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Abstract 
 
Cloud computing system consists of distributed resources in a dynamic and decentralized 
environment.  Therefore, using cloud computing resources efficiently and getting the 
maximum profits are still challenging problems to the cloud service providers and cloud 
service users. It is important to provide the efficient scheduling. To schedule cloud resources, 
numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic 
Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been 
adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to 
solve the above mentioned issues. We first formulate an optimization problem and propose a 
Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, 
and GA. Our experimental results show that the proposed MPSO minimizes the task execution 
time, and maximizes the resource utilization rate.  
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1. Introduction 

Nowadays, users have realized that the PCs bought few years ago can’t move with the 
development of software; they require a higher speed CPU, a larger capacity hard disk, and a 
higher performance Operation System (OS). That is the magic of Moore’s Law which needs 
user to upgrade their PCs constantly, to cope with development of techniques[1]. Cloud 
Computing Services such as Infrastructure as a Service (IaaS), Software as a Service (SaaS), 
Platform as a Service (PaaS) came to give users the virtual unlimited pay-per-use computing 
resources (e.g., network resources, servers, and storage resources) with a minimum effort to 
manage available resources efficiently and gain maximum profit. The PCs that want to access 
the cloud services just need to have less memory, a light operating System and browser. Users 
can use the software directly from the cloud, can store data on cloud, can make their 
applications on cloud platform without installing any software on their machines[1, 2]. 
According to NIST definition, cloud computing is a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of configurable computing resources that can be 
rapidly provisioned and released with minimal management effort or service provider 
interaction[3]. 
Cloud computing has become one of the industry buzz words and a major widely used in 
various fields of IT world. It is an emerging technology and it processes a large amount of data 
so that the task scheduling mechanisms work as a vital role. The problem of task scheduling 
has become a hot topic. At the same time, it is also NP hard problem. Therefore, the main goal 
of the efficient task schedule algorithm is to decrease total completion time, overall execution 
time, average response time and to improve the resource utilization rate of the entire system 
under the condition of meeting the Quality of Service. Cloud computing technology allows 
users to pay as you need and has the high performance. The rental cost is related to hardware 
and software, such as the number of CPU frequency, number of core, memory, the size of hard 
disk and network disk, operating system, databases, network bandwidth, maintenance cost, 
and location of rented servers, etc[4].  
The efficient usage of resources and achieving an optimal allocation of user’s tasks are the key 
issues of task scheduling in cloud computing. Therefore, how to use cloud computing 
resources efficiently and get the maximum profits becomes the fundamental goals of cloud 
computing service providers[5]. Scheduling an intensive data or computing an intensive 
application, it is acknowledged that optimizing the transferring and processing time is crucial 
to an application program. In our paper, a Task Scheduling Optimization based on Heuristic 
Algorithms is proposed. Nowadays, cloud computing environment is mostly built according to 
MapReduce programming model, which is an efficient task scheduling model especially for 
the generation and processing of large data sets. Therefore, for cloud computing providers, 
task scheduling and virtual resource allocation with dynamic characteristics is still a 
challenging problem. In order to find a good method of solving this problem, research is 
conducted on various heuristic approaches. Thus, key points and difficulties of cloud 
computing are how to reasonably carry out the task scheduling and virtual resource allocation 
at the same time.  
There are more factors that are affecting the cloud service performance such as the cloud 
service cost, real-time server load rate, bandwidth utilization especially when users require a 
higher communication such as in multimedia streaming, reliability of the system, network 
delay, and task computation complexity. Therefore, these above-mentioned factors yield to 
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increase total task completion time, overall task execution time, average task response time, 
and decrease the resource utilization rate of the entire cloud computing system [6].  
In this paper, we minimize the cost of the processing by formulating a model for task 
scheduling and proposing a modified particle swarm optimization algorithm which is based on 
small position value rule.  
The traditional particle swarm optimization algorithms have been integrated into the task 
scheduling model in the cloud computing environment to improve the quality of service and 
the fitness function[7]; however, it is common to encounter issues such as local optimization 
and no interaction between parallel swarms[2].  
We resolve these disadvantages of the standard particle swarm optimization (SPSO) algorithm 
by describing a modified particle swarm optimization (MPSO) algorithm able to identify 
optimal solutions for the cloud resource scheduling problems. Our contributions to this paper 
are cited as the followings: (1) we formulate a model for task scheduling in cloud computing to 
minimize the overall time of executing and transmitting tasks. (2)We design a MPSO 
algorithm to solve task scheduling based on the proposed mathematical model, compare and 
analyze with other existing algorithms. We compare the MPSO results with the traditional 
PSO. 
We organized this paper as follows: Section (1) introduces the cloud computing and the basic 
of PSO optimization. Section (2) shows related work. Section (3) states and formulates the 
problem. Section (4) presents task scheduling algorithm that uses MPSO and formulate the 
mathematical model. Section (5) shows the simulation results of the proposed algorithm. Last 
but not lease, section (6) concludes the paper. 

2. Related Work 
The most crucial requirement for cloud computing is an effective task scheduling and a virtual 
resource optimization. Task scheduling is very important to cloud computing resources and it 
has been a challenging problems. Recently, many researches are being conducted to improve 
the efficiency of task scheduling and virtual resource utilization.  Most of the proposed search 
algorithms, disregarded the total task completion time, and the resource allocation at the same 
time. The misuse of the available resource leads to the increasing of server computing time and 
the user waiting time. Heuristic algorithms have been proposed to solve these complex 
optimization problems which are mostly non-linear or non-differentiable or combinatorial 
optimization problems[8].  
Due to the complexity nature of optimization problems, constant and linear time-varying 
values may not work well in many cases. Therefore, using a non-linear coefficient for MPSO 
could yield to a better performance in some extent. In these days, many heuristic evolutionary 
optimization algorithms have been proposed to resolve the task scheduling problems [9]. 
These include Particle Swarm Optimization(PSO), Genetic Algorithm(GA), Deferential 
Evolution(DE), Ant Colony(AC), Tabu search algorithm, Simulated Annealing Algorithm 
[10], Artificial bee colony algorithm(ABC) [8, 11, 12], Harmony Search Algorithm[13], and 
Gravitational Search algorithm(GSA) [14]. The purpose for them is to find the best global 
optimum among all possible inputs [15].  
In [16], Swati Agrawal, consideres a modified PSO  to address the problem of premature 
convergence. Particle Swarm Optimization (PSO) technique suffers from a major drawback of 
a possible premature convergence. Here, the focus is to free PSO from local optimum 
solutions; enable it to progress towards the global optimum searching over wider area. For this 
modified  PSO, results have been compared with the base PSO, which is inertia weight PSO. 
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Numerical experiments done on some  benchmark  functions compare inertia weight PSO and 
modified PSO. Also in [17], Said Labed et al., propose a modified hybrid Particle Swarm 
Optimization (MHPSO) algorithm that combines some principles of Particle Swarm 
Optimization (PSO) and Crossover operation of the Genetic Algorithm (GA) with  two aims: 
to propose a new hybrid PSO algorithm; to prove the effectiveness of the proposed algorithm 
in dealing with NP-hard and combinatorial optimization problems. The test results were 
simulated in matlab7 to assess the efficiency and performance of the MPSO algorithm.  
Shafi Ullah Khan et al. [18] propose a MPSO for global optimizations of Inverse problems. In 
this work, the modified PSO is presented by introducing a mutation mechanism and using 
dynamic algorithm parameters. The experimental results on different case show that the 
proposed PSO gets the best results among the tested algorithms. In [18], Ai-Qin Mu et al.,  use 
the idea of simulated annealing algorithm to propose a modified algorithm which makes the 
most optimal particle of every time of iteration evolving continuously. By the testing of three 
classic testing benchmark functions, it is concluded that the modified PSO algorithm has the 
better performance of convergence and global searching than the original PSO. The work in 
[19], takes into consideration both computation cost and data transmission cost. Pandey s. et 
al., has presented a particle swarm optimization (PSO) based heuristic to schedule applications 
to cloud resources. In [11] author presents a particle swarm optimization in a multidimensional 
complex space. Their paper analyzes a particle’s trajectory in discrete and in continuous time 
with the goal of increasing the ability of the swarms in order to find the optimum solution.  
The work in [20] used hybrid (PSO and GA) heuristic algorithms to enhance power system 
stability. Other heuristic algorithms in [21] have been used combined with MapReduce 
parallel programming model for high performance computing at scale in cloud computing. 
Their work evaluates system design alternatives and capabilities aware task scheduling for 
large-scale data processing on accelerator-based distributed systems.  
The paper [22] proposed the multiple application co-exist (MACE) method, which minimizes 
mutual-interference and maximizes resource utilization for resource static allocation, dynamic 
supplement and resource reserved mechanism [23]. Therefore, we will focus on reducing the 
processing cost , power consumption, and transmitting time between virtual resources in the 
cloud computing with the purpose of minimizing the cost and time of the jobs submitted by 
users. Energy consumption, processing time, and cost. The cost is related to the computing 
power of the CPU, the memory size, and the bandwidth.  
Author [24] suggested a task scheduling using a multi-objective nested Particle Swarm 
Optimization (TSPSO) to optimize energy and processing time to reduce power consumption 
and improve the profit of service providers by reducing processing time and author [25] 
focused on optimizing the energy efficiency in datacenter by using efficient task scheduling to 
physical servers. To improve the resource allocation in cloud computing, an allocation model 
using the shortest task completion time and the lowest cost as the constraints to minimize cost 
and completion time was proposed. Paper [26] proposed a Parallel Bee Colony Optimization 
Particla Swarm Optimization(PBCOPSO) approach with objective to minimize total 
execution time and to optimize the resource utilization. The author considered Bee Colony 
Optimization(BCO) in parallel with PSO to schedule independent tasks. In their experimental 
results, authors considered to use 4 resources to schedule 40 to 60 tasks. Their developed 
approach was compared with Min-Min and IBCO (Improved Bee Colony Optimization). 
Compared to Min-Min algorithm, the proposed new method improved the resource utilization 
by an average of 5.038% and 3.724% compared with IBCO.  
To show the performance of the proposed algorithm (MPSO), our experimental results will be 
compared against GA and PSO in terms of task scheduling metrics. There exists many 
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literature on comparison of GA and PSO. PSO and Genetic Algorithm (GA) are two 
evolutionary heuristics population-based search methods but GA is discrete variables based 
which is suitable for combinatorial problems. PSO has to be modified to cope with discrete 
variables. GA and PSO techniques start with a group of a randomly generated population and 
use a fitness value to evaluate the population. They all update the population and search for the 
optimum with random techniques. The main difference between the PSO and GA approach is 
that PSO does not possess genetic operators such as crossover, selection, and mutation. 
Compared to GAs, the advantages of PSO are that PSO is easy to implement and there are few 
parameters to adjust [20, 27-29]. Paper [30]compared the results of GA, PSO, ACO, shuffled 
frog leaping, and memetic algorithms in terms of processing time, convergence speed and 
quality of the results. PSO was found the best performer than other algorithms in terms of 
processing time. The elements used for PSO are: Particles, fitness function, local Best, global 
best, velocity update, position update. And GA employs three operators (crossover, Selection, 
and Mutation) to propagate its population from one generation to another.  
We have explored how PSO/GA work and how they are applied to solve NP-complete 
problems of task scheduling in cloud computing.  

3. Problem Statement 
3.1 Assumptions and problem formulation 
The task scheduling techniques [31] is to assign incoming tasks to the available resources. 
According to the scheduling strategies, the poor task scheduling algorithms can significantly 
affect the efficiency of the whole Cloud Computing system. Let assume that a cloud service 
provider assigns n tasks to m machines with )( nm < . Let ),...,,( 21 nttt  represents the input 
tasks waiting to be scheduled. Then the task scheduler based on scheduling policy and QoS 
requirements decides which task to be assigned to which machine from the collection of 
virtual machines as shown in Fig.3.1. The VMs are represented by cpubwrammipsvmid ,,,, . 
vmid represents VM number, mips represents virtual machines’ speed in million instructions 
per second, ram represents the memory of VM, bw represents the bandwidth, cpu represents 
the cpu of the VM.  
To model our task scheduling problem, we assume that the number of swarm particles 
correspond with a set of task numbers. The tasks are modeled as a direct acyclic graph (DAG) 
where G= (V, E). A set of vertices V represents the VMs and tasks and a set of edges E 
represents the connections between the tasks and VMs and their communication cost. Edge is 
a pair ),( tv with Vtv ∈, . We denote nT as the number of tasks and mR the number of available 
heterogeneous computing dynamic virtual resources. The objective to model the task 
scheduling problem is to minimize the completion time and to find the best virtual resource 
utilization. We evaluate both objective functions using fitness function. Here the fitness of a 
particle is measured with execution time and communication cost for all tasks.  
Let ( )EVG ,=  be a graph with { }ntttV ,...,, 21= as a set of tasks nodes/vertices, and E is a 
set of edge weights between two tasks it and kt and is denoted the information exchange 
between these paired tasks. An arc is in the form of ETT ji >∈< , , where entryT is called the 

parent task and it is the child task. Here, we consider that all tasks are computational and are 
considered to be dependent to each other accordingly. We consider a complete graph which 
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means that there is an edge between every pair of vertices. The graph starts with root node and 
ends with end node. The node with no parent/root node is called an entry node entryT and a node 

with no child/end node is called an exit node exitT .  
 

 
Fig. 3.1 Represents a Task Scheduling model in cloud computing environment[32] 

 
 

It is assumed that a child task cannot be executed until all of its parent tasks have been 
completed. Fig. 3.1 and Fig. 3.2 illustrate clearly the scenario. Let us consider entryT and exitT  
as two dummy tasks at the beginning and at the end of the weighted direct acyclic graph 
(DAG) with zero execution time. We calculate the communication cost jiC , by referencing to 
the amount of data to be transmitted between resources. The scheduling is considered as a 
non-preemptive scheduling to mean that there is no interruption when the tasks are processing. 

 
Fig. 3.2. Task graph with n tasks 
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The mapping of the set of tasks to the available heterogeneous resources in Fig. 3.3 helps us to 
compute the maximum completion time of the tasks, minimum execution time, and the 
execution cost. The cost varies depending on the computing power of the CPU, memory, and 
bandwidth. To map the above-mentioned set of resources, we consider mR number of 
available heterogeneous computing resources, and ijb the bandwidth between resources. Then 

we calculate the available bandwidth ( )
NxNijbB = for the available resource. We suppose that 

there exist a finite number of possible mappings from a collection { }ntttT ,....,, 21=  to a 
collection { }mrrrR ,...,, 21= and a large number of pair of tasks and VM resources. The Fig. 
3.3 depicts an illustrative example of the task assignment. Assume that task 1t  is assigned to 
resource 1r and 3r , task 2t is assigned to resource 2r , 4r , and jr , task 3t is assigned to resource 

4r and jr , and 4t is assigned to mr respectively.  
 

 

Fig. 3.3. Mapping of the tasks to available resources[33] 
 
We consider a discrete-time model with a collection mR of machines indexed m,...,2,1 . Tasks 
come in with a tagged random mapping number and each task is associated with m number of 
available resources and they are flocked together according to their indices in an increasingly 
order into a vector 
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The distribution relationship between task set nT and is defined as 
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The weight of a node is jic ,  and the computation ability of virtual machine is jCa . Each task 

can be executed on different virtual machines and the execution time of task it  equals to the 
ration of the workload and computation ability of the resource ir  

Execution time of the it running on jVM is expressed as 
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][iMI denotes the lengths of it and ][ jMIPS is the processing speed of jVM                                                                                                                    

The matrix of the execution time is defined as:  
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on resources jr  

 

 



5788                     Frederic NZanywayingoma&Yang Yang: Effective Task Scheduling and Dynamic Resource Optimization 
based on Heuristic Algorithms in Cloud Computing Environment 

 

3.2 Objective function formulation 

To formulate the objective function, we suppose that user iU is assigned to virtual resource 

jR to submit a set of tasks jT . The finishing time of jT  can be calculated as the summation of 

start time and time required executing task jT : ),(),(),( jijiji rtSTrttrtFT += . So the total 

time spends to complete the user’s job by jR can be defined as }max{ jj FTMakespan = . The 
objective functions of the new model are expressed as minimizing jmakespan ( )mj ,...,2,1= .   
The Scheduler optimizer is implemented by MPSO algorithm to generate an optimal 
scheduling strategy. The MPSO is an efficient scheduling strategy to face the characteristic of 
the task cloud computing problem.  

4. Methodology  
4.1 Particle Swarm Optimization Algorithm overview  
PSO was first proposed by Kennedy and Eberhart [34, 35] through simulating of a simplified 
social behavior model of bird flocking to find food source or fish schooling to protect 
themselves from a predator. Particle Swarm Optimization (PSO) [3] also known as a heuristic 
optimizer that optimizes a problem that iteratively tries to improve a candidate solution based 
on adaptive searching techniques. PSO uses the following parameters: Initial population, 
swarm, population size, search space, maximum generation. As a powerful optimizer, PSO is 
applied for uni-processor heterogeneous and preemptive real-time systems. PSO presents the 
merits of parallel distribution, scalability, easy to realize with high flexibility and strong 
robustness in dynamic environments. PSO solves many combinatorial optimization problems 
successfully [5, 15].  
PSO puts more emphasis on exploitation than exploration. PSO concentrates on searching 
around a promising area in order to refine a candidate solution and explores different regions 
of the search space in order to locate a good optimum. PSO depends on good initial positioning 
of the particles in the solution space [36]. With their exploitation and exploration, the particle 
swarms fly through the problem space and have two reasoning capabilities: the memory of 
their own best position pBest and knowledge of the global or neighborhood’s best 
position gBest [34, 37]. The same as in cloud computing, each task runs on virtual machine 
where the resources are distributed virtually like the way particle swarm fly through problem 
space maintain useful information of their local position and global position. The position of 
particle is influenced by velocity and has to be updated each time the particle moves from one 
point to the next position. We assume that the tasks are completely different and are dependent 
as particles move in swarm and all tasks need to use resources such as CPU, memory, 
bandwidth, to be executed and they must be measured in terms of cost. The more accurate 
costs, the more the profits are [38].  

PSO has fast speed, but low convergence accuracy. PSO's disadvantages are as follows: 
the method easily suffers from the partial optimism. PSO uses a number of particles (candidate 
solutions) which fly around in the search space to find best solution. In PSO population 
represents the number of particles in the search space. Each particle in PSO should consider 
the current position ],...,,[ 21 iDiii xxxX = vector, the current velocity ],...,,[ 21 iDiii vvvV = , the 
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distance to pBest , and the distance to gBest to modify its position. Take 
( )pbest

in
pbest
ii xxpbest ,...,= and ( )gbest

in
gbest
ii xxgbest ,...,= as the best position of a particle i  

and its neighbors' best position. Then, the velocity and position of every particle is updated 
using the two Equations below[39]: 

)()( 2211
1 t

i
t
ii

t
i

t
i xgbestrandcxpbestrandcvv −××+−××+=+ ω                (5) 

11 ++ += t
i

t
i

t
i vxx                                                                                                                          (6) 

where t
iv is the velocity of the ith particle at thk iteration, andω is a weighting function. 1c and 

2c are the weighting factor which increase the performance of  PSO, 1rand and 2rand  are the 
random numbers between 0 and 1which give the PSO a more randomized search ability; t

ix is 

the current position of the thi particle at the thk iteration; ipBest is the variable to store the best 

solution obtained  by the thi particle; igBest represents the particle position or global position 
as well. To achieve a high performance, we set the inertia weight as 

( ) iter
iter

×
−

+=
max

maxmin
max

ωωωω                                                                                                                 (7) 

minω and maxω are the starting and ending inertia weight which are responsible to control the 
PSO algorithm’s stability. Their best values are between 0.2 and 0.9 respectively. iter and 

maxiter represent the current and maximum iterative time which we set to 1000. ω is set to 0.4. 
The maximum number of inertia weight is assigned to particles with fitness values greater than 
average fitness value while minimum value of inertia weight is assigned to particles with 
fitness values lesser than fitness average value. The first part of the above-mentioned formula, 

t
ivω , provides exploration ability for PSO. The second and third parts, 

)(1
t
ii xpbestrandc −××  and )(2

t
ixgbestrandc −×× , represent private thinking and 

collaboration of particles respectively. The inertia weight ω balances the global optimization 
capability and the local optimization capability. 

 
Fig. 4.1. The movement of particles: a concept of modification of a searching point by PSO 
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4.2 The implementation of MPSO Algorithm for Task Scheduling and Virtual 
Resource Allocation in Cloud Computing 

Cloud computing technology brings the computing resources and storage resources in 
different geographical positions into a resource pool through virtual technology. The users 
have to use them and then need to release them so that they can be reused. In this way, we can 
calculate the average computation cost and computation time of all tasks on all the resources. 
The MPSO can be used to solve this non-linear complex optimization problem due to its 
advantages of being less complex operations and parameters. MPSO presents a good deal in 
cloud computing because cloud computing server cluster can fast realize resource discovery, 
resource matching, scheduling production, and task average running time [5].  
The proposed MPSO enlarges the scope of excellent positions and enhances global search 
ability in order to improve the performance of particle swarms. In this work, MPSO adjusts the 
value of inertia weight ω, particle velocity, and updates of particle position. The inertia weight 
ω balances the global optimization capability and the local optimization capability. 
During the resource discovery, and scheduling process, the cloud system uses pBest which is 
the best location the particle has achieved so far. pBest can be viewed as the particle's 
memory and does not depend only on the value of fitness function. It also depends on other 
constraints.  gBest is the best position that neighbors of a particle have achieved so far. 
gBest takes the whole population as the neighbors of each particle.   
The selection of gBest consists of three steps: determine the neighborhood, select 
the gBest among the neighbors, and compare fitness values among neighbors. In this MPSO 
algorithm, most of the steps are the same as PSO algorithm but ours aims at enhancing the 
global search ability, swarm diversity by increasing the chance to find a better solutions and 
exploitation ability. In first steps, all the particles are initialized. The fitness value of all 
particles is calculated. The pBest  and gBest are calculated. The process of the MPSO 
algorithm is shown in the Fig. 4.2 below: 
 
As we can see from the Fig. 4.2 above, the heuristic algorithms are essential to solve 
real-world and complex problems. PSO and our proposed MPSO are close to each other 
structurally but the movement of particles in neighborhood represents a solution for the 
problem. The particle moves by the direction on the pBest and gBest until reaching the 
maximal number of iteration. The algorithms are described as follows: 
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Fig. 4.2. Flow chart of Standard PSO and MPSO 

 
 

Algorithm1–Pseudo code of Particle Swarm Optimization (PSO) algorithm 
1: Initialization: Start initializing particles with random positions  
2: Conversion: Convert the continuous position vector to discrete vector. 
3: Fitness: Calculate fitness value for each particle using fitness function 
    If current fitness is greater than fitness pBest , then  
4: Calculating pBest : Calculate the best particle pBest and assign it’s best 
position value to gBest  
5: Calculate velocity for each particle 
6: Updating: Update the particle velocity and the swarm best known position until 
reaching the termination condition based on formula (6) and (7): 
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1 t

i
t
ii

t
i

t
i xgbestrandcxpbestrandcvv −××+−××+=+ ω       

11 ++ += t
i

t
i

t
i vxx  

 

No 

Yes 

Initialize PSO parameters 

Evaluate fitness function 

Update particle velocity & position 

Check and update gbest 

Check and update pbest 

End 
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population 

Termination 
criteria reached? 

Start Start 

Initialize particles’ parameters 

Evaluate fitness function of each particle 

Update the optimal position of the swarm 

Calculate the average fitness value 

Update the position and velocity of each particle 

End 

fitness reached the 
threshold? 

Yes 
No 
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Where  
            ω =inertia  
           21,cc =uniformly distributed random numbers 
          pBest =best position of each particle 
          gBest =best position of the entire particles in a population 
          t = iteration  
7: Repeat 2 to 6 until the stopping condition is satisfied (reaching maximum 
number of iterations or when no change in fitness value for a consecutive iteration) 
8: Output: Print the final solution as the best particle   
 

Algorithm2 – Pseudo code of modified Particle Swarm Optimization(MPSO) algorithm 
1: Get the best solution of the particles 
2: Set particle dimension as equal to the size of available tasks  
3: Randomly, initialize particles position and velocity of each particle; 
4: Calculate the best fitness value of each particle, concern the particle with the better 

fitness value, and compare its fitness value with the fitness of its pBest ; 
                      if )())(( ii pBestFtXF <  
                          ))(()( tXFpBestF ii =  
                             )(tXpBest ii =  

5:  Calculate the best particle as gBest with the best fitness value,                       
                         if )())(( ii gBestFtXF <  
                        ))(()( tXFgBestF ii =  
                             )(tXgBest ii =  
6: Calculate velocity and update their positions 
              MPSOupdatevelocity() //change the velocity of the particle according to (5) 
             MPSOupdateposition() //change the position of the particle according to  (6) 
7: Check if the stopping condition or the maximum iteration is reached. otherwise,   

repeat from step3 until a stopping criterion is satisfied. 
 

Algorithm3- MPSO-Based Virtual Resource Scheduling 
1: Set the virtual resource parameters and the weight of the nodes and edges from the 
DAG; 
2: Select tasks to be allocate to the available resources Rrj ∈  according to their 

priorities jp  

3:  For every Rrj ∈ , do 

4:  Schedule all tasks from jr  
6: End 
7: End 
8: For the nodes Rrj ∈  

9: The task is assigned to a virtual resource jr  for execution based on the MPSO 
algorithm  
10: End 
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4.2 Algorithms Descriptions 

In this section, the details of the proposed MPSO algorithms are explained clearly. The above 
task scheduling algorithms in the cloud-computing environment are described based on PSO 
elements as follows:  
The particles are defined as the available real tasks nt ; the fitness function is defined as the 
function used to find the optimal solution; local best is defined as the best position of a particle 
among its all positions visited so far; global best is defined as the position where the fitness is 
achieved among all the particles visited so far; Inertia Weight is defined as the value used to 
balance the exploration-exploitation trade off; the velocity update is defined as a vector to 
calculate the speed and direction of the particle; and then the position update is defined as a 
global optimal position of a particle.  
The PSO parameter settings are as follows:  
Initial population is a set of particles at a starting time and are generated randomly; the swarms 
are disorganized of moving particles that tend to cluster together while each particle seems to 
be moving in a random direction; population size is the number of particles which can be fixed 
accordingly; search space is the range in which the algorithm computes the optimal control 
variables. We set the lower bound and upper boundary to 0 and 1; maximum generations are 
the maximum number of generations allowed for the fitness to converge with the optimal 
solution. From the initialization stage, the algorithm sets the number of particles, initializes the 
particle position vector and velocity vector of each particle in the particle swarm search space, 
where in [ ]rrr ulx ,∈ , max

rr vv ≤  
The maximum speed of particle in n-dimensional has to be set in order to limit the velocity of 

a particle. )(max

rr

rr
r lu

luv
+
−

×= β                                                                                                                     (8) 

where [ ]1,0∈β , and rv is the velocity of the nth dimension particles, ru and rl are the upper 
bound and lower bound of the r-dimensional search space. The speed limit can cause the 
convergence of the particle to the global optimal position.  The second step calculates the 
inertia weightω  and updates the velocity of the particle. If max

rr vv ≥ , then max
rr vv = , if 

max
rvv −< , then max

rr vv −= .  Update the particle position from the initial position up to the 

next position. If rr lx < , then set rr lx = , if rr ux > , set rr ux = . The algorithm calculates the 
fitness of each particle and updates the pBest and gBest optimal of each particle position in 
the particle swarm. When it reaches to the maximum iteration or finds the ideal result, it will 
close up the process otherwise it will repeat the process from step2 to update the velocity of 
each particle until the stopping criterion is satisfied.  
Let us assume that we know the size of input and size of output of each tasks and assigned as 
edge weight

1ke , 
2ke in Fig. 3.2. Depending on the number of tasks completed, the ready list is 

updated, which will now contain the tasks which parents have completed execution. It will 
update the average values for communication between resources according to the current 
bandwidth. When the remote resource management systems are not able to assign task to 
resources according to our mappings strategy due to resource unavailability, the computation 
of MPSO makes the heuristic dynamically balanced to other tasks' mapping.  
Therefore, in this problem, the particles are the tasks to be assigned and the dimensions of the 
particles are the number of tasks in a cloud system. The value assigned to each dimension of 
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particles is the computing resource to a task. The performance of each particle is evaluated by 
fitness function described above where i  represents the number of particles and j represents 
the virtual resource node number. The particle calculates their velocity and updates their 
position accordingly. The evaluation step is carried out until the specified number of iterations 
is reached. The performance of MPSO varies according to the variation of the computing 
resource cost. This variation depends on the way cloud service varies pricing policies 
depending on the type and capabilities of the virtual resources.  

5. Simulation and Analysis of the Results 

5.1 Simulation Environment  
 
In order to prove the feasibility and to show the performance of the proposed algorithm, we 
chose to use a comparison method of MPSO algorithms against GA, and standard PSO. We 
take into consideration various parameters like number of tasks, number of CPU, number of 
VMs, number of iterations, swarm size, population size, as shown in Table5.1 below. The 
simulation was conducted into two scenarios: 1) Using the Matlab program running on 
Intel(R) dual-Core(TM)i5-4590 CPU@3.30GHz, with 6.00GB of memory and 2) Using 
CloudSim toolkit running on Windows 7 operating system with Intel(R) dual-Core(TM) 
i5-4590 CPU@3.30GHz, with 6.00GB installed memory. We considered using a maximum of 
10 virtual machines.  
 

Table 5.1. Parameters used for particle swarm optimization and genetic algorithm  
 
 
 
 
 
 
 
 
 
 
 
 

The reason we have chosen these parameters is that c1 and c2 are the weighting factors that 
increase the performance of MPSO. The best range for c1 is 1.5 to 2 and the best range for c2 is 
1 to 2.0. We set the inertia weight minω and maxω as the starting and ending inertia weight which 
are responsible to control the MPSO algorithm’s stability. Their good range values lay 
between 0.1 and 0.9. miniter and maxiter represent the current and maximum iterative time 
which we set to 1000. The population size is fixed at 100 particles but it can be any number. 
For purpose of comparing PSO and MPSO, our population size is fixed at 100 particles. Our 
research has found out that fixing the values as they are represented in Table5.1 provides the 
best convergence rate for all test problems considered.  

Scenario 1: Iteration of the particle position and velocity: 
In each PSO iteration step, each particle moves from one position to the next position based on 
its velocity; by moving it reaches to different prospective of the problem. The basic particular 
equation was represented in (5) and (6). Each particle was first evaluated to find the particle 

 
 
PSO parameters 

Population size 40 
maxω  

minω  

0.9 
 
0.1 

C1 2.0 
C2 1.0 
Number of iterations 1000 

 
GA parameters  

Population size  40  
Crossover probability 0.7 
Mutation probability 0.01 
Number of iterations 1000 
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objective function value. The result is revealed in Fig. 5.1 below. 
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Fig. 5.1. MPSO representation of the best cost at 1000 iterations 

 

The Fig. 5.1 simulates the best cost for the proposed MPSO algorithm. The cost varies 
gradualy due to the increase of number of iteration. Increased number of iteration increases the 
quality of solution which lead to the good cloud resource solution 
.  
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Fig. 5.2. Performance comparison of MPSO and PSO algorithms 

 
In Fig. 5.2, the horizontal axis represents the number of iteration and the vertical axis 
represents the fitness values. The red line indicated the modified particles swarm optimization 
improvement. This means that when the two algorithms completed the same task, the modified 
PSO performs better than standard PSO. The plot results show that MPSO converges faster 
than the PSO algorithm. In each MPSO’s iteration, the position and the velocity of all particles 
are updated and their fitness is evaluated together with their dimension number n . The fitness 
function complexity is based on the scheduling algorithm and also depended on the number of 
tasks i . The convergence time is influenced by the number of particles and the number of 
virtual resources considered. The numbers in Table 5.2 indicate the average run time of best 
function values in 20 runs. Several experiments and different parameters were set to evaluate 
the efficiency of MPSO, so MPSO algorithm suits more to cloud computing.  
Therefore, the average run time of the MPSO algorithm is shorter than that of PSO algorithm. 
 
Table 5.2. Comparison results for 20 runs of particle swarm optimization algorithm technique 
Algorithm Fitness value The number of iterations Avg Run time(ms) 
PSO -0.2414 1000 3300 
MPSO -0.7934 1000 2044 
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Scenario 2: Analysis of the results based on CloudSim Simulations: 
In this section, we considered to simulate our results with CloudSim platform [40] and to 
evaluate the performance of the proposed algorithm.  
We considered some parameters such as completion time, execution time, and resource 
utilization. The process of classifying these parameters is known as Task parameterization. In 
our experiment, we used five virtual machines, and as well as ten virtual machines. The 
comparison experiments were carried out by using MPSO, PSO, and GA algorithms. We 
compared the performance of the three algorithm from task completion time, execution time, 
and resource utilization. We considered i number of tasks and j as the number of VMs. Tasks 
are the service requests in cloud computing environment and need to be allocated to VMs in 
order to be processed. The VMs have the configured processing capability such as processor, 
memory, and capacity size which are dynamically varied. We set task length between 1000MI 
to 15000MI with the proceeding speed of virtual machine 150MIPS to 300MIPS (MIPS is the 
million instructions per second of VMs) and (MI is the million instructions of tasks).  
Other parameters used are from Table5.1 above. The bellow figures show the variation of 
processing time of particles (tasks), execution time and resource utilization with respect to 
their number of VMs to complete the work. Fig. 5.3 shows that the completion time decreases 
when the number of resources increases. The completion time of MPSO is shorter than PSO, 
and GA. This shows that MPSO has great advantage and can easily find very good solution 
space to reduce the processing time the tasks take to complete the process. Fig. 5.3 shows the 
completion time for MPSO, PSO, and GA with respect to 10 virtual machines  

 
Fig. 5.3 Completion time for MPSO, PSO, and GA with respect to 10 virtual machines 

 

To demonstrate the performance for the algorithms (GA, PSO, and MPSO), we use 5 virtual 
machines and 10 virtual machines for 10, 15, 25, 40 cloudlets.  
 
Table 5.3. Task Scheduling comparison based on completion time (sec) 
GA PSO MPSO VM Cloudlet 
3.199166 2.162 1.7511  

 
5 

 

10 
5.716983 3.799 2.8932 15 
8.926751 7.367 5.6195 25 
13.16712 8.496 5.3936 40 
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The results show that the MPSO algorithm outperforms the GA and PSO with the respect to 
the execution time.  

 

 
Fig.5.4 Representation of Execution Time for MPSO, PSO, and GA 

 
 
The figure above shows the execution time for GA, MPSO, and PSO algorithms when using 5 
virtual machines and setting 10, 15, 25, 40 cloudlets.  
 
 
Table5.4. Task Scheduling comparison based on completion time(sec) 
GA PSO MPSO VM Cloudlet 
2.195 1.917 1.412  

 
10 

 

10 
3.793 2.689 2.109 15 
7.264 6.337 3.897 25 
8.216 6.261 4.382 40 
 
 
Based on the results in Fig. 5.5 which shows the execution time of GA, MPSO, and PSO 
algorithms when using 10 virtual machines and various cloudlets, the proposed algorithm 
outperforms the current PSO and GA respectively.  
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Fig. 5.5 Representation of Execution Time for MPSO, PSO, and GA when considering 10 VMs 

GA PSO MPSO VM Cloudlet 
0.615071 0.713026 0.850168  

 
5 

 

10 
0.604812 0.728099 0.939132 15 
0.607211 0.672281 0.940351 25 
0.53191 0.58714 0.821439 40 
 
Table 5.5 shows the resource utilization for GA, MPSO, and PSO algorithms while 
considering 5 virtual machines and 10, 15, 25, 40 cloudlets.  
Based on the results in Fig. 5.6, MPSO algorithm outperforms PSO and GA with respect to the 
resource utilization for 5 VMs.  

 
Fig. 5.6 The simulation results of the resource utilization for MPSO, PSO, and GA based on 5 virtual 

machines and various cloudlets. 
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Table 5.6. Comparison results of MPSO, PSO, and GA with respect to the resource utilization  
GA PSO MPSO VM Cloudlet 
0.4126 0.65016 0.7012  

 
10 

 

10 
0.4399 0.69232 0.7893 15 
0.3617 0.41951 0.7468 25 
0.3861 0.70193 0.8806 40 
 
Based on the results in Fig. 5.7, MPSO algorithm outperforms PSO, and GA with respect to 
the resource utilization while considering 10 virtual machines and 10, 15, 25, 40 cloudlets. 
 

 
Fig. 5.7 Representation of resource utilization based on 10 VMs and various Cloudlets 

 
The research shows how to use evolutionary techniques to enter a schedule as a search solution. 
We refer to the Fig. 3.3 to show the mapping of tasks to the available resources. Considering 
the proposed algorithm, each particle represents a task for which it is randomly assigned to the 
available resource. The figures show the assignment of various cloudlets to five and ten virtual 
machines.  

5. Conclusion 
In a cloud environment, there are many tasks running on virtual resources, so this paper 
presents a modified particle swarm optimization algorithm applied to optimize task scheduling 
and virtual resource allocation in cloud computing with two constraints for time, cost, and 
resource utilization rate.  From the simulations, it is shown that this algorithm could quickly 
and dynamically optimize virtual resources with a reduced total time for task scheduling in the 
cloud environment. The MPSO also can perform better than the PSO method proposed in the 
earlier researches in terms of processing time, cost and resource utilization rate. The PSO can 
fail to achieve the required optimum solution in cases when the problem to be solved seems to 
be complicated or complex but this can be fixed by using MPSO algorithm. Using MPSO 
algorithm in cloud computing resource allocation, the simulation results show that MPSO 
presents advantages in convergence speed, in finding global optimal, and in simplicity ability. 
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As we can see from the results, a MPSO optimization processes the best fitness value, 
decreases rapidly and converges while the number of iteration convergent to the higher value. 
To show how the evolution process is going on for both MPSO, the convergence of the 
average fitness values is also shown in Fig. 5.2, from which it is clear that MPSO seems to 
perform better. In the changing environment, like virtual cloud computing resources need to 
be operated in optimally manner. Therefore, the MPSO optimization algorithm can quickly 
allocate resources under the dynamic environment, and utilizes effectively the system 
resources to reduce cost, and makespan for the number of virtual resources and user jobs. 
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