
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 454
Copyright ⓒ 2018 KSII

Android malicious code Classification using
Deep Belief Network

Luo Shiqi1, Tian Shengwei1, Yu Long2 Yu Jiong1,3 and Sun Hua1

1 School of Software, Xinjiang University
No.499, Xibei Road, Saybagh District, Urumqi, Xinjiang, 830008 - P.R. China

[e-mail: tianshengwei@163.com]
2 Network Center, Xinjiang University

No.666, Shengli Road, Tianshan District, Urumqi, Xinjiang 830046 - P.R. China
[e-mail: yul_xju@163.com]

3 School of Information Science and Engineering, Xinjiang University
No.666, Shengli Road, Tianshan District, Urumqi, Xinjiang 830046 - P.R. China

[e-mail: yujiong@xju.edu.cn]
*Corresponding author: Tian Shengwei

Received May 6, 2017; revised August 17, 2017; accepted September 15, 2017;

published January 31, 2018

Abstract

This paper presents a novel Android malware classification model planned to classify and
categorize Android malicious code at Drebin dataset. The amount of malicious mobile
application targeting Android based smartphones has increased rapidly. In this paper,
Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into
families of Android application. A texture-fingerprint based approach is proposed to extract or
detect the feature of malware content. A malware has a unique "image texture" in feature
spatial relations. The method uses information on texture image extracted from malicious or
benign code, which are mapped to uncompressed gray-scale according to the texture
image-based approach. By studying and extracting the implicit features of the API call from a
large number of training samples, we get the original dynamic activity features sets. In order to
improve the accuracy of classification algorithm on the features selection, on the basis of
which, it combines the implicit features of the texture image and API call in malicious code, to
train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different
malware and benign samples, the experimental results suggest that the usability of this
method---using Deep Belief Network to classify Android malware by their texture images and
API calls, it detects more than 94% of the malware with few false alarms. Which is higher than
shallow machine learning algorithm clearly.

Keywords: malware classification, texture image, uncompressed gray-scale, Deep Belief
Network

This research was partially supported by the Xinjiang Uygur Autonomous Region Science and Technology
Personnel Training Project (QN2016YX0051). Research Innovation Project of Graduate Student in Xinjiang Uygur
Autonomous Region(No. XJGRI2017007). The Project Of Cernet Next Generation Internet Technology
Innovation Project(NGII20170420).

http://doi.org/10.3837/tiis.2018.01.022 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 455

1. Introduction
Android malware has become one of the major threat to network security. Analysis and
detection of Android malicious code has been a vivid area of research in the recently year.
Malware is a catch-all phrase used to refer to any program that is designed to "harm or subvert
a system’s intended functionality" [1] and falls under several categories including viruses,
worms, and Trojans. At the same time, being driven by the economic benefits and applied to
various new technology, the number of malicious code is growing exponentially, varieties of
malware become the obstacle to the healthy development in the Internet.

In consequence, for the purpose of malware detection, various approaches have been
proposed, and all the different research ventures can be categorized as static [2], dynamic [3]
features analysis, graphs-based approach etc.

Dynamic(also name behavioral analysis), which can monitor the behavior of applications
at run-time. It performed by observing the behavior of the malware while it is actually running
on a host system. Such as, TaintDroid [4], DroidRanger [5] and DroidScope [6] are dynamic
analysis method. But these algorithms spot whole malicious activities on the smart phone,
which involve millions of smartphones at large scale in practice and takes a lot of spends and
time.

Currently, static analysis is the conventional technique for malware detection ,which
exhaustively examines all data flows and pinpoints problematic ones. The static analysis
examines the binary code, analyzes all possible execution paths, and identifies malicious code
without execution. Such as Kirin [7], Stowaway [8] and RiskRanker [9],are static analysis
methods. In detail, Kirin [7] checks the permission of application for indications of malicious
code activity. Stowaway [8] analyzes API calls to detect overprivileged applications and
RiskRanker [9] identifies applications with different security risks statically. For
characterizing Android applications' behaviors, static analysis takes into consideration some
static information including permissions, deployment of components, intent message passing
and Application Programming Interface (API) calls. There are many static analysis methods
available for the examination of malware, such as the signature based [10], semantics-based
[11], heuristic scanning technique [12] et al.

The signature based detection is a widely used method in static analysis. According to this
method, the binary executables are transformed to represent hashes which are matched with a
database of known malware samples [13] [14] [15] [16] [17], but it shows following
weaknesses. The signature method requires continuous updates of signature and high
maintenance cost. In addition, such method could be easily evaded by malware in
polymorphic form. To avoid difficulties and complement to signature-based detection,
heuristic-based scanning has been put forward. Heuristic-based scanning is generally based on
sequences time-delay embedding approach [18], for threats with multiple anti-malware
engines are needed to more effectively address modern risks. Usually static analysis methods
induce only a small run-time overhead.

Although these approaches mentioned above, mainly built on manually crafted detection
patterns, are efficient and scalable, generally speaking, they are not available for new malware
instances. More and more malwares adopt measures such as: shell protection [19],
polymorphism [20], encryption [21], or packing [22], which make the analysis and detection
of Android malware rather tough.

The graphs-based approach includes Automated Behavioral Graph Matching [23],
control-flow graphs [24], data dependency graphs [25], [26], permission event graphs [27],.
But these graphs are checked against manually-crafted specifications to detect malware.

456 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

However, these detectors tend to seek an exact match for a given specification and therefore
can potentially be evaded by polymorphic variants. Furthermore, the specifications used for
detection are produced from known malware families and cannot be used to battle zero-day
malware.

In classification system, the results of classification largely depend on the learned
features. Therefore, it shows great significance in extracting the effective features for better
detection or analysis. To overcome these limitations, solving the drawbacks above, many
scholars use machine learning method to extract features. But most shallow machine learning
algorithm, such as KNN [28], SVM [29], Naive Bayes [30], Random Forest [31], cannot
improve accuracy greatly. But the shallow structure algorithm show the following weakness,
which lies in limited samples, and its generalization ability for complex classification
problems under certain constraints.

Deep learning (DL) is a recently developed field belonging to machine learning. It tries to
mimic the human brain, which is capable of processing the complex input data fast, learning
different knowledge intellectually, and solving different kinds of complicated human
intelligence tasks well. It is widely applied to apply to image processing [32] [33] [34] et. DL
is able to attaining distributed representation for input data by learning a deep nonlinear
network structure. The last but not least, it shows strong concentration of the general learning
essential characteristics of data sets from a few samples.

In computer vision processing area, the method of gray-scale image texture is widely use,
for examples, detecting lung nodules with image texture features [35], texture classification
with various levels of Gaussian noise [36], et. In this paper, the texture fingerprint [37] of a
malware is the set of texture fingerprints for each uncompressed gray-scale image block.

Our approach is inspired by some success gained in the above methods. After fully
considering combination of the texture images and API call. We introduce a novel approach to
identify the Android malicious code in smart phone. The texture images, which mapped code
to uncompressed gray-scale, obtain or detect the feature from malware content, API calls stand
for the activity of malware or benign code. According the combination of the potential texture
images and API call features gained from the code segment of APK file, using Deep Belief
Network to classify malicious code into families is put forward.

2. Methodology
Correctly identifying the malicious code Android can be a tough work for security scholars.
Our approach requires a comprehensive yet unique representation of Android apps that helps
determine the typical indications of malicious activity.

To achieve this goal, our method spends a lot of time to execute a broad static analysis
that extracts feature sets by using Deep Belief Networks. According to this method, it is
necessary to extract feature sets from different sources (such as Class.dex, lib/*.so,
Manifest.xml, API calls, etc).

2.1 Deep Belief Networks (DBN)

2.1.1 Deep Belief Networks (DBN)
In 2006, Hinton, Osindero, and Teh [38] introduced a greedy layer-wise unsupervised

learning algorithm for Deep Belief Networks (DBN), shows in Fig. 1 The training strategy for
such networks may hold great promise as a principle to help address the problem of training
deep networks. Upper layers of a DBN are supposed to represent more "abstract" concepts that

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 457

explain the input data whereas lower layers extract "low-level features" from the data. As an
unsupervised learning in deep architectures, DBN is a multi-layered probabilistic generative
model. Deep Belief Network can be defined as a stack of Restricted Boltzmann machines with
a Back Propagation(BP) to fine tuning. Previously, Deep Belief networks has been
successfully employed in recognize, cluster and generate images, video sequences and
motion-capture data. [39] [40]

V

H1

H2

H3

Output Layer

Q(h1~x) P(h1~x)

Q(h2~h1) P(h2~h1)

Q(h3~h2)

...Labels

Error

Fine-tuning

Fine-tuning

 Error
BP

P(h3~h2)
Fine-tuning

Fine-tuning

BP

Fig. 1. DBN structure

2.1.2 Restricted Boltzmann Machine (RBM)
Restricted Boltzmann Machine (RBM) is a undirected graphical model of. There are no

links between units of the same layer, only between input (or visible) units xj and hidden (also
invisible) units hi. The difference between standard Boltzmann machines and RBM is that in
the restricted model units within the same layer are not connected. which makes inference and
learning within this graphical model tractable. As Fig. 2 shows it.

 x 2 x 1 x 3 x i

 y 1 y 2 y 3 y 4 y n

H1 H2 H3 H4 Hn

V1 V2 V3 Vi

Y
Hidden Layer

W
Weight

X
Visible Layer

Fig. 2. RBM structure

458 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

RBM is a model of Energy Based Model(EBM),defined via the energy function, It
consists of m visible units },,,,,,,,{ 21 mvvvV = to represent observable data and n hidden
units },,,,,,,,{ 21 nhhhH = to capture dependencies between observed variables. And the

joint probability distribution under the model is given by the Gibbs)|,(θhvp with the energy

function)|,(θθ hvE
)|,(

,

)|,(
1)|,(θ

θθ hvE

hv

hvE e
e

hvp −
−∑

= (1)

∑∑∑ −−−=
∈∈ ji

ijji
hiddenj

jj
visiblei

ii whvhyvxhvE
,

)|,(θθ (2)

For all i ∈{ 1, ..., n} and j∈{ 1, ..., m} , wij is a real valued weight associated with the edge
between units Vj and Hi and bj and ci are real valued bias terms associated with the jth visible
and the ith hidden variable, respectively.

In terms of probability this means that the hidden variables are independent given the
state of the visible variables and vice versa:

∏∏
==

==
m

i
i

n

i
i hvphvpandvhpvhp

11

)|()|()|()|((3)

The absence of connections between hidden variables makes the marginal distribution of
the visible variables easy to calculate:

)|,(

,

)|,(
1)|,(θ

θθ hvE

hv

hvE e
e

hvp −
−∑

= (4)

This equation shows why a (marginalized) RBM can be regarded as a product of
experts model, in which a number of “experts” for individual components of the observations
are combined multiplicatively.

The RBM can be interpreted as a stochastic neural network, where nodes and edges
correspond to neurons and synaptic connections, respectively. The conditional probability of a
single variable being one can be interpreted as the firing rate of a (stochastic) neuron with

sigmoid activation function ()xf , where ()xf is the sigmoid function, and the units will
switch to state 0 otherwise.

)();|1(∑ +==
j

ijiji xhwfHVP θ (5)

)();|1(∑ +==
i

jiijj yvwfVHP θ (6)

() xe
xf −+
=

1
1 (7)

The independence between the variables in one layer makes Gibbs sampling especially
easy: Instead of sampling new values for all variables subsequently, the states of all variables
in one layer can be sampled jointly. Thus, Gibbs sampling can be performed in just two sub
steps: sampling a new state h for the hidden neurons based on)|(vhp and sampling a state v
for the visible layer based on)|(hvp This is also referred to as block Gibbs sampling.

Based on the algorithm above, RBM uses iteration between layers to training, and access
to learning parameters),,(jiij yxw=θ ultimately.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 459

() ()* ()

1
arg max arg max log |

T
t

t
L P v

θ
θ θ θ

=

= = ∑
 (8)

2.1.3 The Contrastive Divergence Fast learning algorithm

The goal of RBM training is to make marginal probability distribution)(vp fit
probability distribution of training samples based on justifying the parameters of model. To
achieve this, we use k-steps contrastive divergence learning algorithm [41] to train RBMs
which is a standard way to train RBMs. The idea of CD-k is quite simple: the chain is run for
only k steps, starting from an example)0(v of the training set and yielding the sample)(kv .
Each step t consists of sampling)(th from)|()(tvhp and sampling)1(+tv from)|()(thvp

subsequently. The gradient in equation (2) with respect to θ of the log-likelihood for one

training pattern
)0(v is then approximated by equation (9),

θ
ε

θ
εθ

∂
∂

+
∂

∂
−= ∑∑),()|(),()|(),(

)(
)(

)0(
)0()0(hvvhphvvhpvCD

k

h

k

h
k (9)

In the following, we restrict our considerations to RBMs with binary units for which
)(][

1)|(∑ =
+=

m

j jijiivhp vwcsigmoidhE
i

2.1.4 Updating parameters
All common training algorithms for RBMs approximate the log-likelihood gradient given

some data and perform gradient ascent on these approximations.

)(

)(

)(

reconidataii

reconidataii

reconjidatajiij

HHratelearningC

VVratelearningB

HVHVratelearningW

−=∆

−=∆

−=∆

 (10)

Where in the above equation, data
* represents the Mathematical expectation of training

data, recon
* represents the Mathematical expectation of reconstructed model.

2.1.5 Back Propagation(BP)
BP is a common method of training artificial neural networks and used in conjunction

with an optimization method such as gradient descent. The algorithm repeats a two phase
cycle, propagation and weight update. When an input vector is presented to the network, it is
propagated forward through the network, layer by layer, until it reaches the output layer. The
output of the network is then compared to the desired output, using a loss function, and an
error value is calculated for each of the neurons in the output layer. The error values are then
propagated backwards, starting from the output, until each neuron has an associated error
value which roughly represents its contribution to the original output. BP is described in Fig.
3.

460 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

W,b
 a1

 b1

 b2

 b3

 a2

 a3

 x1

 x2

 x3

 y1

 y2

 y3

 xi aj bk

 ym

W,b

Fig. 3. BP structure

2.2 Android malware analysis

It is well known that Android applications (which are written in Java language) are
packed inside a APK file. On desktop and server environments, a Java program is compiled to
Java bytecodes, which is an intermediate representation (IR) for Java Virtual Machine (JVM).
A Java bytecode is based on a stack-based instruction set (hence the term “stack-based Java
bytecode”) and has object-oriented features. On the other hand, Android applications are run
on Dalvik Virtual Machine (DVM). Which is an optimized virtual machine for the Android
platform. However, on resource-limited mobile devices, since the performance of stack-based
Java bytecode is not well due to slow interpretation, Android scholars have created a new
bytecode set for DVM (Dalvik bytecode) to improve the performance of Android applications.
In contrast to the Java bytecode, the Dalvik bytecode is based on a register-based instruction
set. Therefore, it can reduce the code size and running time.

APK is just a ZIP file containing among a compact Dalvik Executable (.dex) file. In terms
of static analysis, all we need is the .apk file of an Android app. By unzipping the APK, we
extract the potential feature of code segment in APK file, and get the "classes.dex" file. Then
we use the tool dex2jar to convert the classes.dex file to Java .class files. Meanwhile, we
obtain the file "classes.dex.dex2jar.jar", now we use the Java decompiler JD-GUI to extract
the source code. At last, Java source, which contains all the decompiled, code has been got.

Every application developed for Android must include a manifest file called
Androidmanifest.xml, it provides data supporting the installation and later execution.

Android malicious code analysis is the study aiming to develop, examine and explore
approaches and techniques to classify machine executables into either harmful or not [42].
Classification techniques plays a critical role in the Android malware analysis. To choice of
potential explicit feature has enormous influence on the performance of deep learning-based
malware detection, we need to select a sets of features.

In addition, we extract different feature sets from the application’s .dex, lib/*.so,
androidmanifest.xml and other code. In this paper, we focus on the Image texture and five
species of API call commonly used.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 461

A
P
K

U
n
z
i
p

Class.Dex Lib/*.so
AndroidMani
fest.xml

benign malware

readelf

Function call
sequence

script
management

Permission
Activity
Service

Receiver
Provider

Fig. 4. Experiment Design

2.3 Image texture analysis

2.3.1 Image texture analysis
Visualization is a useful technique widely used in computer security like computer

forensics, Network space security, image analysis, image classification and large-scale image
search, to name a few. Recently, image texture-based classification was used to classify
malware [43] [44]. Image texture is a block of pixels which contains variations of intensities
arising from repeated patterns.

In this work, we propose an image texture based analysis to analyze malicious code. First
the executable is converted into byteplot image. Later analysis is performed on this byteplot.
Our method is more robust to code obfuscation and does not require unpacking or decryption.
Other advantage of our approach is that we can apply widely used image processing
techniques like textures analysis, near duplicate detection techniques to malware detection.

462 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

Fig. 5. Feature extraction of image texture

Table 1. Feature extraction of image texture
def getMatrixfrom_bin(filename, width = 512, oneRow = False):
 with open(filename, 'rb') as f:
 content = f.read()
 hexst = binascii.hexlify(content)
 fh = numpy.array([int(hexst[i:i+2],16) for i in range(0, len(hexst), 2)])
 if oneRow is False:
 rn = len(fh)/width
 fh = numpy.reshape(fh[:rn*width],(-1,width))
 fh = numpy.uint8(fh)
 return fh
def getMatrixfrom_asm(filename, startindex = 0, pixnum = ??): #?? Represent the pix num
 with open(filename, 'rb') as f:
 f.seek(startindex, 0)
 content = f.read(pixnum)
 hexst = binascii.hexlify(content)
 fh = numpy.array([int(hexst[i:i+2],16) for i in range(0, len(hexst), 2)])
 fh = numpy.uint8(fh)

return fh
for sid in subtrain.Id:
 i += 1
 print "dealing with {0}th file...".format(str(i))
 filename =basepath + sid + ".txt"
 im = getMatrixfrom_asm(filename, startindex = 0, pixnum =??)#?? Represent the pix num
 mAPImg[sid] = im

2.3.2 Image texture analysis based on Deep Belief Network
To demonstrate where the performance gains are produced, we use Deep Belief network

to extracted Image texture from the step mentioned above. Hinton et. show that RBMs can be
stacked and trained in a greedy manner to form so-call Deep Belief Networks, as it is
illustrated in Fig. 1.

Compared with conventional neural network algorithm such as BP algorithm, DBN offer
a better performance. DBN can solve the problems of falling into the local minimum point
easily, which is realized by two key training steps: pre-training and fine-tuning.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 463

The process of training DBN is as follows:
Step 1: Pre-train the single layer of RBM. We can use thorough dataset as training set in

this part, for it is an unsupervised learning. After certain epochs of training, the cost function
will change very little when updates using Eq.(11). Constrastive divergence (CD) is developed
by Geoffrey Hinton for training RBM model.

The data negative log-likelihood gradient for an RBM with binary units is:

(11)

Step 2: Use that first layer to obtain a representation of the input that will be used as input
data for the second layer. Train the second layer as an RBM, taking the transformed data
(samples or mean activations) as training examples (for the visible layer of that RBM).

Step 3: Iterate 1 and 2 for the desired number of layers, each time propagating upward
either samples or mean values.

Step 4: Fine-tune all the parameters of this deep architecture with a supervised training
criterion. Labeled data samples are used in this step.

In this paper, the importance of using the texture image information becomes obvious and
deep networks are powerful enough to extract image texture information from the input image.

Suppose T1 is the input image with size of n pix (also parameters of image texture
features). On the other hand, DBN standard topology utilizes only T1 as input which is vector.
More precisely, T1 is converted to 1-D vector and DBN standard topology uses this vector in
first layer as input.

In the proposed DBN topology, both inputs layer are vector. Extracting image texture
features in first and second layer of DBN multi-input topology improves DBN power to
images texture more accurate.

Fig. 6. Image texture analysis based on Deep Belief network

2.4 API Call analysis

2.4.1 API Call analysis
Application Programming Interface (API) calls for characterizing Android applications'

behaviors. In order to acquire certain tasks on the devices, such as sending a message, each
application has to request permission or call the corresponding API from the user during the
installation or using. In our work, frequency of occurrence listed below have been counted.

464 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

a. API calls: This kind of feature consists of two parts, namely restricted API call and

suspicious API call. The Android permission system restricts access to a series of critical API
calls. As these calls can particularly lead to malicious behavior.

b. Used permissions: Whenever an API call is invoked during the execution of an
application, the Android platform will verify if the API call is permission-protected before
proceeding to execute the call; such permissions are referred to as used permissions.

c. Url: all URLs found in the disassembled code are included in the last set of features.
Some of these addresses might be involved in botnets and thus present in several malware
samples, which can help to improve the learning of detection patterns.

d. Intenstion: Inter-process and intra-process communication on Android is mainly
performed through intents: passive data structures exchanged as asynchronous messages and
allowing information about events to be shared between different components and
applications. We collect all intents listed in the manifest as another feature set, as malicious
application often listens to specific intents. A typical example of an intent message involved in
malicious is BOOT_COMPLETED, which is used to trigger malicious activity directly after
rebooting the phone.

e. Activity: Malicious activity is usually reflected in specific patterns and combinations
of the extracted features. For example, a malware sending premiums SMS messages might
contain the permission SEND_SMS ， and the hardware component
android.hardware.telephony

Fig. 7. Feature extraction of API Call

2.4.2 API Call analysis based on Deep Belief network
Similarly, in this paper, Deep Belief network are used to extract API call from the step

mentioned above.

Fig. 8. API Call analysis analysis based on Deep Belief network

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 465

3. Experiment environment
For our experiment, we set up a appropriate experiment environment to detect and analyze
Android malicious code.

Table 2. Experimental environment
Parameter Value

OS Windows 7 64 bit platform
CPU Intel(R) Core(TM) i5-4200M CPU
RAM 8G/ DDR3 /1333MHz

Hard disk 120G SSD+2T HDD
Python 2.7.3

It is essential to constructs an experiment environment of Python 2.7.3 with suitable and

available module. I've listed it here.

Table 3. The Python module for the experiment
name introduction version

numpy The fundamental package for scientific computing with
Python

1.9.2

pandas Data structures and data analysis tools 0.16.0rc1(0.11.1)
PIL Python Imaging Library 1.1.7

Scikit-learn Python module for machine learning 0.16.1
scipy Python-based ecosystem of open-source software for

mathematics
0.15.1

twisted An asynchronous networking framework 15.4.0
six Compatibility library 1.7.3
pip The PyPA recommended tool for installing Python

packages.
8.1.2

wheel A built-package format for Python 0.29.0
datutil Extensions to the standard Python datetime module 2.2

pyparsing A general parsing module for Python 2.0.1
setuptools Package development process library 0.16.1

pytz Brings the Olson tz database into Python 2016.6.1
nolearn Python maching learning module 0.6.0
theano Python deep learning module 0.8.2
gdbn Python deep learning DBN moudle 0.2

4. Experimental Classification Results
The samples was collected from August 2010 to October 2012. The dataset contains 5560
malicious and 123453 benign application.

In order to guarantee the efficient stringency of experiments data applied to the model,
this paper selects 1550,2620,5825,6965 samples from the dataset.

466 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

To begin with, we read a lot of files from the features set, as it shows in Table 4.

Table 4. File reading
1. subtrainLabel = pd.read_csv('label.csv')
2. subtrainfeature1 = pd.read_csv("imgfeature.csv")
3. subtrainfeature2 = pd.read_csv("call.csv")
4. subtrain = pd.merge(subtrainfeature1,subtrainfeature2,on='Id')
5. subtrain = pd.merge(subtrain,subtrainLabel,on='Id')
6. labels = subtrain.Class
7. subtrain.drop(["Class","Id"], axis=1, inplace=True)
8. subtrain = subtrain.as_matrix()

In addition, in order to promote the accuracy of classification algorithm on feature

selection, on the basis of that, we amplify the implicit features of texture image and API call in
malicious code, to train Restricted Boltzmann Machine and Back Propagation.

Parameter tuning of DBN will affect the performance of the model. The appropriate
parameters are essential to optimal recognized. After, a plenty of repeated experiment have
been done. The parameters are shown in Table 5.

Table 5. The parameters of DBN model

parameters values
optimize BP

loss log-likelihood gradient
test_size 0.4

learn_rates 0.9
learn_rate_decays 0.5

epochs 300

Table 6. The parameters of DBN model
1. (trainX, testX,trainY,testY)=cross_validation.train_test_split(subtrain,labels,test_size=0.4)
2. dbn=DBN([trainX.shape[1],2],learn_rates=0.9,learn_rate_decays=0.5,epochs=300,verbose=1)
3. dbn.fit(trainX,trainY)
4. preds=dbn.predict(testX)

To guarantee the efficient stringency of experiments data applied to the model, 60% of

experimental data are applied for DBN training. The rest were applied as testing data for
validating the DBN’s predictability.

In order to have a fair comparison, the correct classification rate is performed as the
following equation (11).

correct classification rate=(TP+TN)/(P+N) (11)
Where TP, TN, P, and N denoted True Positive, True Negative, Positive instances and

Negative instances, respectively.

4.1 The effect of Image Texture features on experimental results
In order to guarantee the quality of experimental data, this paper selects 1550, 2620

samples from the dataset to indicate the effect of Image Texture features on experimental

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 467

results, in thousands of trials have been done. Pix num ,also named parameters of image
texture features, with different pix num. The effect of Image Texture features on experimental
results are in the following table and graph.

Table 7. The effect of Image Texture features on experimental results

 500 1000 2000 2500

1550 94.0 94.1 94.8 94.3

2620 94.08 94.9 95.1 94.6

The effect of Image Texture features on
experimental results

93

93.5

94

94.5

95

95.5

500 1000 2000 2500

Image Texture features num

Ac
cu
ra
cy
(%
)

1550

2620

Fig. 9. The effect of Image Texture features on experimental results

4.2 The effect of DBN Layer on experimental results
For proving the effect of DBN layers to experimental results, this paper makes a large

number of experimental.

Table 8. The effect of DBN Layer on experimental results
 2 3 4

1550 94.8 94.6 94.1

2620 95.1 94.8 94.0

468 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

The effect of DBN layes on experimental results

93

93.5

94

94.5

95

95.5

2 3 4

DBN layers num

Ac
cu
ra
cy
(%
)

1550

2620

Fig. 10. The effect of DBN Layer on experimental results

According to the result above, we adopt the best parameters of Image Texture features,

DBN Layers, Learning Rates, Learning Rates Decays et.
In our work, the Image Texture features is set to 2000, DBN Layers is set to 2.

4.3 DBN model with image texture feature or not
It is generally accepted that a good feature is crucial to make a powerful detection

accuracy at high level. To verify image texture is one of the essential feature for Android
malicious code classification, 1550, 2620, 5825, 6965 samples from the dataset has been
screened for the experiment.

Table 9. DBN model with different feature

 dbn（image texture+API call） dbn（API call only）

1550 94.8 94.6
2620 95.1 95.0
5825 95.7 93.5
6956 95.6 94.7

DBN model with different feature

93.2

94.2

95.2

1550 2620 5825 6956

Data Num

A
c
c
u
r
a
c
y
(
%
)

dbn（image
texture+API
call）
dbn（API call
only）

Fig. 11. DBN model with image texture feature or not

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 469

In other words, it shows that our method which utilized the information of image texture can
improve forecast accuracy by an average of 0.85%. This indicates that image texture can
effectively promote the classification accuracy. Next step, we consider the combined features
of image texture and API call to test and verify our experiment.

4.4 DBN compared to shallow machine learning
In order to confirm our algorithm is more suitable for Android malicious code

classification, 1550,2620,5825,6965 samples from the dataset has been screened for the
experiment. The selected samples’ forecast accuracy in each case are shown in Table 10.

Table 10. DBN compared to shallow machine learning

dbn

（image texture+API
call）

svm
（image

texture+API call）

knn
（image texture+API

call）

ann
（image texture+API

call）
1550 94.8 92.7 94.5 93.6
2620 95.1 94.2 95.0 95.0
5825 95.7 94.5 95.1 95.2
6956 95.6 94.8 95.4 95.0

DBN compared to shallow machine learning model

92
92.5

93
93.5

94
94.5

95
95.5

96

1550 2620 5825 6956

Data num

A
c
c
u
r
a
c
y
(
%
)

dbn

svm

knn

ann

Fig. 12. DBN compared to shallow machine learning

Fig. 12 demonstrates in that our method, which used fusion features of image texture and

API call, achieves the accuracy more than 94% contrast to shallow machine learning method.
As we can see, comparing with KNN ,SVM and ANN model, DBN model plays a great

promotion in accuracy. The results demonstrate that the proposed model solved the problems
with high detection. This is not surprising because as shallow machine learning, SVM, KNN
are unable to extract feature automatically and have low fitting ability, while Deep Belief
Network, as a multilayer deep learning model, has strong depicting ability through multilayer
iterative algorithm.

In order to confirm the availability and versatility of the algorithm of DBN to malware
classification with the combined features of texture image and .asm call, we apply DBN to

470 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

classify malicious code on the dataset of Microsoft Malware Classification Challenge (BIG
2015)|Kaggle. Comparing with KNN and ANN, DBN also shows a great promotion in
accuracy with different samples of 1000, 1405, 2000, 3178, 3626. The results have been
showed in the my previous research.

Table 11. Classification accuracy comparison

Data Num dbn knn ann
1000 0.9225 0.9000 0.9103
1405 0.9608 0.9480 0.9520
2000 0.9610 0.9562 0.9572
3178 0.9716 0.9583 0.9600
3626 0.9724 0.9648 0.9705

average 0.95766 0.94546 0.9500

DBN compared to shallow machine learning model

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

1000 1405 2000 3178 3626

Data num

Ac
cu
ra
cy
(%
)

dbn

knn

ann

Fig. 13. DBN compared to shallow machine learning with Microsoft dataset

5. Experimental Analysis
The existing works for feature learning aiming at Android malicious code detection employed
features based on features frequency [45], or only relied on statically or dynamic analysis.

Analyzing the code using static analysis is a widely addressed technique for detecting
unknown malicious codes. [46], the static malware analysis is not need to execute the malware,
but it can not deal with the Shell code, polymorphism, metamorphism. Although the dynamic
malware analysis avoids the drawbacks above, but it needs to execute the malware in run-time
to avoid them, the dynamic analysis of malware detection monitors malicious activity on the
smart phone, it involved millions of smartphones in practice Paranoid Android at large scale is
technically not feasible. And the existing methods do not consider the combination of texture
image and API call. The texture image can represents the static features of malware and the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 471

API signals malware activity.
According to the previous work [47] ,the malicious code has a unique "image texture" in

feature spatial relations, and the same type of malicious code have similar "image texture"
feature. Also, to perform certain tasks on the devices, such as sending a message, each
application has to request permission or call the corresponding API from the user during the
installation or using.

So, in this letter we access information of texture image from malicious or benign code,
which is with size of n pix. The last but not least, in order to improve the efficient of detection,
our work combines texture image and API call frequency.

Moreover, the method to detect Android malicious code employed traditional machine
learning algorithms which have shallow architectures. In contrast, in this paper, our work
adopts Deep learning algorithm named Deep belief Network which can learn high level
representations by associating features obtain from static analysis, which has more possible to
character Android detection.

Contrast to basic learning method for shallow structure algorithm, the limitation lies in
limited samples and cell cases of complex function said ability is limited, its generalization
ability for complex classification problems under certain constraints. [48] Deep learning
method plays a better generalization performance of the classification and can learn more
about cell cases of complex function.

As it illustrates in Fig. 11 with different samples of malicious code or benign, when we
use deep belief network combined with different feature, it is clearly to see the gap between
the use of image texture or not.

As it is shown in Fig. 12 with different samples of malicious code or benign, the method
of deep belief network plays a strong advantages contrast to the shallow machine learning
method(knn, svm, ann) in classification accuracy, also in Fig. 13 The reason of this
phenomenon is the fusion features, particularly the image texture image, which contains
strong depicting ability.

To make a long story short, the method of image texture-based to classify malware is a
very essential factor to the improvement of accuracy, which can extract or detect the feature
more from malware content. At the same time, the algorithm of Deep Belief Network is also
applied to combine with image texture and API call. The Deep Belief Network learns more
about of the malware samples with the features of texture image and API call on account of its
deep structure. It plays well generalization and expression ability in samples of malicious code.
The results show that the way put in our work, the accuracy to detect malware can reach 95.3%
on average contrast to shallow machine learning method and without the image texture.

6. Conclusion
In this research, the image texture and deep learning method used in Android malware are

discussed and initially applied on feature extraction and classification of data.
The dataset (Drebin) used for these experiments consisted of 5560 malicious and 123453

benign application. In this paper, we select part of them. You can get it from
http://user.cs.uni-goettingen.de/˜darp/ drebin.

As it is shown in Fig. 11, Fig. 12 and Fig. 13, the feature of image texture can well retain
the information contained the origin data. What is more, during the tuning of parameters, it
depicts that DBN shows great depicting ability of input data.

Further researches on malware detection and analysis, will apply the semantic
information and access the text embedding for profound malware semantic mining.

472 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

Acknowledgements

We would like to thank all the participants in our study that provided useful and detailed

feedback. Meanwhile, I would thank all my tutor for the research.
This research was partially supported by the Xinjiang Uygur Autonomous Region

Science and Technology Personnel Training Project (QN2016YX0051). Research Innovation
Project of Graduate Student in Xinjiang Uygur Autonomous Region(No. XJGRI2017007).
The Project Of Cernet Next Generation Internet Technology Innovation
Project(NGII20170420).

References

[1] G. McGraw and G. Morisett, "Attacking Malicious Code: A Report to the Infosec Research
Council," IEEE Software, vol. 17, no. 5, pp. 33-41, Sep/Oct 2000. Article (CrossRef Link)

[2] Seshagiri P,Vazhayil A,Sriram P., “AMA: Static Code Analysis of Web Page for the Detection of
Malicious Scripts,” Procedia Computer Science, 93:768-773, 2016. Article (CrossRef Link)

[3] Willems C, Holz T, Freiling F., “Toward Automated Dynamic Malware Analysis Using
CWSandbox,” IEEE Security & Privacy Magazine, 5(2):32-39, 2007. Article (CrossRef Link)

[4] W.Enck, P.Gilbert, B.gon Chun, L.P.Cox, J. Jung, P. McDaniel, and A. Sheth, “Taintdroid: An
information-flow tracking system for realtime privacy monitoring on smartphones,” in Proc. of
USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 393–407,
2010. Article (CrossRef Link)

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets,” in Proc. of Network and Distributed System
Security Symposium (NDSS), 2012. Article (CrossRef Link)

[6] L.-K. Yan and H. Yin, “Droidscope: Seamlessly recon- structing os and dalvik semantic views for
dynamic android malware analysis,” in Proc. of USENIX Security Symposium, 2012.
 Article (CrossRef Link)

[7] Enck, William, Ongtang, et al., “On lightweight mobile phone application certification,” in Proc.
of ACM Conference on Computer and Communications Security (CCS), pp. 235–245, 2009.
Article (CrossRef Link)

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,” in
Proc. of ACM Conference on Computer and Communications Security (CCS), pp. 627–638, 2011.
Article (CrossRef Link)

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable and accurate zero-day
android malware detection,” in Proc. of International Conference on Mobile Systems,
Applications, and Services (MOBISYS), pages 281–294, 2012. Article (CrossRef Link)

[10] Filiol E, Jacob G, Liard M L., “Evaluation methodology and theoretical model for antiviral
behavioural detection strategies,” Journal of Computer Virology and Hacking Techniques,
3(1):23-37, 2007. Article (CrossRef Link)

[11] Venkitaraman R, Gupta G. “Static program analysis of embedded executable assembly code[C],”
in Proc. of International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, CASES 2004, Washington Dc, Usa, 157-166, September, 2004. Article (CrossRef Link)

[12] Zhang B, Li Q, Ma Y., “Research on dynamic heuristic scanning technique and the application of
the malicious code detection model,” Information Processing Letters, 117:19-24, 2017.
Article (CrossRef Link)

[13] Caballero J, Grier C, Kreibich C, et al., “Measuring Pay-per-Install: The Commoditization of
Malware Distribution,” in Proc. of Usenix Conference on Security, USENIX Association, 2011.
Article (CrossRef Link)

https://doi.org/10.1109/52.877857
https://doi.org/10.1016/j.procs.2016.07.291
https://doi.org/10.1109/MSP.2007.45
http://doi.org/10.1145/2619091
https://www.researchgate.net/publication/267787299_Hey_You_Get_Off_of_My_Market_Detecting_Malicious_Apps_in_Official_and_Alternative_Android_Markets
https://www.researchgate.net/publication/267203108_DroidScope_Seamlessly_Reconstructing_the_OS_and_Dalvik_Semantic_Views_for_Dynamic_Android_Malware_Analysis
http://doi.org/10.1145/1653662.1653691
http://doi.org/10.1145/2046707.2046779
http://doi.org/10.1145/2307636.2307663
http://doi.org/10.1007/s11416-006-0026-9
http://doi.org/10.1145/1023833.1023857
http://doi.org/10.1016/j.ipl.2016.06.014
https://www.researchgate.net/publication/228873118_Measuring_Pay-per-Install_The_Commoditization_of_Malware_Distribution

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 473

[14] Chen P S, Lin S C, Sun C H., “Simple and effective method for detecting abnormal internet
behaviors of mobile devices,” Information Sciences, 321:193-204, 2015. Article (CrossRef Link)

[15] Coron J S., “On the Exact Security of Full Domain Hash,” Advances in Cryptology — CRYPTO
2000, Springer Berlin Heidelberg, 229-235, 2004. Article (CrossRef Link)

[16] Griffin K, Schneider S, Hu X, et al., “Automatic Generation of String Signatures for Malware
Detection,” in Proc. of Recent Advances in Intrusion Detection, International Symposium, RAID
2009, Saint-Malo, France, Proceedings. DBLP, 101-120, September 23-25, 2009.
Article (CrossRef Link)

[17] Mohaisen A, Alrawi O, Larson M, et al., “Towards a Methodical Evaluation of Antivirus Scans
and Labels,” Revised Selected Papers of the, International Workshop on Information Security
Applications, Springer-Verlag New York, Inc., 231-241, 2003. Article (CrossRef Link)

[18] Mehdi B, Ahmed F, Khayyam S A, et al., “Towards a Theory of Generalizing System Call
Representation for In-Execution Malware Detection,” in Proc. of IEEE International Conference
on Communications, IEEE, 1-5, 2010. Article (CrossRef Link)

[19] Xie P D, Li M J, Wang Y J, et al., “Unpacking Techniques and Tools in Malware Analysis,”
Applied Mechanics & Materials, 198-199:343-350, 2012. Article (CrossRef Link)

[20] Cowen B, Shafi K., “Fractal methods for the representation and analysis of polymorphism in
malware,” in Proc. of Military Communications and Information Systems Conference, IEEE, 1-5,
2013. Article (CrossRef Link)

[21] Ozsoy M, Khasawneh K N, Donovick C, et al., “Hardware-based Malware Detection using Low
level Architectural Features,” IEEE Transactions on Computers, pp. 3332-3344, 2016.
Article (CrossRef Link)

[22] J Šťastná，M Tomášek, “The Problem of Malware Packing and its Occurrence in Harmless
Software,” Acta Electrotechnica et Informatica, 16(3): 41–47, 2016. Article (CrossRef Link)

[23] Park Y, Reeves D, Mulukutla V, et al., “Fast malware classification by automated behavioral graph
matching,” in Proc. of CSIIRW '10 Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research, 1-4, 2010. Article (CrossRef Link)

[24] Christodorescu M, Jha S, Seshia S A, et al., “Semantics-aware malware detection,” in Proc. of
Security and Privacy, 2005 IEEE Symposium on, 32-46, 2005. Article (CrossRef Link)

[25] Fredrikson M, Jha S, Christodorescu M, et al., “Synthesizing Near-Optimal Malware
Specifications from Suspicious Behaviors,” IEEE Symposium on Security and Privacy. IEEE
Computer Society, 45-60, 2010. Article (CrossRef Link)

[26] Kolbitsch C, Comparetti P M, Kruegel C, et al., “Effective and efficient malware detection at the
end host,” in Proc. of 18th Usenix Security Symposium, 351-366, Montreal, Canada, August 10-14,
2009. Article (CrossRef Link)

[27] Chen K Z, Johnson N, D'Silva V, et al., “Contextual Policy Enforcement in Android Applications
with Permission Event Graphs,” Heredity, 110(6):586, 2013. Article (CrossRef Link)

[28] Schultz M G, Eskin E, Zadok F, et al., “Data mining methods for detection of new malicious
executables,” in Proc. of Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. IEEE, 38-49, 2001. Article (CrossRef Link)

[29] Arp D, Spreitzenbarth M, Hübner M, et al., “DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket,” in Proc. of Network and Distributed System Security
Symposium, 2014. Article (CrossRef Link)

[30] Schultz M G, Eskin E, Zadok F, et al., “Data mining methods for detection of new malicious
executables,” in Proc. of Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. IEEE, 38-49, 2001. Article (CrossRef Link)

[31] Alam M S, Vuong S T., “Random Forest Classification for Detecting Android Malware,” in Proc.
of Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social
Computing, 663-669, 2013. Article (CrossRef Link)

[32] Shen F, Shen C, Zhou X, et al., “Face image classification by pooling raw features,” Pattern
Recognition, 54(C):94-103, 2016. Article (CrossRef Link)

http://doi.org/10.1016/j.ins.2015.04.035
http://doi.org/10.1007/3-540-44598-6_14
http://doi.org/10.1007/978-3-642-04342-0_6
http://doi.org/10.1007/978-3-319-05149-9_15
http://doi.org/10.1109/ICC.2010.5501969
http://doi.org/10.4028/www.scientific.net/AMM.198-199.343
http://doi.org/10.1109/MilCIS.2013.6694490
http://doi.org/10.1109/TC.2016.2540634
http://doi.org/10.15546/aeei-2016-0022
http://doi.org/10.1145/1852666.1852716
http://doi.org/10.1109/SP.2005.20
http://doi.org/10.1109/SP.2010.11
https://www.researchgate.net/publication/221260426_Effective_and_Efficient_Malware_Detection_at_the_End_Host
https://www.mendeley.com/research-papers/contextual-policy-enforcement-android-applications-permission-event-graphs/
http://doi.org/10.1109/SECPRI.2001.924286
http://doi.org/10.14722/ndss.2014.23247
http://doi.org/10.1109/SECPRI.2001.924286
http://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.122
http://doi.org/10.1016/j.patcog.2016.01.010

474 Luo Shiqi et al.: Android malicious code Classification using Deep Belief Network

[33] Shen F, Zhou X, Yang Y, et al., “A Fast Optimization Method for General Binary Code Learning,”
IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,
25(12):5610-5621, 2016. Article (CrossRef Link)

[34] Shen F, Yang Y, Liu L, et al., “Asymmetric Binary Coding for Image Search,” IEEE Transactions
on Multimedia, 19(9), 2022-2032, 2017. Article (CrossRef Link)

[35] Shi C Z, Zhao Q, Luo L P., “Application of Gray-Scale Texture Feature in the Diagnosis of
Pulmonary Nodules,” Applied Mechanics & Materials, 140:34-37, 2012. Article (CrossRef Link)

[36] Hadizadeh H., “Multi-resolution local Gabor wavelets binary patterns for gray-scale texture
description,” Pattern Recognition Letters, 65(C):163-169, 2015. Article (CrossRef Link)

[37] Han X G, Qu W, Yao X X, et al., “Research on malicious code variants detection based on texture
fingerprint,” Journal on Communications, 2014. Article (CrossRef Link)

[38] Geoffery E. Hinton, Salakhutdinov RR., “Reducing the dimensionality of data with neural
networks,” Science, 313(5786), 504-7, Jul 28 2006. Article (CrossRef Link)

[39] Ch'Ng S I, Seng K P, Ang L M, et al., “Block-based Deep Belief Networks for face recognition,”
International Journal of Biometrics, 4(2), 130-143, 2012. Article (CrossRef Link)

[40] Yu D, Deng L., “Deep Learning and Its Applications to Signal and Information Processing
[Exploratory DSP],” IEEE Signal Processing Magazine, 28(1), 145-154, 2011.
Article (CrossRef Link)

[41] Geoffrey E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural
Comput., 14(8), 1771–1800, August 2002. Article (CrossRef Link)

[42] Yin H, Song D, Egele M, et al., “Panorama:capturing system-wide information flow for malware
detection and analysis,” in Proc. of ACM Conference on Computer and Communications Security,
CCS 2007, Alexandria, Virginia, Usa, DBLP, 116-127, October 2007. Article (CrossRef Link)

[43] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware images: Visualization and
autmoatic classification,” in Proc. of VizSec '11 the 8th International Symposium on Visualization
for Cyber Security, 2011. Article (CrossRef Link)

[44] Kancherla K, Mukkamala S., “Image visualization based malware detection,” Computational
Intelligence in Cyber Security, IEEE, 40-44, 2013. Article (CrossRef Link)

[45] Zhao K, Zhang D, Su X, et al., “Fest: A feature extraction and selection tool for Android malware
detection,” in Proc. of Computers and Communication (ISCC), 2015 IEEE Symposium on,
714-720, 2015. Article (CrossRef Link)

[46] Louk M, Lim H, Lee H J, et al., “An effective framework of behavior detection-advanced static
analysis for malware detection,” in Proc. of International Symposium on Communications and
Information Technologies, IEEE, 361-365, 2014. Article (CrossRef Link)

[47] Peng L, Wang R, Wu A., “Research on Unknown Malicious Code Automatic Detection Based on
Space Relevance Features,” Journal of Computer Research & Development, 49(5):949-957, 2012.
Article (CrossRef Link)

[48] Bengio Y., “Learning deep architectures for AI,” Foundations and trends in machine learning,
2(1):1-127, 2009. Article (CrossRef Link)

http://doi.org/10.1109/TIP.2016.2612883
http://doi.org/10.1109/TMM.2017.2699863
http://doi.org/10.4028/www.scientific.net/AMM.140.34
http://doi.org/10.1016/j.patrec.2015.07.038
http://doi.org/10.3969/j.issn.1000-436x.2014.08.016
http://doi.org/10.1126/science.1127647
http://doi.org/10.1504/IJBM.2012.046247
http://doi.org/10.1109/MSP.2010.939038
http://doi.org/10.1162/089976602760128018
http://doi.org/10.1145/1315245.1315261
http://doi.org/10.1145/2016904.2016908
http://doi.org/10.1109/CICYBS.2013.6597204
http://doi.org/10.1109/ISCC.2015.7405598
http://doi.org/doi:10.1109/ISCIT.2014.7011932
https://www.researchgate.net/publication/289176130_Research_on_unknown_malicious_code_automatic_detection_based_on_space_relevance_features
http://doi.org/10.1561/2200000006

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 475

Luo Shiqi, born in 1993. Postgraduate student in the School of Software, Xinjiang
University. His main research interests include Information Security.

Tian Shengwei, born in 1973. PhD. Professor in the School of Software, Xinjiang
University. His main research interests include Intelligence Computing.

Yu long, born in 1974. Professor in the Xinjiang University. She received the M.S. degree
in Xinjiang university. Her research interests include Intelligence Technology.

Yu Jiong, born in 1964. Professor and PhD supervisor in computer science at the School
of Information Science and Engineering, Xinjiang University. His main research interests
include on grid computing, parallel computing, etc.

Sun Hua, born in 1974. She received the PHD degree in East China University of Science
and Technology. Her research interests include Information Security.

	Luo Shiqi1, Tian Shengwei1, Yu Long2 Yu Jiong1,3 and Sun Hua1
	No.666, Shengli Road, Tianshan District, Urumqi, Xinjiang 830046 - P.R. China
	[e-mail: yul_xju@163.com]
	3 School of Information Science and Engineering, Xinjiang University
	No.666, Shengli Road, Tianshan District, Urumqi, Xinjiang 830046 - P.R. China
	[e-mail: yujiong@xju.edu.cn]
	*Corresponding author: Tian Shengwei
	published January 31, 2018
	Abstract
	1. Introduction
	2. Methodology
	2.1 Deep Belief Networks (DBN)
	2.1.1 Deep Belief Networks (DBN)
	Fig. 1. DBN structure
	2.1.2 Restricted Boltzmann Machine (RBM)
	Fig. 2. RBM structure
	2.1.3 The Contrastive Divergence Fast learning algorithm
	2.1.4 Updating parameters
	2.1.5 Back Propagation(BP)
	Fig. 3. BP structure
	2.2 Android malware analysis
	Fig. 4. Experiment Design
	2.3 Image texture analysis
	2.3.1 Image texture analysis
	2.3.2 Image texture analysis based on Deep Belief Network
	2.4 API Call analysis
	2.4.1 API Call analysis
	2.4.2 API Call analysis based on Deep Belief network
	3. Experiment environment
	Table 2. Experimental environment
	Table 3. The Python module for the experiment
	4. Experimental Classification Results
	Table 5. The parameters of DBN model
	Table 6. The parameters of DBN model
	4.1 The effect of Image Texture features on experimental results
	Table 7. The effect of Image Texture features on experimental results
	Fig. 9. The effect of Image Texture features on experimental results
	4.2 The effect of DBN Layer on experimental results
	Table 8. The effect of DBN Layer on experimental results
	Fig. 10. The effect of DBN Layer on experimental results
	4.3 DBN model with image texture feature or not
	Table 9. DBN model with different feature
	Fig. 11. DBN model with image texture feature or not
	4.4 DBN compared to shallow machine learning
	Table 10. DBN compared to shallow machine learning
	Fig. 12. DBN compared to shallow machine learning
	Fig. 13. DBN compared to shallow machine learning with Microsoft dataset
	5. Experimental Analysis
	6. Conclusion
	Acknowledgements
	References

