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Abstract 
 

Recently, the method based on fractional order partial differential equation has been used in 
image processing. Usually, the optional order of fractional differentiation is determined by a 
lot of experiments. In this paper, a denoising model is proposed based on adaptive fractional 
order anisotropic diffusion. In the proposed model, the complexity of the local image texture is 
reflected by the local variance, and the order of the fractional differentiation is determined 
adaptively. In the process of the adaptive fractional order model, the discrete Fourier 
transform is applied to compute the fractional order difference as well as the dynamic 
evolution process. Experimental results show that the peak signal-to-noise ratio (PSNR) and 
structural similarity index measurement (SSIM) of the proposed image denoising algorithm is 
better than that of other some algorithms. The proposed algorithm not only can keep the 
detailed image information and edge information, but also obtain a good visual effect. 
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1. Introduction 

It is known that image denoising is a significant subject in the research of image processing. 
Image denoising method based on integer order partial differential equations has been widely 
researched. This method can be divided into two categories: anisotropic diffusion denoising 
model proposed by Perona and Malik [1] (for short:PM denoising) and total variation 
proposed by Rudin, Osher and Fatemi [2] (for short: ROF denoising). The shortcomings of PM 
model and ROF model lie in that they are easy to lose contrasting information and texture 
information and produce staircase effects [3]. To solve these shortcomings, some improved 
algorithms are proposed. G. Motta, et al put forward an extension of the Discrete Universal 
DEnoiser (DUDE) which is specially used for the denoising of grayscale images [4]. Gong 
Yuanhao, et al put forward a variational model with local weighted Gaussian curvature as the 
regularizer [5]. Wang Jiefei, et al proposed a residual-based method for denoising images [6]. 
Very recently, Zhang Wenxue, et al proposed a 0L  gradient minimization (LGM) method for 
image smoothing [7]. Cui Lihong, et al proposed an extension of interscale SURE-LET 
approach exploiting the interscale to improve denoising performance [8].Zhao De et al 
proposed an improved PM model based on local entropy [9]. In order to improve the accuracy 
of iris recognition while dealing with non-ideal iris images, Mazhar Sajjad et al [10] proposed 
a novel algorithm that improves the quality of degraded iris images. Yu Hancheng et al [11] 
proposed a speed-up technique for the non-local means image denoising method based on 
local binary descriptor. Yan Zhou et al [12] proposed a new automatic underwater image 
enhancement algorithm, which combines nonsubsampled contoured transform domain 
enhancement techniques with the mechanism of the human visual system. G Ghimpeteanu, et 
al [13] considered an image decomposition model that provided a novel framework for image 
denoising. V.B.S Prasath, et al [14] proposed a fuzzy diffusion coefficient which takes into 
account local pixel variability for better denoising and selective smoothing of edges. 

Recently, image processing based on fractional order partial differential equation has been 
studied in computer vision. Wang Liping, et al proposed a homotopy regularization based on 
fractional order total variation for image super-resolution [15]. Feng Xiangchu, et al [16] put 
forward a fractional order anisotropic diffusion model for image denoising, and the model not 
only can well suppress noise but also preserve the edge information. To select the optional 
order of fractional differentiation not by experiments, Che Jin, et al [17] put forward a 
denoising model in which the local variance was employed to express the complexity of the 
local image texture and the order of fractional differentiation was determined adaptively. Li 
Bo, et al [18] presented a new medical image enhancement method that adjusts the fractional 
order according to the dynamic gradient feature of the entire image. Pu Yifei [19] put forward 
a set of fractional partial differential equations based on fractional total variation and fractional 
steepest descent approach to address the problem of traditional drawbacks of PM and ROF 
multi-scale denoising for texture image. Yin Xuehui, et al [20] presented a difference 
curvature driven fractional anisotropic diffusion for image noise removal, which uses two new 
techniques, fractional calculus and difference curvature, to describe the intensity variations in 
images. Ido Zachevsky, et al [21] proposed an algorithm for the denoising of natural images 
containing NST, using patchbased fractional Brownian motion model and regularization by 
means of anisotropic diffusion. Chen Yiming, et al [22] proposed a numerical method to 
estimate the variable-order fractional derivatives of an unknown signal in noisy environment. 
Those proposed image processing algorithms based on fractional order partial differential 
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equation have made improvement on keeping detailed image information, texture information, 
good visual effects and image denoising. 

In order to solve the problem that the optimal order of the fractional differentiation is often 
obtained through a large number of experiments of the image denoising process. Combining 
fractional differential operator with anisotropic diffusion equation, a denoising algorithm 
based on adaptive fractional order anisotropic diffusion is put forward. By using the local 
variance, the local image texture complexity adaptively is reflected and the fractional order is 
determined. With regard to a determined image, before image denoising we need to calculate 
the image local variance, to increase the computational overhead in the image denoising 
process. While in the frequency domain, a lot of computational overhead will be reduced and 
the definition of fractional order derivative of frequency domain is relatively simple. 
Therefore we employ Fourier transform to represent the fractional derivative, and accordingly 
discrete Fourier transform is used to calculate the fractional differential and the dynamic 
evolution process in the frequency domain. The proposed algorithm is applied in image 
denoising, the experimental results show that the proposed denoising algorithm can obtain a 
higher peak signal to noise ratio (PSNR), structural similarity index measurement (SSIM) and 
visual effects. 

The paper is organized as follows. In Section 2, the deduction of the fractional order 
anisotropic diffusion denoising model is proposed. In Section 3, the realization of fractional 
order differential adaptive denoising model is described. In Section 4, the experimental 
verification and analysis is given. Finally, some conclusions are drawn in Section 5. 

2. Fractional Order Denoising Model 

2.1 Definition of Fractional Order Differential in Frequency Domain  
In this section, we give a brief description of the fractional order derivatives in the frequency 
domain. The commonly used definitions are Grumwald-Letnikov definition and 
Riemann-Liouville definition which require to use of the Euclidean measure [23-24]. 
However, The definition in frequency domain is easier to implement, and we use it in this 
paper. Taking into account the frequency characteristic of the fractional differential, the 
traditional first order derivative can be extent to the fractional derivative. Some amplitude 
frequency characteristic curves of different fractional order differentials of ω are shown as in 
Fig. 1. 

 

Fig. 1. Amplitude frequency characteristic curve of the fractional order differential. 
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From Fig. 1, it can be obviously seen that in the low frequency part, which is 
corresponding to the image of the smooth region, the degree of attenuation of the fractional 
differential operator is similar to that of the first order differential operator. However, in the 
intermediate frequency and high frequency part with 1ω > , the fractional order differential 
operator is steeper than that of the first order operator. This characteristic shows that the 
fractional differential operator can reduce the low frequency signal and improve the high 
frequency signal. 

For any function 2( ) ( )f t L R∈  , it’s Fourier transform is 

f̂ ( ) ( ) exp( )
R

f t j t dtω ω= −∫ .                                                      (1) 

Therefore, the equivalent form of fractional order differential in the frequency domain is 
defined as: 

1 ˆ( ) (( ) ( )),D f t F j f Rα
α ω ω α− += ∈ ,                                              (2) 

where 1F −  is the inverse operator of Fourier transform,α can be any real number, including 
decimal or fraction. 

For any 2 2( , ) ( )g x y L R∈ , it’s corresponding two-dimensional Fourier transform is 

2
1 2 1 2ĝ( , ) ( , ) exp( ( ))

R

g x y j x y dxdyω ω ω ω= − +∫ . Therefore, the fractional order partial 

differential form with α is: 
-1

1 1 2ˆ( , ) (( ) ( , ))xD g x y F j gα
α ω ω ω=                                          (3) 

and  
1

y 2 1 2ˆg( , ) (( ) ( , ))D x y F j gα
α ω ω ω−= .                                       (4) 

2.2 Derivation of Fractional Order Denoising Model 

2.2.1 PM Model 
The classical PM model [1] was proposed by Perona and Malik, and its diffusion process is 
represented by a partial differential equation. The PM model is expressed as: 

u ( ( ) )div c u u
t

∂
= ∇ ∇

∂
,                                                 (5) 

where t  denotes the time, ( )⋅c  is the diffusion coefficient, ( )div ⋅  is the divergence operator, 
∇  is the gradient operator. 

2.2.2 ROF Model 
The classical ROF model [2] was proposed by Rudin, Osher and Fatemi, and its evolution is a 
nonlinear diffusion equation: 

0
u ( )udiv u u
t u

λ
 ∂ ∇

= − −  ∂ ∇ 
,                                           (6) 

where, 
udiv
u

 ∇
  ∇ 

 is the diffusion coefficient, 0( )u uλ −  is the global fidelity, ( 0)λ >  is an 

adjusting parameter, for performing balanced and smooth fidelity effect. In the ROF model, 
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the global fidelity of image noise is also a part of fidelity, while the ideal fidelity should only 
be reflected on the image edge texture details. 

2.2.3 Proposed Model 
Inspired by the literature [16] and ROF model [2], we propose the following model with 
anisotropic diffusion: 

2

0

u ( ( ) )

( , ,0) ( , )               

div c D u D u u
t

u x y u x y

α α λ∂ = + ×
∂

 =

,                                            (7) 

where α  denotes the fractional order, D uα  denotes the fractional derivative operator defined 

by ( , )x yD u D u D uα α α=  and 2 2
x yD u D u D uα α α= + , 0λ >  is a adjusting parameter. 

By using the energy functional, we can find that the anisotropic diffusion is then shown to 
be an energy-dissipating process that seeks the minimum of the energy functional. We 
consider the following functional to be defined in the space of continuous images over the 
domain of Ω  

2( ) ( )
2

E u f D u d uα
λ

Ω

= Ω−∫ ,                                               (8) 

where Ω  is the image region, and f ( ) 0⋅ ≥  is an increasing function associated with the 
diffusion coefficient as c( ) ( )s f s s′= .The formula (8) can be solved as the minimum 
value problem of the Euler-Lagrange equation, constructor functional 

2(a) ( ( ) ) ( )
2

f D u a dxdy u aα
λη η

Ω

Φ = + − −∫ ,                                  (9) 

where test function is ( )Cη ∞∈ Ω . To make (0) 0′Φ = , and we can get 
2 2( ( ) ) ( ) ) 0x x y xc D u D uD c D u D uD u dxdyα α α α α αη η λ η

Ω

+ + × =∫ .                  (10) 

Firstly, the definition domain of f  is extended to 2R  from Ω , based on the definition of 
Fourier transform of fractional derivative, and we can get the formula by using the Parseval 

identity
2 2

1 2
ˆ ˆ

R R

f gdxdy f gd dω ω⋅ = ⋅∫ ∫ , 

2

2 2
1 2

ˆ ˆ ˆˆ ˆ ˆ( ( ) ) ( ) ) 0x x y x
R

c D u D uD c D u D uD u d dα α α α α αη η λ η ω ω+ + × =∫ .            (11) 

For all functions, ( )Cη ∞∈ Ω , it must satisfy the equation ( )0 0′Φ = , so there has to be 
2 2* *

x y( ( ) ) ( ( ) ) 0x yD c D u D u D c D u D u uα α α α α α λ+ + × = ,                    (12) 

where *
xDα  is the adjoint of xDα , *

yDα  is the adjoint of yDα .Thus, the Euler–Lagrange 
equation of the formula (8) can be rewritten as formula (12), in which the time variable is 
introduced. The formula (12) may be solved through the following gradient descent procedure:  

2 2* *( ( ) ) ( ( ) )x x y y
u D c D u D u D c D u D u u
t α α α α α α λ∂
= − − − ×

∂
.                 (13) 

This solution is arrived when t →∞ , but the evolution is likely to stop earlier to achieve an 
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optimal trade-off between noise removal and boundary preservation. 

3. Realization of Adaptive Fractional Differential Denoising Model 

3.1 Construction of Adaptive Fractional Order Differential Operator 
A large number of experiments show that in the process of image denoising, when the order 
α of fractional differential is greater than 1, the "staircase effect" can be effectively 
suppressed, but it is too large to suppress noise. Therefore, for an image that the texture 
complexity of each region is not the same, we should choose different order of fractional order 
differential, in order to achieve better denoising effects. The local variance can well reflect 
regional texture complexity, for the local variance of the region with complex texture is 
relatively large, and that of the region with simple texture is small [17]. In this way, it is 
devoted to find a function mapping between the order of fractional order differential and the 
local variance of the image, and we can adaptively generate the order of fractional order 
differential based on the local variance of an image. 

We suppose that the local mean and local variance of each pixel in the noise image 
( , )u x y are respectively ,x yµ  and ,x yσ , and M  is a 1 2m m×  rectangular window with 

( ),x y as the center, then the following formulas can be got: 

( ),
,1 2

1 ,x y
x y M

u x y
m m

µ
∈

=
× ∑ , ( ) ( )( )2 2

,
,1 2

1 , ,x y
x y M

u x y x y
m m

σ µ
∈

= −
× ∑ . 

According to the form of the local entropy function proposed in [9], we construct a relation 
function between the local variance function and the adaptive fractional order as:  

Adaptive fractional order = , ,
0 1

, ,

min( )
( )

max( ) min( )
x y x y

x y x y

f k k
σ σ

σ
σ σ
−

= + ×
−

,               (14) 

where 0k , 1k is the coefficient, ,x yσ denotes the variance, ,min( )x yσ  denotes the minimum 

variance, ,max( )x yσ  denotes the maximum variance. The denoising results of an image with 

formula (14) as the adaptive operator are shown as in Fig. 2, where 0 1k = ， 1 0.693k = ，the 
variance of the Gaussian white noise is 15δ = , 30δ = . 

Further more, exponential function is an increasing function in the real number field, and 
the degree of enhancement will depend on the increasing of the independent variable, which is 
consistent with the change of the order of the fractional differential [25-26], so we make the 
relationship formula between the local variance function and the adaptive fractional order as 

( )
2

fe kδα = + ,                                                             (15) 

where 0 0k = , 2k  is the adjusting parameter. Fig. 3 shows the denoising results with formula 
(15) as the adaptive operator, where 1 0.693k = , 2 0.5k = . 

Table 1 lists the comparison results of PSNR, SSIM and information entropy (ENTROY) 
between formula (14) and formula (15) as the adaptive operator, the variance of the Gaussian 
white noise is 15δ = . 
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Fig. 2. Denoising image with formula (14) as an adaptive operator. (a) original Barbara image,(b) noisy 

Barbara image, 15δ = ,(c) denoised Barbara image, 15δ = ,(d) noisy Barbara image, 30δ = , 
(e) denoised Barbara image, 30δ = ,(f) original Lena image,(g) noisy Lena image, 15δ = , 

(h) denoised Lena image, 15δ = ,(i) noisy Lena image, 30δ = ,(j) denoised Lena image, 30δ =  
 

    
Fig. 3. Denoising images with formula (15) as an adaptive operator. (a) denoised Barbara image, 

15δ = ,(b) denoised Lena image, 15δ = ,(c) denoised Barbara image, 30δ = ,(d) denoised Lena 
image, 30δ =  

 
Table 1. The comparison results of PSNR, SSIM and information entropy (ENTROY) between formula 

(14) and formula (15), the variance of the Gaussian white noise is 15δ =  

Image PSNR SSIM ENTROY The original image 
ENTROY Eq.(14) Eq.(15) Eq.(14) Eq.(15) Eq.(14) Eq.(15) 

Barbara 28.9037 29.1882 0.8452 0.8595 7.4535 7.4740 7.4664 
Lena 31.5229 32.3395 0.8445 0.8612 7.4168 7.4459 7.4455 
 
From the subjective feelings of Fig. 2 and Fig. 3, and the objective reflection of the data in 

Table 1, we can see that the values of PSNR, SSIM and ENTROY of the denoising image with 
formula (15) are higher than that of formula (14). That implies that formula (15) is able to 
reflect the corresponding relationship better than formula (14) between the local variance of 
the image and the adaptive fractional order. 
 

3.2 Numerical Implementation of the Adaptive Denoising Model 
For practical applications, we assume that the pixel of the original discrete image u  is m×m. 
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The discrete Fourier transform is easily to implement and its computational cost is very low. In 
addition, it is consistent with the continuous Fourier transform which is used to calculate the 
fractional order differential, therefore by two-dimensional discrete Fourier transform (2-D 
DFT), the fractional order differential of the formula (13) can be calculated. 

By the definition of the first order partial differential: 
( , ) ( , )

x
u x y u x x yD u

x
− −∆

=
∆

,                                               (16) 

we know that the shortest distance of two dimensional digital image signal intensity changes is 
between two adjacent pixels, so the duration of two-dimensional digital image on the direction 
of x axis and y axis could only be measured in pixel units, the smallest equal interval of 

( , )u x y  can only be 1x y∆ = ∆ = [27], so ( , ) ( 1, )xD u u x y u x y= − − . 
Therefore, based on the translation property of the two-dimensional discrete Fourier 

transform, and the equivalent form of the fractional order partial differential in the frequency 
domain can be obtained: 

1 1 2ˆ(1 exp( 2 )) ( , )xD u j m uα
α πω ω ω↔ − − ,                                   (17) 

where, the fractional order α  is the adaptive fractional order. 
In the actual calculation, the central difference method is used to calculate the fractional 

order differential. In order to keep consistency with the two-dimensional continuous Fourier 
transform, the two-dimensional discrete Fourier transform operator is expressed by F , and the 
inverse operator of the two-dimensional discrete Fourier transform is represented by 1F − , so 
we have:  

1
1 1((1 exp( 2 )) exp( ) ( ))xD u F j m j m F uα

α πω παω−= − − × .                    (18) 

Now, we discuss how to calculate the conjugate matrix of xD uα
 . Let 1K  be the pure 

diagonal matrix in the frequency domain, that is: 

1 1 1((1 exp( 2 )) exp( ))K diag j m j mαπω παω= − − × . We get 1
1xD F K Fα

−=

  . Let *
xDα

  

represent the conjugate matrix of xDα
 , and the conjugate matrix of F  is 1F − , we 

get * 1 *
1xD F K Fα

−=

  . Because 1K is a pure diagonal matrix, *
1K  represents the complex 

conjugate matrix of 1K , ( )conj ⋅  represents the complex conjugate operator, we have 
* 1

1 1( ((1 exp( 2 )) exp( )) ( ))xD F conj j m j m F uα
α πω παω−= − − × .               (19) 

By the same way, yDα
 and *

yDα
 also can be calculated. 

Since xDα
 , *

xDα
 , yDα

  and *
yDα

  are obtained, the denoising algorithm can be obtained as 
follows: 

2 2* *
1 2ĝ ( ( ) ) ( ( ) )x yK F c D u D u K F c D u D u uα α α α λ= + + ×   

 
,                (20) 

where ( , )x yD u D u D uα α α=   , *
1 1 1( ((1 exp( 2 )) exp( )))K diag conj j m j mαπω παω= − − × , 

*
2 2 2( ((1 exp( 2 )) exp( )))K diag conj j m j mαπω παω= − − × , 

2

2 2

1( )
1 x y

c D u
D u D u

α

α α

=
+ +



 

. 

In the process of image denoising, the peak signal to noise ratio is used to be the evaluation 
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criterion of the experimental results of denoising images. The peak signal to noise ratio is 
defined as: 

[ ]
2

n 0
1 1

1 ( , ) ( , )
= =

= −
× ∑∑

NM

i j

MSE u i j u i j
M N

，
225510lgPSNR

MSE
= , 

where, the size of the original image is M N× , 0 ( , )u i j  represents the original image, and 

n ( , )u i j  represents the denoising image. 

According to formula (13) to calculate evolution image of noise images ( , )u x y , which 
were solved by the iterative method, the calculation steps are as follows: 

(1) Input parameter: ( , )u x y is the noise image; 
(2) Initialization: set 1n = , ( , ) ( , )nu x y u x y= , k , 0.1t∆ = , t k t= ×∆ ， 1 0.693k = ， 

2 0.5k = ， 60eλ −= ; 
(3) Compute the local mean and variance of the noise image ( , )u x y , and then the order 

of the fractional differential operator is obtained by the formula (15); 
(4) Compute the two dimensional discrete Fourier transform ˆ ( , )nu x y  of ( , )nu x y , 

calculate the partial differential ( , )x nD u x yα
  and ( , )y nD u x yα

  with formula (18); 

(5) Compute 1ˆ ( , )nu x y+ , with iteration method to 
get 1ˆ ˆ ˆ( , ) ( , ) ( , )n n nu x y u x y t g x y+ = − ∆ × ; 

(6) Judge whether the peak signal to noise ratio (PSNR) is the maximum or not. If not, 
appointing 1n n= + , and then turning to step (5); if so, stop the iteration and output the result. 

4. Experimental Verification and Analysis 
In this section, we will verify the effectiveness of the proposed adaptive fractional order 
denoising algorithm, by comparing with Gaussian filtering, the fractional order PM model 
(pseudo-PDEs) proposed by Bai Jian et al [16], the curvature filtering (Curvature Filter) 
proposed by Gong Yuanhao et al [5], an adaptive TV model (Adaptive TV Mode) proposed by 
Che Jin [17], Zhao De et al proposed an improved PM model based on local entropy (ZHAO 
Model) [9] and V.B.S Prasath et al [14] proposed a denoising model based on fuzzy diffusion 
coefficient(FDC Model). In addition, the numerical iterative process will stop at the point 
where peak signal-to-noise ratio is the biggest. We have implemented simulation here in 
MATLAB R2012a on a computer with 2.40GHz Intel Core i7 with 4GB RAM. 

Selection of images with different textures with size 512 512×  including Barbara image, 
Metallographic image, Lena image and Satellite image. We add the Gaussian white noise with 
variance of 15δ = into the original image, the four sets of noise images are denoised using 
adaptive fractional order denoising model proposed in this paper, Gaussian filtering, 
pseudo-PDEs, Curvature Filter, Adaptive TV Mode and ZHAO model, and the denoising 
images of noise image(b) processing are shown respectively as in Fig. 4, Fig. 5, Fig. 6, Fig.7, 
the comparison results of the PSNR, the differences of the SSIM, the comparison results of the 
ENTROY of the denoising images are respectively shown as in Table 2, Table 3 and Table 4, 
the comparison results of the running time of these different types of algorithms shown as in 
Table 5. 
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Fig. 4. Denoising images of noisy Barbara image (b) with different types of algorithms 

 

     

    
Fig. 5. Denoising images of noisy Metallographic image (b) with different types of algorithms 

 

     

    
Fig. 6. Denoising images of noisy Lena image (b) with different types of algorithms 
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Fig. 7. Denoising images of noisy Satellite image (b) with different types of algorithms 

 
Table 2. Comparison results of the PSNR of the denoising image with different types of algorithms 

Image Gaussian 
filtering 

Adaptive 
TV Model 

Pseudo-
PDEs 

Curvatur
e Filter 

ZHAO 
Model  

FDC 
Model 

Model in 
This Paper 

Barbara 24.1118 28.926 28.9968 27.4634 27.8251 28.6852 29.1882 
Metallographic 33.667 32.2639 33.063 33.261 31.6419 31.5397 33.8955 

Lena 30.197 31.505 31.9991 32.172 30.6552 30.9927 32.3395 
Satellite 29.6437 29.6835 30.1351 29.9147 28.6496 29.2473 30.4544 

 
Table 3. Comparison results of the SSIM of the denoising image with different types of algorithms 

Image Gaussian 
filtering 

Adaptive 
TV Model 

Pseudo-
PDEs 

Curvatur
e Filter 

ZHAO 
Model 

FDC 
Model 

Model in 
This Paper 

Barbara 0.6707 0.8263 0.8522 0.8073 0.8086 0.6883 0.8595 
Metallographic 0.9094 0.8667 0.8570 0.8651 0.8274 0.7762 0.8712 

Lena 0.8270 0.8425 0.8569 0.8582 0.8319 0.8322 0.8612 
Satellite 0.8045 0.8007 0.8082 0.7946 0.7559 0.7911 0.8193 

 
Table 4. Comparison results of the ENTROY of the denoising image with different types of algorithms 

Image Gaussian 
filtering 

Adaptive 
TV Model 

Pseudo-
PDEs 

Curvatur
e Filter 

ZHAO 
Model 

FDC 
Model 

Model in 
This Paper 

Barbara 7.3886 7.4606 7.4728 7.4308 7.5315 7.4228 7.4740 
Metallographic 6.3995 6.3973 6.3829 6.2256 6.3038 6.3737 6.4653 

Lena 7.4220 7.0379 7.4342 7.3757 7.4382 7.4368 7.4459 
Satellite 6.8025 6.8602 6.8632 6.7904 6.8498 6.6550 6.8864 

 
Table 5. Comparison results of the running time of these different types of algorithms(Unit: Second) 

Image Gaussian 
filtering 

Adaptive 
TV Model 

Pseudo- 
PDEs 

Curvatur
e Filter 

ZHAO 
Model 

FDC 
Model 

Model in 
This Paper 

Barbara 0.9359 118.4912 182.2906 37.1060 13.7582 30.6762 247.8097 
Metallographic 1.3746 114.8895 174.4096 45.1872 13.5501 809.6865 241.2405 

Lena 0.9418 123.8183 191.5609 47.4400 14.1970 256.3321 257.1621 
Satellite 0.9526 114.9078 196.6252 44.2217 13.3099 184.6692 243.6012 

 
We can carry on the objective evaluation for the image edge enhancement and image weak 

texture retention, by analyzing the peak signal to noise ratio, the information entropy and the 
similarity of the image. PSNR can represent the image noise removal effects, from Table 2, it 
can be seen that the values of the adaptive fractional order algorithm proposed in this paper is 
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highest, and the image of the overall denoising effect is better. Comparing with table of 
information entropy data, it can be seen that the image dealt with denoising algorithm and the 
original image information entropy are relatively close, it shows that the images have 
remained some texture information after denoising. SSIM is mainly used for comparing the 
degree of similarity between the two images, the higher the value, the more similar image 
content is. From Table 3, the value of SSIM of each denoising algorithm is similar, which can 
remove the noise while retaining the original content of the image. Meanwhile, the value of 
SSIM of the proposed adaptive fractional order algorithm is slightly higher, which has better 
texture details in the image, and has a good visual effect. From Table 5, we can see that the 
running time of the algorithm proposed in this paper is the longest, the reason is that the 
algorithm requires calculate the image local variance before the image denoising, thus 
increasing the computational overhead of image denoising process, increasing the 
computation time of the image. 

5. Conclusion 
In this paper, an image denoising algorithm based on adaptive fractional order anisotropic 
diffusion is proposed. The local variance is employed to represent the local image texture 
complexity and the fractional order is determined adaptively. It is not only beneficial to the 
fractional order partial differential operator in the practical application of promotion, but also 
can further improve the fractional partial differential operator to the ability of noise and it has 
laid a good foundation for the subsequent image processing. With the comparison results, it 
can be seen that the proposed image denoising algorithm can effectively overcome the 
drawbacks of losing contrasting information and texture information. It can achieve 
improvement on keeping detailed image information, texture information, good visual effects, 
better PSNR and SSIM in the process of image denoising. 
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