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Abstract 
 

Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their 
potential for various applications. In this paper, we seek how to efficiently deploy relay nodes 
into traditional static WSNs with constrained locations, aiming to satisfy specific requirements 
of the industry, such as average energy consumption and average network reliability. This 
constrained relay node deployment problem (CRNDP) is known as NP-hard optimization 
problem in the literature. We consider addressing this multi-objective (MO) optimization 
problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search 
(MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO 
optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO 
ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different 
MO trajectory algorithms are included for comparison. We employ these metaheuristics on a 
test data set obtained from the literature. For an in-depth analysis of the behavior of the 
MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to 
analyze the results. After studying the results, it is concluded that constrained relay node 
deployment using the MOABCLLS outperforms the performance of the other algorithms, 
based on two MO quality metrics: hypervolume and coverage of two sets. 
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1. Introduction 

Recent years have witnessed significant advances in wireless sensor networks (WSNs), 
which have evolved in many areas due to their large applicability and development 
possibilities, for example, for forest fire detection, environmental control, home automation, 
industrial process monitoring, intensive agriculture, and robotics [1]. 

Traditional WSNs typically consist of sensor nodes (SNs) and a base station (BS). This kind 
of network is easy to perform badly due to some intrinsic properties of sensors, such as limited 
coverage radius, powered by non-replaceable batteries with limited energy, etc. Some studies 
considered to improve this situation by deploying sensors reasonably [2, 3]. However, it has 
been unaddressed that the network may break down due to some sensor nodes with heavy 
burden run out of energy early. Therefore, a new kind of nodes with higher energy capacity, 
namely relay nodes (RNs), was proposed to be added into the WSN[4]. It was verified that 
reasonable deployment of RNs is beneficial to improve the network properties, such as 
network connectivity/lifetime maximization [5] and network load balancing [6]. 

Most approaches studied the RNs deployment problem (RNDP) without setting any 
physical limitations, while most deployment regions in reality may contain forbidden regions 
or impose lower bounds on internode distances. We cannot deploy nodes anywhere we want. 
Therefore, a more practical situation, the constrained RNDP (CRNDP), is considered.  
CRNDP is an NP-hard optimization problem [7], which cannot be solved with conventional 
methods. Instead, some works assume non-conventional methods, such as heuristics [8] or 
metaheuristics [9]. 

In this paper, we consider solving CRNDP by metaheuristics, which could solve very 
general types of problems. To this end, a novel MO metaheuristic, namely MOABCLLS, is 
developed to solve the problem of RNs deployment with lower bounds on internode distances 
constraint, aiming to optimize some important factors in the industry. Our contribution can be 
summarized as follows:  
• By introducing a practically lower bounds distances constrained framework for WSNs, 

we conduct an MO research on CRNDP, optimizing average energy consumption (AEC) 
of the sensors and average network reliability (ANR), which are two important factors in 
the industry.  

• A novel MO metaheuristic, namely MOABCLLS, is introduced for solving CRNDP. This 
algorithm is an extension of traditional ABC, adding a linear local search factor and 
integrating concepts of non-dominated sorting and crowding distance from NSGA-II 
[10]. 

• We compare MOABCLLS with two versions of MO ABC, two standard genetic 
algorithms, NSGA-II [10] and SPEA2 [11], and two different MO trajectory algorithms, 
MOVNS and MOVNSwP [9], through a widely accepted statistical methodology. In this 
respect, the results acquired are analyzed via two MO quality metrics: hypervolume and 
coverage of two sets [12, 13]. 

The rest of this paper is organized as follows: In Section 2, we discussed related works 
concerning CRNDP and metaheuristics methods applied in WSNs. Section 3 is devoted to the 
description of the WSN model and the problem definition. The MOABCLLS proposed is 
detailed in Section 4. The experimental configuration and the results analysis are given in 
Section 5 and 6, respectively. Finally, Section 7 concludes the paper with future research 
directions. 
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2. Related Work 
In this section, we describe research about how to efficiently deploy RNs into traditional 
WSNs without and with constraints. By routing structures [14], RNDPs can be classified into 
either single-tiered or two-tiered. In single-tiered RN deployment, an SN forwards packets 
received from other SNs or RNs. In two-tiered RN deployment, an SN only forwards its own 
sensed information to an RN or a BS. 

First, we analyze previous works on single-tiered RN deployment, in which both RNs and 
SNs forward the received packets. Lloyd and Xue [15] optimized the network lifetime in 
single-tiered network with heuristics, while they assured the network connectivity; in this 
regard, they conducted two different types of research: first, between each pair of sensors, 
there was a connecting path composed of RNs and/or sensors, and another one is that the path 
was solely composed of RNs. Zhao and Chen [16] optimized the energy efficiency of the WSN 
by using a particle swarm algorithm, with the objective of minimizing the average path length 
in the single-tiered network. Cheng. et al. [17] guaranteed global connectivity by placing a 
minimum of RNs in single-tiered WSN with heuristics. Han et al. [18] optimized the 
fault-tolerance in single-tiered network considering sensors with adjustable transmission 
radius with heuristics. Lanza-Gutierrez and Gomez-Pulido [9] studied how to use 
metaheuristics to deploy RNs into single-tiered WSN with the objective of optimizing average 
energy consumption and average sensitivity area of the network. Ranga et al. [19] proposed a 
new solution based on a zero gradient point inside the convex hull polygon to restore the lost 
connectivity by the placement of RNs in WSNs. Truong et al. [20] introduced MO network 
repairing algorithms for restoring WSN connectivity in a known area. 

Next, we give a review of previous works on two-tiered RNs deployment, in which only 
the RNs forward the packets received. Hao et al. [21] tried to place a minimum number of RNs 
in two-tiered WSN with heuristics such that every SN can reach at least two RNs and there 
exist at least two node-disjoint paths between every pair of RNs. Liu et al. [22] explored how 
to deploy minimum RNs into a two-tiered WSN with heuristics, considering two cases, 
making the network connected and making the network 2-connected. Hou et al. [4] developed 
a heuristic algorithm, named SPINDS, to prolong the network lifetime and mitigate the 
network geometric deficiencies in a two-tiered network. Tang et al. [23] presented two 
polynomial time approximation algorithms to guarantee connectivity and fault-tolerance in a 
two-tiered WSN via deploying the minimum number of RNs. Wang et al. [24] applied 
heuristics to minimize the network device cost in a two-tiered WSN under the constraints of 
coverage, lifetime and connectivity. They considered two scenarios. The first is RNs with 
limited energy. The second is all nodes with limited energy. Zhang et al. [25] studied RNDP 
that ensured 2-connectivity in both single-tiered and two-tiered WSN by using heuristics. Xu 
et al. [5] discussed the impacts of random node deployment on connectivity and lifetime in a 
two-tiered WSN. Peiravi et al. [26] proposed a clustering method using a genetic algorithm in 
a homogeneous two-tiered WSN, optimizing the network lifetime with different delay values. 
Azharuddin and Jana [27] intended to minimize the number of RNs and maximize network 
connectivity by using a metaheuristic method-genetic algorithm in a two-tiered WSN. Chen et 
al. [28] considered converting RNDP into the minimum geometric disk cover problem and 
they proposed a linear time approximation algorithm for this problem. Hashim et al. [29] 
proposed an enhanced deployment algorithm based on Artificial Bee Colony to extend the 
lifetime of the WSN by optimizing the network parameters and constraining the total number 
of deployed RNs. 
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All of above approaches concern on RNs deployment with no constraints. It implies that 
the RNs can be deployed anywhere. However, in practice, there may be some physical limits 
on the RNs deployment. For single-tiered network, Misra et al. [30] deployed minimum RNs 
to a WSN under constraint that RNs were limited to be placed at a subset of candidate 
positions. The network connectivity is ensured at the meantime. By reaching out along this 
constrained approach, Misra et al. [8] ensure connectivity and survivability by deploying a 
minimum number of RNs in an energy-harvesting single-tiered WSN. The candidate locations 
with the energy harvesting potential are pre-specified. Perez et al. [31] employed an MO 
algorithm to optimize both the energy cost and the number of routers in a single-tiered WSN. 
Nigam et al. [32] proposed a branch-and-cut algorithm to place the minimum number of RNs 
at a subset of candidate locations in a single-tiered WSN, ensuring the sensors communicated 
with the sink node within a pre-specified delay bound. Ozkan and Ermis [33] studied how to 
ensure the connectivity of the network by deploying RNs in a single-tiered heterogenous WSN. 
They converted the problem of constrained RN placement into a mixed-integer programming 
model. Two meta-heuristics Genetic Algorithm and Simulated Annealing were employed to 
solve this model with the objective of finding the minimum number and reasonable position of 
the RNs. Yang et al. [34] used heuristics to deploy the minimum number of RNs into a 
two-tiered WSN under both connectivity and survivability requirements. 

3. System models and Problem formulation 

3.1 Network model 
We assume that the network on a two-dimension sensing field of size lx×ly (lx >0, ly >0) is 
composed of three types of devices: one BS, Ns SNs and Nr RNs, as depicted in Fig. 1. Only 
SNs are powered by batteries and the reminders have unlimited power supply. SNs with 
sensitivity radius rs sense the environment, generate data, and immediately transmit the data to 
the BS simultaneously, starting at time 1t t= ∈ (set of time periods, {0,1,2, }τ =  ). The BS is 
the sole connection point of the WSN to the outside. Any two devices can communicate if they 
are at a Euclidean distance lower than rc. All SNs are in the same energy charge initially. If an 
SN runs out of energy, it cannot be linked. We consider S-MAC as the medium access protocol 
for simplicity [35]. The routing protocol based on the shortest path is provided by SPFA 
algorithm [36]. To reduce interference in practice, the minimum Euclidean distance d for any 
pair of devices is more than dmin.  

 
Fig. 1. Wireless sensor network model 
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3.2 Energy model 
The energy model employed in this investigation took the most energy-consuming task of the 
packets sending into consideration, and neglected receiving, processing and sensing tasks 
[37]. 

At time t > 0, the energy expenditure suffered by a sensor i is 
 
 ( ) ( ) || ( ) ||s

i i iEP t P t amp k i t aς β= ⋅ ⋅ ⋅ − ⋅  , (1) 
 
where Pi(t) is the number of information packets, amp is energy cost per bit of the power 
amplifier (amp>0), k is information packet size in bits, ⋅   is the Euclidean distance between 
two devices,  ( )s

i tς  is the variable which provides the next device in the minimum path, α  is 
path loss exponent ( [2,4]α ∈ ) and β  is the transmission quality parameter ( 0β > ). This 
equation simulates extra cost due to packet loss.  

The residual energy of a sensor i is shown as 
 

 
( 1) ( ) 0

( )
0

i i
i

EL t EP t if t
EL t

ie if t
− − >

=  =
 , (2) 

where ELi(t) is the residual energy of sensor i, and ie is the initial energy of a sensor. 
Base on the above energy expenditure process, we define the lifetime as the number of time 

units. The network stops working when the energy of any sensor turn to be zero. Thus, the 
lifetime of the network is 
 
 { }| 0 / 0 |i slt t EL i St= > ∈ = ∈  , (3) 
 
where Ss is the set of initial sensor coordinates and  |.| is the cardinal of the set. 

3.3 Problem formulation 
The average energy consumption (AEC) of the sensors faec, over the network lifetime, is 
formulated as 
 

 
( )( )1 ( )s

lt
it i S t

aec
s

EP t
f

N lt
= ∈

=
⋅

∑ ∑
 , (4) 

 
where Ns is the number of initial sensors. It is the cardinal of Ss. ( )sS t  is the set of sensors 
coordinates with an energy charge more than 0 at time 0t t> ∈ , ( )s sS t S⊆ . 

The average network reliability (ANR) is fanr, which presents the probability of the 
information transmitting from the sensor node to the sink. That is, 
 

 1

s

anr i
i Ss

f r
N ∈

= ∑  , (5) 

 
where  [ ]0,1anrf ∈  and ri is the reliability of the sensor i, defined in [38] as 
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where  s

iedp   is the number of disjoint paths between i and the sink node, ,i s
kh  is the number of 

hops in kth disjoint path between both devices, and err is the local channel error. The disjoint 
paths are calculated through max-flow method proposed by Ford and Fulkerson [39]. 

This way, we define CRNDP as an MO problem, where given a traditional wireless sensor 
network, i.e. a set of sensors  Ss(t) and a BS, the objective is to deploy a set of RNs  Sr to 
 
 min( ),max( )aec anrf f  . (7) 
 
subject to 
 
 min( , )d m n d≥   (8) 
and 
 , ( , ) [0, ], [0, ]r x yz S z x y x l y l∀ ∈ = ∈ ∈  , (9) 
where m and n are any two in all nodes (including SNs, RNs and the BS), Sr  is the set of router 
coordinates. 

4. Methodology 
In this section, we introduce a novel MO metaheuristic, MOABCLLS, to solve the CRNDP. 
MOABCLLS is developed from an improved Artificial Bee Colony algorithm. Before a 
detailed description of our proposed algorithm, the presentation of encoding in this algorithm 
is defined as every individual is composed of Nr components. A component is the 
two-dimensional coordinate of an RN, i.e. ( , ), , [0, ], [0, ]i i i i r i x i yr x y r S x l y l= ∈ ∈ ∈ . 

 
4.1 ABC with a linear local search (ABCLLS) 

The ABC [40] algorithm belonging to Swarm Intelligence is a random optimization 
algorithm and detailed in reference [41]. Our main concern for this algorithm is how to 
generate a better candidate solution according to the search equation. The formula for 
choosing a candidate solution is  
 
 ( )ij ij ij ij kjv x x xφ= + −   (10) 
 
where {1,2, , }rj N∈   is a randomly selected index for the candidate solution iv , the current 
solution ix  and the neighbor solution kx (k≠i). iφ   is a random number between [-1,1]. 

Due to iφ   is a random number between [-1, 1], the ABC algorithm has a good global 
search ability but ignored the local search ability, which leads to slow convergence speed. In 
literature [42], they proposed GABC with a new searching strategy: 
 
 ( ) ( )ij ij ij ij kj ij j ijv x x x y xφ j= + − + −   (11) 
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where k , j , ijφ  are yielded in the same manner as in Eq. (10), ijj  is a uniform random number 
between [0,C], where C is a nonnegative constant. jy  is the jth element of the global best 
solution. The algorithm improves the local search ability without harming the global search 
ability in a degree. 

Then, we rewrite Eq. (11) as 
 

 

(1) (2)

(1)

(2)

( )

( )

ij ij ij ij

ij ij ij kj

ij ij j ij

v x v v

v x x

v y x

φ

j

 = + +
 = −


= −

  (12) 

 

In Eq. (12), (1)
ijv  stands for global search and (2)

ijv  aims at local search. It is important to 
note that this algorithm assumes a random local search ability throughout optimization process. 
However, according to a general optimization process, the global search ability is more 
important than local search ability in the early stage, which is helpful for the solution space 
sufficiently searched and avoiding the algorithm trapping into local optimum. While, in the 
late stage of the optimization process, the local search ability becomes more important than the 
global search ability, because better local search ability means a higher speed of convergence. 
Based on the previous analysis, we propose a method which improves GABC by utilizing a 
linear local search strategy. A linear parameter is defined as follows: 
 
 C* /fl Curitr Maxitr=   (13) 
 
where Maxitr  is the maximum number of iterations. Curitr  is the current number of 
iterations and C is a positive constant [42]. One can note that lf increases from 0 to C as the 
number of iteration increases. This increases the weight of local search linearly.  

A new ABC variant ABCLLS is proposed with the search equation given in Eq. (14), 
aiming to obtain the more accurate results and the higher convergence speed. 
 
 ( ) ( )ij ij ij ij kj f j ijv x x x l y xf= + − + − .  (14) 
 
4.2 MOABCLLS for CRNDP 
CRNDP is an MO problem, while ABCLLS is a single-objective algorithm. Therefore, 
MOABCLLS is developed, which is an MO modification of ABCLLS. An outline of the 
algorithm is shown in Algorithm 1. 

We assume a colony Pt of size N. The number of employed bees is as same as the number 
of onlooker bees, being N/2. Initially, random solutions of the optimization problem are 
generated and each bee of the colony is assigned one (line 1). At each iteration and so long as 
the stop criterion is not reached (line 2), the colony is divided into two groups: Et and Ot, i.e. 
the group of employed bees and onlooker bees, respectively (line 3). Next, each i teB E∈  
produces a candidate solution in its surroundings, assuming a randomly selected individual 

k teB E∈   (lines 5 and 6), that is  
 ( ) ( ) [1, , ]ij ij ij ij kj f ij ri jv eB eB eB l G eB j Nf= + − + − ∀ ∈



  , (15) 
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where ijφ  is a random value in the interval [-1, 1], being ijeB  and kjeB  the routers in the jth 
component of ieB  and keB , respectively. G is so far the optimal front of the solutions, which 
are some best non-dominated solutions. iG



 that is closest to ieB  in Euclidean distance is 
selected from G to promote the convergence speed and effectiveness of the MO algorithm as yj 
dose in Eq. (14) for single-objective algorithm. i jG



is the jth element of iG


and it represents a 
router’s position in this approach. Then, a greedy selection between the new solution and the 
previous one is carried out. If new solution is dominated, then increase the attempt counter. 
While the new solution is not dominated, then execute Algorithm 2 (line 7-12). 

Onlooker bees take a probability-based selection process. As the ABCLLS is a single 
objective algorithm and the CRNDP is an MO problem, we consider the elitist crowded 
comparison operator n≥  defined in NSGA-II [10] to establish how good a food source is. The 
procedure of probability calculation refers to Algorithm 3. The formula in Algorithm 3 
means that the best food source of Et is twice as likely as the second one. The second food 
source is as twice as the third one, and so on. Accordingly, each onlooker bee i toB O∈   
generates a new solution based on an employed forager eBi, which is randomly selected 
according to these probabilities (line 14-18), that is 
 
 ( ) ( ) [1, , ]ij ij ij ij ij f ij ri jv oB oB eB l G oB j Nf= + − + − ∀ ∈



   (16) 

 
where ijoB  and ijeB  are the routers in the jth component of ioB  and ieB , respectively. The 
onlooker bee takes the value via the greedy selection between both solutions (line 19-23). 

If the food source of an employed bee or onlooker bee is exhausted, a solution is generated 
by the scout process. Thus, a solution 1i tB P+∈  is randomly generated to the optimization 
problem. Then, the attempt counter of the food source is reset (line 28-33). 

After the scout process, the optimal solutions in Pt+1 will be saved to G if these solutions 
are not dominated by any solution of G. The solutions in G that are dominated by the ones in 
Pt+1 will be eliminated (line 34). Notice that G only contains the global optimal solutions and 
its length is adjustable. 

 
Algorithm 1. MOABCLLS 

1. Pt=initializePopulation(N) 
2. while not stop condition do 
3.      Et, Ot=selectGroupBees(Pt) 
4. //****EMPLOYED BEE PHASE**** 
5.      for each i teB E∈  do 
6.         v=generateEmployedBee( ieB , iG



)       //Use Eq. (15) 
7.         if ieB  dominates v then 
8.            ieB .attemptCounter++ 
9.         else 
10.            candidateDeals (v,  ieB )      //Use Algorithm 2  
11.         end if 
12.      end for 
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13.      Pr=calculateProbabilites(Et)      //Use Algorithm 3 
14.  //****ONLOOKER BEE PHASE****  
15.      for each i toB O∈  do 
16.         Produce random number r form the range [0,1] 
17.          if ip r≤  then         // i rp P≤  
18.              v=generateOnlookerBee( ieB , ioB , iG



)       //Use Eq. (16) and i teB E∈  
19.              if ioB  dominates v then 
20.                  ioB .attemptCounter++ 
21.              else 
22.                   candidateDeals (v,  ioB )  //Use Algorithm 2 
23.              end if 
24.           end if 
25.      end for 
26.      1t t tP E O+ ←   
27. //****SCOUT BEE PHASE**** 
28.      for each 1i tB P+∈  do 
29.         if iB .attemptCounter>limit  then 
30.            iB =generateScoutBee() 
31.            iB .attemptCounter=0 
32.         end if 
33.      end for 
34.      G←memorizeBestSource( 1tP+ )  
35.      1t t= +  
36.   end while 

Algorithm 2. Candidate deals 
1. Input(v, Bi) 
2. if v dominates Bi then 
3.     Bi= v 
4. else 
5.     if any one of G dose not dominate v then 
6.         G← { }G vG  
7.         Eliminate the solutions of G dominated by v. 
8.     end if 
9. end if 

Algorithm 3. Probabilities calculation 
1. Sort Et by the operator n≥  
2. for each i te E∈  do 

3.     
t

t

|E | i

|E | 1

2
2 1ip

−

+=
−

 // tE is the cardinal of Et and  i rp P∈ . 

4. end for 
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Let us now take a view at the convergence of the search process and the complexity of one 
iteration of the algorithm. As for the convergence, it can be ensured that the optimal front G 
converge to the Pareto front with probability one based on the theories from [43]. For 
complexity, the basic operations being performed and the worst case complexities associated 
with are as follows: 

1. The procedure of employed bee or onlooker bee is O(NrN|G|), 
2. Probabilities calculation is O(NrN2), 
3. The procedure of scout bee is O(NrN), and 
4. The best source memorization is O(NrN|G|). 

|G| is the cardinal of G. As can be seen, the overall complexity of the above algorithm is  
O(max(NrN2,NrN|G|)). 

5. Experimental strategy 
Other MO algorithms are introduced for comparison to evaluate the effectiveness of the 
MOABCLLS in this section. Thus, several questions arise about how to implement this 
comparison: What quantitative measures should be employed to present the quality of the 
results so that the metaheuristics used to CRNDP can be compared in a meaningful way? What 
is the outcome of an MO metaheuristics regarding a set of runs? What data set should be 
utilized to test our problem and algorithms? How can the parameters of the metaheuristics, 
regarding the CRNDP, be set appropriately? We treat these problems in the following. 

5.1 Algorithms for comparison 
First, two versions of MO ABC are assumed. We employ the MO strategies used in 
MOABCLLS to ABC and GABC respectively, obtaining MO ABC (MOABC) and MO 
GABC (MOGABC). They have the same complexity as MOABCLLS. Then, two standard 
genetic algorithms belonging to sub branch of EAs, NSGA-II [10] and SPEA2 [11], are 
involved in comparison. NSAG-II is an improved version of the previous NSGA and SPEA2 
is a revised version of the previous SPEA. These two algorithms have same complexity 
O(NrN2) and both have been employed to solve a wide variety of MO optimization problems, 
showing promising performance. In addition, we consider a comparison between 
MOABCLLS and two MO trajectory algorithms, MOVNS and MOVNSwP, employed in the 
reference [9]. MOVNS is an MO version of the variable neighborhood search algorithm, 
which is characterized by following a trajectory in the search space. MOVNSwP is an 
extension of the MOVNS by adding perturbation mechanism, in which the aim of the 
perturbation mechanism is to avoid local minima. The complexities of these two algorithms 
are the same, being O(NrN3). They show good performance in many optimization problems 
and are employed to solve RNs deployment problem in [9]. They are close to our approach. 
However, the problem we focus is constrained and has different optimization objectives. 
Moreover, we propose a new MO algorithm to deal with the problem. 

The complexity of our proposed scheme is same as MOABC and MOGABC, lower than 
MOVNS and MOVNSwP. For NSAG-II and SPEA2, MOABCLLS keeps the same 
complexity before the size of G reaches the value of N, but it gets more complex when the size 
of G increases beyond the value of N. However, our approach shows a better performance than 
other algorithms, which will be verified in Section 6. 
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5.2 Performance measures 
We employ two complementary measures to evaluate the tradeoff fronts produced by the 
metaheuristics to CRNDP. 

Hypervolume (HV): This metric calculates the portion of the objective space covered by 
members of a nondominated set of solutions F. Mathematically, for each solution i F∈ , a 
hypercube iµ  is constructed with a reference point ω  and the solution i as the diagonal 
corners of the hypercube. Then, the hypervolume of F is the union of all its hypercubes. That 
is, 

 
| |

1

volume( )
F

i
i

HV m
=

=


 . (17) 

Coverage of two sets(CTS):  This metric is based on the dominance concept. Let X1, X2 be 
two sets of phenotype decision vectors. The function CTS maps the ordered pair (X1, X2) to the 
interval [0, 1]. That is, 
 

 { }2 2 1 1 1 2
1 2

2

| ; : |
( , )

| |
x X x X x x

C X X
X

∈ ∃ ∈
=

X

  (18) 

 

If all individuals in X1 dominate or are equal to all individuals in X2, then C(X1, X2)=1 by 
definition. On the contrary, C(X1, X2)=0. 

5.3 Strategy and data set used 
For each algorithm and experiment, 30 independent runs is performed, which is a widely 
accepted value to reach statistical conclusions [44]. As stop condition, we assume several 
criteria in order to study the convergence of the algorithms. Accordingly, we assume 50000, 
100000,200000, 300000, 400000 and 500000 evaluations. 

The data set we used in this paper is proposed in the reference [9]. We configure this 
common framework for studying the CRNDP. The scenarios in our experiment are composed 
of three sizes: 100 × 100, 200 × 200, 300 × 300.  

This WSN model considers some parameters as stated previously. It is assumed that α = 2, 
β = 1, k = 128 KB, rs = 15m, rc=30m and amp = 100 pJ/bit/m2, from [45] and dmin is 0.1m in the 
model. Adding more RNs means the more network cost. Thus, we do not include more than 
20% of these devices regarding the number of sensors as [9] did. The number of routers, which 
are added to optimize the network, is shown in Table 1. In addition, Table 1 also indicates the 
value of the fitness functions without including RNs (Nr=0). 

 

Table 1. Experimental cases considered 

Test Ns 
Fitness( rN =0) Reference aecf  Reference anrf  Experiment 

cases(Nr) 
aecf  anrf  best worst best worst 

100×100 15 0.1036 0.02851 0.054 0.098 0.0051 0.027 2,3 
200×200 57 0.2288 0.06701 0.10 0.23 0.026 0.067 2,4,6,9 
300×300 128 0.3488 0.1421 0.13 0.35 0.045 0.15 6,12,18,24 
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5.4 Parameters settings 
Before conducting experiments, we consider the other metaheuristics for comparison using the 
same encoding as MOABCLLS used and all the parameters of the algorithms were sufficiently 
configured. As for population size, a same habitual value of 40 individuals is assumed for all 
metaheuristics. After that, a same value of parameter limit is set for MOABC, MOGABC, and 
MOABCLLS. The value of the limit is the number of RNs multiplied by half of the population 
size. In MOGABC and MOABCLLS, the value of parameter C is 1.5 [42]. For the other 
algorithms, the ranges of parameters default values are given in Table 2, where Mutation and 
Crossover stand for the probability of the mutation and crossover, while Nns represents the 
number of neighbor structures and ds delimits the displacement. In order to find the best 
parameters configuration, each configuration of parameters, i.e. a pair of values of any one of 
mutation and any one of crossover, was conducted 30 independent runs, considering a reduced 
stop condition (10000 evaluations). The best HV metric is selected as the quality indicator to 
choose the best parameters configuration, which provides the best performance on average as 
the value selected shown in Table 2. In addition, the reference points assumed to calculate the 
HV are listed in Table 1, where the terms “best” and “worst” are the best and the worst value 
of a fitness function, respectively. These values were obtained experimentally.  
 

Table 2. Values of Parameters selected about NSGA-II, SPEA2, MOVNS and MOVNSwP 
Algorithm Parameter Selected Range 

NSGA-II Mutation 0.1 [0.05,0.1,0.15,…0.95] 
Crossover 0.9 [0.05,0.1,0.15,…0.95] 

SPEA2 Mutation 0.2 [0.05,0.1,0.15,…0.95] 
Crossover 0.8 [0.05,0.1,0.15,…0.95] 

MOVNS Nns 6 [4,5,6,…,14] 
ds 3 [1,2,3,4,5,6,7,8,9] 

MOVNSwP 
Mutation 0.15 [0.05,0.1,0.15,…0.95] 

Nns 10 [4,5,6,…,14] 
ds 5 [1,2,3,4,5,6,7,8,9] 

6. Performance evaluation 
The advantages provided by the addition of RNs has been analyzed in various literatures [4, 9, 
17, 23, 30, 34]. Therefore, we chiefly address the CRNDP based on the data set with MO 
metaheuristics in this section. Regarding the simulation experiment, JDK 1.7 is employed to 
code the process. We acquire the optimization results for the industry parameters: AEC and 
ANR. Instead of showing the detailed optimization results of the industrial parameters, we pay 
attention to use some classical statistical methods for analyzing the quality of the solutions 
obtained, which could verify the effectiveness of our algorithm. 

6.1 Analysis based on HV metric 
Initially, we evaluate the quality of the MO algorithms based on the metric of HV. As shown in 
Fig. 3 to Fig. 5, the data included in the figures are the average HV for each algorithm, test 
case and stop iteration. It is clear about the behavior and the differences among the algorithms 
over the number of iterations. In these figures, we notice that MOABCLLS has a good 
convergence rate. Moreover, it seems that MOABCLLS provides the best performance among 
the algorithms. Since our experiments are dealing with some stochastic analysis with MO 
metaheuristics to verify the effectiveness of our algorithm and we want to show some results 
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with confidence, the following statistical analysis is employed to further analyze the results 
through this approach.  

First, we consider the Kolmogorov–Smirnov–Lilliefor’s [46] and Shapiro–Wilk’s [47] 
tests in order to analyze whether the results come from a normal distribution. In this regarding, 
we have the following hypothesis: H0: if results follow a normal distribution and H1: the 
opposite. We consider in this work a confidence level of 95% (i.e. p-value under 0.05). For all 
the cases, we get the p-values more than 0.05. Therefore, the assumption of H0 fails. Thus, the 
results do not follow a Gaussian distribution and the samples are independent. The median is 
written simply as M in this experiment. 

 
Fig. 3. Average HV of 100x100 tests 

 

 
Fig. 4. Average HV of 200x200 tests 
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Next, we consider the Wilcoxon-Mann-Whitney’s [48] test to study if some significant 

differences are shown among these algorithms. In this test, we have following hypotheses: H0: 
Mi is smaller than Mj or equal to Mj and H1: Mi is bigger than Mj (i=a, b, c, d, e, f, g  j=b, c, d, e, 
f, g a is NSGA-II, b is SPEA2, c is MOVNS, d is MOVNSwP, e is MOABC, f is MOGABC 
and g is MOABCLLS ). We consider the p-values with a significance level of 0.05. Based on 
this test method, we compare MOABCLLS with other four other algorithms for figuring out 
which one provides the best significant performance with each stop iteration and test case. 

Along with the above statistical procedure, the results about the percentage of test cases are 
depicted in Fig. 6.  

 

 

 
Fig. 5. Average HV of 300x300 tests 
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Fig. 6. Analysis of the p-values obtained considering the HV metric 

 
For 100 × 100 scenario, MOABCLLS provides the best behavior for all iterations. Then, 

for 200 × 200 scenario, MOABCLLS shows the better performance for reduced stop 
evaluations, but MOGABC and MOVNSwP perform as good as MOABCLLS do for a high 
number of iterations. Finally, we consider 300 × 300 scenario, MOABCLLS provides better 
behavior for reduced stop conditions. The performance of MOABCLLS is lightly weakened 
for high stop conditions. And MOGABC, MOVNSwP, MOVNS and MOABC show an 
increasing performance for high iterations. In addition, SPEA2 show better performance than 
NSGA-II in this simulation and for all test cases comprehensively. Regarding this analysis, we 
conclude that MOABCLLS is the best algorithm for CRNDP even with the enlarged terrain 
and the more added nodes. The order of the other algorithms is MOGABC, MOVNSwP, 
MOVNS, MOABC, SPEA2 and NSGA-II. 

 
 

 Table 3. Average CTS among the algorithms for 50000 iterations  
NSGA-II 

lx×ly SPEA2 MOVNS MOVNSwP MOABC MOGABC MOABCLLS Average 
100×100 32.44% 0.65% 0.96% 1.23% 0.09% 0.23% 5.93% 
200×200 37.24% 16.11% 15.27% 39.62% 13.55% 1.43% 20.54% 
300×300 33.15% 10.17% 8.43% 32.30% 4.73% 4.78% 15.59% 
Average 34.28% 8.98% 8.22% 24.38% 6.12% 2.15%  

SPEA2 
lx×ly NSGA-II MOVNS MOVNSwP MOABC MOGABC MOABCLLS Average 

100×100 53.02% 3.07% 6.95% 7.18% 3.19% 2.69% 12.68% 
200×200 46.51% 19.64% 14.32% 42.42% 15.49% 2.31% 23.45% 
300×300 58.52% 20.79% 17.88% 37.11% 17.36% 17.55% 28.20% 
Average 52.68% 14.50% 13.05% 28.90% 12.01% 7.52%  

MOVNS 
lx×ly NSGA-II SPEA2 MOVNSwP MOABC MOGABC MOABCLLS Average 

100×100 95.03% 88.29% 42.38% 53.93% 51.87% 21.86% 58.89% 
200×200 53.83% 49.74% 39.18% 54.28% 41.67% 8.37% 41.18% 
300×300 56.71% 46.89% 31.09% 50.18% 39.00% 29.54% 42.24% 
Average 68.52% 61.64% 37.55% 52.80% 44.18% 19.92%  

MOVNSwP 
lx×ly NSGA-II SPEA2 MOVNS MOABC MOGABC MOABCLLS Average 

100×100 96.32% 81.16% 37.76% 41.32% 39.54% 15.62% 51.95% 
200×200 62.15% 56.54% 41.06% 36.91% 51.25% 12.55% 43.41% 
300×300 69.61% 52.35% 35.94% 40.85% 37.62% 31.56% 44.66% 
Average 76.03% 63.35% 38.25% 39.69% 42.80% 19.91%  
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MOABC 
lx×ly NSGA-II SPEA2 MOVNS MOVNSwP MOGABC MOABCLLS Average 

100×100 86.18% 63.83% 42.22% 48.54% 71.25% 17.71% 54.96% 
200×200 32.06% 25.31% 24.98% 21.62% 23.91% 5.45% 22.22% 
300×300 72.60% 57.95% 45.01% 39.30% 46.30% 27.95% 48.19% 
Average 63.61% 49.03% 37.40% 36.49% 47.15% 17.04%  

MOGABC 
lx×ly NSGA-II SPEA2 MOVNS MOVNSwP MOABC MOABCLLS Average 

100×100 93.41% 86.32% 40.02% 47.28% 54.69% 32.36% 59.01% 
200×200 59.63% 56.39% 54.65% 42.19% 61.58% 4.06% 46.42% 
300×300 89.89% 76.12% 41.73% 49.52% 34.92% 26.32% 53.08% 
Average 80.98% 72.94% 45.47% 46.33% 50.40% 20.91%  

MOABCLLS 
lx×ly NSGA-II SPEA2 MOVNS MOVNSwP MOABC MOGABC Average 

100×100 99.46% 99.23% 75.38% 83.39% 97.90% 96.10% 91.91% 
200×200 87.97% 86.09% 86.14% 85.21% 85.35% 85.09% 85.98% 
300×300 75.92% 93.21% 49.68% 43.36% 43.93% 48.84% 59.16% 
Average 87.78% 92.84% 70.40% 70.65% 75.73% 76.68%  

 

6.2 Analysis based on CTS 
In addition to HV, the CTS metric is employed to analyze the quality of the MOABCLLS 
algorithm comparing to other algorithms, according to the size of the area. The values of this 
metric are calculated by considering the median Pareto fronts from previous 30 samples. The 
CTS results are shown for 50000 and 500000 iterations. The results are listed in Table 3 and 
Table 4. Higher average values for each scenario have a gray background. Accordingly, 
MOABCLLS is the best algorithm for 50000 and 500000 evaluations.  
 

Table 4. Average CTS among the algorithms for 500000 iterations 
NSGA-II 

lx×ly SPEA2 MOVNS MOVNSwP MOABC MOGABC MOABCLLS Average 
100×100 67.40% 2.45% 8.12% 17.69% 1.63% 5.41% 17.12% 
200×200 21.39% 28.46% 24.94% 31.84% 27.60% 8.32% 23.76% 
300×300 15.46% 21.92% 19.49% 30.12% 6.34% 15.97% 18.22% 
Average 34.75% 17.61% 17.52% 26.55% 11.86% 9.90%  

SPEA2 
lx×ly NSGA-II MOVNS MOVNSwP MOABC MOGABC MOABCLLS Average 

100×100 78.90% 7.36% 9.75% 13.83% 0.73% 3.96% 19.09% 
200×200 37.03% 38.49% 25.59% 41.52% 42.20% 8.13% 32.16% 
300×300 12.41% 35.21% 30.63% 4.23% 61.50% 15.99% 26.66% 
Average 42.78% 27.02% 21.99% 19.86% 34.81% 9.36%  

MOVNS 
lx×ly NSGA-II SPEA2 MOVNSwP MOABC MOGABC MOABCLLS Average 

100×100 83.84% 86.52% 57.51% 60.53% 41.27% 36.52% 61.03% 
200×200 42.48% 39.33% 43.24% 54.29% 40.58% 22.46% 40.40% 
300×300 65.99% 68.41% 46.66% 66.62% 72.12% 68.55% 64.73% 
Average 64.10% 64.75% 49.14% 60.48% 51.32% 42.51%  

MOVNSwP 
lx×ly NSGA-II SPEA2 MOVNS MOABC MOGABC MOABCLLS Average 

100×100 77.59% 68.60% 50.13% 49.10% 37.44% 28.13% 51.83% 
200×200 48.04% 47.08% 51.47% 61.66% 43.02% 29.77% 46.84% 
300×300 74.85% 71.27% 48.28% 69.54% 77.19% 73.40% 69.09% 
Average 66.83% 62.32% 49.96% 60.10% 52.55% 43.77%  
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MOABC 
lx×ly NSGA-II SPEA2 MOVNS MOVNSwP MOGABC MOABCLLS Average 

100×100 54.51% 56.44% 18.52% 27.72% 15.19% 16.47% 31.48% 
200×200 54.96% 52.11% 39.98% 25.9% 37.98% 4.41% 35.89% 
300×300 62.18% 12.11% 43.4% 40.82% 76.85% 39.07% 45.74% 
Average 57.22% 40.22% 33.97% 31.48% 43.34% 19.98%  

MOGABC 
lx×ly NSGA-II SPEA2 MOVNS MOVNSwP MOABC MOABCLLS Average 

100×100 81.76% 83.67% 37.04% 42.81% 52.61% 28.95% 54.47% 
200×200 47.65% 43.17% 42.11% 35.35% 55.62% 8.62% 38.75% 
300×300 68.94% 74.32% 77.64% 73.24% 80.73% 72.19% 74.51% 
Average 66.12% 67.05% 52.26% 50.47% 62.99% 36.59%  

MOABCLLS 
lx×ly NSGA-II SPEA2 MOVNS MOVNSwP MOABC MOGABC Average 

100×100 94.36% 92.38% 59.84% 66.52% 62.13% 51.65% 71.15% 
200×200 85.84% 86.48% 83.48% 76.33% 79.85% 77.30% 81.55% 
300×300 78.83% 85.33% 77.99% 64.41% 81.51% 66.57% 75.77% 
Average 86.34% 88.06% 73.77% 69.09% 74.50% 65.17%  

 

7. Conclusion 
In this paper, we consider how to solve CRNDP with the objective of optimizing two 
important factors in industry: AEC of SNs and ANR. CRNPD is an NP-hard optimization 
problem proved in several literatures. Metaheuristics usually show good performance on 
solving this kind of problems by providing a set of trade-off solutions, which provides the 
network designer more possibilities to design the network. In this case, we proposed a novel 
metaheuristic, namely MOABCLLS, to solve this problem. In order to verify the effectiveness 
of the algorithm, we present a comparison among MOABCLLS and a wide range of other MO 
metaheuristics including MOABC, MOGABC, NSGA-II, SPEA2, MOVNS and MOVNSwP. 
These metaheuristics are employed to optimize a data set obtained from the literature, 
assuming three different scenarios. The results obtained are analyzed considering two standard 
MO metrics: HV and CTS, through a widely accepted statistical methodology. The simulation 
results show that MOABCLLS performs well on solving CRNDP and provides better 
performance than the other algorithms for all cases in this investigation.  

As part of our future work, we intend to involve other key fitness functions and more 
realistic constraints in the industry into our MO calculations. Conducting our experiments 
with some standard simulation tools, such as OMNET++ and NS2, is also in our plan.  
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