successor vertex is jv and predecessor vertex is
iv into jie ,
2) Insert Virtual Vertex jivv , into jie , .
3) Insert updating instructions isGG ⊕= and jsGG ⊕= into Virtual Vertex jivv , .

Suppose that we mark the inserted Virtual Vertex jivv , as pvv and that is and js are the
signatures of the source node iv and the destination node jv of branch jibr , . After inserting the
Virtual Vertex jivv , , the original Edge jie , is divided into Edge ipe and Edge jpe , , i.e., the
original branch jibr , is divided into branch pibr , and branch jpbr , . Since the Virtual
Vertex pvv contain no other instructions except an unconditional jump instruction (the
destination node is jv), once branch pibr , is taken, the control flow will transfer to Vertex jv .
Thus, the original Edge jie , can be observed as a Virtual Edge in which a Virtual Vertex pvv is
embedded. An example of creating a virtual edge is showed in Fig. 3. The dotted circle in Fig.
3 shows a Virtual Vertex. After inserted a Virtual Vertex, the original edge is transformed into
a virtual edge. Virtual edges indicate that as execution of their origins completes, control flow
continues from their terminals. In other words, they do not damage the control flow nature of
original edges. For example for Virtual Edge 2,1VE of Fig. 3, the control flow transfer from
node 1v , through the Virtual Vertex 2,1vv , and reach to the node 2v . Obviously, the control
flow of 2,1e is not affected.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 403

Fig. 3. An example of creating a virtual edge

Fig. 4. A Virtual Vertex with signature updating instructions

In order to update the run-time signature associated with the current node of CFG, two

signature updating instructions and , are inserted into Virtual Vertex .

Before the branch is taken, is equal to , which is the same as . After the
branch is taken, the control is transferred to , and the first signature updating
instruction is executed. Then, is updated with a new run-time signature ,

, and then the second signature updating instructions
 is executed, after which . Thus, when the control

transfers to , the run-time signature is equal to the signature of node . A Virtual Vertex
with signature updating instructions is shown in Fig. 4.

3.3 Insertion of checking instructions into each vertex
To check the control flow, the checking instruction ‘ ’ is inserted into the top
of each BB. In other words, this checking instruction is executed prior to the execution of the
original instructions in the BB; therefore, fault detection latency inside BB is avoided. As
shown in Fig. 5, the basic block consists of the original instructions and with additional
checking instruction located at its top.

404 Liu et al.: Control Flow Checking at Virtual Edges

Fig. 5. A basic block with checking instruction

3.4 The control flow checking scenario
When control is transferred from one Virtual Vertex to its successor vertex , the
program execution reaches the start of node first. Before execution of the signature
checking instruction, the value of is updated to , and then the signature checking
instruction is executed. If is not equal to the signature of vertex , then a control flow
error has occurred and control will be transferred to the error handling routine. On the other
hand, if is equal to , it tells us there is no control flow error, then the rest instructions of
vertex will be executed. After that, the control is transferred to Virtual Vertex , which is
the successor vertex of . After the branch is taken, the first signature updating
instruction is executed, and then is updated with a new run-time
signature , , the value of is updated to 0. Then the second
signature updating instructions is executed where is the successor vertex
of , . Next, the unconditional jump instruction of Virtual Vertex is
executed, and control is transferred to vertex .Thus, when the control is transferred to , the
run-time signature is equal to the signature of node .

4. Enhancement of Methodology

4.1 The Entry/Exit bit
It has been shown that illegal branches violating the control flow entered at the beginning of
each Basic Block can be detected by CFCVE. However, there are cases where legal branches
entering somewhere inside a basic block cannot be detected. For example, in Fig. 6, node is
the predecessor of node . After executing the last instruction of node , the branch will
take; the control will transfer to node v2. There is no problem when enters at the beginning
of node ; however, intranode CFE occurs if enters at the middle of node , and this
intranode CFE cannot be detected by current CFCVE.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 405

Fig. 6. The example of control flow transfers to the middle of node

Fig. 7. The structure of a new signature

In order to enhance the Error detection capabilities of CFCVE, the Entry/Exit bit, which can

detect the control flow errors that jump to or from the middle of a BB is introduced. The length
of the Entry/Exit bit is 1 bit, and the value is set to 1/0 when the execution reaches to the
entrance/exit of each BB. Thus, the new signature for each basic block consists of two sections;
the Entry/Exit code and the original signature, i.e., Label of current BB (see the Fig. 7).

We call the new signature when the value of the Entry/Exit bit is equal to 1/0. For
each BB, a signature updating instruction is inserted behind the original checking
instruction and then a signature updating instruction is inserted into the end
before the last instruction of Vertex . In addition, the original checking instruction
‘ ’ is changed to ‘ ’. Moreover, the original signature
updating instructions and are changed to and
respectively.

4.2 Control flow checking scenario
When control is transferred from one Virtual Vertex to its successor vertex , the signature
checking instruction is executed. If is not equal to the signature of vertex , then a
control flow error has occurred and control will be transferred to the error handling routine.
However, if is equal to , there is no control flow error. Then the program execution
reaches the start of node , before execution of the first signature updating instruction, the
value of will be equal to in the absence of any errors. Then, the first signature updating
instruction is executed, and the value of is updated to 0; next, the remaining instructions of
node will be executed and after the second signature updating instruction is executed, the
value of will be set to . When control is transferred from vertex to its successor Virtual
Vertex , the program execution reaches the start of first. Before execution of the first
signature updating instruction, the value of will be equal to in the absence of any errors.
Next, the first signature updating instruction is executed and the value of is updated to 0,

406 Liu et al.: Control Flow Checking at Virtual Edges

then the second signature updating instruction is executed, and the value of G will be set
to jBS .

5. Error detection capabilities
As mentioned in section 3.2, CFCVE primarily focuses on internode CFEs. An internode CFE
falls into one of the following two cases:
 a branch jibr , to a basic block jv not belonging to)(ivsuc
 a branch jibr , to somewhere inside a basic block jv belonging to)(ivsuc

CFCVE is capable of detecting all internode CFEs.
Proof:

Type 1: a branch jibr , to a basic block jv not belonging to)(ivsuc
Suppose that jibr , is an illegal branch, and)(ij vsucv ∉ .
If iv is a Virtual Vertex, then at node iv G is equal to kBS , where)(ik vsucv ∈ . Before the

branch jibr , is taken, the new run-time signature is generated, kkk BSBSBSGG =⊕=⊕= 0 .
If jv is a Virtual Vertex and)(jm vsucv ∈ , after the branch is taken, the two signature updating
instructions of node iv are executed. Then, the branch mjbr , is taken, and the checking
instruction ‘ error)(br mBSG ≠ ’ of node mv is executed. G is not equal to mBS , because the
signature of CFCVE is unique. Control is then transferred to the error handler, thus the error is
detected. If jv is not a Virtual Vertex, then after the branch jibr , is taken, the checking
instruction ‘ error)(br jBSG ≠ ’ is executed. Since jk BSBSG ≠= control is transferred to the
error handler, thus the mismatch is detected.

The situation of iv is not a Virtual Vertex is similar with above.
Type 2: a branch to somewhere inside a basic block jv belonging to)(ivsuc
Suppose that jibr , is an illegal branch and the branch is taken to the middle of the node jv ,

i.e., skipping the signature checking instruction and the first signature updating instruction.
If iv is a Virtual Vertex, then jv is not a Virtual Vertex, and at node iv G is equal to jBS .

After the branch is taken, the run-time signature is still equal to jBS , and then the remaining
instructions including the second signature updating instruction are executed, and the new
run-time signature is generated, jjj ESBSESGG ⊕=⊕= . After the instructions in node jv
are executed, kjbr , is taken, where)(jk vsucv = , and kv is a Virtual Vertex. The signature
updating instructions in kv update the value of jjj ESESBSG ⊕⊕= mBS⊕ , where

)(km vsucv = and mv is not a Virtual Vertex. After mkbr , is taken, the checking instruction
‘ error)(br mBSG ≠ ’ is executed. Thus, the error is detected due
to mmjmjjj BSBSBSBSESESBS ≠⊕=⊕⊕⊕ .

 If iv is not a Virtual Vertex, then jv is a Virtual Vertex, and at node iv G= is equal to iES .
After the branch is taken, G will be updated to kBS in the absence of control errors, where

)(jk vsucv = and kv is not a Virtual Vertex, by the signature updating instructions of jv .
Suppose that jibr , is taken to the second signature updating instruction and skipping the first
signature updating instruction. Then, kik BSESBSGG ⊕=⊕= is generated, and the
unconditional jump instruction is executed. The control is transferred to mv , where

)(km vsucv = and mv is not a Virtual Vertex. At node mv , the checking instruction
‘ error)(br mBSG ≠ ’ is executed. Since mki BSBSESG ≠⊕= , the error is detected.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 407

6. Experimental evaluation
In order to assess the effectiveness of the proposed approach, four benchmark programs are

chosen for the experiment: Quick sort (QS), Bubble Sort (BS), Matrix Multiplication (MM),
Fast Fourier Transformation (FFT). These target programs are chosen for a certain set of
reasons. Firstly, they present certain varieties of control flow graph patterns. QS and BS are
branch intensive programs. They have small size Basic Blocks and take a lot of branching
among relatively simple calculations, resulting in more substantial overheads. MM and FFT
are calculation intensive programs that perform substantial time-consuming multiplication and
much less branching. Thus, the overhead of checking instructions is smaller compared to
branch intensive programs. At the same time, these target programs use almost all instructions
available, including the ones for arithmetic and logic calculations, and branching. Meanwhile,
the target programs are merely the most common standardized algorithms that see a large
number of applications, which makes them even more representative.

The proposed solution is experimentally evaluated on an ARM920T microprocessor
machine running Linux kernel 2.6.32. The microprocessor has 3GB SDRAM and runs at a
frequency of 400 MHz. Memory overhead, performance overhead, error detection latency and
error detection coverage are imperative parameters for evaluating our approach. Thus, all of
these parameters are measured and reported. First, the memory overhead and performance loss
results of the presented scheme are evaluated, and then the average error detection latency of
the presented scheme is analyzed and the last part allotted to error detection coverage. We
considered four versions for each benchmark:
 the original code,
 a safe one, obtained by applying the CFCSS [15] technique to the original code,
 a safe one, obtained by applying the RSCFC [14] technique to the original code,
 a safe one, obtained by applying the CFCVE technique to the original code.

Each program (totally 16) is compiled and executed for 500 times. Memory overhead and
performance overhead are compared between the hardened programs and the original ones ,
we determined the overheads recorded in Table 2.

As shown in Table 2, CFCVE incurs the least memory overhead (2.21%) compared with
CFCSS (2.44%) and RSCFC (2.35%). In terms of performance overhead, the CFCVE (10.60%)
is comparable to the CFCSS (10.55%), but less than the RSCFC (18.45). The memory
overhead is mainly caused by signature overhead of these target programs. This memory
overhead also affect on program performance. The extra execution time for the signature
updating and signature checking instructions of these target programs is considered
performance overhead.

Table 2. Memory overhead, performance overhead and error detection latency comparison

Program Memory overhead (%) Performance overhead (%) Detection latency (cycle)
CFCSS RSCFC CFCVE CFCSS RSCFC CFCVE CFCSS RSCFC CFCVE

QS 2.42 2.93 2.24 14.50 25.0 11.0 4.70 5.72 5.20
BS 2.71 2.13 2.46 11.00 16.30 10.50 4.56 5.51 5.40
MM 2.17 1.36 1.94 6.50 14.20 5.51 5.63 7.16 6.51
FFT 2.47 2.96 2.25 10.20 18.30 15.42 5.37 7.37 7.12

In CFCSS, each node is assigned a unique signature and has two additional instructions.

When the node is a branch-fan-in node a run-time adjusting signature and another two
additional instructions are introduced to solve the aliasing of signatures. In CFCVE, only one
unique signature is employed to identify each node, and three additional instructions are used to

408 Liu et al.: Control Flow Checking at Virtual Edges

detect control flow errors. In order to solve the aliasing of signatures, a Virtual Vertex
containing three instructions is inserted into each Edge. Thus, due to the introduction of the
run-time adjusting signature, the memory overhead of CFCSS is larger than for CFCVE; the
instructions overhead is considerable, even the number of instructions is relatively small. In
RSCFC, each block takes one bit in the signatures of basic blocks. When the total number of
basic blocks in a program is large, the signature of each block will have many bits, possibly
exceeding the limitation of machine word possibly. In order to deal with this situation, basic
blocks are grouped into multiple hierarchies. Thus, a hierarchy signature is introduced and
hierarchy signature should be checked in each node. This process leads to a higher memory
overhead than CFCVE. In addition, the local cumulative signature checking instructions
increase the performance overhead greatly. Therefore, RSCFC incurs more performance
overhead than CFCVE.

The error detection latency is the latency between fault occurrence and error detection. It
may cause erroneous output and can directly affect rollback recovery. Therefore, the errors
should be detected and addressed before erroneous output occurs. Detection latency can be
quantified in processor cycles, and is defined here as the number of processor cycles to run
between the terminal of the illegal branching and the line detecting the error here. The detection
latency result in Table 2 is calculated according to the equation 2 and 3 of [17]. Table 2 shows
that the detection latency of CFCVE is comparable to RSCFC, but much higher than for
CFCSS. The reason is that the number of additional instructions in CFCSS is 2-4, 6 in CFCVE
and 7 in RSCFC.

We adopted a method in which the faults are injected into the program through modifying the
assembly codes of the source file [23, 24]. For each program (totally 16), the source file is
compiled and assembly code is generated firstly. Secondly, one of the branch deletion, branch
creation or branch operand changes was randomly applied to the assembly codes. Finally, the
resulting assembly code is compiled and executed. Each kind of fault is injected 2000 times into
the original program.

The results of fault injection and fault detection we gathered during fault injection
experiments are reported in Tables 3 and 4. Transient faults injected into the unhardened
programs are categorized according to their effects (Table 3) and then compared with the
results of injection into the 3 safe versions (CFCSS, RSCFC and CFCVE), as reported in Table
4. Fault detection effects are classified as follows:
 Wrong Result (WR): the fault modifies the results of the program without being

detected.
 OS detection (OS): the fault is detected by the operating system or the hardware.
 Software Detection (SD): the fault is detected by the software detection mechanisms

employed.
The undetected incorrect outputs are gotten by WR and error detection coverage is gotten by

SD. Fig. 8 was generated based on the WR in Tables 3 and 4 and illustrates the fraction of
faults that are not detected for the original programs and the hardened programs with CFCSS,
RSCFC and CFCVE under each fault types.

Table 3. Experiment results of fault detection effects in original programs.

Original Program Del (2000#) (%) Change (2000#) (%) Insert (2000#) (%)
OS WR OS WR OS WR

QS 31.2 36.7 71.2 25.4 52.4 28.7
BS 35.1 48.7 67.9 26.7 57.9 16.7
MM 32.5 40.3 65.1 25.3 58.6 25.3
FFT 36.6 40.9 64.5 30.9 64.5 26.5

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 409

Table 4. Experiment results of fault detection effects in programs with CFCSS, RSCFC and CFCVE.

Programs Del (2000#) (%) Change (2000#) (%) Insert (2000#) (%)
OS WR SD OS WR SD OS WR SD

QS-CFCSS 22.3 17.4 38.2 21.8 10.5 58.2 25.1 7.46 56.2
BS-CFCSS 14.2 6.73 38.6 12.7 16.9 68.1 15.2 8.64 64.3
MM-CFCSS 19.4 12.7 37.5 16.1 5.30 65.4 28.7 14.5 50.4
FFT-CFCSS 13.4 20.3 53.2 11.5 13.4 73.7 21.4 11.6 60.1
QS-RSCFC 19.3 15.1 43.5 15.6 7.82 65.7 17.1 6.20 65.4
BS-RSCFC 4.63 5.34 60.2 8.64 13.2 76.3 12.5 4.24 71.4
MM-RSCFC 15.2 7.60 47.8 13.1 4.83 69.4 23.5 13.3 54.6
FFT-RSCFC 9.82 15.4 62.3 8.16 11.6 76.3 13.7 8.64 65.5
QS-CFCVE 21.4 15.5 49.0 14.4 8.34 64.6 16.5 4.75 67.7
BS-CFCVE 6.40 4.20 55.5 8.25 14.5 75.4 12.8 4.64 72.2
MM-CFCVE 13.6 8.92 48.1 15.5 5.35 67.7 22.5 12.9 55.4
FFT-CFCVE 13.1 14.9 59.5 7.12 10.8 78.6 15.8 6.78 61.3

As it can be seen in Fig. 8, the average undetected incorrect outputs for CFCSS, RSCFC and
CFCVE are 12.11%, 9.44% and 9.29% respectively. The figures of average error detection
coverage are 55.32%, 63.20%, and 62.91%, respectively. As mentioned before, memory
overhead, performance overhead, error detection latency and error detection coverage are
imperative parameters for evaluating our approach. In order to balance these parameters a new
parameter, called Evaluation Factor (EF), is introduced in Literature [25]. However, the error
detection latency is not taken into account. We redefined the Evaluation Factor; the new
definition of Evaluation Factor is showed in equation 2.

latencydetection Error Overhead ePerformancOverheadMemory
coveragedetection Error EF

××
= (2)

The averages of the Evaluation Factors are 0.42, 0.23 and 0.44 respectively. Thus, CFCVE is
comparable in fault coverage the best of the previously proposed techniques. Meanwhile it has
a higher evaluation factor because of the lower memory overhead and performance overhead
compared with other methods.

The following reasons can account for the excellent performance of CFCVE. First, in
CFCSS, if multiple nodes are sharing multiple branch-fan-in nodes as their destination nodes,
aliasing may occur between legal and illegal branches, and cause an undetectable control flow
error. CFCVE can solve the aliasing by updating signature at the directed edges instead of at the
nodes of control flow graph. Thus, the error detection coverage is higher than CFCSS. Second,
in RSCFC, each block takes one bit in the signatures of basic blocks.
The length of signature and the total number of basic blocks are in the direct ratio. This will
incur substantial memory overhead when the quantity is large. Therefore, CFCVE incurs less
memory overhead than RSCFC. Third, the memory overhead and error detection latency are
lower due to the moderate additional instructions of CFCVE.

410 Liu et al.: Control Flow Checking at Virtual Edges

Fig. 8. The comparison of undetected incorrect outputs percentage under three fault types

7. Conclusions and Future Research
This article proposes a software-based control flow checking technique CFCVE. This method
assigns a unique signature occupying the least bit to each basic block and updates the
signatures at the virtual edges of the control flow graph. A Virtual Edge is introduced to
resolve the signature aliasing. Fault and error injection experiments were conducted to assess
the effectiveness of the proposed approach. The experiments showed that the CFCVE
technique incurs the least memory overhead and performance overhead. The error detection
latency is moderate. Error injection experiments on benchmarks showed that CFCVE can
detect all the single inter-block control flow errors and has higher method efficiency [26] than
previous techniques. However, Virtual Vertex introduces addition branches into the code,
which may be affected by faults themselves.

 Research is being conducted to develop excellent methods to protect checking instruction
and signature updating instructions themselves in order to improve error coverage without
increasing performance overhead. The trade-off between error detection latency and
performance overhead is also a new research topic for our research group.

8. Acknowledgment
This research was supported by the National Natural Science Foundation of China under grant
No. 61370134, the National High Technology Research and Development Program of China
(863 Program) under grant No. 2013AA013901.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 411

References
[1] Chen K, Liu H Y, Chen X S, “Detecting LDoS Attacks based on Abnormal Network Traffic [J],”

Ksii Transactions on Internet & Information Systems, 6(7):1831-1853, 2012.
Article (CrossRef Link)

[2] Ktas E, Athanasopoulos E, Bos H, et al., “Out of Control: Overcoming Control-Flow Integrity[C],”
IEEE Symposium on Security and Privacy. IEEE Computer Society, 575-589, 2014.
Article (CrossRef Link)

[3] Davi L, Sadeghi A R, Winandy M., “Dynamic integrity measurement and attestation: towards
defense against return-oriented programming attacks.[C],” ACM Workshop on Scalable Trusted
Computing, Stc 2009, Chicago, Illinois, Usa, 49-54, November. 2009.
Article (CrossRef Link)

[4] Nagarajan A, Varadharajan V., “Dynamic trust enhanced security model for trusted platform based
services [J],” Future Generation Computer Systems, 27(5):564-573, 2011.
Article (CrossRef Link)

[5] Winter J, Dietrich K., “A hijacker’s guide to communication interfaces of the trusted platform
module [J],” Computers & Mathematics with Applications, 65(5):748-761, 2013.
Article (CrossRef Link)

[6] Kanuparthi A K, Zahran M, Karri R., “Architecture Support for Dynamic Integrity Checking[J],”
IEEE Transactions on Information Forensics & Security, 7(7):321-332, 2012.
Article (CrossRef Link)

[7] Muthukumaran D, Schiffman J, Hassan M, et al., “Protecting the integrity of trusted applications in
mobile phone systems [J],” Security & Communication Networks, 4(6):633-650, 2011.
Article (CrossRef Link)

[8] Shacham H., “The geometry of innocent flesh on the bone: return-into-libc without function calls
(on the x86)[C],” in Proc. of ACM Conference on Computer and Communications Security, CCS
2007, Alexandria, Virginia, Usa, 552-561, October. 2007. Article (CrossRef Link)

[9] Bhattacharya K, Ranganathan N., “RADJAM: A Novel Approach for Reduction of Soft Errors in
Logic Circuits.[C],” in Proc. of International Conference on Vlsi Design, 453-458, 2009.
Article (CrossRef Link)

[10] Saxena N R, Mccluskey E J., “Control-Flow Checking Using Watchdog Assists and
Extended-Precision Checksums[J],” Computers IEEE Transactions on, 39(4):554-559, 1990.
Article (CrossRef Link)

[11] Rajabzadeh A, Miremadi S G., “A Hardware Approach to Concurrent Error Detection Capability
Enhancement in COTS Processors[C],” Pacific Rim International Symposium on Dependable
Computing, 2005. Proceedings. IEEE, 83-90, 2005. Article (CrossRef Link)

[12] Jafari-Nodoushan M, Miremadi S G, and Ejlali A., “Control-Flow Checking Using Branch
Instructions.[C],” Ieee/ipip International Conference on Embedded and Ubiquitous Computing,
66-72, 2008. Article (CrossRef Link)

[13] Alkhalifa, Z, Nair, V.S.S, Krishnamurthy, N, et al., “Design and evaluation of system-level checks
for on-line control flow error detection[J],” IEEE Transactions on Parallel & Distributed Systems,
10(6):627-641, 1999. Article (CrossRef Link)
Li A, Hong B., “On-line control flow error detection using relationship signatures among basic
blocks[J],” Computers & Electrical Engineering, 36(1):132-141, 2010. Article (CrossRef Link)

[14] Oh N, Shirvani P P, Mccluskey E J., “Control-flow checking by software signatures[J],” IEEE
Transactions on Reliability, 51(1):111-122, 2002. Article (CrossRef Link)

[15] Jian-Li L I, Tan Q P, Tan L F, et al., “A Control Flow Checking Method based on Abstract Basic
Block and Formatted Signature [J],” Chinese Journal of Computers, 2014.
Article (CrossRef Link)

[16] Mu Y, Hao W, Zheng Y, et al., “Graph-tree-based software control flow checking for COTS
processors on pico-satellites[J],” Chinese Journal of Aeronautics, 26(2):413-422, 2013.
Article (CrossRef Link)

http://dx.doi.org/10.3837/tiis.2012.07.007
http://dx.doi.org/10.1109/VLSI.Design.2009.76
http://dx.doi.org/10.1145/1655108.1655117
http://dx.doi.org/10.1016/j.future.2010.10.008
http://dx.doi.org/10.1016/j.camwa.2012.06.018
http://dx.doi.org/10.1109/TIFS.2011.2166960
http://dx.doi.org/10.1002/sec.194
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1109/VLSI.Design.2009.76
http://dx.doi.org/10.1109/12.54849
http://dx.doi.org/10.1109/PRDC.2005.7
http://dx.doi.org/10.1109/EUC.2008.44
http://dx.doi.org/10.1109/71.774911
http://dx.doi.org/10.1016/j.compeleceng.2008.08.010
http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1109/PAAP.2010.73
http://dx.doi.org/10.1016/j.cja.2013.02.019

412 Liu et al.: Control Flow Checking at Virtual Edges

[17] Chielle E, Rodrigues G S, Kastensmidt F L, et al., “S-SETA: Selective Software-Only
Error-Detection Technique Using Assertions [J],” IEEE Transactions on Nuclear Science,
62(6):3088-3095, 2015. Article (CrossRef Link)

[18] Martinez-Alvarez A, Restrepo-Calle F, Cuenca-Asensi S, et al., “A Hardware-Software Approach
for On-line Soft Error Mitigation in Interrupt-Driven Applications[J],” IEEE Transactions on
Dependable & Secure Computing, 502-508, 2016. Article (CrossRef Link)

[19] Watson M, Shirazi N, Marnerides A, et al., “Malware Detection in Cloud Computing
Infrastructures[J],” IEEE Transactions on Dependable & Secure Computing, 13(2):192-205, 2016.
Article (CrossRef Link)

[20] Venkatasubramanian R, Hayes J P, and Murray B T., “Low-cost on-line fault detection using
control flow assertions[C],” in Proc. of On-Line Testing Symposium, Iolts. IEEE, 137-143, 2003.
Article (CrossRef Link)

[21] Goloubeva O, Rebaudengo M, Reorda M S, et al., “Soft-Error Detection Using Control Flow
Assertions[J],” Nonlinear Dynamics, 77(4):581-588, 2003. Article (CrossRef Link)

[22] Y. Sedaghat, S. G. Miremadi, M. Fazeli, “A Software-Based Error Detection Technique Using
Encoded Signatures [J],” 389-400, 2006. Article (CrossRef Link)

[23] Krishnamurthy N, Jhaveri V, and Abraham J., “A Design Methodology for Software Fault Injection
in Embedded Systems [J],” 1998.

[24] Asghari S A, Taheri H, Pedram H, et al., “Software-Based Control Flow Checking Against
Transient Faults in Industrial Environments [J],” IEEE Transactions on Industrial Informatics,
99(1):481-490, 2013. Article (CrossRef Link)

[25] Vemu R, and Abraham J., “CEDA: Control-Flow Error Detection Using Assertions [J],” IEEE
Transactions on Computers, 60(9):1233-1245, 2011. Article (CrossRef Link)

http://dx.doi.org/10.1109/TNS.2015.2484842
http://dx.doi.org/10.1109/TDSC.2014.2382593
http://dx.doi.org/10.1109/TDSC.2015.2457918
http://dx.doi.org/10.1109/OLT.2003.1214380
http://dx.doi.org/10.1109/DFTVS.2003.1250158
http://dx.doi.org/10.1109/DFT.2006.11
http://dx.doi.org/10.1109/TII.2013.2248373
http://dx.doi.org/10.1109/TC.2011.101

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017 413

LiPing Liu received the B.S. degree and M.S. degree in the Dept. of Computer Science
from North University of China, China, in 2008 and 2011, respectively. Currently, he is
studying for his PhD Degree at Computer Science in Beijing Institute of Technology. His
current research interests include Secure Wireless Sensor Networks, Pattern Recognition,
and Trusted Computing.

LinLin Ci received the B.S. degree in the Dept. of Computer Science from Beijing
Institute of Technology, China, in 1976; he received the M.S. degree in the Dept. of
Computer Science from Northwestern Polytechnical University, China, in 1985.
Currently, he is professor and doctoral supervisor in computer application. His research
areas include Secure Wireless Sensor Networks, Pattern Recognition, and Trusted
Computing.

Wei Liu received the B.S. degree and M.S. degree from North University of China from
Dept. of Computer Science, China, in 2008 and 2011, respectively. Currently, he is
studying for his PhD Degree at Computer Science in Beijing Institute of Technology. His
current research interests include Secure Wireless Sensor Networks, Pattern Recognition,
and Trusted Computing.

Hui Yang received the B.S. degree and M.S. degree from North University of China
from Dept. of Computer Science, China, in 2008 and 2011, respectively. Currently, he is
studying for his PhD Degree at Computer Science in Beijing Institute of Technology. His
current research interests include Secure Wireless Sensor Networks, Pattern Recognition,
and Trusted Computing.

