
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018               497 
Copyright ⓒ 2018 KSII 

Fully Homomorphic Encryption Based On 
the Parallel Computing 

 
Delin Tan1,2, Huajun Wang1 

1 College of Geophysics, Chengdu University of Technology, No.1, Dong san Road, 

 Er xian qiao, Chenghua District, Chengdu, China 

[e-mail:hjwang@sdut.edu.cn] 
2 Sichuan Normal University, No.5, Jing'an Road, Jinjiang District, Chengdu, China 

[e-mail:tdltcl@126.com] 

*corresponding author: Huajun Wang 

 

Received April 29, 2017; revised August 10, 2017; accepted September 9, 2017;  

published January 31, 2018                           

 
Abstract 

 
Fully homomorphic encryption(FHE) scheme may be the best method to solve the 
privacy leakage problem in the untrusted servers because of its ciphertext calculability. 
However, the existing FHE schemes are still not being put into the practical applications 
due to their low efficiency. Therefore, it is imperative to find a more efficient FHE 
scheme or to optimize the existing FHE schemes so that they can be put into the practical 
applications. In this paper, we optimize GSW scheme by using the parallel computing, 
and finally we get a high-performance FHE scheme, namely PGSW scheme. 
Experimental results show that the time overhead of the homomorphic operations in new 
FHE scheme will be reduced manyfold with the increasing of processing units number. 
Therefore, our scheme can greatly reduce the running time of homomorphic operations 
and improve the performance of FHE scheme through sacrificing hardware resources. It 
can be seen that our FHE scheme can catalyze the development of FHE. 

Keywords: FHE, privacy leakage, untrusted server, ciphertext calculability, parallel 
computing 
This research was supported by the project of education department of SiChuan province with No.17ZB0352 
and by the the Natural Science Foundation of China with No. 61373162. 
 
http://doi.org/10.3837/tiis.2018.01.024                                                    ISSN : 1976-7277 



498                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
1. Introduction 

The privacy leakage problem on the untrusted servers has become a serious hazard 

problem in information security field. For example, the security of the cloud computing 
platform depends on the situation of solving the privacy leakage problem [1], and 
meanwhile its solution is also impacts the popularity in the industry. To solve the privacy 
leakage problem, people mainly use traditional cryptographic methods to encrypt user’s 
privacy data stored on the cloud computing platform, such as the proxy re-encryption 
algorithm, the property encryption algorithm and so on. Unfortunately, the traditional 
cryptographic methods don’t support the ciphertext calculation, so they need to decrypt 
the ciphertext firstly when they want to handle user’s privacy data stored on the cloud 
computing platform and encrypted with the traditional cryptographic methods. This not 
only increases the complexity of operating user’s privacy data, but also easily causes the 
privacy leakage problem during decrypting the ciphertext of user’s privacy data. 
Therefore, it is necessary to find a cryptographic scheme which supports ciphertext 
calculation. 

As is known to all, fully homomorphic encryption(FHE) scheme supports ciphertext 
calculation, so it satisfies the security requirement of the untrusted servers such as the 
cloud computing platform. The security of the untrusted servers will be greatly improved 
if they get the security support of FHE scheme.  

At present, since Gentry constructed the first FHE scheme in 2009, more and more 
FHE schemes have been proposed and improved [2][3][4][5]. However, the existing FHE 
schemes can’t be put into the practical applications because of their low efficiency [6]. 
For example, it will spend more than 30 minutes when the homomorphic operations of 
BGV scheme is run, although BGV scheme is the best efficient scheme during the 
existing FHE schemes. So it is easy to see that the running time can’t satisfy the demand 
of the practical applications.  

1.1 Introduction to the mian FHE schemes 
At present, the best performance of FHE scheme is BGV(Fully Homomorphic Encryption 
without Bootstrpping), whose time complexity is 2

( )λΟ  [7]. Besides BGV, there are 
several FHE schemes as follows. 

(1) Fully homomorphic encryption over the integers, namely DGHV, with the time 
complexity 14( )λΟ  [8]. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        499 

(2) Fully homomorphic encryption without modulus switching from classical gapsvp, 
namely Bra12, with the time complexity 6( )λΟ [9]. 

(3)Homomorphic encryption of approximate eigenvector: conceptually-simpler, 
asymptotically-faster, attributed-based, namely GSW, with the time complexity of per 
gate ( )N ωΟ  [10], where 2.3727ω < . 

(4) FHEW: Bootstrapping Homomorphic Encryption in less than a second [11], 
namely FHEW. It mainly optimizes bootstrapping technique with PPT algorithm, so its 
performance is mainly embodied in the running time of bootstrapping technique, and you 
can know by title.  

Moreover, there are many FHE schemes [12-17] which all are optimized and 
improved on the above schemes. Meanwhile, they have been proved that they still can’t 
be put into the practical applications due to their low efficiency. 

1.2 Our motivation 
The essence of low efficiency for the existing FHE schemes is due to the noise, which 
strengthens the security of FHE schemes, but also leds many complex and expensive 
operations into FHE schemes, such as relinearization technique, modulus switching 
technique, dimension reduction technique and so on. If we remove the noise, FHE 
schemes will be unsafety. It is obvious that insecure FHE schemes are useless, so the 
noise can’t be removed. However, if FHE schemes can’t be put into the practical 
applications, they are still useless. So it is an urgent problem to put FHE schemes into the 
practical applications. According to scientists' predictions, the study of FHE schemes will 
be a long process.  

In order to solve the dilemma that FHE schemes can’t be put into the practical 
applications, we optimize FHE schemes by the parallel computing. Our purpose is to 
reduce the time complexity of homomorphic operations in FHE scheme by the parallel 
computing. The main principle is to improve the performance of homomorphic operations 
by sacrificing hardware resources. The process is shown below: Firstly, we will 
decompose the homomorphic operations into a number of independent sub-operations in 
accordance with the principle of the parallel computing. Secondly, we assemble a number 
of processing units into a high-performance computing system which is a 2-dimensional 
grid. Thirdly, assign one or a group of processing units to these independent 
sub-operations. Namely, these sub-operations will be processed on the provided 
processing units respectively, so these sub-operations are running at the same time.  



500                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
Through the above steps, the homomorphic operations will be optimized by the 

parallel computing, the running time of the homomorphic operations will be reduced, and 
the efficiency of the FHE scheme will be improved. 

1.3 Roadmap 
Next, we will introduce the relevant knowledge of the parallel computing in section 2, 
including the fundamental of Cannon algorithm. In section 3, we will introduce our 
proposed schemes, namely the parallelized GSW(PGSW) scheme. In section 4, we will 
analyze the performance of PGSW scheme. In section 5, we will introduce the 
corresponding experiments. Finally, we will analyze and summarize the whole paper in 
section 6. 

2. Preliminaries 

Below we usually denote the ordinary parameters by lowercase Greek letters, such as 
security parameter λ , dimension parameter m , n  and κ , modulus parameter q  and 
so on. In addition, we use v  to represent the vector, use uppercase letters M  to 

represent the matrix, and use nZ  to present the integer ring. Next, we introduce the basic 

principles of the parallel computing and Cannon algorithm, as shown below. 

2.1 The parallel computing [18] 

The parallel computing which is evolved from the serial computing is an important 
research direction in computer science. In simple terms, the parallel computing is a 
supercomputing implemented on the high-performance computing system. There are 
many high-performance computing systems available, such as the parallel computer 
cluster, the distributed computer system and so on. Their basic principles all are to use 
multiple processors to cooperatively solve the sameone problem. The workflow is as 
follow: Firstly, decompose the problem which is need to process into many independent 
parts. Secondly, assign an independent processing unit of the high-performance 
computing system for each individual part. Thirdly, run all the independent processing 
units of the high performance computing system at the same time. Then, each 
independent processing unit of the high performance computing system will produce a 
operation result respectively. According to the principle of the parallel computing, we 
merge all the operation results into a final result which exactly we need. Since all the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        501 

independent processing units of the high performance computing system run 
simultaneously, so the processing time of the whole problem based on the parallel 
computing is shortened, and correspondingly improve the performance of solving the 
problem.  

According to GSW, due to the presence of noise, it needs to introduce a number of 

operations to achieve the FHE scheme, such as ()BitDecomp , 1()BitDecomp− , 

2()Powersof , matrix addition, matrix multiplication and so on. Practice has proved that 
these operations are complex and time-consuming, especially matrix multiplication. At 

present, the optimal time complexity of matrix multiplication is ( )NωΟ ( 2.3727ω = ) 

achieved by Williams [19] under the serial computing. After analyzing we can see that it 
is difficult to furtherly optimize the matrix multiplication under the serial computing, so 
we consider to optimize matrix multiplication under the parallel computing. Now, there 
are many parallel computing algorithms to optimize matrix multiplication, such as DNS 
algorithm [20], Cannon algorithm [21], Fox algorithm [22], Systolic algorithm [23] and 
so on. In this paper, we choose Cannon algorithm as the parallel computing algorithm for 
matrix multiplication, and we will introduce Cannon algorithm in the next section. 

2.2 Cannon Algorithm 

Cannon algorithm [24] was proposed by Alpatov etc. in 1997. Its main idea is to divide 
the matrix into many blocks, and then assign a processing unit of the high-performance 
computing system for each block respectively. Next, we will introduce the specific 
implementation process of matrix multiplication based on Cannon algorithm. For 
example, there are two matrices, namely matrix A  and matrix B , and we use A B⋅  to 
represent the product of matrix A  and matrix B . Firstly, divide matrix A  and matrix 
B  into p p×  blocks which form a 2-dimensional grid whose size is p p× , and the 
number of each block is decided by its row numbers and column numbers in the 

2-dimensional grid. For example, there is a block ijA (0 , )i j p≤ < , where i  and j  

represents the i -th row and the j -th column in the 2-dimensional grid. Meanwhile, 
there is a computer cluster which forms a 2-dimensional grid whose size is p p× , and 
the number of each computer is decided by the number of its row numbers and column 
numbers in the computer cluster. For example, There is a computer, namely 



502                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 

,i jD (0 , )i j p≤ < , where i  and j  represents the i -th row and the j -th column in the 

computer cluster.  

 

  

 

 

 

           (a) striped partitioning method      (b) checkerboard partitioning method 

 

According to Cannon algorithm, there are two kinds of partitioning methods for 

matrix. Respectively, striped partitioning method and checkerboard partitioning method. 

As shown in Fig. 1, they are the sample graph of two kinds of partitioning methods for 

matrix. 

According to different demands, we take the different partition method. Here we 

mainly use the checkerboard partitioning method, and the algorithm implementation 

process is shown below. 

(1) Assign blocks ijA  and ijB  to ijD (0 , )i j p≤ <  which is a processing unit of the 

computer cluster, and then compute the product ,i jC  of ijA  and ijB  on ijD .  

(2) Move the block ijA (0 , )i j p≤ <  loop to the left by i  steps, and move the block 

ijB (0 , )i j p≤ <  cyclic up by j  steps.  

(3) Execute the multiplication-addition computation on ijD , and finally add all the 

results to ,i jC . Move the block (0 , )ijA i j p≤ <  loop to the left by 1 step, meanwhile 

move the block (0 , )ijB i j p≤ <  cyclic up by 1 step.  

Fig. 1. two kinds of partitioning methods for matrix 

PN-1 
. 
. 
P1 
P0 

P0 P1 . . PN-1 

a0 
a1 

    
 

aN-1 PN-1

 

. 

. 
P1 
P0 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        503 

(4) Repeat (3), execute the multiplication-addition on ijD  for p  times altogether, 

and execute single step cycle on the block ijA  and the block ijB  for p  times 

respectively. 
From the above we can see, the parallel computing time of Cannon algorithm is 

3 2

2
4 4p s w

n n
T pt t

p p
= + +  in the 2-dimensional grid, where p  is the dimension of 

2-dimensional grid, st  is the startup time, and wt  is the text-transmission time. Because 

st  and wt  all are “small” numbers, so the parallel computing time of Cannon algorithm 

is mainly determined by n  and p . It should be noted that the minimum dimension of 

the sub-matrix is 2, namely, 1
2

p n= , then the time complexity of Cannon algorithm is 

( )nΟ . It can be seen that the time complexity of matrix multiplication can be linear 
complexity when selecting the appropriate parameters in the high-performance computing 
system. 

3. The proposed scheme(PGSW) 

In this section, we will introduce the proposed scheme, parallelized GSW(PGSW), which 
is based on the GSW. The reason why we propose a new FHE scheme based on GSW is 
mainly because GSW scheme has many advantages that other FHE schemes don’t have. 
Below we introduce the unique advantages of GSW scheme, as shown below. 

(1) Solved the ciphertext dimension expansion problem caused by the homomorphic 
operations. 

(2) Removed many complex and expensive operations, such as relinearization, 
modulus switching, dimension reduction and so on. 

(3) The current FHE schemes are achieved basically on the ring. So its homomorphic 
operations mainly include addtion and multiplication. At present, only the homomorphic 
addition and multiplication of GSW scheme is in accordance with the operational rule of 
common arithmetic operations, and the other homomorphic operations need to redefine 
the operation symbols, so GSW scheme is the most natural FHE scheme. 

So here we choose GSW scheme as our basis, and optimize it by the parallel 



504                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
computing. The main idea of the optimization is to optimize the complex operations in 
GSW scheme. After optimizing, we get PGSW scheme finally. Next we introduce the 
optimization process of the basic operations, encryption module, decryption module etc. 
of GSW scheme. 

3.1 Some Basic Operations and Their Optimization 

There are many basic operations in GSW scheme, and some of these operations are not 
homomorphic operations, but they are very important. For example, ()BitDecomp , 

1()BitDecomp− , 2()Powersof , ()Flatten  and so on. Their main function is to ensure 

GSW scheme B -strongly-bounded, so that GSW scheme can evaluate a circuit of 
polynomial depth rather than merely polynomial degree. However, most of them are 
complex operations which have high time complexity. That is, these operations are 
extremely time-consuming operations under the serial computing so that GSW scheme is 
low efficient. In order to improve the efficiency of GSW scheme, we need to optimize 
these operations. As following, we introduce the optimization process of the above 
operations based on the parallel computing. 

()PBitDecomp : ()BitDecomp  is an important part of ()Flatten  which can keep 
the ciphertexts B -strongly-bounded. The primary mission of ()BitDecomp  is to 
convert decimal matrices or vectors into binary matrices or vectors. When the operand of 

()BitDecomp  is vector 1 2( , ,... )ka a a a= , then according to GSW scheme, we get: 

                   1,0 1, 1 ,0 , 1( ) ( ,..., ,..., ,..., )l k k lBitDecomp a a a a a− −=               (1) 

where l k N∗ = , and ,i ja is the j -th bit in the binary representation of ia . According to 

the definition of ()BitDecomp , we can divide the above operation into two steps. 
Step 1, convert all the decimal elements of vectors into the corresponding binary 

bits. Since all matrices and vectors are B - strongly-bounded, so the decimal elements are 
“small”, then we can build a conversion table between the decimal elements and the 
binary bits. When we need to convert the decimal elements into the binary bits, we can 
quickly query the conversion table and then get the corresponding results. Because the 
value range of decimal elements in matrices or vectors is “small”, the size of the 
conversion table is much smaller than the dimension N  of matrix or vector, so the time 
complexity of quering operation for each decimal element through conversion table is 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        505 

(1)Ο . Since there are κ  decimal elments, so the time complexity of step 1 is ( )κΟ . 
 Step 2, assemble all the l -length binary bits into a N -dimensional binary vector. 

It is obvious that the time complexity of step 2 is ( )κΟ .  

So the time complexity of ()BitDecomp  is 2)( ) ( ) ( )κ κ κ∗ =Ο Ο Ο  when the 

operand is vector under the serial computing. It is obvious that the time complexity of 

()BitDecomp  is 2( )NκΟ  when the operand is matrix under the serial computing. 

Although their time complexity are not high, we use ()BitDecomp  with other operations 
together, then the composite operations have high time complexity which hinders GSW 
from being put into the practical applications, so they need to be optimized by the parallel 
computing, and the following is the optimization process. 

In step 1, the conversion of κ  decimal elements are mutually independent, so we 
can use the parallel computing to optimize them. The main idea is to use κ  processing 
units of the high performance computing system to do the conversion of κ  decimal 
elements respectively, then the conversion of κ  decimal elements will work at the same 
time, so the time complexity of the conversion of κ  decimal elements is (1)Ο , and the 
time complexity of step 1 is also (1)Ο . 

In step 2, we use κ  processing units of the high performance computing system to 
do the assembling of κ l -length binary bits, namely, each processing unit does one 
assembling respectively, and then the κ  processing units work at the same time, so the 
time complexity of step 2 is also (1)Ο . Thus we can see that the time complexity of 

()BitDecomp  is (1)Ο  when the operand is vector under the parallel computing. 
When the operand is matrix, we can compute each row of the matrix respectively, so 

we also can optimize it with the parallel computing. Namely, compute each row on one 
processing unit, and then all the processing units work at the same time. Then the time 
complexity of computing N  rows of matrix is (1)Ο  under the parallel computing, so 
the time complexity of ()BitDecomp  is also (1)Ο  when its operand is matrix under the 
parallel computing. 

Here, we call the optimization result of ()BitDecomp  as ()PBitDecomp , whose time 
complexity is (1)Ο  under the parallel computing no matter the operand is matrix or 
vector. The following are their computation results when the operand are vector and 
matrix respectively. 

 



506                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 

           1,0 1, 1 ,0 , 1( ) ( ,..., ,..., ,..., )l k k lPBitDecomp a a a a a− −=                     (2) 

           
11,0 11,1 11, 1 1 ,0 1 ,1 1 , 1

21,0 21,1 21, 1 2 ,0 2 ,1 2 , 1

1,0 1,1 1, 1 ,0 ,1

... ...... ...

... ...... ...
( )

......................................................
... ...... ...

l k k l

l k k k l

k k k l kk kk

a a a a a a

a a a a a a
PBitDecomp A

a a a a a a

κ− −

− −

−

=

, 1kk l−

 
 
 
 
 
  

            (3)  

1()PBitDecomp− : 1 ()BitDecomp−  is the inverse process of ()BitDecomp , and its 

main function is to convert the binary matrices or vectors into the decimal matrices or 

vectors. When the operand is vector, for example, 1,0 1, 1 ,0 , 1( ,..., ,..., ,..., )l k k lb b b bb − −=


, then 

have: 

                 
1

1
1, ,

0
(( ) 2 . ,..., 2 . )

l
j j

j k j
j

bBitDecomp b b
−

−

=

= ∑ ∑


                (4) 

Similarly to ()BitDecomp , 1 ()BitDecomp−  can also be divided into two steps. 

Step 1, convert l - length binary bits into the corresponding decimal element from 
left to right respectively. From the above analysis we can see, we can quickly query the 
conversion table for converting the l - length binary bits into a decimal elments. 
According to the analysis of the previous section, we can see that the time complexity of 
quering operation for the l - length binary bits is (1)Ο , correspondingly the time 
complexity of step 1 is ( )κΟ . 

Step 2, assemble all κ  decimal elements into a κ -dimensional dicimal vector. 
Obviously, the time complexity of the above operation is ( )κΟ .  

So the time complexity of -1()BitDecomp  is 2( ) ( ) ( )κ κ κΟ ∗Ο = Ο  when the operand 

is vector under the serial computing. 

When the operand is a matrix, it needs to execute the 1 ()BitDecomp−  on each row of 

the matrix separately. According to the analysis of the previous section, we can see that 

the time complexity of 1 ()BitDecomp−  is 2( )NκΟ  when the operand is a matrix under 

the serial computing.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        507 

The same reason as ()BitDecomp , 1 ()BitDecomp−  also needs to be optimized by the 

parallel computing, and the optimization process of 1 ()BitDecomp−  is similar to 

()BitDecomp , here we will no longer introduce it. Finally, the optimization result of 

1 ()BitDecomp−  is called as -1()PBitDecomp , whose time complexity is (1)Ο  under the 

parallel computing whether the operand is a matrix or vector.   
2()PPowersof : 2()Powersof  can ensure that the secret key ν  has at least one 

“big” coefficient, so it is an important operation in GSW scheme, and its operand is 

mainly vector. For example, there is a κ -dimensional vector 1 2( , ,... )b b b bκ=


, then we 

have: 

              1 1
1 1 12( ) ( ,2 ,...,2 ,..., ,2 ,...,2 )l l

k k kPowersof b b b b b b b− −=


           (5) 

So the main function of 2()Powersof  is to extend the k -dimensional vector into 
the N -dimensional vector. According to GSW, this operation can also be divided into 
two steps. 

(1) Convert each element of the operand vector into a l -dimensional vector whose 
coefficients is 02 to 12l−  separately, and the time complexity of this conversion for each 
element is ( )lΟ , so the time complexity of this conversion for κ  elements is 

( * ) ( )l NκΟ = Ο  under the serial computing. 
(2) Assemble all the l -dimensional vectors into a N -dimensional vector according 

to the order of the elments in the operand vector. Obviously the time complexity of this 
operation is ( )κΟ . 

From the above we can see, the time complexity of 2()Powersof  is ( * )N κΟ under 
the serial computing.  

According to the principle of the parallel computing, we can optimize (1) by the 
parallel computing, and (2) don’t need to be optimized. Finally we get a optimization 
result which we call it as 2()PPowersof . In (1), when convert all elements of the operand 
vector into l -dimensional vector whose coefficients is from 02  to 12l− . Because we 
can make the convertion of κ  elements of the oprand vector happened at the same time 
on κ  processing units of the high-performance computing system, then its time 
complexity is ( )lΟ . Thus we can see that the time complexity of (1) is ( )lΟ under the 
parallel computing.  

     



508                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
When combine all the l -dimensional vectors into a N -dimensional vector 

according to the order of the elments in the operand vector, the time complexity of (2) is 

( )kΟ . So the time complexity of 2( )PPowersof b


 is ( ) ( )l O NκΟ ⋅ =  when the operand 

is vector under the parallel computing. 
When the operand of 2()PPowersof  is matrix M , it needs to execute the 

2( )PPowersof b


 on each row of the matrix separately. It is obviously that 

2( )PPowersof M  can be optimized by the parallel computing. Namely, let one processing 

unit to do 2( )iPPowersof b


(0 )i N≤ < , where ib


 is the i -th row of matrix M . So we let 

N  processing unit to do 2( )iPPowersof b


 at the same time. Then the time complexity of 

2( )PPowersof M  is also ( )NΟ  under the parallel computing. 
()PFlatten : ()Flatten  can ensure all the vectors and matrices are 

B -strongly-bounded in GSW scheme, and then we can obtain a leveled FHE scheme that 
can evaluate a circuit of polynomial depth without bootstrapping, relinearization and 
modulus switching and so on. In fact, ()Flatten  consists of ()BitDecomp  and 

1()BitDecomp− .  By GSW, we have: 

                     1() ( ())Flatten BitDecomp BitDecomp−=                 (6) 

So we don’t need to specifically optimize it because its members have been 
optimized. Here we call the optimization result of ()Flatten  to be ()PFlatten , and we 
directly replace the corresponding operation with their optimization value. So we have: 

                    1() ( ())PFlatten PBitDecomp PBitDecomp−=                (7) 

From the above formula we can see, the time complexity of ()PFlatten  is the 

product of the time complexity of ()PBitDecomp  and 1()PBitDecomp− , since the time 

complexity of ()PBitDecomp  and 1()PBitDecomp−  all are (1)Ο  under the parallel 

computing, so the time complexity of ()PFlatten  is also (1)Ο  under the parallel 
computing. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        509 

3.2 Some Homomorphic Operations and Their Optimization 

There are many homomorphic operations besides the above basic operations, such as 
()Mult , ()add , ()MultConst  and so on. They all are important operations in GSW 

scheme, and also have high time complexity, so they are needed to be optimized. The 
optimization principle is similar to the above optimization process. Namely, we use the 
principle of the parallel computing to optimize these operations. Next, we introduce their 
optimization process. 

1 2( , )PMatrixMult C C : In GSW scheme, ()Mult  is used to do the matrix multiplication. 

According to GSW, we have: 

                     1 2 1 2( ) ( ),Mult C C Flatten C C= ⋅                       (8) 

Because ( )Flatten C  can be optimized into ( )PFlatten C  which has a constant time 

complexity under the parallel computing, thus the time complexity of 
1 2( ),Mult C C  is 

mainly dominated by the matrix multiplications. So far the optimal time complexity of 

matrix multiplications is 2.3727( )NΟ  which is acchived by williams [18] under the serial 

computing. Accroding to the principle of the parallel computing, we can optimize matrix 
multiplication by Cannon algorithm whose working principle has been presented in 
section 2.2. Thus it is not necessary to introduce its theoretical knowledge here, we only 
demonstrate the algorithm through the following example. 

     
0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... ......

......... ... ......

.................................................
...

...

N N

N N

N N N N N N

N N N N N N

a a a a

a a a a

A
a a a a

a a a a

− −

− −

− − − − − −

− − − − − −

 


= 


 









0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... ......

......... ... ......

.................................................
...

...

N N

N N

N N N N N N

N N N N N N

b b b b

b b b b

B
b b b b

b b b b

− −

− −

− − − − − −

− − − − − −

 


= 


 









0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... .....

......... ... ......

.................................................
...

...

p p

p p

p p

p p p p p p

p p p p p p

P P P P

P P P P

P
P P P P

P P P P

− −

− −

×

− − − − − −

− − − − − −




= 













       (9) 

There are two N N× -dimensional matrices A  and B . According to Cannon 
algorithm, our high-performance computing system is a computer cluster of 
2-dimensional grid which consists of p p×  computers. Moreover, matrix A , matrix B  
and the computer cluster P  are shown as in equation (9). 

Next we will introduce the process to optimize the matrix multiplication with 
Cannon algorithm, and we can divide the above operation into four steps. 

Step 1, divide matrix A  and matrix B  into 2p  blocks, each sub-block is 



510                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
represented by ijA  and ijB (0 , 0 )i p j p≤ < ≤ < . Easy to calculate, the size of each 

sub-block is ( / ) ( / )N p N p× . Next, these sub-blocks are assigned to 2p  processing units, 

namely, assign the block ijA  and ijB  to the processing unit ,i jP (0 , )i j p≤ < , and then 

the corresponding sub-results ,i jC  can be calculated on the corresponding processing 

unit ,i jP , here ,i jC  is the product of the sub-blocks ijA  and ijB . 

Step 2, move the block ijA (0 , )i j p≤ <  loop to the left by i  steps, and move the 

block ijB (0 , )i j p≤ <  cyclic up by j  steps.  

Step 3, execute the multiplication-addition computation on ,i jP , then we obtain a 

sub-result ,i jC , and there are ,i j ij ijij CC A B += × . Move ijA (0 , )i j p≤ <  loop to the left 

by 1 step, meanwhile move ijB (0 , )i j p≤ <  cyclic up by 1 step.  

Step 4, repeat step 3, and execute the multiplication-addition on ,i jP  for p  times 

altogether, execute single step cyclic on the blocks ijA  and ijB  for p  times 

respectively. 
Finally, we get matrix C  which is the product of matrix A  and matrix B , the 

result is shown in the following formula. 

                        
0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... ......

......... ... ......

.................................................
...

...

p p

p p

p p p p p p

p p p p p p

C C C C

C C C C

C
C C C C

C C C C

− −

− −

− − − − − −

− − − − − −

 


= 


 









                 (10) 

According to Cannon algorithm, the running time is 
3 2

2
4 4p s w

N N
T pt t

p p
= + +  on the 

computer cluster, where p  is the dimension of computer cluster of 2-dimensional grid, 

st  is the startup time, and wt  is the text-transmission time. Since both st  and wt  are 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        511 

“small”,  so the time complexity of Cannon algorithm is mainly dominated by N  and 

p . If 1
2

p N= , then the time complexity of Cannon algorithm is ( )NΟ . So the optimal 

time complexity of matrix multiplication under Cannon algorithm is ( )NΟ  when 
taking the appropriate parameters. 

1 2( , )PMatrixAdd C C : ()Add  is used to do the matrix addition in GSW scheme. 

According to GSW, we have: 

                        1 2 1 2( , ) ( )C C C CAdd Flatten= +                     (11) 

where 1C , 2
N N
qC ×∈Ζ are N N×  dimension matrix. Because ()Flatten  can be optimized 

by the parallel computing, and its optimization result is called as ()PFlatten  whose time 

complexity is (1)Ο . So the time complexity of 1 2( , )C CAdd  is mainly dominated by the 

matrix addition. The time complexity of matrix addition is 2( )NΟ  under the serial 

computing, so we can optimize it by the parallel computing. Below we will introduce the 
process to optimize the matrix addtion with the paralle computing. 

For example, there are two N N× -dimensional matrices A  and B , and we will 
compute their sum. According to the parallel computing theory, the matrix addition can 
also be optimized by the computer cluster of 2-dimensional grid, which consists of p p×  
computers. Different from matrix multiplication, the optimization of matrix addition 
needs more computers. Matrix A ,  matrix B  and the computer cluster are shown as 
below.  

         
0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... ......

......... ... ......

.................................................
...

...

N N

N N

N N N N N N

N N N N N N

a a a a

a a a a

A
a a a a

a a a a

− −

− −

− − − − − −

− − − − − −

 


= 


 









0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... ......

......... ... ......

.................................................
...

...

N N

N N

N N N N N N

N N N N N N

b b b b

b b b b

B
b b b b

b b b b

− −

− −

− − − − − −

− − − − − −

 


= 


 









0,0 0,1 0, 2 0, 1

1,0 1,1 1, 2 1, 1

2,0 2,1 2, 2 2, 1

1,0 1,1 1, 2 1, 1

... ......... ......

......... ... ......

.................................................
...

...

N N

N N

N N N N N N

N N N N N N

P P P P

P P P P

P
P P P P

P P P P

− −

− −

− − − − − −

− − − − − −

 


= 


 









      (12) 

Firstly, divide the matrices A  and B  into N N×  blocks, namely ijA  and 

ijB (0 , )i j N≤ <  and each block only contains one element. Assign the blocks ijA  and 

ijB  to the processing unit ,i jP (0 , )i j N≤ < , and then compute the result ,i jC  on ,i jP , 



512                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
where ,i jC  is the sum of the blocks ijA  and ijB . Then we get C  which is a N N×  

matrix, and its element is ,i jC (0 , )i j N≤ < . In fact, Matrix C  is the sum of the matrix 

A  and matrix B . 
It is obvious that the time complexity of matrix addition is (1)Ο  under the parallel 

computing because all the computations work at the same time. We call the optimization 

value of 1 2( , )Add C C  to be ()PMatrixAdd .  

( , )PMultConst C α : ( , )MultConst C α  executes the matrix-constant-multiplication, 

where N N
qC Z ×∈  is a ciphertext, 

qZα ∈  is a constant number. According to GSW we 

have: 

                       ( . )NM Flatten Iα α←                            (13) 

                    ( , ) ( )MultConst C Flatten M Cαα = ⋅                      (14) 

Since ()Flatten  has a optimization value under the parallel computing, namely 

()PFlatten  whose time complexity is (1)Ο , and the time complexity of M C
α
⋅  is 

Matrix-Multiplication whose time complexity is ( )NΟ  under the parallel computing, so 
the time complexity of ( , )MultConst C α  is ( )NΟ  under the parallel computing, and we 
call ( , )PMultConst C α  as the optimization value of ( , )MultConst C α .  

From the above analysis we can see that the time complexity have been greatly 
improved when using the parallel computing to optimize the basic operations and 
homomorphic operations of GSW scheme. Below we compare the time complexity of 
them before and after optimization, as shown in Table 1. 

 
Table 1. The time complexity comparisons before and after optimization 

()BitDecomp  ()PBitDecomp  1()BitDecomp−  1()PBitDecomp−  2()Powersof  

V 2( )kΟ  V (1)Ο  V 2( )kΟ  V (1)Ο  V ( * )N kΟ  

M 2( )NkΟ  M (1)Ο  M 2( )NkΟ  M (1)Ο  M 2( * )N kΟ  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        513 

2()PPowersof  ()Flatten  ()PFlatten  ()Mult  ()PMatrixMult  

V ( )NΟ  V 4( )kΟ  V (1)Ο    

M ( )NΟ  M 2 4( )N kΟ  M (1)Ο  2 4( )Nω κ+Ο ⋅  ( )NΟ  

()Add  ()PMatrixAdd  ()MultConst  ()PMultConst   

     

4 4( )N κΟ ⋅  (1)Ο  4 8( )N ω κ+Ο ⋅  ( )NΟ   

 
It should be noted in Table 1 that V  represents the vector and M  represents the 

matrix. Moreover in Table 1, the original time complexity of some operations is 
significantly higher than the existing optimal time complexity, such as ()Mult , namely 

matrix multiplication whose the optimal time complexity is ( )NωΟ , but here is 

2 4( )Nω κ+Ο ⋅ . Why? In order to ensure the result ciphertexts is also 

B -strongly-bounded, it needs additional operations. For example, in GSW, there is:  

                       1 2 1 2( ) ( ),Mult C C Flatten C C= ⋅                    (15) 

 In the above formula, it introduces the additional operation, namely ()Flatten  

whose time complexity is 2 4( )N kΟ . Thus, the time complexity of the original operation 

will become larger, through introducing the additional operation.   

3.3 The Encryption Model and Its Optimization 

GSW scheme is called to be the approximate eigenvector method. Its main idea is to 
encrypt the plaintext µ  into the ciphertext matrix C  by the approximate eigenvector 
ν  and fully homomorphic encryption algorithm, where µ  is a “small” integer, 

ciphertext C  is a N N×  dimension matrix over q , the key ν  is a N -dimensional 

vector over q  and e  is a small error vector. From GSW we can see that the 



514                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
encryption equation is: 

                           . .C eν µν= +                              (16) 
As shown in the above equation, key ν  is an approximate eigenvector of the 

ciphertext matrix C , and the plaintext µ  is the approximate eigenvalue of the 
ciphertext matrix C , e  is the error vector which is B -bounded and its main function 
is to ensure the security of the cryptographic scheme. The main security principle of this 
cryptographic scheme is the LWE problem introduced by Regev [25].  

Note that the ciphertext of this cryptographic scheme is matrix, the result of 
ciphertext  calculation is also the same dimension matrix, so this way can eliminate the 
ciphertext dimension expansion problem, and also furtherly eliminate many complex and 
expensive operations, such as modulus switching, relinearization and so on.  
 However, this scheme can only evaluate polynomials of polynomial degree in N , 
namely, this scheme is only somewhat homomorphic encryption scheme. In order to 
obtain a leveled fully homomorphic encryption scheme, it requires the plaintext µ  and 
the ciphertext matrix C  are B -strongly-bounded, and the error vector e  is 
B -bounded. Then the encryption scheme is shown as the following formula according to 
GSW scheme. 

                 ( ( ))NC Flatten I BitDecomp R Aµ= ⋅ + ⋅                   (17) 

 However, in order to improve the efficiency of the FHE scheme, we use the parallel 
computing to optimize the complex operation in GSW scheme. From the above formula 
we can see, there are some basic operations which have been optimized in the previous 
section, such as ()Flatten , ()BitDecomp , matrix addtion, matrix multiplication and so 
on. In the above formula, it mainly involves three operations, such as ()MatrixAdd , 

()Flatten , ()BitDecomp  and so on. These operations have been optimized in the 
previous section, so we can directly use the optimization results to replace the 
corresponding operations in the above formula. Finally, we get the optimization results, as 
shown below: 

        ( ( , ( ( , ))))NC PFlatten PMatrixAdd I PBitDecomp PMatrixMult R Aµ= ⋅     (18) 

Where µ  is the plaintext, C  is the ciphertext corresponding to µ , NI  is a 

N -dimensional unit matrix, R  is a random N m×  matrix with 0/1 elements, A  is 

( 1)m n× +  dimension matrix over q . Note that both R  and A  are generated by 

javascript:void(0);
javascript:void(0);


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        515 

()KeyGen  introduced in GSW, so we no longer introduce it in details.  
Next, we analyze the performance of this encryption model. From the above we know, 

both ()PFlatten  and ()PBitDecomp  have constant time complexity, so the main 

overhead of the encryption model is the product of R A⋅ , the product of NIµ ⋅  and the 

matrix addition. Because the matrix multiplication and the matrix addition have been 
optimized under the parallel computing, and their time complexity are ( )NΟ  and (1)Ο  
respectively. Although R  and A  are not N -dimensional matrices, in fact, their 
dimension is less than N , so the time complexity of R A⋅  is less than the time 
complexity of the matrix multiplication whose dimension is N . For convenience, we 

take the time complexity of  R A⋅  for ( )NΟ . From the above, we can see that the time 

complexity of matrix addtion and the matrix-constant-multiplication are (1)Ο  and 
( )NΟ . So the time complexity of encryption model is ( )NΟ  under the parallel 

computing . 
Because GSW scheme is called to be the FHE scheme of the approximate eigenvector 

method, so we verify that the encryption module is consistent with the approximate 
eigenvector attributes under the under parallel computing. That is, verify that whether the 
new FHE scheme is correct. Next, we verify that the optimized encryption formula still 
conforms to the properties of the approximate eigenvector method, then we have: 

                  . ( . ( . )).NC PFlatten I PBitDecomp R Aν µ ν= +                (19) 

Accroding to GSW,  we know that:  

                ( ), 2( ) , 2( )Flatten a Powersof b a Powersof b< >=< >
 

            (20) 

   Correspondingly, we have: 

              ( ), 2( ) , 2( )PFlatten a PPowersof b a PPowersof b< >=< >
 

           (21) 

and 2( )PPowersof sν =  , so we have: 

   
( ( )) ( ( ))

( )
N NPFlatten I PBitDecomp R A I PBitDecomp R A v
PBitDecomp R A R A s small

µ ν µ
µ ν ν µ ν µ ν

⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅ =
⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅ = ⋅ +

 

   

    (22) 

So the optimized encryption formula still satisfies the properties of the approximate 
eigenvector method, it can be seen that our optimization is correct. 



516                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
3.4 Decryption Model and Its Optimization 

The main function of decryption model is to decrypt the ciphertext obtained by the 
homomorphic encryption or homomorphic operations, and this decryption operation is 
shown as follows according to GSW: 

                       ,i i ix C eν µ υ←< >= ⋅ +                         (23) 

                             ixµ υ=  /                             (24) 

where iC  is the i -th row of the ciphertext matrix C , iv  is the i -th element of vector 

ν , and ie  is the i -th element of the error vector e . In order to correctly decrypt it, 

there is a big coefficient in ν  at least, and this can be guaranteed by 2()PPowersof . 
From the above formula, we know that the time complexity of decryption model is (1)Ο , 
so it is not necessary to be optimized.  

3.5 Circuit Model and Its Optimization 

In order to meet the plaintext {0,1} space range, GSW scheme uses boolean circuit to 
realize the FHE scheme. According to De Morgan theorem, we can see that a 
cryptographic scheme can be called as fully homomorphic encryption scheme when it just 
supports one of the following homomorphic operations, such as NAND  homomorphic 
operation, AND  and XOR  homomorphic operation, or NOR homomorphic operation. 
It uses NAND  homomorphic operation in GSW scheme, so we only optimize NAND  
circuit here.  

1 2( , )PNAND C C : Accroding to GSW scheme, we can use NAND  gates to construct 

a leveled FHE scheme whose depth of the arithmetic circuit is L . In fact, it uses 

1 2( , )NAND C C  to express the ciphertext of 1 2( , )NAND µ µ  in GSW, where 1µ  and 

2µ  all are the binary bits, 1C  and 2C  are the ciphertext of 1µ  and 2µ . In order to 

optimize the NAND  gates, we can only optimize the 1 2( , )NAND C C . 

Accroding to GSW, we know that:  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        517 

                   1 2 1 2( , ) ( . )NNAND C C Flatten I C C= −                    (25) 

From the above formula we can see that there are three basic operations, namely 
()Flatten , matrix subtraction and matrix multiplication. Here ()Flatten  and matrix 

multiplication have been optimized in the previous section, so we can use its optimization 
results directly, namely ()PFlatten  and ()PMatrixMult . Because matrix subtraction is 
the opposite operation of the matrix addition, so we can use the optimization value of 
matrix addition to replace the optimization value of matrix subtraction according to the 
relationship between addition and subtraction. So we can directly use the optimization 
results to replace the corresponding operation in the above formula, and the result is 
shown as the following formula: 

        1 2 1 2( , ) ( ( , ( , )))NPNAND C C PFlatten PMatrixAdd I PMatrixMult C C= −     (26) 

From the above formula we can see, the time complexity of ()PFlatten  and 
()PMatrixAdd  all are (1)Ο , and the time complexity of ()PMatrixMult  is ( )NΟ . 

Hence, the time complexity of 1 2( , )PNAND C C  is ( )NΟ  under the parallel computing.  

4.The Performance of PGSW 

According to GSW scheme, we obtain a leveled fully homomorphic encryption scheme 
which is a circuit of depth- L  with NAND  gates. For the dimension parameter N  and 
the depth parameter L , GSW scheme evaluates depth- L circuits of NAND  gates with 

4 4( )N ω κ+Ο ⋅  field operations for per gate, where 2.3727ω < ; In PGSW scheme, the field 

operations of per gate is ( )NΟ , so the time complexity for evaluating depth- L circuits of 

NAND  gates is ( )NLΟ  while GSW scheme is 4 4( )N Lω κ+Ο ⋅ ⋅ . 

 Moreover, although the decryption operation in the original scheme does not need to 
be optimized, the encryption operation in the original scheme is still optimized by the 
parallel computing. It can be seen that the time complexity of the encryption operation 

before being optimized is 5 6( )Nω κ+Ο ⋅ , and the time complexity of the encryption 

operation after being optimized is ( )NΟ . The reason why the time complexity of 
encryption operation is greatly improved is that its encryption operation is composed of 



518                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
many complex operations, and the time complexity of the encryption operation is the 
product of the time complexitys of these complex operations. Because these complex 
operations can be optimized greatly by the parallel computing, so the time complexity of 
the encryption operation can also been optimized greatly. 

It can be seen that the time complexity of PGSW has been greatly improved. There 
are the performance comparisons of the usual FHE schemes showed as in Table 2 [25] . 
 

Table 2. The performance comparisons for the usual FHE schemes 
Scheme DGHV BGV Bra12 GSW PGSW 

Performance 14( )λΟ  2( )λΟ  6( )λΟ  4 4( )N ω κ+Ο ⋅  ( )NΟ  

5.Experiments 

In this section, we take some experiments to verify the performance of our scheme. 
Becasuse the main overhead of this scheme is matrix multiplication, and the time 
complexity of other operations can not exceed the time complexity of the matrix 
multiplication, so we mainly implement Cannon algorithm based on MPI. Experimental 
environment is as follows: the operating system platform is win7, Cpu is 
i5-3337U@1.80GHz, the development kit is visual C++ 6.0 and the 
mpich2-1.4p1-win-ia32. The experimental results are shown as in Table 3. 
 

Table 3. the experimental results basing on Cannon algorithm 
Experiment 1 Experiment 2 Experiment 3 

200 1 200 4 200 8 
3.853772s 1.530456s 0.745632s 

Experiment 4 Experiment 5 Experiment 5 

400 1 400 4 400 8 
5.772368s 3.163587s 1.465911s 

 
As can be seen from Table 3, when the dimension of matrix is 200 and the number of 

the processing unit is 1, the overhead time is 3.853772s through running Cannon 
algorithm which is implemented by MPI; When the dimension of matrix is 200 and the 
number of the processing unit is 4, the overhead time is 1.530456s through running 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        519 

Cannon algorithm which is implemented by MPI; When the dimension of matrix is 200 
and the number of the processing unit is 8, the overhead time is 0.745632s through 
running Cannon algorithm which is implemented by MPI; When the dimension of matrix 
is 400 and the number of the processing unit is 1, the overhead time is 5.772368s through 
running Cannon algorithm which is implemented by MPI; When the dimension of matrix 
is 400 and the number of the processing unit is 4, the overhead time is 3.163587s through 
running Cannon algorithm which is implemented by MPI; When the dimension of matrix 
is 400 and the number of the processing unit is 8, the overhead time is 1.465911s through 
running Cannon algorithm which is implemented by MPI; 

From the Table 3, we know that the overhead time of Cannon algorithm will be 
reduced when the number of the processing unit increases. According to Cannon 

algorithm, the largest number of processing unit is 
2
N , then we can predict that its 

overhead time of Cannon algorithm will reach microseconds. It can be seen that the 
performance of the FHE scheme based on the parallel computing has been greatly 
improved, and it promotes the developement of FHE scheme. 

6. Conclusions 

With the development of cloud computing, more and more user’s privacy datas are stored 
on the cloud servers which are untrusted platform, so the leakage problem of user’s 
privacy datas will become an unavoidable problem, and then urgently need to be solved. 
Accroding to the attributes of FHE, it is the best way to solve the leakage problem of 
privacy data on untrusted servers. However, the current FHE schemes aren’t suitable for 
the practical applications because of their inefficiency, so we urgently need to improve 
the efficiency of the existing FHE schemes.  

In this paper, we optimize GSW scheme by the parallel computing, and then gain 
PGSW scheme. From the analysis we know that the performance of the new scheme has 
been greatly improved, as shown in Table 2. Through the experiment we known that the 
time overhead of matrix multiplication which is the highest time complexity of GSW 
scheme will reach the level of microsecond when we select appropriate amount of the 
processing units of high performance computing system. Although PGSW scheme takes 
up more hardware resources, and also increases the cost of FHE scheme, it play an 
important role in putting FHE scheme into practical applications. 



520                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
References 

[1] R. W. Huang, X. L. Gui, S. Yu, “Design of Privacy-Preserving Cloud Storage Framework,” in 
Proc. of the Ninth International Conference on Grid and Cloud Computing, pp. 128-132, 
November 1-5, 2010. Article (CrossRef Link).  

[2] J. Alperin-Sheriff, C. Peikert, “Faster bootstrapping with polynomial error,”. in Proc. of the 
International Cryptology Conference, pp. 297–314, August 17-21, 2014.  
Article (CrossRef Link). 

[3] K. Myungsun, H. T. Lee, S. Ling, H. X. Wang, “On the Efficiency of FHE-based Private 
Queries,” IEEE Transactions on Dependable & Secure Computing, vol. 1, no.99, pp.1176-1189, 
2016. Article (CrossRef Link). 

[4] H. S. Wang, Q. Tang, “Efficient Homomorphic Integer Polynomial Evaluation based on GSW 
FHE,” Cryptology ePrint Archive, Report 2016/488, pp.488-505, 2016.  
Article (CrossRef Link). 

[5] J. H. Cheon, K. Han, D. Kim, “Faster Bootstrapping of FHE over the Integers,” Cryptology 
ePrint Archive, Report 2017/079, pp.79-91,2017. Article (CrossRef Link). 

[6] S. Halevi, V. Shoup, “Bootstrapping for helib,” in Proc. of the Annual International Conference 
on the Theory and Applications of Cryptographic Techniques, pp. 641–670, April 23-30, 2015. 
Article (CrossRef Link).  

[7] Z. Brakerski, C. Gentry, V. Vaikuntanathan, “(Leveled)fully homomorphic encryption without 
bootstrapping,” in Proc. of the 3rd Innovations in Theoretical Computer Science Conference, 
pp. 309-325, January 8-10, 2012. Article (CrossRef Link).  

[8] M. V. Dijk, C. Gentry, S. Halevi, “Fully homomorphic encryption over the integers,” in Proc. 
of the Annual International Conference on the Theory and Applications of Cryptographic 
Techniques, pp. 24-43, May 30-June 3, 2010. Article (CrossRef Link).  

[9] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical 
GapSVP,” in Proc. of the 32nd Annual Cryptology Conference, pp.868-886, August 19-23, 
2012. Article (CrossRef Link).  

[10] C. Genry, A. Sahai, B. Water, “Homomorphic encryption from learning with errors: 
conceptually-simpler, asymptotically-faster, attribute-based,” in Proc. of the 33rd Annual 
Cryptology Conference Advances in Cryptology, pp.75-92, August 18-22, 2013. 

Article (CrossRef Link).  
[11] L. Ducas and et al, “FHEW:Bootstrapping Homomorphic Encryption in less than a second,” 

in Proc. of the Annual International Conference on the Theory and Applications of 
Cryptographic Techniques, pp.617-640, April 23-30, 2015. Article (CrossRef Link). 

https://doi.org/10.1109/gcc.2010.36
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1109/tdsc.2016.2568182
https://eprint.iacr.org/2016/488.pdf
https://eprint.iacr.org/2017/079.pdf
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-46800-5_24


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018        521 

 
[12] Z. Brakerski, V. Vaikuntanathan, “Efficient fully homomor-phic encryption from (standard) 

LWE,” in Proc. of IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 
97-106,  October 22-25, 2011. Article (CrossRef Link).  

[13] C. Gentry, S. Halevi,  N. Smart, “Homomorphic evaluation of the AES circuit,” in Proc. of 
the 32nd Annual Cryptology Conference, pp. 850-867, August 19-23, 2012. 
Article (CrossRef Link).  

[14] Z. Brakerski, C. Gentry, S. Halevi, “Packed ciphertexts in LWE-based homomorphic 
encryption,” in Proc. of the 16th International Conference on Practice and Theory in 
Public-Key Cryptography, pp. 1-13, February 26 – March 1, 2013. Article (CrossRef Link).  

[15] R. Hiromasa, M. Abe and et al, “Packing Messages and Optimizing Bootstrapping in 
GSW-FHE,” in Proc. of IACR International Workshop on Public Key Cryptography, pp. 
699–715, March 30-April 1, 2015. Article (CrossRef Link).  

[16] J.Biasse, L.Ruiz, “FHEW with efficient multibit bootstrapping,” in Proc. of the 
International Conference on Cryptology and Information Security in Latin America, pp. 
119–135, August 23-26, 2015. Article (CrossRef Link).  

[17] I. Chillotti, N. Gama and et al, “ Faster Fully Homomorphic Encryption:Bootstrapping in less 
than 0.1 Seconds,” in Proc. of the International Conference on the Theory and Application of 
Cryptology and Information Security, pp. 3-33, December 4-8, 2016. Article (CrossRef Link).  

[18] S. Nicola, “Design and Analysis of Distributed Algorithms, 1st Edtion,” Wiley, New York, 
2006. Article (CrossRef Link). 

[19] V. V. Williams, “Multiplying matrices faster than coppersmith-winograd,” in Proc. of the 
forty-fourth annual ACM symposium on Theory of computing, pp. 887–898, May 19-22, 2012. 
Article (CrossRef Link).  

[20] E. Dekel, D. Nassimi, S. Sahni, “Parallel matrix and graph algorithms,” SIAM J. Comput, 
vol.10, no.4, pp.657-675, November, 1981. Article (CrossRef Link).  

[21] D. G. R. A. Van, J. Watts, “SUMMA: scalable universal matrix multiplication algorithm,” 
Concurrency & Computation Practice & Experience, vol.9, no.4, pp. 29-29, April, 1997. 
Article (CrossRef Link).  

[22] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, “A three-dimensional 
approach to paralle matrix multiplication,” IBM Journal of Research and Development, vol. 
39, no. 5, pp. 575-582, September, 1995. Article (CrossRef Link).  

[23] D. J. Evans, G. M. Megson, “A systolic simplex algorithm, 1st Edition,” International Journal 
of Computer Mathematics, Berkshire, 1991. Article (CrossRef Link). 

 
 

https://doi.org/10.1109/focs.2011.12
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-36362-7_1
https://link.springer.com/book/10.1007/978-3-662-46447-2
https://doi.org/10.1007/978-3-662-46447-2_31
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1002/0470072644
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1137/0210049
https://doi.org/10.1002/(sici)1096-9128(199704)9:4%3c255::aid-cpe250%3e3.0.co;2-2
https://doi.org/10.1147/rd.395.0575
https://doi.org/10.1080/00207169108803954


522                                 Tan et al.: Fully Homomorphic Encryption Based On the Parallel Computing 
 
[24] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in Proc. 

of the 37th Annual ACM Symposium on Theory of Computing, ACM, pp. 84-93, May 22-24, 
2005. Article (CrossRef Link).  

[25] Z. G. Chen, J. Wang, X. X. Song, “Research of fully homomorphic encryption,” Application 
and Research About Computer Journal, vol.31, no.6, pp. 1624-1630, April, 2014. 
Article (CrossRef Link).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Delin Tan(1981- ) is a lecturer in SiChuan Normal  University, China. He is currently 

pursuing a doctoral degree in the School of College of Geophysics,Chengdu University of 

Technology, China.  His research  interests include fully homomorphic encryption, cloud 

computing etc. 
 
 
 
Huajun Wang(1964-) is a Professor and Ph.D of Chengdu University of Technology. His 
main research interests are sensor networks, network security, embedded and so on. 
. 

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.3969/j.issn.1001-3695.2014.06.005

