
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, Mar. 2017 1265
Copyright ⓒ2017 KSII

Dynamic Task Scheduling Via Policy
Iteration Scheduling Approach for Cloud

Computing

Bin Hu1,2, Ning Xie3, Tingting Zhao4 and Xiaotong Zhang1
1 School of Computer and Communication Engineering, University of Science and Technology Beijing

Beijing, China
2 College of Information Science and Technology,Bohai University

Jinzhou, China 121013
[e-mail: bhdxhb@163.com]

3 School of Software Engineering,Tongji University
Shanghai, China

4 Department of Computer Science and Technology,Tianjin University of Science and Technology
Tianjin, China

[e-mail: tingting@tust.edu.cn]
*Corresponding author: Tingting Zhao

Received March 3, 2016; revised June 25, 2016; revised August 19, 2016; accepted September 18, 2016;

published March 31, 2017

Abstract

Dynamic task scheduling is one of the most popular research topics in the cloud computing

field. The cloud scheduler dynamically provides VM resources to variable cloud tasks with
different scheduling strategies in cloud computing. In this study, we utilized a valid model to
describe the dynamic changes of both computing facilities (such as hardware updating) and
request task queuing. We built a novel approach called Policy Iteration Scheduling (PIS) to
globally optimize the independent task scheduling scheme and minimize the total execution
time of priority tasks. We performed experiments with randomly generated cloud task sets and
varied the performance of VM resources using Poisson distributions. The results show that PIS
outperforms other popular schedulers in a typical cloud computing environment.

Keywords: Cloud computing, resource scheduling, dynamic task scheduling, policy iteration

A preliminary version of this paper appeared in ISITC 2015, Cct.16-17,Tianjin, China. This version includes a
concrete analysis and supporting implementation dynamic task scheduling. This research was supported by a
research grant from National High Technology Research and Development Program 863. Research and
applications in Collaborative Optimization and multi-link monitoring about metallurgical production
process(No.2014AA041801-2).

https://doi.org/10.3837/tiis.2017.03.001 ISSN : 1976-7277

1266 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

1. Introduction

Cloud computing involves internet-based ("cloud") development and the use of
computer technology ("computing"). It is a style of computing in which resources are provided
as an internet service for users who lack expertise or control over the technological
infrastructure. It is a general concept that incorporates software as a service (SaaS), Web 2.0,
and other recent, well-known technology trends to use the internet to satisfy the computing
needs of users. A good example is Google Apps, which provides common business
applications online that are accessed from a web browser while the software and data are
stored elsewhere on Google servers [1]. The structure of cloud computing is usually described
as consisting of three layers: Application, platform, and infrastructure. These services are
delivered and consumed in real time over the internet. The top layer, SaaS, uses common
resources and an application to meet multiple user demands simultaneously. Platform as a
Service (PaaS) provides a services to software developers including developing, testing,
deploying, and hosting. PaaS helps to speed up development progress as well as providing
platform software tools and services. Infrastructure as a Service (IaaS) provides a computer
infrastructure. Aside from providing computational capacity flexibility for end-users, IaaS
also includes usage-based payment that allows end-users to pay as they go. The latest
technologies on the cloud update in the IaaS layer. In IaaS, physical computing resources
(such as CPUs, networks, and memories) are assigned, split, or dynamically resized into a
large number of virtual machines which are provided to end-users to meet their demands.
Employing these services can resolve several problems in regards to cloud data center power
wastage and management. End-users are able to apply for their own virtual machines rather
than actual physical resources, which prevents mutual influence among other users.
Workload-sharing enlarges the resource pool and provides even more flexibility and cheaper
resources.

The main goal of cloud computing is to improve the utilization of resources to meet the
QoS needs of cloud users. The scheduling of user tasks in the cloud plays an important role in
improving the performance of cloud services. Independent task scheduling is one of the more
common cloud task scheduling techniques. The independent task scheduling process is
depicted in Fig. 1.

The task scheduler is in charge of mapping user tasks to the most appropriate computing
resource via different scheduling strategies. Its performance directly affects the efficiency of
the entire cloud computing environment. Resource allocation and task scheduling have been
extensively studied in terms of high-performance computing [2, 3] and in embedded systems
[4, 5]. In cloud computing, however, task scheduling, automatic features, and resource
allocation [6] require different algorithms in the IaaS. Many cloud management systems have
adopted simple resource allocation strategies, for example, the greedy strategy adopted by
Amazon EC2 [7]. Others abound, including the heuristic scheduling method that has been
proposed for the Eucalyptus system, the priority queuing applied in OpenNebula, and the
stochastic scheduling method employed in the OpenStack system. Unfortunately, these
existing systems cannot globally improve the performance of virtual machines for cloud tasks.

In this paper, we focus on dynamic independent task scheduling. The two major
contributions are:

1) A valid model describing the dynamic changes of both computing facilities (such as
hardware-updating) and the task queue.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1267

2) A novel algorithm based on the policy iteration that globally optimizes the independent
task scheduling scheme.

Fig. 1. Task scheduling model in cloud computing

2. Related Work
Cloud computing, the long-held dream of computing as a utility, has the potential to

transform a large swath of the IT industry and make software even more attractive as a service.
It certainly shapes the way in which IT hardware is designed and purchased [7] and has
become a wildly popular research object in recent years. In 2005, Amazon began to provide
EC2 service over the internet to allow users to rent virtual computers on which to run their own
computer applications; it also allows scalable deployment of applications by providing a web
service by which a user can boot an Amazon Machine Image to create a virtual machine. These
services mark important steps moving into the age of cloud computing. A number of public
clouds are currently available for customers (and researchers,) including Amazon AWS,
GoGrid, and Rankspace. Other companies such as Microsoft Azure, IBM SmartCloud, Google
Cloud Computing, HP Cloud, Baidu Cloud, and Alibaba YunOS also provide cloud
computing services. Open source cloud services have also been developed in recent years in
effort to improve the research on cloud computing. One of the most well-known open source
testbeds is called Open Cirrus [8], which consists of 14 data centers distributed across the
globe. Essentially, it is a federated, heterogeneous cloud system. There are also many other
open source systems including Eucalyptus, Open Nebula, and Reservoirs [9].

Visualization, which abstracts the coupling between hardware and software, is one of the
most vital mechanisms in cloud computing. Rather than simply hide the internal details of a
physical system, visualization actually uses an interfacing abstraction of real hardware
resources or subsystems as a way to map the virtual resource to the actual resource; logical
resources are abstracted from their underlying physical resources in order to improve agility,
flexibility, and cost-reduction. Visualization is typically classified into six categories [10]:
Full visualization, hardware assisted visualization, visualization, operating system level
visualization, application level visualization, and network visualization.

1268 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

For practical proposes, we have chosen to focus on full visualization, which can be
treated as the mapping of a single physical resource to multiple logical representations, e.g.,
virtual machines (VMs). In the entire cloud computing environment, VMs can be dynamically
created, expanded, shrunk, and moved as needed. Therefore, visualization is extremely
well-suited to the dynamic cloud infrastructure by virtue of highly efficient features such as
sharing capability, manageability, and isolation. Visualization has several benefits for
enabling cloud computing [11, 12] including the following.

1) Functional execution isolation: The hypervisor handles the protection among VMs
and, therefore, among the applications on different VMs. Users can be granted
privileges within their VM without compromising isolation or host integrity.

2) A customized environment: Visualization enables the provisioning of highly
specialized and customized environments that contain specific-purpose operating
systems, libraries, and run-time execution environments. Visualization also offers
functional isolation therefore enabling multiple views over the same physical
hardware.

3) Easier management: Customized run-time environments can be started up, migrated,
and shut down in a very flexible manner depending on the needs of whoever
provides the underling hardware.

4) Consistency of legacy applications: VMs help to preserve binary compatibility in the
run-time environments for legacy applications.

5) Testing and debugging parallel applications: Leveraging virtualized environments as
a full distributed system may be emulated within a single physical host.

6) Enhancing reliability: Hypervisors and the live-migration capabilities can enhance the
reliability of hosted virtualized applications, making them independent of the
reliability of the underlying hardware in a seamless and transparent manner.

Nevertheless, the multi-tenancy nature of cloud computing along with its higher
consolidation level constitutes several challenges yet to be properly mitigated. An increased
level of sharing physical resources among multiple software components and applications to
be hosted on behalf of different customers makes it exceedingly difficult to provide stable and
predictable performance levels across the board. Indeed, VMs can be executed concurrently in
a virtualized platform, simultaneously competing for physical resources that are scheduled by
an underlying hypervisor. VMs and activities/tasks within VMs adjust to a hierarchical
scheduling view where time can be partitioned among VMs. Within VMs, the processor is
further granted tasks or threads according to the guest OS specific scheduling policy.

There have been numerous, valuable contributions to the literature in this regard.
Emeneker et al., for example, proposed an image caching mechanism to reduce the overhead
of loading disk images in a virtual machine [13]. Fallenbeck et al. used a dynamic approach to
create a virtual cluster to manage the conflict between parallel and serial jobs [14].
Sadhasivam et al. [15] proposed a scheduling heuristics algorithm that can be incorporated at
the data center level to select ideal hosts for VM creation; this implementation can be further
extended to the host level by using an inter-VM scheduler for adaptive load balancing in the
cloud. Gupta et al. presented the rid scheduling algorithm EDF-BF based on a QoS constraint,
the CPU speed of the clusters [16], so that it can be employed by a grid scheduler. Liu et al.
proposed a grid-based scheduling algorithm to manage load imbalance based on Min-Min in
Grid [17]. Kiyarazm et al. presented an algorithm for task scheduling and load balancing in
multi-processor systems based on the PSO method that can minimize the maximum span and
the average utilization of all processors in an optimal manner [18]. All that being said,
researchers have yet to address the VM performance problem in terms of managing dynamic

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1269

independent tasks. In this study, we modeled the dynamic independent task scheduling
problem into a Markov decision processes (MDP) and built a PIS algorithm to optimize the
task scheduling and load balancing.

The article aims to provide an approach of dynamic independent task scheduling for
cloud resource scheduling, with contributions including:

1) A new scheduling model is designed for dynamic independent task scheduling.
2) A state-of-the-art approach to cloud scheduling with PIS algorithm.

3. Dynamic Independent Task Scheduling Approach
In this section, we model the dynamic independent task scheduling problem as an MDP

problem. Typically, cloud computing architecture is categorized into three layers: The
application layer, platform layer, and infrastructure layer (from top to bottom) [19]. We focus
on user-oriented scheduling within the platform layer to provide the computing service for the
service layer Users submit tasks to the cloud computing environment and receive executed
results through the interface. The hypervisor creates the system description in two respects:
The state of the user tasks and the state of the VMs. As a result, user tasks can be sent to the
proper VM to obtain the required cloud computing resources via the dispatch of the
hypervisor.

3.1 Formulation into Markov decision process
Both task scheduling and MDP in cloud computing have no aftereffect characteristics in

the application, so we dynamically schedule the cloud task through the iterative and
incremental updated scheduling strategy. We formulate the scheduling procedure as an MDP
consisting of the tuple ()IS,A, f,P ,g g, .The main symbols used in this paper are listed in
Table 1.

Table 1. Symbol legend
Symbols Definitions

S A set of states
A A set of actions

f t+1 t ts s a(, ）

The transition probability density from current
state ts to next state t+1s while action ta is taken

I 0P (S) The probability of initial states 0s

g(,t t t+1s a s, ）
An immediate reward for transition from current

state ts to next state t+1s by taking action ta
γ The discount factor for future rewards
π The policy

()R h The discounted sum of future rewards

(,)Q s aπ
The conditional expected cumulative rewards of
taking action a in state s under the policy π

*π The optimal policy
ei The ith Cloud task

Policy is the core of reinforcement learning (RL), which defines the learning agent’s way
of behaving at a given time t. Stochastic policy incorporates exploratory actions, exploration is
usually required for securing an optimal policy in the learning process. We used the stochastic

1270 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

policy in this study, which maps states distributed over the action space and represents the
conditional probability density of taking action ta in state ts , as in:

()t+1 t ta a sπ | (1)
The dynamics procedures of the MDP are as follows. Initially, the agent starts from a

randomly selected state 1s following the initial state probability density IP ()0S and chooses
an action 1a based on the policy π. The agent then makes a transition following the dynamics

of the environment P()2 1 1s s a, . The transition is repeated T times to obtain a trajectory,

which is denoted as []= , ,... , , T1 1 Th s a s a . The return (i.e., the discounted sum of future
rewards) along h is given by:

-1
1() (, ,)

T
t

t t t
t 1

R h g s a sg +
=

=∑ (2)

Policy iteration is a popular and well-researched approach to RL. The key idea is to
determine policies based on value function. The state-action value function (,)Q s aπ for the
policy π is defined as the conditional expected cumulative rewards of taking action a in state s
under the policy π:

-1
, 1 1 1

1

,

Q (,) g(, ,) ,

{ (h)}

T

T

t
P t t t

t

P

s a E s a s s s a a

E R

π π

π

g
∞

+
=

 = = = 
 

=

∑
　　　　

 (3)

where Eπ and PT denote the conditional expectation over the t t t=1{ }s a ∞, following the policy

t t|)a sπ（ and transition T tP ()t+1 ts S a| , starting from s1 = s and a1 = a. The optimal

state-action value function is *Q (,) max Q (,)s a s aπ ππ
= . The goal of reinforcement learning is

to find the optimal policy *π that maximizes the state-action value function:
* *(|) arg max Q (,)

a
a s s aππ = (4)

Since the optimal state-action value function is unknown, it is necessary to evaluate

(,)lQ s aπ

∧

 for the policy π and then update the policy based on the current evaluated

value (,)lQ s aπ

∧

.

3.2 PIS algorithm
In a practical cloud computing environment, task scheduling is always a large-scale

problem. It is impossible to directly calculate the state-action value function for all the
possible state-action pairs, thus the approximation of the state-action value function is required.
We employed an efficient approach to evaluate the value function, i.e., Least Squares Policy
Iteration (LSPI) [20]. The policy update rule is given by:

^

1 ^

exp((,) /)()
exp((,) /)

l
l

la

Q s aa s
Q s a
p

p

τ
p

τ
+ =

∑
 (5)

where τ is a positive parameter determining the randomness of the new policy 1()l a sπ + .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1271

Finally, the algorithm can be presented through the following steps:
1) Initialize policy 1()a sπ .

2) Policy evaluation: Compute the state-action value function (,)lQ s aπ

∧

 for the current
policy ()l a sπ based on LSPI.
3) Policy improvement: Update the stochastic policy via Eq. (5).
4) Repeat steps (2) and (3) until the policy converges.
In order to monitor the situation of the entire environment, we designed the state

including the task information Se and the virtual machine information Svm. The set of tasks is
{ }0 1 1, ,..., nE e e e −= , where the ei denotes the ith cloud task, and the number of the tasks is N.

More specifically, the state space of our tasks is expressed by five features,
(), , , , ,e e e e e e eS ID RR STA DATA PIR PRI= , where eID is the task identification number

waiting to be assigned to some VM.

eRR : The required resource for each task, { }(0) (1) (1), ,..., k
e e e eRR RC RC RC −= , where RCk

is the description of the k-th resource.
eSTA : The description of the task.

{ } , , , , ,e e e e e e eSTA Free Allo Sche Wait Exec Comp= .

eDATA : The relative data, { } , ,e e e eDATA C I O= , where Ce is the computational
amount; Ie is the input data; and Oe is the output data.

ePIR : The pair of task and its running virtual machine, { , }e me vIDP IDIR = .

ePRI : The priority of the tasks, which is binary value 0 or 1 represented as a vector

()0 1, ,..., KPRI PRI PRI .
 The VM information can be described somewhat differently, as well. The set of the VM

is defined as ()0 1 M -1VM vm ,vm ,...,vm= , where vmj indicates the jth VM, and the number of
the VM is M. Our VM state space is expressed by three features:

(), , ,vm vm vm vm vmS ID TCAP FCAP DATA= , where vmID is the VM identification number and

vmTCAP is the total service ability that the VM can provide, which can be represented as

{ }0 1 , ,..., KTCAP TC TC TC= , where K is the resource type number and kTC is the service

ability of each resource (e.g., VM). Additionally, vmFCAP is the available resource of the VM,

{ }0 1, ,...,=vm KFCAP FC FC FC . vmDATA is the relative data of the VM, { },vm vmIB OB ,

where vm is the vector to represent the status of all K VMs such as ()0 ,..., Kvm vm .
In our model, the action of the hypervisor in the cloud is to assign tasks to the VM at the

current step. The action is calculated from the task scheduling policy of the hypervisor
implemented by the PIS algorithm *a ()sπ← , where a is the action represented as

e vmID ID→ , π∗ is the optimal policy for the task scheduling, and S is the state in the MDP
model. Task scheduling is naturally formulated as an MDP.

The goal of task scheduling is to maximize workload throughput. We define the reward
function by the entire time necessary to complete the task by degree. The reward function is:

1272 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

1
1

1
() (, ,)

K
i

i i i
i

R h g s a sg −
+

=

=∑ (6)

The function 1(, ,)i i ig s a s + is denoted as 1 1 2(, ,) ()
PRIei

i i i ex wag s a s t t ρa a −
+ = + , where 1a

and 2a are the coefficients, ext is the task execution time, and wat is the task waiting time. ρ
is the priority parameter and

iePRI is the state identification of the i-th task ie .

4. Experimental Results and Analysis

4.1 Experimental settings
 In this experiment, we adopted MIPS (Million Instruction Per Second) to represent the
computing ability of the VMs and the load of tasks. We used some parameter settings of the
cloud simulator cloudsim, as shown in Table 2 [21]. The computation workload of the task is
from 10,000 to 50,000 MIPS. For PIS implementation, we initially set the task scheduling
policy as uniform distribution, i.e., with the same probability of choosing each machine. In the

LSPI algorithm, the approximated value function (,)Q s aπ

∧

is expressed as a linear parametric

combination of the basis function (,) (,)TQ s a s aπ ω ω φ
∧

= , where φ(s,a) is the k = 15
dimensional Gaussian basis function vector:

1 2 k(,) ((,), (,),..., (,))Ts a s a s a s aφ φ φ φ= , 2 2
2(,) exp()

2
i ic c

i

s s a a
s aφ

s

− + −
= − (7)

The σ = 0.5 and
i ic c 1{(s ,a)}k

i= were randomly generated from the trajectory sample as the
centers of the Gaussian kernel. Note that the hyper parameters k and σ were chosen based on
our preliminary experiments, and may have affected the performance. The parameter of τ in
Eq. (1) was set to 0.9, and the discount factor γ to 0.95. The maximum number of policy update
iterations was set to 100.

Table 2. Cloud simulator parameters

Type Parameters Value

Datacenter Number of datacenters 1
Number of hosts 5

Virtual Machine (VM)
Total number of VMs 24
Number of PE per VM 1
VM memory(RAM) 2048(MB)

Cloud task

Bandwidth 1000bit
Type of manager Time shared
Total number of tasks 50
Priority level of tasks VM 1/0
Length of task 10000-50000MI

Parameters setting of IGA
Number of initial individuals 250
Pc 0.2
Pm 0.005

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1273

4.2 Same VMs and different loads
In the first part of the experiment, we used a total of 5 heterogeneous VMs to 5 hosts with

a set of 10-50 different tasks; the results are depicted in Fig. 2 and Fig. 3. The whole
completion time of tasks in PIS was shorter than that of other algorithms. In effect, the PIS
scheduling strategy can be used to enhance resource efficiency in cloud computing feasibly
and effectively.

Fig. 2. Whole completion time under the same VMs and various loads

Fig. 3. Completion time of priority task under the same VMs and various loads

4.3 Same tasks and different VMs
As the number of VMs often changes in a real cloud environment, we adjusted the

number and allowed each to perform differently. The results included the completion time of
these tasks executed by different algorithms, average completion time, and standard deviation.
As shown in Fig. 4, the priority task was shorter than that in other algorithms; the completion
time of the whole task was similar to the completion time of the priority task. In effect, PIS

1274 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

outperformed the other algorithms under various conditions.

Fig. 4. Completion time of priority task under the same load and various VMs

4.4 Extremely unbalanced load
Taking into account the variation of different loads and VMs, we expanded the load and

computing power to repeat the experiment. Tasks are quite different, and the performance of
the VMs is also totally different. As shown in Fig. 5, the completion time of the whole task and
priority were shorter than other algorithms. Our scheduling approach also proved robust in
efficiency regardless of variations in workload pattern. The operating efficiency of the PIS
algorithm is better than other algorithms in a complex cloud environment.

Fig. 5. Completion time of priority task under extremely unbalanced load and various VMs

4.5 Comparison among GA in iteration times and convergence
In the following experiments, we compared PIS with standard GA in two aspects: Iteration

time and variance of maximum fitness function. Newer mechanisms worked faster (about

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1275

50%) by number of iterations, as shown in Fig. 6. The variance of the maximum fitness was
smaller by about 80%. These observations suggest that PIS has better convergence and
robustness in searching for feasible/optimum solutions with a reasonable timeframe and
number of iterations. The PIS scheduling algorithm also outperformed the standard GA in
regards to convergence. Accordingly, the scheduling strategy based on PIS is well-suited to
resource scheduling in a practical cloud computing environment.

Fig. 6. PIS compared with GA in iteration times and convergence

5. Conclusion
In this paper, we present a dynamic task scheduling approach called the PIS strategy.

Experimental results showed that PIS enables the user to solve the dynamic resource
scheduling problem in a typical cloud computing environment. Our contributions include a
valid model to describe the dynamic changes of both computing facilities (such as hardware
updating) and request task queuing, as well as establishing the PIS which globally optimizes
the independent task scheduling scheme for maximizing the utility of cloud computing
resources. We demonstrated that our method can secure optimal scheduling effects compared
to similar, pre-existing methods. In the future, we plan to address the more challenging topic of
scheduling tasks by relevance.

References
[1] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, and Yun Li,

“Cloud computing resource scheduling and a survey of its evolutionary approaches,” ACM
Computing Surveys, vol.47, no.4, pp.47-63, July 2015. Article(CrossRefLink)

[2] João Nuno Silva, Luís Veiga, and Paulo Ferreira, “Heuristic for resources allocation on utility
computing infrastructures,” in Proc. of the 6th international workshop on Middleware for grid
computing (MGC '08). ACM, New York, NY, USA, Article 9, pp.1-6, 2008.
Article(CrossRefLink)

http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.1145/1462704.1462713

1276 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

[3] Tarek Hagras and Jan Janecek, “A high performance, low complexity algorithm for compile-time
task scheduling in heterogeneous systems,” Parallel Computing, vol.31, no.7, pp.653–670, 2005.
Article(CrossRefLink)

[4] Meikang Qiu, Minyi Guo, Meiqin Liu, Chun Jason Xue, Laurence Tian-ruo Yang, and Edwin
Hsing-Mean Sha, “Loop scheduling and bank type assignment for heterogeneous multi-bank
memory,” Parallel Distrib.Comput., vol.69, no.6, pp.546–558, 2009. Article(CrossRefLink)

[5] Meikang Qiu and Edwin H. M. Sha, “Cost minimization while satisfying hard/soft timing
constraints for heterogeneous embedded systems,” ACM Trans. Des. Autom. Electron. Syst.,
vol.14, no.2, pp.25–30, April 2009. Article(CrossRefLink)

[6] Stephen T. Heumann, Vikram S. Adve, and Shengjie Wang, “The tasks with effects model for safe
concurrency,” in Proc. of the 18th ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPoPP '13). ACM, New York, NY, USA, vol.48, no.8, pp.239-250,
August 2013. Article(CrossRefLink)

[7] Ahn Y, Cheng A M K, Baek J, et al., “An auto-scaling mechanism for virtual resources to support
mobile, pervasive, real-time healthcare applications in Cloud Computing[J],” Network, IEEE,
2013, vol.27, no.5,pp. 62-68, October 2013. Article(CrossRefLink)

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia, “A view of
Cloud Computing,” Commun. ACM, vol.53, no.4, pp.50–58, April 2010. Article(CrossRefLink)

[9] Arutyun I. Avetisyan, Roy H. Campbell, Indranil Gupta, Michael T.Heath, Steven Y. Ko, Gregory
R. Ganger, Michael A. Kozuch, David R.O’Hallaron, Marcel Kunze, Thomas T. Kwan, Kevin Lai,
Martha Lyons, Dejan S. Milojicic, Hing Yan Lee, Yeng Chai Soh, Ng Kwang Ming,Jing-Yuan
Luke, and Han Namgoong, “Open Cirrus: A Global Cloud Computing Testbed,” IEEE Computer,
vol.43, no.3, pp.35–43, April 2010. Article(CrossRefLink)

[10] Benny Rochwerger, David Breitgand, Amir Epstein, David Hadas, Irit Loy, Kenneth Nagin, Johan
Tordsson, Carmelo Ragusa, Massimo Villari, Stuart Clayman, Eliezer Levy, Alessandro
Maraschini, Philippe Massonet, Henar Muoz, and Giovanni Toffetti, “Reservoir - When One
Cloud Is Not Enough,” IEEE Computer, vol.44, no.3, pp.44–51, March 2011.
Article(CrossRefLink)

[11] Marisol Garcia valls (Marisol Garca-valls), Tommaso Cucinotta, and Chenyang Lu, “Challenges
in real-time virtualization and predictable Cloud Computing,” Journal of Systems Architecture,
vol.60, no.9, pp.726-740, October 2014. Article(CrossRefLink)

[12] Wei Huang, Jiuxing Liu, Blent Abali, and Dhabaleswar K. Panda, “A case for high performance
computing with virtual machines,” in Proc. of International Conference on Supercomputing. ACM,
pp.125–134, 2006. Article(CrossRefLink)

[13] Joshua E. Simons and Jeffrey Buell, “Virtualizing high performance computing,” ACM SIGOPS
Operating Systems Review, vol.44, no.4, pp.136–145, 2010. Article(CrossRefLink)

[14] Hyung Won Choi, Hukeun Kwak, Andrew Sohn, and Kyusik Chung, “Autonomous learning for
efficient resource utilization of dynamic VM migration,” in Proc. of the 22nd annual international
conference on Supercomputing (ICS '08). ACM, New York, NY, USA, pp.185-194, 2008.
Article(CrossRefLink)

[15] Niels Fallenbeck, Hans-Joachim Picht, Matthew Smith, and Bernd Freisleben, “Xen and the Art of
Cluster Scheduling,” in Proc. of Virtualization Technology in Distributed Computing, 2006,
pp.4-4, November 17-17, 2006. Article(CrossRefLink)

[16] R. Jayarani, Rajarathinam Vasanth Ram, Sudha Sadhasivam, and N. Na-gaveni, “Design and
Implementation of an Efficient Two-level Scheduler for Cloud Computing Environment,” in Proc.
of Advances in Recent Technologies in Communication and Computing, pp.585–586, May 17-20,
2010. Article(CrossRefLink)

[17] A. Gupta, S. Kohli and S. Jha, "Performance of EDF-BF algorithm under QoS constraint in grid
heterogeneous environment," in Proc. of Information Systems and Computer Networks (ISCON),
2013 International Conference on Mathura, pp. 170-172, March 9-10, 20113.
Article(CrossRefLink)

http://dx.doi.org/10.1016/j.parco.2005.04.002
http://dx.doi.org/10.1016/j.jpdc.2009.02.005
http://dx.doi.org/10.1145/1497561.1497568
http://dx.doi.org/10.1145/2442516.2442540
http://dx.doi.org/10.1109/MNET.2013.6616117
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/MC.2010.111
http://dx.doi.org/10.1109/MC.2011.64
http://dx.doi.org/10.1016/j.sysarc.2014.07.004
http://dx.doi.org/10.1145/1183401.1183421
http://dx.doi.org/10.1145/1899928.1899946
http://dx.doi.org/10.1145/1375527.1375556
http://dx.doi.org/10.1109/VTDC.2006.18
http://dx.doi.org/10.1109/CCGRID.2010.94
http://dx.doi.org/10.1109/ICISCON.2013.6524196

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1277

[18] Juefu Liu and Peng Liu, “The research of load imbalance based on Min-Min in grid,” in Proc. of
International Conference on Computer Design and Applications, pp.41-44, June 25-27, 2010.
Article(CrossRefLink)

[19] OmidReza Kiyarazm, M-Hossein Moeinzadeh, and Sarah Sharifian-R, “A New Method for
Scheduling Load Balancing in Multi-processor Systems Based on PSO,” in Proc. of International
Conference on Intelligent Systems, Modelling and Simulation, 2011 Second International
Conference on. IEEE, pp.71-76, January 25-27, 2011. Article(CrossRefLink)

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia, “A view of
Cloud Computing,” Communications of the ACM, vol.53, no.4, pp.50-58, April, 2010.
Article(CrossRefLink)

[21] X. Xu, D. Hu and X. Lu, “Kernel-Based Least Squares Policy Iteration for Reinforcement
Learning,” in Proc. of IEEE Transactions on Neural Networks, vol. 18, no.4, pp.973–992, July 9,
2007. Article(CrossRefLink)

[22] S. Santra and K. Mali, "A new approach to survey on load balancing in VM in Cloud Computing:
Using CloudSim," Computer, Communication and Control (IC4), in Proc. of 2015 International
Conference on, Indore, 2015, pp. 1-5, September 10-12, 2015. Article(CrossRefLink)

http://dx.doi.org/10.1109/ICCDA.2010.5541399
http://dx.doi.org/10.1109/ISMS.2011.73
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/TNN.2007.899161
http://dx.doi.org/10.1109/IC4.2015.7375671

1278 Hu et al.: Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

Bin Hu is a teacher in College of Information science and Technology, Bohai
University, and is also a Ph.D. student in School of Computer and Communication
Engineering, University of Science and Technology Beijing. His research interests
include the theory and application of Cloud Computing.

Ning Xie received the M. E., and Ph.D degrees from Department of Computer Science,
Tokyo Institute of Technology, Tokyo, Japan, in 2009 and 2012 respectively. In 2012, he
was appointed as a Research Associate in the same institute. From 2014, he is an assistant
professor in the School of Software Engineering, Tongji University. His research interests
include the theory and application of machine.

Tingting Zhao obtained her Ph.D. degree from Tokyo Institute of Technology, Japan.
She is the Associate professor of Tianjin University of Science & Technology, China. She
has published more than 15 papers in leading international journals or conferences of
machine learning domain, including Neural Computation, Neural Networks, NIPS2011,
ECML/ PKDD 2014 and IJCAI 2015. Her research interests mainly include machine
learning, robot control, pattern recognition etc.

Xiaotong Zhang received his Ph.D. degree from University of Science and
Technology Beijing in 2000. As national university students were sent to the Lehigh
University in Computer Science and Engineering in computer networks. Now, he is an
professor in University of Science and Technology Beijing. His research interests include
the theory and application of cloud computing and wireless sensor networks.

	Bin Hu1,2, Ning Xie3, Tingting Zhao4 and Xiaotong Zhang1
	Tianjin, China
	[e-mail: tingting@tust.edu.cn]
	*Corresponding author: Tingting Zhao
	Abstract
	Fig. 1. Task scheduling model in cloud computing
	Table 1. Symbol legend
	Table 2. Cloud simulator parameters
	Fig. 2. Whole completion time under the same VMs and various loads
	Fig. 3. Completion time of priority task under the same VMs and various loads
	Fig. 6. PIS compared with GA in iteration times and convergence

