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Abstract 
 

The increasing popularity of HTTP adaptive video streaming services has dramatically increased 
bandwidth requirements on operator networks, which attempt to shape their traffic through Deep Packet 
inspection (DPI). However, Google and certain content providers have started to encrypt their video 
services. As a result, operators often encounter difficulties in shaping their encrypted video traffic via 
DPI. This highlights the need for new traffic classification methods for encrypted HTTP adaptive video 
streaming to enable smart traffic shaping. These new methods will have to effectively estimate the 
quality representation layer and playout buffer. We present a new machine learning method and show 
for the first time that video quality representation classification for (YouTube) encrypted HTTP 
adaptive streaming is possible. The crawler codes and the datasets are provided in [43,44,51]. An 
extensive empirical evaluation shows that our method is able to independently classify every video 
segment into one of the quality representation layers with 97% accuracy if the browser is Safari with a 
Flash Player and 77% accuracy if the browser is Chrome, Explorer, Firefox or Safari with an HTML5 
player.   
 
 
Keywords: Machine Learning, Quality Representation Classification, HTTPS Video 
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a testbed that has all four leading browsers with a HTML5 player (Chrome, Explorer, Firefox and Safari) whereas 
in the DMAIF paper we had only Safari with a Flash player; The new testbed is much larger and contains 500 
streams of 100 movies, whereas the DMAIF paper had only 120 streams and 40 movies; We also extended the 
analysis of our algorithm with a different network conditions, different training size. 
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1. Introduction 

YouTube now occupies a market share of over 17% of the total mobile network bandwidth in 
North America [1]. In general, by 2020, their share of video traffic is expected to increase to 82% 
of the total IP traffic and approximately 135 exabytes per month [1]. Currently, YouTube and 
other video streaming websites use Hypertext Transfer Protocol (HTTP) Adaptive Streaming 
(HAS). Today, the de facto standard method for HAS is Dynamic Adaptive Streaming over 
HTTP (DASH) [2]. DASH is a Multi Bit Rate (MBR) streaming method designed to improve 
viewer Quality of Experience (QoE) [3].  
     In DASH, each video is divided into short segments, typically a few seconds long, and each 
segment is encoded several times, each time with a different quality representation. The user 
player Adaptation Logic (AL) algorithm is responsible for the automatic selection of the most 
suitable quality representation for each segment, based on several parameters such as the 
frequency of switching video quality level events [52], time-varying distortions [53], crowd 
sourcing [54], network conditions and the client playout buffer [4] – [8]. Thus, the quality 
representation in DASH can change between segments. In DASH, each quality representation 
is encoded at variable bit rates (VBRs). VBR varies the amount of output data per time 
segment and does not attempt to control the output bit rate of the encoder, so that the distortion 
will not vary significantly. DASH often uses the HTTP byte range mode. In this mode, the 
byte range of each segment request can differ.  
     A video quality representation classification of encrypted video streams can help ISPs to 
shape user traffic. ISPs face increasing competition, declining profitability and increasing 
client demands for network bandwidth (BW). Thus ISPs must optimize their network traffic, 
and video streaming has become the solution of choice. Network traffic is optimized by 
limiting user flows for a specific application. Shaping DASH encrypted traffic without 
severely reducing user QoE cannot be achieved without estimating the user playout buffer and 
classifying the user selected video quality representation.  
     Google encourages all website owners to switch from HTTP to HTTPS by integrating 
whether sites use secure, encrypted connections as a signal in their ranking algorithms [9]. 
Google has also started to encrypt their video services [9]. As a result, traditional Deep Packet 
Inspection (DPI) methods for data mining and classification, in general, and video quality 
representation classification, in particular, are not possible. Another challenge for quality 
representation classification comes from the development of new application layer network 
communication protocols such as SPDY [10] and HTTP2 [11]. These protocols include 
features such as header compression, request multiplexing/interleaving between two 
endpoints, and the ability to push content from the server side. 
    Studies have been conducted on YouTube in terms of server location [12], [13], YouTube 
vs. other video sharing services [12], Personal Computer (PC) vs. mobile user access patterns 
[14], QoE [15], traffic characterization and its DASH implementation, [16] and network 
analysis [17] – [21].  Many recent works have suggested methods for encrypted traffic 
classification and several surveys have presented detailed descriptions of state of the art 
methods [22] – [24]. Several have examined statistical features [25] – [35]. Some are not 
pertinent to video stream classification: the packet is often Maximum Transmission Unit 
(MTU) size in video streaming, as it consumes high bandwidth and re-transmission occurs 
often and Transmission Control Protocol (TCP) parameters such as server sent bit rate, 
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inter-arrival packet time, Round Trip Time (RTT) and packet direction are weak features in 
terms of video quality classification. To the best of our knowledge, this work is the first to 
classify quality representation of encrypted YouTube streams. 
     In this paper, we present a video stream quality representation classification for DASH. We 
classify the video quality representation, and each feature (group of packets) is classified by 
itself without any dependencies on past or future samples. For Safari with a Flash Player, our 
novel algorithm achieved 97% accuracy. When the browser was one of the four most popular 
browsers (Chrome, Explorer, Firefox or Safari) with an HTML5 player, a nearest neighbor 
algorithm combined with our feature extraction method achieved 77% accuracy. 
     A previous version of this work was published in [36]. In the revised version presented here, 
we have added a testbed that has all four leading browsers (Chrome, Explorer, Firefox, and 
Safari) with a HTML5 player whereas in [36] we only tested Safari with a Flash Player. The 
new testbed is much larger and contains 500 streams of 100 movies, whereas [36] only had 
120 streams and 40 movies. We also extended the analysis of our algorithm to include 
different network conditions, different training dataset sizes, and provide a user buffer 
estimate using quality representation classification. The remainder of this paper is organized 
as follows: Section 2 presents our new framework, Section 3 presents the performance 
evaluation, and Section 4 discusses our conclusions, limitations, and future work.  

2. Video Quality Representation Classification 
A DASH server stores a video which is segmented into fixed duration segments. Each segment 
is encoded into m representations (m can be different for different videos). The user can select 
to download the video in two different modes of operation: fixed or automatic (auto). In the 
fixed mode the client selects a single VBR quality representation layer. In our fixed scenario 
the user selects a single quality from the beginning tothe end of the video. In the auto mode, 
the client’s video player application (via adaptation logic) selects the optimal representation 
layer to download. Each segment can be further divided into several smaller chunks (parts of a 
segment). The following sections describe our encrypted traffic quality representation 
classification method. 

2.1 Preprocessing and Feature Extraction 
Encrypted traffic generally relies on Secure Sockets Layer (SSL)/Transport Layer 
Security(TLS) for secure communication. These protocols are built on top of the TCP/IP suite. 
The TCP layer receives encrypted data from the above layer and divides the data into chunks if 
the packets exceed the Maximum Segment Size (MSS). Then, for each chunk it adds a TCP 
header, creating a TCP segment. Each TCP segment is encapsulated into an Internet Protocol 
(IP) datagram. Since TCP packets do not  include a session identifier, we divided the traffic 
into flows based on a five-tuple representation: {protocol (TCP/UDP), src IP, dst IP, src port, 
dst port}. Next, for each flow we determined whether it was a YouTube flow or not,based on 
the Service Name Indication (SNI) field in the Client Hello message. If the “googlevideos.com” 
string wasfound in the SNI, the flow was passed on to the next module. Note that the YouTube 
flow identification can also be executed using machine learning techniques [37], [38]. 
      To better understand encrypted YouTube streaming traffic properties, we examined 
YouTube traffic under different browsers. Examples of YouTube flows can been seen in Fig. 1. 
The figure depicts the bursty behavior of browsers, where there are periods of data 
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transmissions with silence (zero bits transmission) before and after. A period of data 
transmission is called a peak.    
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Fig. 1. Typical examples of traffic flows of auto mode downloads of the same movie using various 
browsers (Safari, Chrome, Firefox, and Explorer) and various players (Flash and HTML5 players) 

under various network conditions. The top two flows were downloaded with an ADSL connection and 
the four at the bottom were downloaded with a Wi-Fi connection. We used Wireshark [49] to collect 

data. All the flows have the same characteristics; i.e., peaks (of packets) with silences before and after. 
Note that the differences between flows may be caused by auto mode, network conditions, player 

algorithm, etc. 
 
Our previous works also used these peak features to classify video titles [55] and operating 
systems, browsers, and applications [48]. Note that the bursty behavior of browser traffic was 
observed for YouTube traffic in [16], [40] – [41].  Because audio data and  video data can be 
found in the same 5-tuple flow, we removed audio packets. We also removed the first and last 
peak in each flow. The first peak is large and bound by the TCP window while the player fills 
the buffer; thus the quality is not related to the peak volume [17]. Since our method constitutes 
the first step in traffic shaping and the last peak is not relevant for traffic shaping it was 
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removed. Finally, TCP re-transmissions were removed using a TCP stack [39]  because 
re-transmissions are caused mostly by network conditions. 
     The feature extraction was carried out on the preprocessed traffic, after non-YouTube 
flows, most of the audio packets, the first and last peaks, and TCP re-transmissions were 
removed. We decided to encode the remaining peaks of the streams into features. This 
feature was dubbed Bit Per Peak (BPP) and is the sum of bytes in each peak: 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = � 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )

𝑡𝑡=𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )

 

where before beginTime(peak) and after endTime(peak) there are periods of silence (zerobit 
transmission).  

2.2 Codebook Learning Algorithm 
The classification solution is illustrated in Fig. 2. It has a training step and a testing step. In the 
training step, we first constructed our dataset based on YouTube video streaming captures 
(PCAP trace files). Each video was downloaded with the three following fixed qualities {360P, 
480P, 720P}. The data were preprocessed and the BPP features were extracted. Afterwards, 
the training data were clustered using k-means++ [45] (step (3) in Fig. 2). The end product of 
these steps was a codebook that represents the training dataset. 
     For each quality and for each time index, we computed the average BPP. This yielded an 
average BPP vector (whose length is the maximum time index) for each quality. We then 
computed a representative string for each quality from these vectors and using the codebook 
from the k-means stage. In the classification stage we carried out the BPP extraction for each 
segment and then assigned a symbol (the one with the shortest distance from the average) to it 
from the codebook. Finally, we assigned a label by finding which center was the closest. 
 

 
Fig. 2. Codebook learning algorithm diagram flow. The crawler code for this framework is provided in 

[43] 
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3. Performance Evaluation 
In this section, an evaluation of the quality representation classification scheme is presented. 
First, the Safari with Flash Player dataset in Section 3.1 is described. Section 3.2 evaluates 
the performance on Safari with Flash Player. Section 3.3 presents a simple method for user 
buffer estimation that implements our quality representation classification method and 
reports the accuracy of the estimate. Finally, the HTML5 dataset is described in Section 3.4 
and the results appear in Section 3.5. 

  3.1 Safari with Flash Player Dataset 
The video titles used in this study are popular YouTube videos from different categories 
such as news, video action trailers, and GoPro videos. We show that for Safari with Flash 
Player, we can learn an accurate model for static or automatic quality modes simply by 
using a fixed training dataset. The training dataset contained 120 video streams of 40 unique 
video titles, each of which was separately downloaded with a fixed quality from the 
following qualities: {360P, 480P, 720P}. The dataset was manually downloaded using 
Wi-Fi networks from different public locations via the Internet. We provide the dataset and 
all video information including names, duration (between 01:18 – 08:15 minutes), and 
frame rate (24 or 30 frames per second) in [43]. 

We had three testing datasets:  

1) test-fixed-train-titles: 120 video streams of 40 unique video titles (same titles as in 
the training phase) each of which was separately downloaded with a fixed quality 
from the following qualities: {360P, 480P, 720P}. 

2) test-adaptive-train-titles: Five video streams of five unique video titles (titles taken 
from the training phase titles) each of which was downloaded with an adaptive 
quality representation (auto mode) 

3) test-adaptive-test-titles: Five video streams of five unique video titles (new titles that 
were not in the training phase) each of which was downloaded with an adaptive 
quality representation (auto mode).  

Note that all the test video streams were different from the ones that were used in the 
training phase (because of network conditions). 

3.2 Evaluation and Comparison for the Safari with Flash Dataset 
Our codebook learning algorithm clusters the bit rates into k bins. To choose this number, we 
used 5-fold cross validation on the training dataset. Cross validation is a well-established 
method for choosing hyperparameters of a machine learning method [55] - [56]. In the 5-fold 
cross validation method for choosing hyperparameters, the training data are randomly 
partitioned into five equal sized subsamples. Of the five subsamples, a single subsample is 
used as the validation data for testing the model, and the remaining four subsamples are used 
as training data for each of the hyperparameters we want to choose from. This process is 
repeated five times, where each time a different subsample is used for testing. Finally, the 
hyperparameter that achieves the best average identification rate is chosen and the entire 
training dataset is trained with it. Fig. 3 shows the average cross validation identification rate 
on the training dataset for each of the k values: {5,10,13,14,15,16,17,20}. It can be seen that k 
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= 14 achieved the highest cross validation identification rate on the training dataset. The figure 
also shows that our codebook learning algorithm was not sensitive to the exact value of 
number of bins (k) chosen. In the following experiments we used k = 14. 
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Fig. 3. Codebook learning algorithm cross validation identification rate on the training dataset for a 

different number of bins in the codebook learning algorithm 
 
Fig. 4 shows the performance of our codebook learning algorithm for various training dataset 
sizes on the test-fixed-train-titles test dataset.  Accuracy improved when not using the last 
peak. For each combination of method and training size, the mean of five different random 
training-testing splits and its normal confidence interval with a significance level of 95 percent 
is depicted. There weremajor gains in performance when the number of training video titles 
increased from 5 to 10. The gains were smaller when the number of training video titles 
increased from 10 to 40. Because the  last peak size varied (because it corresponds to the 
stream leftovers) it   decreased the identification rate. Finally, the cross validation 
identification rate (Fig. 3) emerged as  a good estimate of the real testing error. 
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Fig. 4. Codebook learning algorithm testing identification rate on the test-fixed-train-titles dataset 

using various training dataset sizes and with/without the last peak 
 

     We next  evaluated our codebook learning algorithm with our BPP feature on the various 
test datasets from Section 3.1 (Fig. 5a, 5d, 5e) and compared it to several classification 
approaches: (1) Nearest neighbor using the average bit rate as a feature (Fig. 5b); (2) An 
adaptation of a network traffic malware fingerprinting algorithm [46] with our BPP feature 
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(Fig. 5c); (3) Our codebook learning algorithm with a time difference feature (Fig. 5f); (4) An 
adaptation of a network traffic malware fingerprinting algorithm [46] with a time differences 
feature (Fig. 5g). Our codebook learning algorithm with our BPP feature achieved the highest 
identification results in contrast to all the other algorithms, especially using time differences 
which obtained much lower identification results. Fig. 5a shows that our classification errors 
for the test-fixed-train-titles dataset were between close quality representations, and the 
average error rate was less than 4%. Fig. 5b shows that the nearest neighbor algorithm with an 
average bit rate feature had more than an 11% error rate. Fig. 5c shows that an adaptation of a 
network traffic malware fingerprinting algorithm [46] that used our BPP feature had more 
than a 19% error rate. Moreover, in some cases, it even confused 360P and 720P quality 
representations. Fig. 5d shows that our method was able to classify adaptive streams with high 
accuracy, achieving  an error rate of less than 4%. Fig. 5e shows that our method accuracy 
remainedhigh when the video titles in the training set and the testing set differed, with an error 
rate of 12%. We examined why the mistaken classification of the 480P quality representation 
segments as 720P in adaptive streams was relatively high and found that when the quality 
representation switched from 360P to 480P there were high bit rate bursts causing the 
erroneous classification of these segments as 720P. Finally, we also evaluated the quality 
representation classification performance when using time differences as a feature. Fig. 5f and 
Fig. 5g show that this feature was unsuited to quality representation classification. 

  

 

 

Fig. 5. Confusion matrices for various learning methods and various test datasets. Rows refer to the real 
quality, and the columns refer to the predicted quality. 
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     We also tested the classifier (trained under normal network conditions) on data to which 
packet loss and delays were added. Noise was added using the Clumsy network controller [50] 
based on the Nokia (Alcatel-Lucent) findings presented in [64]. In general, added noise can 
cause the client player to select lower qualities. Delays and packet losses can cause a new 
silent period (since the BPP feature is an aggregation of information from several packets) 
thus splitting peaks and changing BPP feature values. Packet losses and delays at test time 
indeed reduced accuracy, as can be seen in Fig. 6. The figure shows the means of five different 
random training-testing splits for each network condition and their normal confidence interval 
at a significance level of 95 percent. Fig. 6a illustrates our algorithm’s robustness to network 
delays at test time. With 300 millisecond additional delays, there was a 6.3% decrease in 
classification accuracy. Adding more delay only caused a 0.7% decrease in the classification 
accuracy. Fig. 6b illustrates our robustness to packet loss at test time. The figure shows that a 
packet loss of 3% decreased classification accuracy by 20%. In the case of a 10% packet loss 
(when the video is practically halted) the classification accuracy decreased to 73%. Fig. 6c 
illustrates our algorithm’s robustness to combinations of network delays and packet losses at 
test time. The figure shows that 500ms delays plus 10% packet losses decreased our 
classification to 70%. However, in real life scenarios it would be impossible to watch the video 
(overly low QoE). Thus overall, our algorithm emerged as robust to moderate changes in 
network conditions at test time. 
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(a) Codebook learning algorithm's identification rates for streams with different network delays 
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(b) Codebook learning algorithm's identification rates for streams with different percentages of 
packet loss events 
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(c) Codebook learning algorithm's identification rates for streams with different combinations 
of network delays and percentages of packet loss events. 

 
Fig. 6. Codebook learning algorithm's identification rates under different network conditions 

 

3.3 User Buffer Estimates implementing Quality Representation Classification 
Estimating the user playout buffer level is crucial to evaluating user QoE, which is key to  ISP 
optimization of service. We estimated the user buffer with our quality representation 
classification method. On the training set, for each peak index (where index 1 is the first peak 
of a video stream) and for each quality representation, the average duration which corresponds 
to the buffer size was calculated. Note  that duration in this section refers to playout duration 
and not download duration. At testing time, the user buffer size was estimated from the 
duration that was measured on the training set for its peak index and its predicted quality 
representation. This user buffer estimation method was tested on  Safari with a union of all 
Flash Player test datasets. The average distance between the estimates and real buffers per 
peak was less than 2% (0.035 seconds) and the STD was less than 4% (0.047 seconds). Fig. 7 
shows the average peak duration, which was much higher than 0.035, indicating that the 
resulting average difference of 0.035 seconds per feature in our buffer estimation method was 
very small, making our method very accurate.  
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3.4 HTML5 Player Browsers Dataset  
As in the Safari with Flash Player dataset, the video titles used are popular YouTube videos 
from different categories such as news, video action trailers, and GoPro videos. The 
HTML5 dataset was much larger and more varied than the Safari with Flash Player dataset. 
The dataset contained 500 video streams of 100 unique video titles each of which was 
separately downloaded with automatic quality with an HTML5 player. The frame rate of 
each video was 24, 25 or 30 FPS. We used the Selenium web automation tool [47] to 
simulate a normal user video download. To collectthis dataset, we developed a system 
illustrated in Fig. 8. In step (1) the URL to download is selected. Step (2) initiates network 
recording using Tshark [49]. In step (3) we select which browser to use. In step (4) we 
connect the browser to a proxy web server which saves all the browser's requests and 
responds using the HTTP Archive (HAR) metadata format. We extract traffic features and 
label them using itags, where itags 242, 244 and 248 correspond to resolutions: 240P, 480P, 
1080P respectively. Note that at testing time these itags are not available. The dataset is 
provided with all video information including names, duration (between 01:15 – 10:33 
minutes), frame rate (24, 25 or 30 frames per second) in [44]; the crawler code is provided 
in [51].   

 

 
Fig. 8. Flow diagram of the system for collecting the HTML5 dataset. The crawler code for this system 

is provided in [51]. 
 

3.5 HTML5 Player Browsers Results 
Using the codebook learning algorithm (Sec 2.2) for all leading browsers (Chrome, Explorer, 
Firefox, and Safari with HTML5 player) did not improve the results over a simple 
1-Nearest-Neighbor algorithm. Using a 1-Nearest-Neighbor algorithm coupled with our 
feature extraction method achieved 77% accuracy in a leave- one- out validation study. That is, 
we iterated over the database and in each iteration one different sample was used as the testing 
sample, and all the other samples were used as the training dataset. In each iteration, the 
Euclidean distances of the test sample to all other samples are computed. The label of the test 
sample is the nearest neighbor sample’s label. The average accuracy of our method was 77%. 
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The is lower than on the Safari with Flash dataset. The main difference between the HTML5 
player and the Flash Player is that the HTML5 uses the HTTP byte range. In this mode, the 
byte range of each segment request can be different. This causes a higher variability between 
BPPs values and leads to a lower identification rate. However, the identification rate is still 
reasonable and, as can be seen in Fig. 9, the errors were mainly between close quality 
representations. 

 

  

Fig. 9. The confusion matrix for the 1-Nearest-Neighbor algorithm on the HTML5 Browsers dataset. 
Rows refer to the real quality, and the columns refer to the predicted quality. 

 

4. Conclusion 
We propose a novel framework for YouTube HTTP adaptive video streaming quality 
representation classification. Our solution was tested on both a dataset containing the Safari 
browser with Flash Player over HTTPS and the popular Chrome, Explorer, Firefox, and Safari 
browsers with a HTML5 player. On the Safari with Flash Player dataset, we achieved an 
average classification accuracy of 97% in the fixed mode and in the automatic quality 
representation switching mode. Using the quality classification ISP estimates the user buffer 
playout level with an average error of less than 4% (0.035 seconds). On the HTML5 browsers 
dataset our method accuracy was 77% and the errors were mainly between close quality 
representations. Our solution is more vulnerable to packet losses than to network delays.  
     The method presented in this paper is able to classify three different quality representations 
with reasonable accuracy. However, several factors can degrade  performance. These include 
adding more quality representation layers or different frame rates. Changes in  network 
conditions, as seen in the performance evaluation, and changes in the protocols can also reduce 
accuracy. Some of these changes can be resolved by online learning methods that continue to 
update their classification as new data arrive. Finally, quality representations and their changes 
are ingredients of user Quality of Experience (QoE). Clearly, other ingredients of QoE (e.g., 
content [55]) should also be classified to maximize ISP ability to shape DASH encrypted 
traffic with minimal reduction of user QoE.  
     The DASH encrypted traffic quality representation classification problem still faces many 
hurdles. The use of state-of-the-art network transport protocols such as HTTP2/SPDY and 
Quick UDP Internet Connections (QUIC) that have multiplexed connections should be 
investigated. TOR traffic morphing may also be a challenge to statistical classification. 
Adding features to strengthen robustness to packet losses is one of our future goals.  
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