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Abstract 
 

In order to achieve faster content distribution speed and  stronger fault tolerance, a P2P peer 
can connect to multiple peers in parallel and receive chunks of the data simultaneously. A 
critical issue in this environment is selecting a set of nodes participating in swarming sessions. 
Previous related researches only focus on  performance metrics, such as downloading time or 
the round-trip time, but in this paper, we consider a new performance metric which is closely 
related to the network and propose a peer selection algorithm that produces the set of peers 
generating optimal worst link stress. We prove that the optimal algorithm is practicable and 
has the advantages with the experiments on PlanetLab. The algorithm optimizes the 
congestion level of the bottleneck link. It means the algorithm can maximize the affordable 
throughput. Second, the network load is well balanced. A balanced network improves the 
utilization of resources and leads to the fast content distribution. We also notice that if every 
client follows our algorithm in selecting peers, the probability is high that all sessions could 
benefit. We expect that the algorithm in this paper can be used complementary to existing 
methods to derive new and valuable insights in peer-to-peer networking. 
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1. Introduction 

The conventional way of content distribution is based on the client-server architecture where 
all contents are stored at sever, and transmitted to client upon requests [1]. This model is 
simple and easy; but it exposes the limit for large number of users since the server frequently 
becomes a bottleneck as more clients join with more requests. And furthermore, the costs of 
deploying and maintaining server facility and service network can be significant.  

An approach that is increasingly visible in content distribution is peer-to-peer (P2P) 
networks in which the source peer divides a content into pieces (or chunks) and sctters them 
across the network. A peer subsequently takes part in distributing and consuming of the 
content by exchanging data with other peers. When a user wants to download a file, the peer 
searches nodes with the file chunks, then connect with the peers and receive the file chunks 
simultaneously. This technique, called swarming, achieves faster content distribution speed, 
higher throughput,  and resilience to errors and traffic fluctuation [2]. Moreover, as a P2P 
model pushes the computing and transmission cost toward the network edge, it enhances 
scalability for large number of users on a global scale without extra cost. Therefore, P2P 
network appears to be a promising approach for content distribution. 

The P2P networks are generally catergorized into tree-based and mesh-based categories, 
based on the structures and functions they implement for content distribution. The tree-based 
P2P networks construct a tree at the beginning of the session. Peers are the nodes of the tree 
and push the data downward leaves. This approach requires little message overhead, but is not 
suitable to cope with the high rate of peer joining/leaving (i.e., churn). In the case of churn, the 
tree must be continuously rebuilt, which costs considerable cost and time. Moreover, this 
approach does not incorporate with the swarming mechanism which achieves higher 
throughput by allowing connected peers to exchange data in both directions. In a tree-based 
architecture, data always flows in one direction from parent to child peers, since there is only 
parent-child relationship between connected peers. In a mesh-based architecture, on the other 
hand, a user contacts tracker nodes to retrieve information of peers (i.e., candidates) which 
contain the file chunks, and receives from each peer on the list a buffer map, a map of the 
chunks of file they own. Then, the peer does construct a subset of peers and downloads data 
from the selected peers. Though it involves some overhead due to the exchange of buffer maps 
between peers, it usually offers good resilience to frequent peer joining/leaving and is 
congruous with the swarming mechanism [4]. 

However, we identify one fundamental problem. The problem is selecting a set of nodes 
participating in swarming sessions. The purpose of peer selection is to construct the best 
subset of peers so that the service quality is maximized and the network congestion is 
minimized. Because the swarming performance depends on the participating peers, a selection 
algorithm is essential for the swarming technique [5]. 

There are many researches proposed for the peer selction issue. But, most of them only deal 
with the user-centric metrics, such as the downloading or the round-trip time of each 
connections, little research has been done about bottleneck level of swarming sessions. For 
instance, in many existing systems, a peer periodically calculates the throughput of each 
connection of a swarming session and reconstructs a set of peers which can generate better 
performance (See Section 2 for a review.). These myopic strategies do not consider concurrent 
connections of a swarming session separately nor their possible interactions. However, we 
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know that network congestion level is important in the large service deployment network, such 
as IPTV, the quality of service of a streaming application is heavily influenced by bandwidth 
availability and network congestion. 

This fact leads us to concentrate on a new network-centric metric, the WLS (worst link 
stress) which is the largest number of concurrent data flows on a edge. It reflects to the 
congestion level of bottleneck of the network. The minimum WLS improves utilization of the 
network capacity and gives faster content distribution. 

In this paper, we consider a new performance metric, the worst link stress (WLS), and 
propose a peer selection algorithm that produces the set of peers generating optimal WLS. We 
assume that a user can get a peer-list which contains the desired file chunks (a.k.a. candidates), 
and the route information from each candidate to the user. The user can then select peers from 
the candidates which will take part in the swarming session. We theoretically prove the 
optimality and analyze the complexity. 

With the experiments on the PlanetLab [6], we show that our algorithm is effective in 
improving network performance in the real Internet. It has several advantages following; the 
algorithm optimizes the congestion level of the bottleneck link, it enables to provide larger 
number of users and service sessions. Second, the congestion of the network is distributed. It 
improves not only the utilization of network but also the speed of content distribution. 
Furthermore, we also notice that if every swarming session uses the algorithm, the overall 
network load is well balanced, which ultimately benefits all sessions. 

The paper reviews related works on the peer selection problem and P2P swarming 
applications. In Section 3, we describe some definitions and assumptions which help us to 
understand the algorithm.  In Section 4, we propose a new selection algorithm which 
minimizes the worst link stress, and analyze the time complexity. In Section 5, we compare the 
algorithm with existing algorithms in the real Internet test-bed, PlanetLab. In Section 6, we 
draw the conclusions. 

 

2. Related Work 

2.1 Peer Selection 
There are many existing content distribution networks which solve the selection problem in a 
wide variety of ways. The traditional mirrors server-based content distributions usually select 
the nearest peers [3]. Many other systems employ various ranking functions. A user initially 
selects some random peers and keeps updating the peer set with better ranks. The selection 
process may use the RTT (round-trip time) [9] or the uploead/downloading capacity [10], or 
the overlap degree of content [11]. In [12], a peer in a structured locality-aware P2P network 
sends/receives more with closer peers. This helps reducing the total  network traffic of the 
session.  

While many previous related works have been directed to the selection problem, only a 
small number of them has been considered the bandwidth congestion in a swarming session. 
Important issues relative to the optimization of bottleneck and network load balance are not 
systematically covered by previous works.  
 
 



136                                                            Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks  

2.2 P2P Swarming Applications 
Many existing P2P systems, such as PPLive [15], TVAnts [16], SopCast [17], MiMeG [18], 
UUSee [19], PPStream [20], MySee [21], Pando [22], and Red Swoosh [23], are using the 
swarming technique. 

PPLive is the largest chunk-driven streaming P2P overlay in the world. It supports video 
streaming distribution with a gossip protocol managing users and channels. PPLive prefers to 
download from geographically closer peers with high bandwidth. The selection policy has a 
strong greedy behavior; it continuously repeats switching peers with better ranks. TVAnts and 
SopCast are mesh-based P2P networks similar to BitTorrent. Super nodes keep track of nodes 
and file chunks. When a user contacts with peers directed by a super node, it receives buffer 
maps from each of them. After receiving the maps, the user selects peers to download the 
video chunks from. TVAnts implements a selection policy that chooses peers by selecting with 
high probability those within the same geographical region while in SopCast the choice is 
completely independent of the peer's location. Both systems largely prefer to download from 
high bandwidth peers. UUSee is a pull-based protocol in mesh-based P2P networks. Each peer 
calculates maximum upload capacity, and informs tracking servers its sending throughput. 
The servers manage these peers, and assign them on  requests from users. In MiMeG, servers 
monitor the current uplink and downlink bandwidth consumption by each peer, and decide 
when and how to share videos among peers. UUSee and MiMeG select peers heuristically. 
They attempt to choose the peers with sufficient aggregate uplink capacity for serving the 
stream. Some other streaming services which are currently offered through P2P technology 
include: PPStream, MySee, Pando. We believe that most P2P swarming applications use the 
strategies described above in practice.  
 

3. Preliminaries 

3.1 Performance Metrics 
Definition 1 Let   be a tree, and S = {s1, …, sn} is a subset of nodes in the tree and E = {e1, …, 
el} is a set of edges used by the flows from a node in S to root. LS(e), which denotes the link 
stress of a link e, e ∈ E, is the number of flows on e. The WLS (worst link stress) of nodes s1, 
…, sn is defined as, 
 

 

 
For example, in Fig. 1, if s1 = 1, s2 = 2, and s3 =3, then WLS(s1,s2,s3) = 3 because the 

number of flows of edge (0,1) is 3. 
The user locates at the root of   and the nodes in S are peers of a swarming session. The 

worst link stress (WLS) is the max number of paths on an edge and indicates the degree of 
congestion, it reflects how many data flows from different sources are overlapped on the most 
congested link. It represents the worst link stress loaded by concurrent connections. It also 
indicates the maximum number of  users in as swarming session because the WLS represents 
how many individual connections can be added to the session. We found that swarming 
sessions following our algorithm in selecting peers improves the swarming performance 
across the network, and it leads to less overlap to other connections. The experimental results 
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show that if all the  swarming session choose the WLS-min algorithm, the probability is high 
that all sessions can get higher performance (See Section 5.2). 
 
Definition 2 Let  S = {s1, …, sn} be a subset of nodes in a tree and E = {e1, …, el} be the set of 
edges of the paths from  {s1, …, sn} to root. The DOI (degree of interference) of nodes 

is defined as,  
 

 

 
For example, in Fig. 1, if s1 = 1, s2 = 2, and s3 =3, then DOI(s1,s2,s3) = 3.  
The DOI is the sum of the path-lengths from all nodes of S = {s1, …, sn} minus the sum of 

the number of links. By its definition, the DOI represents the bandwidth usage of a swarming 
session [24], because the bandwidth usage of a swarming session is directly reflected by the 
average path length of each connection. It means it is related to the  performance metrics, work 
[12]. The optimal peer selection algorithm which generates miminum DOI in a hypercube is 
presented in [24]. 

According to our experimental results in Section 5, the WLS and the DOI are highly 
orrelated because the DOI is mimimized when none  of the edges have many data flows on 
them. Therefore, minimizing the WLS tends to reduce the DOI.  
 

3.2 Constructing a Tree Rooted at User 
In a mesh-based P2P network, the source breaks a file into pieces (chunks) and scattered them 
over the network. A peer contacts a tracker server and obtain information of peers (candidates) 
which contains the file chunks, and receives buffer maps. It then selects some peers from the 
candidates to establish concurrent connections.  
 

3.2.1 Finding candidates 
Each user can construct a set of candidate peers by exploiting underlying P2P substrates. In a 
structured P2P network, centralized tracker nodes generally manage the information of all the 
peers and a user can get the information from the tracker nodes. In a unstructured P2P network, 
a user can use some gossip protocol [10] or the distributed hash table (DHT) [25] to find 
candidates. 
 

3.2.2 Inferencing network topology 
In this paper, we assume that a use already has the topology information of the peers which can 
provide data at the rate required by the user. However, in practice, most routes/gateways do 
not reveal their network information such as packet loss rate, delays, bandwidth, or routing 
information. Thus, we need other methods to obtain necessary network information at the end 
users. [26] summarizes several useful methods to conjecture hidden network information at 
the end users. For example, network topology can be inferred by sending passive/active 
packets[27, 28]  

However, in many cases, traceroute (tracert in Windows) has been proved to be the most 
practicable method to infer the network topology. The deterministic problem is proved to be a 
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NP-hard problem when intermediate nodes will not provide information [29]. Therefore, we 
use algorithms of [26, 30] to infer the network topology.  

4. Optimal Peer Selection Algorithm 

4.1 Problem Statement 
The definition of selection problem stated in this section can be described as follows. Let a tree 

 have the root as the user and all the leaves and some internal nodes as the candidates. The 
user selects k nodes (i.e., peers) from the candidates to download the desired file chunk so that 
the swarming session has the minimum WLS.  

First, we conduct the depth-first search algorithm on the given tree  and label each node 
of the tree by the order of traversing. Let I(u) be the label of node u and u be the subtree 
rooted at node u. Table 1 summarizes the notations and definitions which are needed in 
understanding the optimal algorithm. 
 

Table 1. Notations and Definitions 
 
 

Definition 3 Let  be a rooted tree with node set, S = {s1, …, sm}, m >1. A node u is a common 
ancestor of S if all the paths of {s1, …, sm} to root contain u. 
  
Definition 4 Let  be a rooted tree with node set, S = {s1, …, sm}, m >1. The lowest common 
ancestor of S is denoted by  or LCA(s1, …, sm) . 
 
Definition 5 Let  be a rooted tree with node set, S = {s1, …, sm}, m >1. Let denote the set of 
LCAs of all the subsets of S as SLCA(S). 
 

4.2 Sketch of the Algorithm 
The key observation is that LS(u,v), where v is a child of u, is more than that of  any link in v. 
Hence, one of the edges connected to the root must have the worst link stress. We assume w is 
a children of root and W is the set of children of root node. We denote a set of candidates in  w 
as Sw. Let | Sw | be the number of nodes in Sw and we label each w  ∊ W with | Sw |. After labeling, 
Algorithm 1 (see Section 4.4) is called with parameters ,   l is the  number of 
sets;  is the number of items in set   q is the total number of items to be selected.  

 Tree whose root is user and candidates are located at some non-leaf nodes and  
all the leaf nodes 

v Subtree of  whose root is v   
S Candidate set  

 Candidate set of v 
 Virtual tree constructed by SLCA(S). See Definition 6. 
 Candidate set, v is the immediate ancestor in  without any descendants in S 

Π (v) Children of v in . 
k Number of nodes to be selected 

 Number of nodes to yet be selected from v 
LCA(S) The lowest common ancestor of S. See Definition 4. 
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Then, the Algorithm 1 returns a list (c1, …, cl),  is the number of items selected from each 
each  w . 

Based upon the above description, the main algorithm (Algorithm 2) optimizes the WLS 
recursively when it optimizes the WLS of v, v ∊ SLCA(S). In Section 4.3, we provide 
descriptions of SLCA so as to make the Algorithm 2 clear. We present descriptions of 
Algorithm 1 and Algorithm 2 in Section 4.4 and 4.5, and analyze the time complexity of them. 
In Section 4.6, we completely describe the WLS-min algorithm and discuss the total time 
complexity.  
 

 
 

Fig. 1. Peer selection example. 
 

4.3 SLCA(S): set of LCAs of all subsets of S 
Lemma 1 Let  be a rooted tree, traverse  by using the DFS (depth-first search) algorithm 
and label each node of  the tree by the order of traversing. Let  u and v be nodes of , and 

. Then, the relation of u and v must be  
 

LCA(u, v) = u, or u ∩ v = Φ 
 
Proof. The proof is too simple due to the property of the depth-first search algorithm itself, we 
omit it to keep page limitation.  
 
Lemma 2 Let  be a rooted tree with  node set, S = {s1, …, sm}, m >1.  Let W1,…, Wn be a 
covering of S, which is, .  
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Proof. Let u = LCA(S), by defninition,  u is a common ancestor of all the nodes of  Wi, 1  i  
n. It means that u is the lowest common ancestor of all the LCA(Wi)'s. If v ≠ u  and is the LCA 
of all the LCA(Wi)'s, then v must be a descendant of u as well as a  common ancestor of  S. This 
is contradictory to the assumption. 
 
 
Lemma 3 Supposet (s1, s2,s3) is a list of nodes of tree . 
 

 
 

Proof   
LCA(s1,s2,s3) = LCA(LCA(s1,s2), LCA(s2,s3)) 

 
The equality above is by Lemma 2. By Lemma 1, the relation of (s1,s2) and (s2,s3) must be 
following cases. 
 

– Case 1: LCA(s1,s2) =s1 and LCA(s2,s3)=s2  

 
– Case 2: LCA(s1,s2) =s1 and s2 ∩ v3 =Φ 

Same as Case 1. 
– Case 3:  

By Definition 4, LCA(s1,s2)=LCA(s1,s3). 
 

– Case 4:  
Assume LCA(s1,s2,s3) ≠ LCA(s1, s3) and let v=LCA(s1,s2,s3). By the definition 
of the depth first search, LCA(s1,s3) is an ancestor of s1, s2, and s3. If LCA(s1,s3) 
≠ v, LCA(s1,s3) must be an ancestor of v, which contradicts with LCA(s1,s3).  

 
 
Lemma 4 Supposet (s1, s2,s3) is a list of nodes of tree . 
 

 
 
Proof  We use the induction on n. The base case n=3 has been proven in Lemma 3. Then,  we 
assume that it is true for (s1, … ,sl), 3 <l<n. The next step is to prove it is true for (s1, … ,sl+1). 
 

LCA(s1, …,sl+1) = LCA(LCA(s1, …,sl), sl+1)              (1) 
                         = LCA(LCA(s1,sl), sl+1)                   (2) 

= LCA(s1, sl, sl+1)                             (3) 
= LCA(s1, sl+1)                                 (4) 

 
(1) and (3) are by Lemma 2, (2) is by assumption, (4) is by Lemma 3. 
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Lemma 5 Supposet (s1, s2,s3) is a list of nodes of tree . 

 
 
Proof  Let S = {s1, … ,sn}. By Lemma 2 and Definition 3,  
 

 
 

We prove by induction. Suppose Si = {s1, … ,si}, for 2 ≤ i ≤n. The base case, i=2, it is simple 
to see the lemma is true. We assume that it is true for Sl, where 2 ≤ l<n.  

 

            (5) 
 

Consider LCA(si, sl+1) for some 1 ≤ i ≤ l-1. Then, 
 

LCA(si, sl+1) = LCA(si, sl, sl+1)                                  by Lemma 4 
                     = LCA(LCA(si,sl), LCA(sl,sl+1))           by Lemma 2 
                     = LCA(si,sl) or  LCA(sl,sl+1) 
 

The first equality is by Lemma 4, the next equality is by Lemma 2, and the third equality is true 
because (LCA(si,sl) = sl) or (LCA(sl,sl+1) = sl ) or (LCA(si,sl) = LCA(sl,sl+1) = sl . 
We already showed that LCA(si, sl+1) is either the same as LCA(sl, sl+1), or LCA(si, sl), as in 
SLCA(Sl). Therefore, by (5) 

                                                   
 
Theorem 1 The time complexity of line 5 in Algorithm 2 is O(n2). 
 
Proof  By Lemma 5, the running time for constructing the set of LCAs of all pairs of 
consecutive nodes in S is O(n2).  
 
 

4.4 Optimal allocation (Algorithm 1) 
The Algorithm 1 is called with arguments, (l, (b1, …, bl), q), where (b1, …, bl) is a list of 
integers, and l and q are integers, and returns a list of l integers. 

Assume l sets and set j has bj elements, and we select total q elements from these l sets. The 
Algorithm 1 returns the list of the number of elements taken from each set cj, for 1 ≤j≤l, so as to 
minimize the maximum cj and . In other words, it minimizes the maximum number 
of elements to be taken from each set. Algorithm 2 calls Algorithm 1 to decide the number of 
peers to be selected from each subtrees.  
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ALGORITHM 1: MIN-MAX  
 
1: input:  l and q are integers, l is the number of sets and q is the total number of elements to be selected 

from l sets. 

2: output: list of  (c1, …, cl),  (1≤j≤l ) is the number of elements to be chosen from set j,  

 is minimized. 

3:  then    

4:    return  

5: end if 

6:  by ascending order and reindex as  

7:  

8:  

9: for  do 

10:     

11:    if  then 

12:           

13:        

14:  else 

15:        

16:        

17:       

18:      break 

19:  end if 

20: end for 

21: for  do 

22:     

23: end for 

24: for  do 

25:     

26: end for 

27: recover the original set indices 

28: return  
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4.5 Construction of   
The Algorithm 2 (Section 4.6) traverses all the nodes of the virtual tree  which is formed by 
the nodes  . The virtual tree is constructed at line 6 of Algorithm 2.  
 
 
Definition 6 Let S be a set containing multiple nodes of tree , the virtual tree  
consists of the nodes  . If u and v are in  and u is the parent of v, then 

. LCA(S) is the root of .  
 

Fig. 1 shows an example of the virtual tree . All the nodes in triangle are in  and the 
edges of are highlighted.  The the virtual tree  of  can be easily derived by Lemma 5. In 
line 6, the nodes of S are sorted by their IDs. Suppose S = (s1,… ,sn) is a sorted list, then 

. Hence,  is the root of  
due to Lemma 4. All the edges in can be identified by the routes from all the nodes of  to 
the root. Thus, the time complexity of constructing  is O(n2).  
 
Lemma 7 The time complexit of  line 6 in Algorithm 2 is O(n2). 
 

4.6 Peer Selection with minimum WLS 
Algorithm 2 traverses all the nodes, , in the virtual tree  by the breadth-first manner. It has 
a queue, Q, which stores nodes to visit. Suppose Mv is the set of nodes whose parent in   is v 
and have no descendants in S. Suppose Sv  , v∈ , is a set of candidates of v. Then, Mv ⊂ Sv, 

and for each node w ∊ Mv , w  ≠ v, w has no descendants and v is the only virtual node which 
is on the routes from w.  

4.6.1 A peer selection example 
Fig. 1 present an example of peer selection. Suppose a tree whose root node is the user and the 
squared nodes, S = {3,5,8,11,12,13,14,17,18}, are candidates. We select k=4 nodes to connect 
from the candidates with the minimum worst link stress. The virtual nodes, , are triangled, 
and the virtual edges of   are highlighted. The optimal peer set generated by Algorithm 2 are 
pointed by arrow. The root node selects 4 peers from its 3 subtrees. The Algorithm 1 allocates 
(2, 1, 1) nodes to be selected from subtree from 1, 9, and 15. Then, the algorithm is called 
recursively at 1, 9, and 15, respectively. 

4.6.2 Extending virtual tree  

The Algorithm 2 constructs an extended virtual tree e which has nodes u, u ∈ SLCA(S) or u 

∈ S and edges (u, v), path from v to root  includes u without any node of  e  is on the route 
from v to u. In line 7, e is built by adding nodes and edges in S. For each node v which is in 
SLAC(S), Algorithm 2 counts the number of nodes, |Sv|, under the subtree v. After building  

e, the set Mv and its size |Mv| are stored by node v. Thus, the time complexity of line 7 is 
O(n2) , it is same to result of Lemma 7. 
 



144                                                            Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks  

 
ALGORITHM 2: WLS-MIN (S, T, k) 
1: Input: 
    , candidate nodes  
    T : Tree whose root is user and candidates are located at some non-leaf nodes and  all the 
leaf nodes 
    k: number of nodes to be selected,   
2: Output: 
    G: selected k nodes with optimal WLS 
3:  
4: traverse T by using DFS (depth-first search) algorithm and label each node of  the tree by the 

order of traversing 
5:  
6: Construct  
7: At each  
8:  
9:  
10: while  do 
11:    
12:   if  then 
13:      
14:      
15:   else if  then 
16:     Insert subset of  with  items to G 
17:      
18:   end if 
19:   if  then 
20:      
21:      
22:     for  do 
23:       if  then 
24:         Enqueue  
25:       end if 
26:     end for 
27:   end if 
28:   Dequeue  
29: end while 
30: return G 
 

4.6.3 Description of lines 10 ~ 29 

Suppose q(u), u ∈ u, is number of peers yet to be selected. In lines 12 through 18, Algorithm 
2 tries to select the nodes which are in Mu. These nodes are either leaf nodes of  e or nodes of 
S. In line 21, Algorithm 1 is called to optimally allocate the number of peers to be selected at 
each of subtree rooted at the children of u in  and inserts the value of allocation into the 
queue, Q (lines 23 through 25).  
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4.6.4 Time complexity of Algorithm 2 
The time complexity of the while loop can be analyzed as below. 
 
Lemma 8 The lines 10 through 29 of Algorithm 2 can be done in  O(n log n). 
Proof  The worst case scenario is when the root of the virtual tree   has O(n) children. In line 
16, it inserts a node to the set G at most n times since the loop iterations can not exceed |G|. In 
lines 22 through 26, the for loop iterations can not exceed O(n), since it visits every nodes of 
SLCA(S) one by one. 
We assume that the size of the candidate set S is n  with virtual tree  containing l non-leaf 

nodes which are denoted by v1,… ,vl. Then, the size of node set   can not exceed n-1, and l is 
no greater than n-2. We assume node vi has ni immediate descendants in , for i = 1, …, l. 
Then,  

  =  (| | - 1) ≤ (n -2) 
 

In lin 21, the Algorithm 1 is called l times, and the number of operations taken is ni log ni for 
each vi. If T(n,l) is the number of operations of the worst scenario, then  
 

T(n,l) ≤ (n - 2) log ((n-2)/l)                       (6) 
 
T(n,l) is maximized when l is 1. Therefore, the number of operations for a tree containing n 
candidates is of O(n log n). 
  
 
Theorem 2 The time complexity of Algorithm 2 is O(n2). 
Proof  By Theorem 1 and Lemma 7 and 8, the time complexity of Algorithm 2 is O(n2). 

5. Evaluation 

5.1 Case of single user 
The PlanetLab [6] is an open platform for developing Internet technology on a global scale. It 
is composed of 1353 nodes at 717 sites worldwide in current.  

We randomly selected three nodes from United States, Japan and France as the users1. We 
assume each user found 90 nodes as the candidates. These candidates were randomly selected 
with different random seeds in each experiment. Each user selects 15 nodes from 90 
candidates for a swarming session. We ran traceroute and collected routing information to 
construct network topology. We checked each routing paths and calculate the RTTs, DOIs and 
WLSs. For each experiment, different candidate nodes were randomly selected and we 
averaged the measures of the experiments. 

We present the comparison results of the WLS-min algorithm with existing selection 
algorithms, the random algorithm where the user randomly selects peers whereas the closest 
algorithm selects the nearest peers with the RTT criterion. They are the most popular methods 
in current P2P applications. (See Section 2.) 

1 They are planetlab1.eecs.ucf.edu, planet0.jaist.ac.jp  and planetlab1.eurecom.fr. 
                                                           



146                                                            Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks  

 
We use three performance metrics to compare these algorithms.  
 
 Worst link stress (WLS): We count the number of flows on each link to calculate the 

worst link stress of a link and average 10 worst link stresses. 
 Degree of interference (DOI): We calculate the DOI generated by the concurrent 

connections to measure the burden of the swarming session. 
 Average number of flows on a link: We calculate the average number of flows of a 

link to measure the load-balance of a network. 
 
In Fig. 2, we measure the number of routes on each link and average the 10 largest for the 

random algorithm, the closest algorithm and the WLS-min algorithm, respectively. The 
WLS-min algorithm clearly shows the best performances in all cases. If a user in 
planetlab1.eecs.ucf.edu used the WLS-min algorithm rather than the closest algorithm, the 
average of 10 worst stresses was reduced about 44%. Though the closest algorithm minimizes 
the RTTs of connections, it may cause congestion if the selected peers are nearby. The 
WLS-min algorithm effectively reduces the bottleneck stress of a swarming session. 

We measure the DOI of a swarming session in Fig. 3. The results show similar trends to 
the results in Fig. 2. We see that the WLS-min algorithm offers much lower DOI than others. 
For instance, the WLS-min algorithm generated 35% less DOI than the random algorithm and 
the closest algorithm in average. It is interesting that the closest algorithm is not remarkably 
better than the random algorithm in the DOI criterion. 

Fig. 4 compares the average number of data flows on a link. The WLS-min algorithm 
performs best, and the closest is the worst in all cases. The average numbers of the random 
algorithm, the closest algorithm and the WLS-min algorithm are 1.83, 2.27 and 1.48. The 
WLS-min algorithm is best in distributing the link stress or network load. 

 
 

 
Fig. 2. The average link stress of 10 most congested links 
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Fig. 3. The DOI measures 

 
 

 
 

Fig. 4. The average of flows on a link 
 

5.2 Case of multiple users 
In this experiment, we show the benefits of the proposed algorithm for multiple concurrent 
swarming sessions. When every session uses the WLS-min algorithm in selecting peers, the 
probability is high that all sessions can benefit. 

Our experiments were simulated on the Transit-Stub model2 [31] where domains are 
classified into two types: transit domains and stub domains. Nodes in a stub domain are 
typically an endpoint in a network flow and nodes in a transit domain are typically 
intermediate routes. Nodes within a domain tend to be fairly interconnected but rarely connect 
to nodes outside of the domain. Our model consists of 2100 nodes with two level layers and 
the average diameter is about 12.0. We assume all the links have similar delay and bandwidth. 
We do not consider either packet loss or nodal delay. We conduct simulations with different 
random seeds and present the averages. 

There are 20 concurrent swarming sessions, each has a user and 100 candidates which are 
randomly scattered over the transit-stub model. Each user chooses k=20 peers from its 

2 We conducted this experiment on the Transit-Stub model instead of PlanetLab because 
the experiments were misunderstood as DDOS attacks. 
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candidates using same selection scheme.  
We calculate the average number of routes on the 10 worst congested links for the three 

selection algorithms in Fig. 5. The random and the WLS-min algorithm generate better results 
as compared to the closest algorithm. The WLS-min algorithm works well in improving the 
bottleneck level, the average number of routes on the 10 most congested links was reduced 
from 31.4 to 22.  

 

 
Fig. 5. Average of flows on the 10 most congested links with 20 concurrent swarming sessions 

 
In Fig. 6, we present the DOI of all the swarming sessions. The results show similar trends 

to the results in Fig. 5. 
In Fig. 7, we show the average of flows on a link. We see that the WLS-min algorithm 

offers lower result than the others. The average numbers of the random algorithm, the closest 
algorithm and the WLS-min algorithm are 3.1, 3.32 and 2.81, respectively. 

Fig. 8 shows the distribution of the link stress. It is remarkable that the slope of the curves 
of the closest algorithm is relatively moderate and longer than the random algorithm and the 
WLS-min algorithm. If every user follows the WLS-min algorithm in selecting peers, all the 
links will have less than 24 routes on it. It means the WLS-min algorithm works well in 
balancing network stress for multiple concurrent swarming sessions. 

 
 

 
Fig. 6. The DOI of all connections for the case of 20 concurrent swarming sessions 
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Fig. 7. The average of flows on a link for the case of  20 concurrent swarming sessions 
 
 

 
 

Fig. 8. The link stress distribution for the case of 20 concurrent swarming sessions 
 

6. Conclusion 
We conduct a research on the issue of optimal peer selection, which is critical in the 

mesh-based P2P networks. In this paper, we consider a new performance metric, the worst link 
stress (WLS), and propose a peer selection algorithm that produces the set of peers generating 
optimal WLS. Then we theoretically prove the optimality and discuss the complexity.  
    We have presented experimental results that show the advantages of our algorithm over the 
existing algorithms. It is remarkable that our algorithm outperforms existing popular 
algorithms, the random algorithm and the closest algorithm, in all performance metrics. 

We now summarize the benefits of the proposed algorithm in the following aspects. the 
algorithm optimizes the congestion level of the bottleneck link, it enables to provide larger 
number of users and service sessions. Second, the congestion of the network is distributed. It 
improves not only the utilization of network but also the speed of content distribution. 
Furthermore, we also notice that if every swarming session uses the algorithm, the overall 
network load is well balanced, which ultimately benefits all sessions. 
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For future works, when describing the worst link stress, we assume a homogeneous 
network where all the links have same bandwidth, but if there is a big difference in the link 
bandwidths,  our formulation and algorithm should consider this heterogeneity. We expect that 
our ongoing research will derive new and valuable insights in peer-to-peer networking. 
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