
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, Dec. 2017 5780
Copyright ⓒ2017 KSII

Effective Task Scheduling and Dynamic
Resource Optimization based on Heuristic

Algorithms in Cloud Computing
Environment

Frederic NZanywayingoma1, Yang Yang2

12 Department of Computer Science and Communication Engineering,
University of Science and Technology Beijing

Beijing, 100083- China
[e-mail: nzanywafre@yahoo.fr]
 [e-mail: yyang@ustb.edu.cn]

*Corresponding author: Frederic Nzanywayingoma

Received May 10, 2016; revised November 12, 2016; revised February 28, 2017; revised May 11, 2017;
revised July 4, 2017; accepted August 9, 2017; published December 31, 2017

Abstract

Cloud computing system consists of distributed resources in a dynamic and decentralized
environment. Therefore, using cloud computing resources efficiently and getting the
maximum profits are still challenging problems to the cloud service providers and cloud
service users. It is important to provide the efficient scheduling. To schedule cloud resources,
numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been
adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to
solve the above mentioned issues. We first formulate an optimization problem and propose a
Modified PSO optimization technique. The performance of MPSO was evaluated against PSO,
and GA. Our experimental results show that the proposed MPSO minimizes the task execution
time, and maximizes the resource utilization rate.

Keywords: Modified Particle Swarm Optimization (MPSO), Virtual Resource Scheduling,
PSO, Global Optimization, Cloud Computing.

The author would like to thank the reviewers for their valuable comments and suggestions that helped us to improve
the quality and the correctness of this work. This work was supported by the National Science Foundation of China
(Grant Nos. 61202508, 61272432, 61370132,61472033, and 61370092, Fundamental Research Funds for the
Central Universities [FRF-TP-14-045A2]).

https://doi.org/10.3837/tiis.2017.12.006 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5781

1. Introduction

Nowadays, users have realized that the PCs bought few years ago can’t move with the
development of software; they require a higher speed CPU, a larger capacity hard disk, and a
higher performance Operation System (OS). That is the magic of Moore’s Law which needs
user to upgrade their PCs constantly, to cope with development of techniques[1]. Cloud
Computing Services such as Infrastructure as a Service (IaaS), Software as a Service (SaaS),
Platform as a Service (PaaS) came to give users the virtual unlimited pay-per-use computing
resources (e.g., network resources, servers, and storage resources) with a minimum effort to
manage available resources efficiently and gain maximum profit. The PCs that want to access
the cloud services just need to have less memory, a light operating System and browser. Users
can use the software directly from the cloud, can store data on cloud, can make their
applications on cloud platform without installing any software on their machines[1, 2].
According to NIST definition, cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources that can be
rapidly provisioned and released with minimal management effort or service provider
interaction[3].
Cloud computing has become one of the industry buzz words and a major widely used in
various fields of IT world. It is an emerging technology and it processes a large amount of data
so that the task scheduling mechanisms work as a vital role. The problem of task scheduling
has become a hot topic. At the same time, it is also NP hard problem. Therefore, the main goal
of the efficient task schedule algorithm is to decrease total completion time, overall execution
time, average response time and to improve the resource utilization rate of the entire system
under the condition of meeting the Quality of Service. Cloud computing technology allows
users to pay as you need and has the high performance. The rental cost is related to hardware
and software, such as the number of CPU frequency, number of core, memory, the size of hard
disk and network disk, operating system, databases, network bandwidth, maintenance cost,
and location of rented servers, etc[4].
The efficient usage of resources and achieving an optimal allocation of user’s tasks are the key
issues of task scheduling in cloud computing. Therefore, how to use cloud computing
resources efficiently and get the maximum profits becomes the fundamental goals of cloud
computing service providers[5]. Scheduling an intensive data or computing an intensive
application, it is acknowledged that optimizing the transferring and processing time is crucial
to an application program. In our paper, a Task Scheduling Optimization based on Heuristic
Algorithms is proposed. Nowadays, cloud computing environment is mostly built according to
MapReduce programming model, which is an efficient task scheduling model especially for
the generation and processing of large data sets. Therefore, for cloud computing providers,
task scheduling and virtual resource allocation with dynamic characteristics is still a
challenging problem. In order to find a good method of solving this problem, research is
conducted on various heuristic approaches. Thus, key points and difficulties of cloud
computing are how to reasonably carry out the task scheduling and virtual resource allocation
at the same time.
There are more factors that are affecting the cloud service performance such as the cloud
service cost, real-time server load rate, bandwidth utilization especially when users require a
higher communication such as in multimedia streaming, reliability of the system, network
delay, and task computation complexity. Therefore, these above-mentioned factors yield to

5782 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

increase total task completion time, overall task execution time, average task response time,
and decrease the resource utilization rate of the entire cloud computing system [6].
In this paper, we minimize the cost of the processing by formulating a model for task
scheduling and proposing a modified particle swarm optimization algorithm which is based on
small position value rule.
The traditional particle swarm optimization algorithms have been integrated into the task
scheduling model in the cloud computing environment to improve the quality of service and
the fitness function[7]; however, it is common to encounter issues such as local optimization
and no interaction between parallel swarms[2].
We resolve these disadvantages of the standard particle swarm optimization (SPSO) algorithm
by describing a modified particle swarm optimization (MPSO) algorithm able to identify
optimal solutions for the cloud resource scheduling problems. Our contributions to this paper
are cited as the followings: (1) we formulate a model for task scheduling in cloud computing to
minimize the overall time of executing and transmitting tasks. (2)We design a MPSO
algorithm to solve task scheduling based on the proposed mathematical model, compare and
analyze with other existing algorithms. We compare the MPSO results with the traditional
PSO.
We organized this paper as follows: Section (1) introduces the cloud computing and the basic
of PSO optimization. Section (2) shows related work. Section (3) states and formulates the
problem. Section (4) presents task scheduling algorithm that uses MPSO and formulate the
mathematical model. Section (5) shows the simulation results of the proposed algorithm. Last
but not lease, section (6) concludes the paper.

2. Related Work
The most crucial requirement for cloud computing is an effective task scheduling and a virtual
resource optimization. Task scheduling is very important to cloud computing resources and it
has been a challenging problems. Recently, many researches are being conducted to improve
the efficiency of task scheduling and virtual resource utilization. Most of the proposed search
algorithms, disregarded the total task completion time, and the resource allocation at the same
time. The misuse of the available resource leads to the increasing of server computing time and
the user waiting time. Heuristic algorithms have been proposed to solve these complex
optimization problems which are mostly non-linear or non-differentiable or combinatorial
optimization problems[8].
Due to the complexity nature of optimization problems, constant and linear time-varying
values may not work well in many cases. Therefore, using a non-linear coefficient for MPSO
could yield to a better performance in some extent. In these days, many heuristic evolutionary
optimization algorithms have been proposed to resolve the task scheduling problems [9].
These include Particle Swarm Optimization(PSO), Genetic Algorithm(GA), Deferential
Evolution(DE), Ant Colony(AC), Tabu search algorithm, Simulated Annealing Algorithm
[10], Artificial bee colony algorithm(ABC) [8, 11, 12], Harmony Search Algorithm[13], and
Gravitational Search algorithm(GSA) [14]. The purpose for them is to find the best global
optimum among all possible inputs [15].
In [16], Swati Agrawal, consideres a modified PSO to address the problem of premature
convergence. Particle Swarm Optimization (PSO) technique suffers from a major drawback of
a possible premature convergence. Here, the focus is to free PSO from local optimum
solutions; enable it to progress towards the global optimum searching over wider area. For this
modified PSO, results have been compared with the base PSO, which is inertia weight PSO.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5783

Numerical experiments done on some benchmark functions compare inertia weight PSO and
modified PSO. Also in [17], Said Labed et al., propose a modified hybrid Particle Swarm
Optimization (MHPSO) algorithm that combines some principles of Particle Swarm
Optimization (PSO) and Crossover operation of the Genetic Algorithm (GA) with two aims:
to propose a new hybrid PSO algorithm; to prove the effectiveness of the proposed algorithm
in dealing with NP-hard and combinatorial optimization problems. The test results were
simulated in matlab7 to assess the efficiency and performance of the MPSO algorithm.
Shafi Ullah Khan et al. [18] propose a MPSO for global optimizations of Inverse problems. In
this work, the modified PSO is presented by introducing a mutation mechanism and using
dynamic algorithm parameters. The experimental results on different case show that the
proposed PSO gets the best results among the tested algorithms. In [18], Ai-Qin Mu et al., use
the idea of simulated annealing algorithm to propose a modified algorithm which makes the
most optimal particle of every time of iteration evolving continuously. By the testing of three
classic testing benchmark functions, it is concluded that the modified PSO algorithm has the
better performance of convergence and global searching than the original PSO. The work in
[19], takes into consideration both computation cost and data transmission cost. Pandey s. et
al., has presented a particle swarm optimization (PSO) based heuristic to schedule applications
to cloud resources. In [11] author presents a particle swarm optimization in a multidimensional
complex space. Their paper analyzes a particle’s trajectory in discrete and in continuous time
with the goal of increasing the ability of the swarms in order to find the optimum solution.
The work in [20] used hybrid (PSO and GA) heuristic algorithms to enhance power system
stability. Other heuristic algorithms in [21] have been used combined with MapReduce
parallel programming model for high performance computing at scale in cloud computing.
Their work evaluates system design alternatives and capabilities aware task scheduling for
large-scale data processing on accelerator-based distributed systems.
The paper [22] proposed the multiple application co-exist (MACE) method, which minimizes
mutual-interference and maximizes resource utilization for resource static allocation, dynamic
supplement and resource reserved mechanism [23]. Therefore, we will focus on reducing the
processing cost , power consumption, and transmitting time between virtual resources in the
cloud computing with the purpose of minimizing the cost and time of the jobs submitted by
users. Energy consumption, processing time, and cost. The cost is related to the computing
power of the CPU, the memory size, and the bandwidth.
Author [24] suggested a task scheduling using a multi-objective nested Particle Swarm
Optimization (TSPSO) to optimize energy and processing time to reduce power consumption
and improve the profit of service providers by reducing processing time and author [25]
focused on optimizing the energy efficiency in datacenter by using efficient task scheduling to
physical servers. To improve the resource allocation in cloud computing, an allocation model
using the shortest task completion time and the lowest cost as the constraints to minimize cost
and completion time was proposed. Paper [26] proposed a Parallel Bee Colony Optimization
Particla Swarm Optimization(PBCOPSO) approach with objective to minimize total
execution time and to optimize the resource utilization. The author considered Bee Colony
Optimization(BCO) in parallel with PSO to schedule independent tasks. In their experimental
results, authors considered to use 4 resources to schedule 40 to 60 tasks. Their developed
approach was compared with Min-Min and IBCO (Improved Bee Colony Optimization).
Compared to Min-Min algorithm, the proposed new method improved the resource utilization
by an average of 5.038% and 3.724% compared with IBCO.
To show the performance of the proposed algorithm (MPSO), our experimental results will be
compared against GA and PSO in terms of task scheduling metrics. There exists many

5784 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

literature on comparison of GA and PSO. PSO and Genetic Algorithm (GA) are two
evolutionary heuristics population-based search methods but GA is discrete variables based
which is suitable for combinatorial problems. PSO has to be modified to cope with discrete
variables. GA and PSO techniques start with a group of a randomly generated population and
use a fitness value to evaluate the population. They all update the population and search for the
optimum with random techniques. The main difference between the PSO and GA approach is
that PSO does not possess genetic operators such as crossover, selection, and mutation.
Compared to GAs, the advantages of PSO are that PSO is easy to implement and there are few
parameters to adjust [20, 27-29]. Paper [30]compared the results of GA, PSO, ACO, shuffled
frog leaping, and memetic algorithms in terms of processing time, convergence speed and
quality of the results. PSO was found the best performer than other algorithms in terms of
processing time. The elements used for PSO are: Particles, fitness function, local Best, global
best, velocity update, position update. And GA employs three operators (crossover, Selection,
and Mutation) to propagate its population from one generation to another.
We have explored how PSO/GA work and how they are applied to solve NP-complete
problems of task scheduling in cloud computing.

3. Problem Statement
3.1 Assumptions and problem formulation
The task scheduling techniques [31] is to assign incoming tasks to the available resources.
According to the scheduling strategies, the poor task scheduling algorithms can significantly
affect the efficiency of the whole Cloud Computing system. Let assume that a cloud service
provider assigns n tasks to m machines with)(nm < . Let),...,,(21 nttt represents the input
tasks waiting to be scheduled. Then the task scheduler based on scheduling policy and QoS
requirements decides which task to be assigned to which machine from the collection of
virtual machines as shown in Fig.3.1. The VMs are represented by cpubwrammipsvmid ,,,, .
vmid represents VM number, mips represents virtual machines’ speed in million instructions
per second, ram represents the memory of VM, bw represents the bandwidth, cpu represents
the cpu of the VM.
To model our task scheduling problem, we assume that the number of swarm particles
correspond with a set of task numbers. The tasks are modeled as a direct acyclic graph (DAG)
where G= (V, E). A set of vertices V represents the VMs and tasks and a set of edges E
represents the connections between the tasks and VMs and their communication cost. Edge is
a pair),(tv with Vtv ∈, . We denote nT as the number of tasks and mR the number of available
heterogeneous computing dynamic virtual resources. The objective to model the task
scheduling problem is to minimize the completion time and to find the best virtual resource
utilization. We evaluate both objective functions using fitness function. Here the fitness of a
particle is measured with execution time and communication cost for all tasks.
Let ()EVG ,= be a graph with { }ntttV ,...,, 21= as a set of tasks nodes/vertices, and E is a
set of edge weights between two tasks it and kt and is denoted the information exchange
between these paired tasks. An arc is in the form of ETT ji >∈< , , where entryT is called the

parent task and it is the child task. Here, we consider that all tasks are computational and are
considered to be dependent to each other accordingly. We consider a complete graph which

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5785

means that there is an edge between every pair of vertices. The graph starts with root node and
ends with end node. The node with no parent/root node is called an entry node entryT and a node

with no child/end node is called an exit node exitT .

Fig. 3.1 Represents a Task Scheduling model in cloud computing environment[32]

It is assumed that a child task cannot be executed until all of its parent tasks have been
completed. Fig. 3.1 and Fig. 3.2 illustrate clearly the scenario. Let us consider entryT and exitT
as two dummy tasks at the beginning and at the end of the weighted direct acyclic graph
(DAG) with zero execution time. We calculate the communication cost jiC , by referencing to
the amount of data to be transmitted between resources. The scheduling is considered as a
non-preemptive scheduling to mean that there is no interruption when the tasks are processing.

Fig. 3.2. Task graph with n tasks

e12

e34

e4n

e13

e2n

T1

Texit

T4

Tentry

T3

T2

Tn

Input tasks

Task1 Task2 ….. Task n

Task Scheduler

VM2 ….

Outputs

Task Assignment System

Scheduling Policy

QoS Requirements

VM VM1

Start of the process

End of the process

5786 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

The mapping of the set of tasks to the available heterogeneous resources in Fig. 3.3 helps us to
compute the maximum completion time of the tasks, minimum execution time, and the
execution cost. The cost varies depending on the computing power of the CPU, memory, and
bandwidth. To map the above-mentioned set of resources, we consider mR number of
available heterogeneous computing resources, and ijb the bandwidth between resources. Then

we calculate the available bandwidth ()
NxNijbB = for the available resource. We suppose that

there exist a finite number of possible mappings from a collection { }ntttT ,....,, 21= to a
collection { }mrrrR ,...,, 21= and a large number of pair of tasks and VM resources. The Fig.
3.3 depicts an illustrative example of the task assignment. Assume that task 1t is assigned to
resource 1r and 3r , task 2t is assigned to resource 2r , 4r , and jr , task 3t is assigned to resource

4r and jr , and 4t is assigned to mr respectively.

Fig. 3.3. Mapping of the tasks to available resources[33]

We consider a discrete-time model with a collection mR of machines indexed m,...,2,1 . Tasks
come in with a tagged random mapping number and each task is associated with m number of
available resources and they are flocked together according to their indices in an increasingly
order into a vector

() { }{ }m

m

m rrrrrrV M <<<∈∈
→

...,...,, 2121 ,...,2,1 (1)

T1
T2
T3
T4
.
.
.
.

Tn

R1
R2
R3
.
.
.
.
.
.

Rm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5787

The distribution relationship between task set nT and is defined as



























=

nmmm

n

n

xxx

xxx
xxx

....
.....
.....
.....

......

......

21

22221

11211

χ if it is running on jVM then 1=ijx else 0=ijx and

∑
=

=
n

i
ijx

1
1 else ∑

=

=
n

i
ijx

1
0

ijx represents the position of a particle such that




=+

0
11k

ijx

To avoid the convergence of the swarm the velocity ijv is limited by maxV and maxV−

()iniii xxxX ,...,, 21= , [] []njmi ,1,,1 ∈∈

The weight of a node is jic , and the computation ability of virtual machine is jCa . Each task

can be executed on different virtual machines and the execution time of task it equals to the
ration of the workload and computation ability of the resource ir

Execution time of the it running on jVM is expressed as
][

][
jMIPS

iMItimeij = where

][iMI denotes the lengths of it and][jMIPS is the processing speed of jVM

The matrix of the execution time is defined as:



















=

mnmm

n

n

ETETET

ETETET
ETETET

ET

.....

.....

.....

21

22221

11211

{ in tT = ni ≤≤1 }represents a set of n tasks

{ jm rR = mj ≤≤1 } represents a set of m resources

ijET with ni ≤≤1 , mj ≤≤1 } represents a matrix of expected execution times of task it

on resources jr

5788 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

3.2 Objective function formulation

To formulate the objective function, we suppose that user iU is assigned to virtual resource

jR to submit a set of tasks jT . The finishing time of jT can be calculated as the summation of

start time and time required executing task jT :),(),(),(jijiji rtSTrttrtFT += . So the total

time spends to complete the user’s job by jR can be defined as }max{ jj FTMakespan = . The
objective functions of the new model are expressed as minimizing jmakespan ()mj ,...,2,1= .
The Scheduler optimizer is implemented by MPSO algorithm to generate an optimal
scheduling strategy. The MPSO is an efficient scheduling strategy to face the characteristic of
the task cloud computing problem.

4. Methodology
4.1 Particle Swarm Optimization Algorithm overview
PSO was first proposed by Kennedy and Eberhart [34, 35] through simulating of a simplified
social behavior model of bird flocking to find food source or fish schooling to protect
themselves from a predator. Particle Swarm Optimization (PSO) [3] also known as a heuristic
optimizer that optimizes a problem that iteratively tries to improve a candidate solution based
on adaptive searching techniques. PSO uses the following parameters: Initial population,
swarm, population size, search space, maximum generation. As a powerful optimizer, PSO is
applied for uni-processor heterogeneous and preemptive real-time systems. PSO presents the
merits of parallel distribution, scalability, easy to realize with high flexibility and strong
robustness in dynamic environments. PSO solves many combinatorial optimization problems
successfully [5, 15].
PSO puts more emphasis on exploitation than exploration. PSO concentrates on searching
around a promising area in order to refine a candidate solution and explores different regions
of the search space in order to locate a good optimum. PSO depends on good initial positioning
of the particles in the solution space [36]. With their exploitation and exploration, the particle
swarms fly through the problem space and have two reasoning capabilities: the memory of
their own best position pBest and knowledge of the global or neighborhood’s best
position gBest [34, 37]. The same as in cloud computing, each task runs on virtual machine
where the resources are distributed virtually like the way particle swarm fly through problem
space maintain useful information of their local position and global position. The position of
particle is influenced by velocity and has to be updated each time the particle moves from one
point to the next position. We assume that the tasks are completely different and are dependent
as particles move in swarm and all tasks need to use resources such as CPU, memory,
bandwidth, to be executed and they must be measured in terms of cost. The more accurate
costs, the more the profits are [38].

PSO has fast speed, but low convergence accuracy. PSO's disadvantages are as follows:
the method easily suffers from the partial optimism. PSO uses a number of particles (candidate
solutions) which fly around in the search space to find best solution. In PSO population
represents the number of particles in the search space. Each particle in PSO should consider
the current position],...,,[21 iDiii xxxX = vector, the current velocity],...,,[21 iDiii vvvV = , the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5789

distance to pBest , and the distance to gBest to modify its position. Take
()pbest

in
pbest
ii xxpbest ,...,= and ()gbest

in
gbest
ii xxgbest ,...,= as the best position of a particle i

and its neighbors' best position. Then, the velocity and position of every particle is updated
using the two Equations below[39]:

)()(2211
1 t

i
t
ii

t
i

t
i xgbestrandcxpbestrandcvv −××+−××+=+ ω (5)

11 ++ += t
i

t
i

t
i vxx (6)

where t
iv is the velocity of the ith particle at thk iteration, andω is a weighting function. 1c and

2c are the weighting factor which increase the performance of PSO, 1rand and 2rand are the
random numbers between 0 and 1which give the PSO a more randomized search ability; t

ix is

the current position of the thi particle at the thk iteration; ipBest is the variable to store the best

solution obtained by the thi particle; igBest represents the particle position or global position
as well. To achieve a high performance, we set the inertia weight as

() iter
iter

×
−

+=
max

maxmin
max

ωωωω (7)

minω and maxω are the starting and ending inertia weight which are responsible to control the
PSO algorithm’s stability. Their best values are between 0.2 and 0.9 respectively. iter and

maxiter represent the current and maximum iterative time which we set to 1000. ω is set to 0.4.
The maximum number of inertia weight is assigned to particles with fitness values greater than
average fitness value while minimum value of inertia weight is assigned to particles with
fitness values lesser than fitness average value. The first part of the above-mentioned formula,

t
ivω , provides exploration ability for PSO. The second and third parts,

)(1
t
ii xpbestrandc −×× and)(2

t
ixgbestrandc −×× , represent private thinking and

collaboration of particles respectively. The inertia weight ω balances the global optimization
capability and the local optimization capability.

Fig. 4.1. The movement of particles: a concept of modification of a searching point by PSO

V(t)
gbesti

t

pbesti
t

w*V(t)
Vi

(t+1)

V(t) gBest

pBest

Xi
(t+1)

X(t) Xi(t)

Y

The original PSO

Y

X X The standard PSO

Vi
gbest

Vi
pbest

Vi
gbest

Vi
pbest

Xi
(t+1)

5790 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

4.2 The implementation of MPSO Algorithm for Task Scheduling and Virtual
Resource Allocation in Cloud Computing

Cloud computing technology brings the computing resources and storage resources in
different geographical positions into a resource pool through virtual technology. The users
have to use them and then need to release them so that they can be reused. In this way, we can
calculate the average computation cost and computation time of all tasks on all the resources.
The MPSO can be used to solve this non-linear complex optimization problem due to its
advantages of being less complex operations and parameters. MPSO presents a good deal in
cloud computing because cloud computing server cluster can fast realize resource discovery,
resource matching, scheduling production, and task average running time [5].
The proposed MPSO enlarges the scope of excellent positions and enhances global search
ability in order to improve the performance of particle swarms. In this work, MPSO adjusts the
value of inertia weight ω, particle velocity, and updates of particle position. The inertia weight
ω balances the global optimization capability and the local optimization capability.
During the resource discovery, and scheduling process, the cloud system uses pBest which is
the best location the particle has achieved so far. pBest can be viewed as the particle's
memory and does not depend only on the value of fitness function. It also depends on other
constraints. gBest is the best position that neighbors of a particle have achieved so far.
gBest takes the whole population as the neighbors of each particle.
The selection of gBest consists of three steps: determine the neighborhood, select
the gBest among the neighbors, and compare fitness values among neighbors. In this MPSO
algorithm, most of the steps are the same as PSO algorithm but ours aims at enhancing the
global search ability, swarm diversity by increasing the chance to find a better solutions and
exploitation ability. In first steps, all the particles are initialized. The fitness value of all
particles is calculated. The pBest and gBest are calculated. The process of the MPSO
algorithm is shown in the Fig. 4.2 below:

As we can see from the Fig. 4.2 above, the heuristic algorithms are essential to solve
real-world and complex problems. PSO and our proposed MPSO are close to each other
structurally but the movement of particles in neighborhood represents a solution for the
problem. The particle moves by the direction on the pBest and gBest until reaching the
maximal number of iteration. The algorithms are described as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5791

Fig. 4.2. Flow chart of Standard PSO and MPSO

Algorithm1–Pseudo code of Particle Swarm Optimization (PSO) algorithm
1: Initialization: Start initializing particles with random positions
2: Conversion: Convert the continuous position vector to discrete vector.
3: Fitness: Calculate fitness value for each particle using fitness function
 If current fitness is greater than fitness pBest , then
4: Calculating pBest : Calculate the best particle pBest and assign it’s best
position value to gBest
5: Calculate velocity for each particle
6: Updating: Update the particle velocity and the swarm best known position until
reaching the termination condition based on formula (6) and (7):

)()(2211
1 t

i
t
ii

t
i

t
i xgbestrandcxpbestrandcvv −××+−××+=+ ω

11 ++ += t
i

t
i

t
i vxx

No

Yes

Initialize PSO parameters

Evaluate fitness function

Update particle velocity & position

Check and update gbest

Check and update pbest

End

Initialize
population

Termination
criteria reached?

Start Start

Initialize particles’ parameters

Evaluate fitness function of each particle

Update the optimal position of the swarm

Calculate the average fitness value

Update the position and velocity of each particle

End

fitness reached the
threshold?

Yes
No

5792 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

Where
 ω =inertia
 21,cc =uniformly distributed random numbers
 pBest =best position of each particle
 gBest =best position of the entire particles in a population
 t = iteration
7: Repeat 2 to 6 until the stopping condition is satisfied (reaching maximum
number of iterations or when no change in fitness value for a consecutive iteration)
8: Output: Print the final solution as the best particle

Algorithm2 – Pseudo code of modified Particle Swarm Optimization(MPSO) algorithm
1: Get the best solution of the particles
2: Set particle dimension as equal to the size of available tasks
3: Randomly, initialize particles position and velocity of each particle;
4: Calculate the best fitness value of each particle, concern the particle with the better

fitness value, and compare its fitness value with the fitness of its pBest ;
 if)())((ii pBestFtXF <
))(()(tXFpBestF ii =
)(tXpBest ii =

5: Calculate the best particle as gBest with the best fitness value,
 if)())((ii gBestFtXF <
))(()(tXFgBestF ii =
)(tXgBest ii =
6: Calculate velocity and update their positions
 MPSOupdatevelocity() //change the velocity of the particle according to (5)
 MPSOupdateposition() //change the position of the particle according to (6)
7: Check if the stopping condition or the maximum iteration is reached. otherwise,

repeat from step3 until a stopping criterion is satisfied.

Algorithm3- MPSO-Based Virtual Resource Scheduling
1: Set the virtual resource parameters and the weight of the nodes and edges from the
DAG;
2: Select tasks to be allocate to the available resources Rrj ∈ according to their

priorities jp

3: For every Rrj ∈ , do

4: Schedule all tasks from jr
6: End
7: End
8: For the nodes Rrj ∈

9: The task is assigned to a virtual resource jr for execution based on the MPSO
algorithm
10: End

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5793

4.2 Algorithms Descriptions

In this section, the details of the proposed MPSO algorithms are explained clearly. The above
task scheduling algorithms in the cloud-computing environment are described based on PSO
elements as follows:
The particles are defined as the available real tasks nt ; the fitness function is defined as the
function used to find the optimal solution; local best is defined as the best position of a particle
among its all positions visited so far; global best is defined as the position where the fitness is
achieved among all the particles visited so far; Inertia Weight is defined as the value used to
balance the exploration-exploitation trade off; the velocity update is defined as a vector to
calculate the speed and direction of the particle; and then the position update is defined as a
global optimal position of a particle.
The PSO parameter settings are as follows:
Initial population is a set of particles at a starting time and are generated randomly; the swarms
are disorganized of moving particles that tend to cluster together while each particle seems to
be moving in a random direction; population size is the number of particles which can be fixed
accordingly; search space is the range in which the algorithm computes the optimal control
variables. We set the lower bound and upper boundary to 0 and 1; maximum generations are
the maximum number of generations allowed for the fitness to converge with the optimal
solution. From the initialization stage, the algorithm sets the number of particles, initializes the
particle position vector and velocity vector of each particle in the particle swarm search space,
where in []rrr ulx ,∈ , max

rr vv ≤
The maximum speed of particle in n-dimensional has to be set in order to limit the velocity of

a particle.)(max

rr

rr
r lu

luv
+
−

×= β (8)

where []1,0∈β , and rv is the velocity of the nth dimension particles, ru and rl are the upper
bound and lower bound of the r-dimensional search space. The speed limit can cause the
convergence of the particle to the global optimal position. The second step calculates the
inertia weightω and updates the velocity of the particle. If max

rr vv ≥ , then max
rr vv = , if

max
rvv −< , then max

rr vv −= . Update the particle position from the initial position up to the

next position. If rr lx < , then set rr lx = , if rr ux > , set rr ux = . The algorithm calculates the
fitness of each particle and updates the pBest and gBest optimal of each particle position in
the particle swarm. When it reaches to the maximum iteration or finds the ideal result, it will
close up the process otherwise it will repeat the process from step2 to update the velocity of
each particle until the stopping criterion is satisfied.
Let us assume that we know the size of input and size of output of each tasks and assigned as
edge weight

1ke ,
2ke in Fig. 3.2. Depending on the number of tasks completed, the ready list is

updated, which will now contain the tasks which parents have completed execution. It will
update the average values for communication between resources according to the current
bandwidth. When the remote resource management systems are not able to assign task to
resources according to our mappings strategy due to resource unavailability, the computation
of MPSO makes the heuristic dynamically balanced to other tasks' mapping.
Therefore, in this problem, the particles are the tasks to be assigned and the dimensions of the
particles are the number of tasks in a cloud system. The value assigned to each dimension of

5794 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

particles is the computing resource to a task. The performance of each particle is evaluated by
fitness function described above where i represents the number of particles and j represents
the virtual resource node number. The particle calculates their velocity and updates their
position accordingly. The evaluation step is carried out until the specified number of iterations
is reached. The performance of MPSO varies according to the variation of the computing
resource cost. This variation depends on the way cloud service varies pricing policies
depending on the type and capabilities of the virtual resources.

5. Simulation and Analysis of the Results

5.1 Simulation Environment

In order to prove the feasibility and to show the performance of the proposed algorithm, we
chose to use a comparison method of MPSO algorithms against GA, and standard PSO. We
take into consideration various parameters like number of tasks, number of CPU, number of
VMs, number of iterations, swarm size, population size, as shown in Table5.1 below. The
simulation was conducted into two scenarios: 1) Using the Matlab program running on
Intel(R) dual-Core(TM)i5-4590 CPU@3.30GHz, with 6.00GB of memory and 2) Using
CloudSim toolkit running on Windows 7 operating system with Intel(R) dual-Core(TM)
i5-4590 CPU@3.30GHz, with 6.00GB installed memory. We considered using a maximum of
10 virtual machines.

Table 5.1. Parameters used for particle swarm optimization and genetic algorithm

The reason we have chosen these parameters is that c1 and c2 are the weighting factors that
increase the performance of MPSO. The best range for c1 is 1.5 to 2 and the best range for c2 is
1 to 2.0. We set the inertia weight minω and maxω as the starting and ending inertia weight which
are responsible to control the MPSO algorithm’s stability. Their good range values lay
between 0.1 and 0.9. miniter and maxiter represent the current and maximum iterative time
which we set to 1000. The population size is fixed at 100 particles but it can be any number.
For purpose of comparing PSO and MPSO, our population size is fixed at 100 particles. Our
research has found out that fixing the values as they are represented in Table5.1 provides the
best convergence rate for all test problems considered.

Scenario 1: Iteration of the particle position and velocity:
In each PSO iteration step, each particle moves from one position to the next position based on
its velocity; by moving it reaches to different prospective of the problem. The basic particular
equation was represented in (5) and (6). Each particle was first evaluated to find the particle

PSO parameters

Population size 40
maxω

minω

0.9

0.1

C1 2.0
C2 1.0
Number of iterations 1000

GA parameters

Population size 40
Crossover probability 0.7
Mutation probability 0.01
Number of iterations 1000

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5795

objective function value. The result is revealed in Fig. 5.1 below.

0 100 200 300 400 500 600 700 800 900 1000
10

-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

10
50

Iteration

Be
st

 C
os

t

Fig. 5.1. MPSO representation of the best cost at 1000 iterations

The Fig. 5.1 simulates the best cost for the proposed MPSO algorithm. The cost varies
gradualy due to the increase of number of iteration. Increased number of iteration increases the
quality of solution which lead to the good cloud resource solution
.

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2
Comparison results

No. of iterations

fit
ne

ss
 v

al
ue

MPSO
PSO

Fig. 5.2. Performance comparison of MPSO and PSO algorithms

In Fig. 5.2, the horizontal axis represents the number of iteration and the vertical axis
represents the fitness values. The red line indicated the modified particles swarm optimization
improvement. This means that when the two algorithms completed the same task, the modified
PSO performs better than standard PSO. The plot results show that MPSO converges faster
than the PSO algorithm. In each MPSO’s iteration, the position and the velocity of all particles
are updated and their fitness is evaluated together with their dimension number n . The fitness
function complexity is based on the scheduling algorithm and also depended on the number of
tasks i . The convergence time is influenced by the number of particles and the number of
virtual resources considered. The numbers in Table 5.2 indicate the average run time of best
function values in 20 runs. Several experiments and different parameters were set to evaluate
the efficiency of MPSO, so MPSO algorithm suits more to cloud computing.
Therefore, the average run time of the MPSO algorithm is shorter than that of PSO algorithm.

Table 5.2. Comparison results for 20 runs of particle swarm optimization algorithm technique
Algorithm Fitness value The number of iterations Avg Run time(ms)
PSO -0.2414 1000 3300
MPSO -0.7934 1000 2044

5796 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

Scenario 2: Analysis of the results based on CloudSim Simulations:
In this section, we considered to simulate our results with CloudSim platform [40] and to
evaluate the performance of the proposed algorithm.
We considered some parameters such as completion time, execution time, and resource
utilization. The process of classifying these parameters is known as Task parameterization. In
our experiment, we used five virtual machines, and as well as ten virtual machines. The
comparison experiments were carried out by using MPSO, PSO, and GA algorithms. We
compared the performance of the three algorithm from task completion time, execution time,
and resource utilization. We considered i number of tasks and j as the number of VMs. Tasks
are the service requests in cloud computing environment and need to be allocated to VMs in
order to be processed. The VMs have the configured processing capability such as processor,
memory, and capacity size which are dynamically varied. We set task length between 1000MI
to 15000MI with the proceeding speed of virtual machine 150MIPS to 300MIPS (MIPS is the
million instructions per second of VMs) and (MI is the million instructions of tasks).
Other parameters used are from Table5.1 above. The bellow figures show the variation of
processing time of particles (tasks), execution time and resource utilization with respect to
their number of VMs to complete the work. Fig. 5.3 shows that the completion time decreases
when the number of resources increases. The completion time of MPSO is shorter than PSO,
and GA. This shows that MPSO has great advantage and can easily find very good solution
space to reduce the processing time the tasks take to complete the process. Fig. 5.3 shows the
completion time for MPSO, PSO, and GA with respect to 10 virtual machines

Fig. 5.3 Completion time for MPSO, PSO, and GA with respect to 10 virtual machines

To demonstrate the performance for the algorithms (GA, PSO, and MPSO), we use 5 virtual
machines and 10 virtual machines for 10, 15, 25, 40 cloudlets.

Table 5.3. Task Scheduling comparison based on completion time (sec)
GA PSO MPSO VM Cloudlet
3.199166 2.162 1.7511

5

10
5.716983 3.799 2.8932 15
8.926751 7.367 5.6195 25
13.16712 8.496 5.3936 40

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5797

The results show that the MPSO algorithm outperforms the GA and PSO with the respect to
the execution time.

Fig.5.4 Representation of Execution Time for MPSO, PSO, and GA

The figure above shows the execution time for GA, MPSO, and PSO algorithms when using 5
virtual machines and setting 10, 15, 25, 40 cloudlets.

Table5.4. Task Scheduling comparison based on completion time(sec)
GA PSO MPSO VM Cloudlet
2.195 1.917 1.412

10

10
3.793 2.689 2.109 15
7.264 6.337 3.897 25
8.216 6.261 4.382 40

Based on the results in Fig. 5.5 which shows the execution time of GA, MPSO, and PSO
algorithms when using 10 virtual machines and various cloudlets, the proposed algorithm
outperforms the current PSO and GA respectively.

5798 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

Fig. 5.5 Representation of Execution Time for MPSO, PSO, and GA when considering 10 VMs

GA PSO MPSO VM Cloudlet
0.615071 0.713026 0.850168

5

10
0.604812 0.728099 0.939132 15
0.607211 0.672281 0.940351 25
0.53191 0.58714 0.821439 40

Table 5.5 shows the resource utilization for GA, MPSO, and PSO algorithms while
considering 5 virtual machines and 10, 15, 25, 40 cloudlets.
Based on the results in Fig. 5.6, MPSO algorithm outperforms PSO and GA with respect to the
resource utilization for 5 VMs.

Fig. 5.6 The simulation results of the resource utilization for MPSO, PSO, and GA based on 5 virtual

machines and various cloudlets.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5799

Table 5.6. Comparison results of MPSO, PSO, and GA with respect to the resource utilization
GA PSO MPSO VM Cloudlet
0.4126 0.65016 0.7012

10

10
0.4399 0.69232 0.7893 15
0.3617 0.41951 0.7468 25
0.3861 0.70193 0.8806 40

Based on the results in Fig. 5.7, MPSO algorithm outperforms PSO, and GA with respect to
the resource utilization while considering 10 virtual machines and 10, 15, 25, 40 cloudlets.

Fig. 5.7 Representation of resource utilization based on 10 VMs and various Cloudlets

The research shows how to use evolutionary techniques to enter a schedule as a search solution.
We refer to the Fig. 3.3 to show the mapping of tasks to the available resources. Considering
the proposed algorithm, each particle represents a task for which it is randomly assigned to the
available resource. The figures show the assignment of various cloudlets to five and ten virtual
machines.

5. Conclusion
In a cloud environment, there are many tasks running on virtual resources, so this paper
presents a modified particle swarm optimization algorithm applied to optimize task scheduling
and virtual resource allocation in cloud computing with two constraints for time, cost, and
resource utilization rate. From the simulations, it is shown that this algorithm could quickly
and dynamically optimize virtual resources with a reduced total time for task scheduling in the
cloud environment. The MPSO also can perform better than the PSO method proposed in the
earlier researches in terms of processing time, cost and resource utilization rate. The PSO can
fail to achieve the required optimum solution in cases when the problem to be solved seems to
be complicated or complex but this can be fixed by using MPSO algorithm. Using MPSO
algorithm in cloud computing resource allocation, the simulation results show that MPSO
presents advantages in convergence speed, in finding global optimal, and in simplicity ability.

5800 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

As we can see from the results, a MPSO optimization processes the best fitness value,
decreases rapidly and converges while the number of iteration convergent to the higher value.
To show how the evolution process is going on for both MPSO, the convergence of the
average fitness values is also shown in Fig. 5.2, from which it is clear that MPSO seems to
perform better. In the changing environment, like virtual cloud computing resources need to
be operated in optimally manner. Therefore, the MPSO optimization algorithm can quickly
allocate resources under the dynamic environment, and utilizes effectively the system
resources to reduce cost, and makespan for the number of virtual resources and user jobs.

References
[1] Qi, H. and A. Gani, “Research on mobile cloud computing: Review, trend and perspectives,” in

Proc. of Digital Information and Communication Technology and it's Applications (DICTAP),
2012 Second International Conference on, IEEE, 2012. Article (CrossRef Link)

[2] Weng, C., et al., “The hybrid scheduling framework for virtual machine systems,” in Proc. of the
2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments, ACM,
2009.

[3] Mell, P. and T. Grance, The NIST definition of cloud computing, 2011.
https://www.nist.gov/publications/nist-definition-cloud-computing

[4] Luo, Y. and B. Plale, “Hierarchical mapreduce programming model and scheduling algorithms,”
in Proc. of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), IEEE Computer Society, 2012. Article (CrossRef Link)

[5] Zhan, S. and H. Huo, “Improved PSO-based task scheduling algorithm in cloud computing,”
Journal of Information & Computational Science, 9(13): p. 3821-3829, 2012.

[6] Ning, W., et al., “A task scheduling algorithm based on qos and complexity-aware optimization in
cloud computing,” in Proc. of Information and Communications Technology 2013, National
Doctoral Academic Forum on, IET, 2013. Article (CrossRef Link)

[7] Zhu, K., et al., “Hybrid genetic algorithm for cloud computing applications,” in Proc. of Services
Computing Conference (APSCC), 2011 IEEE Asia-Pacific, IEEE, 2011. Article (CrossRef Link)

[8] Lin, S.-W., K.-C. Ying, and C.-Y. Huang, “Multiprocessor task scheduling in multistage hybrid
flowshops: A hybrid artificial bee colony algorithm with bi-directional planning,” Computers &
Operations Research, 40(5), p. 1186-1195, 2013. Article (CrossRef Link)

[9] Al-maamari, A. and F.A. Omara, “Task Scheduling Using PSO Algorithm in Cloud Computing
Environments,” International Journal of Grid and Distributed Computing, 8(5): p. 245-256, 2015.
Article (CrossRef Link)

[10] Xu, S.-H., et al., “A Combination of Genetic Algorithm and Particle Swarm Optimization for
Vehicle Routing Problem with Time Windows,” Sensors, 15(9), p. 21033-21053, 2015.
Article (CrossRef Link)

[11] Karaboga, D., Artificial bee colony algorithm. scholarpedia, 5(3), p. 6915, 2010.
[12] Kumar, R.S. and S. Gunasekaran, “Improving task scheduling in large scale cloud computing

environment using artificial bee colony algorithm,” International Journal of Computer
Applications, 103(5), 2014. Article (CrossRef Link)

[13] Akkoyunlu, M.C., O. Engın, and K. Büyuközkan, “A harmony search algorithm for hybrid flow
shop scheduling with multiprocessor task problems,” in Proc. of Modeling, Simulation, and
Applied Optimization (ICMSAO), 2015 6th International Conference on, IEEE, 2015.
Article (CrossRef Link)

[14] Mirjalili, S. and S.Z.M. Hashim, “A new hybrid PSOGSA algorithm for function optimization,” in
Proc. of Computer and information application (ICCIA), 2010 international conference on, IEEE,
2010. Article (CrossRef Link)

[15] Lili, X., et al., “An improved binary PSO-based task scheduling algorithm in green cloud
computing,” in Proc. of 2014 9th International Conference on Communications and Networking
in China, 126-31, 2014. Article (CrossRef Link)

http://dx.doi.org/10.1109/DICTAP.2012.6215350
https://doi.org/10.1109/CCGrid.2012.132
https://doi.org/10.1049/ic.2013.0202
https://doi.org/10.1109/APSCC.2011.66
https://doi.org/10.1016/j.cor.2012.12.014
https://doi.org/10.14257/ijgdc.2015.8.5.24
https://doi.org/10.3390/s150921033
https://doi.org/10.5120/18072-9017
https://doi.org/10.1109/ICMSAO.2015.7152245
https://doi.org/10.1109/ICCIA.2010.6141614
https://doi.org/10.1109/CHINACOM.2014.7054272

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 12, December 2017 5801

[16] Agrawal, S. and R. Shimpi, Modified Particle Swarm Optimization.
[17] Labed, S., A. Gherboudj, and S. Chikhi, “A modified hybrid particle swarm optimization

algorithm for multidimensional knapsack problem,” Int. J. Comput. Appl, 34(2): p. 1, 2011.
Article (CrossRef Link)

[18] Khan, S.U., et al., “A Modified Particle Swarm Optimization Algorithm for Global Optimizations
of Inverse problems,” IEEE Transactions on Magnetics, Vol. 52, Issue 3, 2016.
Article (CrossRef Link)

[19] Pandey, S., et al., “A particle swarm optimization-based heuristic for scheduling workflow
applications in cloud computing environments,” in Proc. of Advanced information networking
and applications (AINA), 2010 24th IEEE international conference on, IEEE, 2010.
Article (CrossRef Link)

[20] Peyvandi, M., M. Zafarani, and E. Nasr, “Comparison of Particle Swarm Optimization and the
genetic algorithm in the improvement of power system stability by an SSSC-based controller,”
Journal of Electrical Engineering and Technology, 6(2): p. 182-191, 2011.
Article (CrossRef Link)

[21] Sridhar, M., “Hybrid Genetic Swarm Scheduling for Cloud Computing,” Global Journal of
Computer Science and Technology, 15(3), 2015.

[22] Shi, P., et al., “Dependable Deployment Method for Multiple Applications in Cloud Services
Delivery Network,” [J]. China Communications, 8(4): p. 65-75, 2011.

[23] Guo, L., et al., “Task scheduling optimization in cloud computing based on heuristic algorithm,”
Journal of Networks, 7(3): p. 547-553, 2012. Article (CrossRef Link)

[24] Jena, R., “Multi objective task scheduling in cloud environment using nested PSO framework,”
Procedia Computer Science, 57: p. 1219-1227, 2015. Article (CrossRef Link)

[25] Hsu, Y.-C., P. Liu, and J.-J. Wu, “Job sequence scheduling for cloud computing,” in Proc. of
Cloud and Service Computing (CSC), 2011 International Conference on, IEEE, 2011.
Article (CrossRef Link)

[26] Priyadarsini, R.J. and L. Arockiam, “PBCOPSO: A parallel optimization algorithm for task
scheduling in cloud environment,” Indian Journal of Science and Technology, 8(16), 2015.
Article (CrossRef Link)

[27] Eberhart, R.C. and Y. Shi, “Comparison between genetic algorithms and particle swarm
optimization,” in Proc. of International Conference on Evolutionary Programming, Springer,
1998. Article (CrossRef Link)

[28] Hassan, R., et al., “A comparison of particle swarm optimization and the genetic algorithm,” in
Proc. of the 1st AIAA multidisciplinary design optimization specialist conference, 2005.
Article (CrossRef Link)

[29] Jones, K.O., “Comparison of genetic algorithm and particle swarm optimization,” in Proc. of Int.
Conf. Computer Systems and Technologies, 2005.

[30] Elbeltagi, E., T. Hegazy, and D. Grierson, “Comparison among five evolutionary-based
optimization algorithms. Advanced engineering informatics,” 19(1): p. 43-53, 2005.
Article (CrossRef Link)

[31] De Jong, K.A. and W.M. Spears, “Using Genetic Algorithms to Solve NP-Complete Problems,” in
ICGA, 1989.

[32] Xu, L., et al., “An improved binary PSO-based task scheduling algorithm in green cloud
computing,” in Proc. of Communications and Networking in China (CHINACOM), 2014 9th
International Conference on, IEEE, 2014. Article (CrossRef Link)

[33] Pooranian, Z., et al., “An efficient meta-heuristic algorithm for grid computing,” Journal of
Combinatorial Optimization, 30(3): p. 413-434, 2015. Article (CrossRef Link)

[34] Kennedy, J., “Particle swarm optimization,” Encyclopedia of Machine Learning, Springer, p.
760-766, 2010. Article (CrossRef Link)

[35] Eberhart, R. and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. of Micro
Machine and Human Science, 1995. MHS '95., Proceedings of the Sixth International Symposium
on, 1995. Article (CrossRef Link)

https://doi.org/10.5120/4070-5586
https://doi.org/10.1109/TMAG.2015.2487678
https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.5370/JEET.2011.6.2.182
https://doi.org/10.4304/jnw.7.3.547-553
https://doi.org/10.1016/j.procs.2015.07.419
https://doi.org/10.1109/CSC.2011.6138524
https://doi.org/10.17485/ijst/2015/v8i16/63248
https://doi.org/10.1007/BFb0040812
https://doi.org/10.2514/6.2005-1897
https://doi.org/10.1016/j.aei.2005.01.004
https://doi.org/10.1109/CHINACOM.2014.7054272
https://doi.org/10.1007/s10878-013-9644-6
https://doi.org/10.1007/978-0-387-30164-8_630
https://doi.org/10.1109/MHS.1995.494215

5802 Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization
based on Heuristic Algorithms in Cloud Computing Environment

[36] Chapman, B., “When clouds become green: the green open cloud architecture,” Parallel
Computing: From Multicores and GPU's to Petascale, 19, p. 228, 2010. Article (CrossRef Link)

[37] Sedighizadeh, M., et al., “Parameter optimization for a PEMFC model with particle swarm
optimization,” Int J Eng Appl Sci, 3, p. 102-108, 2011.

[38] Liu, C.-Y., C.-M. Zou, and P. Wu, “A task scheduling algorithm based on genetic algorithm and
ant colony optimization in cloud computing,” in Proc. of Distributed Computing and Applications
to Business, Engineering and Science (DCABES), 2014 13th International Symposium on, IEEE,
2014. Article (CrossRef Link)

[39] Rostami, A. and M. Lashkari, “Extended PSO algorithm for improvement problems K-Means
clustering algorithm,” International Journal of Managing Information Technology, 6(3), p. 17,
2014. Article (CrossRef Link)

[40] Calheiros, R.N., et al., “CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Software - Practice and
Experience, 41(1), p. 23-50, 2011. Article (CrossRef Link)

Frederic Nzanywayingoma was born in Rwanda, September, 1981. He received his B.S.
degree in Electronic and Communication Systems Engineering from National University of
Rwanda in 2010 and his M.S. degree in Information Communication Engineering from
University of Science and Technology Beijing, China in 2013. Currently, he is a PhD
candidate at the same university. His research interests include Machine to Machine
Communications, Cloud Computing, Scheduling Algorithms and Optimization Methods.

Professor Yang Yang graduated from Beijing Iron and Steel Institute of Automation
System in 1982. He received his PhD in Information Engineering, from University of Science
and Technology in Lillie, France, in 1988. He has been a professor at University of Science
and Technology Beijing since 1988. He has published in journals and conferences both at
home and abroad more than 200 papers, completed books. His research interests include
Service Science and Cloud Computing, Intelligent Control, Image Processing and Pattern
Recognition, Multimedia Communication, Grid Technology.

http://dx.doi.org/10.3233/978-1-60750-530-3-228
https://doi.org/10.1109/DCABES.2014.18
https://doi.org/10.5121/ijmit.2014.6302
https://doi.org/10.1002/spe.995

	Abstract
	1. Introduction
	2. Related Work
	3. Problem Statement
	4. Methodology
	5. Simulation and Analysis of the Results
	5. Conclusion
	References

