
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, Jan. 2019 133
Copyright ⓒ 2019 KSII

An Optimal Peer Selection Algorithm for
Mesh-based Peer-to-Peer Networks

Seung Chul Han1 and Ki Won Nam2

1 Department of Computer Engineering, Myongji University, Korea
[e-mail: dr.seungchul@gmail.com]

2 College of Education, Department of Early Childhood Education, Chungang University, Korea
[e-mail: bongbong@mju.ac.kr]

*Corresponding author: Ki Won Nam

Received January 25, 2018; revised June 3, 2018; accepted July 2, 2018;
published January 31, 2019

Abstract

In order to achieve faster content distribution speed and stronger fault tolerance, a P2P peer
can connect to multiple peers in parallel and receive chunks of the data simultaneously. A
critical issue in this environment is selecting a set of nodes participating in swarming sessions.
Previous related researches only focus on performance metrics, such as downloading time or
the round-trip time, but in this paper, we consider a new performance metric which is closely
related to the network and propose a peer selection algorithm that produces the set of peers
generating optimal worst link stress. We prove that the optimal algorithm is practicable and
has the advantages with the experiments on PlanetLab. The algorithm optimizes the
congestion level of the bottleneck link. It means the algorithm can maximize the affordable
throughput. Second, the network load is well balanced. A balanced network improves the
utilization of resources and leads to the fast content distribution. We also notice that if every
client follows our algorithm in selecting peers, the probability is high that all sessions could
benefit. We expect that the algorithm in this paper can be used complementary to existing
methods to derive new and valuable insights in peer-to-peer networking.

Keywords: Peer-to-peer, content distribution, peer selection, swarming, performance metric,
link stress

This research was supported by the NRF grant funded by the Korea government (MEST)
NRF-2017R1A2B1005285.

http://doi.org/10.3837/tiis.2019.01.008 ISSN : 1976-7277

134 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

1. Introduction

The conventional way of content distribution is based on the client-server architecture where
all contents are stored at sever, and transmitted to client upon requests [1]. This model is
simple and easy; but it exposes the limit for large number of users since the server frequently
becomes a bottleneck as more clients join with more requests. And furthermore, the costs of
deploying and maintaining server facility and service network can be significant.

An approach that is increasingly visible in content distribution is peer-to-peer (P2P)
networks in which the source peer divides a content into pieces (or chunks) and sctters them
across the network. A peer subsequently takes part in distributing and consuming of the
content by exchanging data with other peers. When a user wants to download a file, the peer
searches nodes with the file chunks, then connect with the peers and receive the file chunks
simultaneously. This technique, called swarming, achieves faster content distribution speed,
higher throughput, and resilience to errors and traffic fluctuation [2]. Moreover, as a P2P
model pushes the computing and transmission cost toward the network edge, it enhances
scalability for large number of users on a global scale without extra cost. Therefore, P2P
network appears to be a promising approach for content distribution.

The P2P networks are generally catergorized into tree-based and mesh-based categories,
based on the structures and functions they implement for content distribution. The tree-based
P2P networks construct a tree at the beginning of the session. Peers are the nodes of the tree
and push the data downward leaves. This approach requires little message overhead, but is not
suitable to cope with the high rate of peer joining/leaving (i.e., churn). In the case of churn, the
tree must be continuously rebuilt, which costs considerable cost and time. Moreover, this
approach does not incorporate with the swarming mechanism which achieves higher
throughput by allowing connected peers to exchange data in both directions. In a tree-based
architecture, data always flows in one direction from parent to child peers, since there is only
parent-child relationship between connected peers. In a mesh-based architecture, on the other
hand, a user contacts tracker nodes to retrieve information of peers (i.e., candidates) which
contain the file chunks, and receives from each peer on the list a buffer map, a map of the
chunks of file they own. Then, the peer does construct a subset of peers and downloads data
from the selected peers. Though it involves some overhead due to the exchange of buffer maps
between peers, it usually offers good resilience to frequent peer joining/leaving and is
congruous with the swarming mechanism [4].

However, we identify one fundamental problem. The problem is selecting a set of nodes
participating in swarming sessions. The purpose of peer selection is to construct the best
subset of peers so that the service quality is maximized and the network congestion is
minimized. Because the swarming performance depends on the participating peers, a selection
algorithm is essential for the swarming technique [5].

There are many researches proposed for the peer selction issue. But, most of them only deal
with the user-centric metrics, such as the downloading or the round-trip time of each
connections, little research has been done about bottleneck level of swarming sessions. For
instance, in many existing systems, a peer periodically calculates the throughput of each
connection of a swarming session and reconstructs a set of peers which can generate better
performance (See Section 2 for a review.). These myopic strategies do not consider concurrent
connections of a swarming session separately nor their possible interactions. However, we

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 135

know that network congestion level is important in the large service deployment network, such
as IPTV, the quality of service of a streaming application is heavily influenced by bandwidth
availability and network congestion.

This fact leads us to concentrate on a new network-centric metric, the WLS (worst link
stress) which is the largest number of concurrent data flows on a edge. It reflects to the
congestion level of bottleneck of the network. The minimum WLS improves utilization of the
network capacity and gives faster content distribution.

In this paper, we consider a new performance metric, the worst link stress (WLS), and
propose a peer selection algorithm that produces the set of peers generating optimal WLS. We
assume that a user can get a peer-list which contains the desired file chunks (a.k.a. candidates),
and the route information from each candidate to the user. The user can then select peers from
the candidates which will take part in the swarming session. We theoretically prove the
optimality and analyze the complexity.

With the experiments on the PlanetLab [6], we show that our algorithm is effective in
improving network performance in the real Internet. It has several advantages following; the
algorithm optimizes the congestion level of the bottleneck link, it enables to provide larger
number of users and service sessions. Second, the congestion of the network is distributed. It
improves not only the utilization of network but also the speed of content distribution.
Furthermore, we also notice that if every swarming session uses the algorithm, the overall
network load is well balanced, which ultimately benefits all sessions.

The paper reviews related works on the peer selection problem and P2P swarming
applications. In Section 3, we describe some definitions and assumptions which help us to
understand the algorithm. In Section 4, we propose a new selection algorithm which
minimizes the worst link stress, and analyze the time complexity. In Section 5, we compare the
algorithm with existing algorithms in the real Internet test-bed, PlanetLab. In Section 6, we
draw the conclusions.

2. Related Work

2.1 Peer Selection
There are many existing content distribution networks which solve the selection problem in a
wide variety of ways. The traditional mirrors server-based content distributions usually select
the nearest peers [3]. Many other systems employ various ranking functions. A user initially
selects some random peers and keeps updating the peer set with better ranks. The selection
process may use the RTT (round-trip time) [9] or the uploead/downloading capacity [10], or
the overlap degree of content [11]. In [12], a peer in a structured locality-aware P2P network
sends/receives more with closer peers. This helps reducing the total network traffic of the
session.

While many previous related works have been directed to the selection problem, only a
small number of them has been considered the bandwidth congestion in a swarming session.
Important issues relative to the optimization of bottleneck and network load balance are not
systematically covered by previous works.

136 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

2.2 P2P Swarming Applications
Many existing P2P systems, such as PPLive [15], TVAnts [16], SopCast [17], MiMeG [18],
UUSee [19], PPStream [20], MySee [21], Pando [22], and Red Swoosh [23], are using the
swarming technique.

PPLive is the largest chunk-driven streaming P2P overlay in the world. It supports video
streaming distribution with a gossip protocol managing users and channels. PPLive prefers to
download from geographically closer peers with high bandwidth. The selection policy has a
strong greedy behavior; it continuously repeats switching peers with better ranks. TVAnts and
SopCast are mesh-based P2P networks similar to BitTorrent. Super nodes keep track of nodes
and file chunks. When a user contacts with peers directed by a super node, it receives buffer
maps from each of them. After receiving the maps, the user selects peers to download the
video chunks from. TVAnts implements a selection policy that chooses peers by selecting with
high probability those within the same geographical region while in SopCast the choice is
completely independent of the peer's location. Both systems largely prefer to download from
high bandwidth peers. UUSee is a pull-based protocol in mesh-based P2P networks. Each peer
calculates maximum upload capacity, and informs tracking servers its sending throughput.
The servers manage these peers, and assign them on requests from users. In MiMeG, servers
monitor the current uplink and downlink bandwidth consumption by each peer, and decide
when and how to share videos among peers. UUSee and MiMeG select peers heuristically.
They attempt to choose the peers with sufficient aggregate uplink capacity for serving the
stream. Some other streaming services which are currently offered through P2P technology
include: PPStream, MySee, Pando. We believe that most P2P swarming applications use the
strategies described above in practice.

3. Preliminaries

3.1 Performance Metrics
Definition 1 Let be a tree, and S = {s1, …, sn} is a subset of nodes in the tree and E = {e1, …,
el} is a set of edges used by the flows from a node in S to root. LS(e), which denotes the link
stress of a link e, e ∈ E, is the number of flows on e. The WLS (worst link stress) of nodes s1,
…, sn is defined as,

For example, in Fig. 1, if s1 = 1, s2 = 2, and s3 =3, then WLS(s1,s2,s3) = 3 because the

number of flows of edge (0,1) is 3.
The user locates at the root of and the nodes in S are peers of a swarming session. The

worst link stress (WLS) is the max number of paths on an edge and indicates the degree of
congestion, it reflects how many data flows from different sources are overlapped on the most
congested link. It represents the worst link stress loaded by concurrent connections. It also
indicates the maximum number of users in as swarming session because the WLS represents
how many individual connections can be added to the session. We found that swarming
sessions following our algorithm in selecting peers improves the swarming performance
across the network, and it leads to less overlap to other connections. The experimental results

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 137

show that if all the swarming session choose the WLS-min algorithm, the probability is high
that all sessions can get higher performance (See Section 5.2).

Definition 2 Let S = {s1, …, sn} be a subset of nodes in a tree and E = {e1, …, el} be the set of
edges of the paths from {s1, …, sn} to root. The DOI (degree of interference) of nodes

is defined as,

For example, in Fig. 1, if s1 = 1, s2 = 2, and s3 =3, then DOI(s1,s2,s3) = 3.
The DOI is the sum of the path-lengths from all nodes of S = {s1, …, sn} minus the sum of

the number of links. By its definition, the DOI represents the bandwidth usage of a swarming
session [24], because the bandwidth usage of a swarming session is directly reflected by the
average path length of each connection. It means it is related to the performance metrics, work
[12]. The optimal peer selection algorithm which generates miminum DOI in a hypercube is
presented in [24].

According to our experimental results in Section 5, the WLS and the DOI are highly
orrelated because the DOI is mimimized when none of the edges have many data flows on
them. Therefore, minimizing the WLS tends to reduce the DOI.

3.2 Constructing a Tree Rooted at User
In a mesh-based P2P network, the source breaks a file into pieces (chunks) and scattered them
over the network. A peer contacts a tracker server and obtain information of peers (candidates)
which contains the file chunks, and receives buffer maps. It then selects some peers from the
candidates to establish concurrent connections.

3.2.1 Finding candidates
Each user can construct a set of candidate peers by exploiting underlying P2P substrates. In a
structured P2P network, centralized tracker nodes generally manage the information of all the
peers and a user can get the information from the tracker nodes. In a unstructured P2P network,
a user can use some gossip protocol [10] or the distributed hash table (DHT) [25] to find
candidates.

3.2.2 Inferencing network topology
In this paper, we assume that a use already has the topology information of the peers which can
provide data at the rate required by the user. However, in practice, most routes/gateways do
not reveal their network information such as packet loss rate, delays, bandwidth, or routing
information. Thus, we need other methods to obtain necessary network information at the end
users. [26] summarizes several useful methods to conjecture hidden network information at
the end users. For example, network topology can be inferred by sending passive/active
packets[27, 28]

However, in many cases, traceroute (tracert in Windows) has been proved to be the most
practicable method to infer the network topology. The deterministic problem is proved to be a

138 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

NP-hard problem when intermediate nodes will not provide information [29]. Therefore, we
use algorithms of [26, 30] to infer the network topology.

4. Optimal Peer Selection Algorithm

4.1 Problem Statement
The definition of selection problem stated in this section can be described as follows. Let a tree

 have the root as the user and all the leaves and some internal nodes as the candidates. The
user selects k nodes (i.e., peers) from the candidates to download the desired file chunk so that
the swarming session has the minimum WLS.

First, we conduct the depth-first search algorithm on the given tree and label each node
of the tree by the order of traversing. Let I(u) be the label of node u and u be the subtree
rooted at node u. Table 1 summarizes the notations and definitions which are needed in
understanding the optimal algorithm.

Table 1. Notations and Definitions

Definition 3 Let be a rooted tree with node set, S = {s1, …, sm}, m >1. A node u is a common
ancestor of S if all the paths of {s1, …, sm} to root contain u.

Definition 4 Let be a rooted tree with node set, S = {s1, …, sm}, m >1. The lowest common
ancestor of S is denoted by or LCA(s1, …, sm) .

Definition 5 Let be a rooted tree with node set, S = {s1, …, sm}, m >1. Let denote the set of
LCAs of all the subsets of S as SLCA(S).

4.2 Sketch of the Algorithm
The key observation is that LS(u,v), where v is a child of u, is more than that of any link in v.
Hence, one of the edges connected to the root must have the worst link stress. We assume w is
a children of root and W is the set of children of root node. We denote a set of candidates in w
as Sw. Let | Sw | be the number of nodes in Sw and we label each w ∊ W with | Sw |. After labeling,
Algorithm 1 (see Section 4.4) is called with parameters , l is the number of
sets; is the number of items in set q is the total number of items to be selected.

 Tree whose root is user and candidates are located at some non-leaf nodes and
all the leaf nodes

v Subtree of whose root is v
S Candidate set

 Candidate set of v
 Virtual tree constructed by SLCA(S). See Definition 6.
 Candidate set, v is the immediate ancestor in without any descendants in S

Π (v) Children of v in .
k Number of nodes to be selected

 Number of nodes to yet be selected from v
LCA(S) The lowest common ancestor of S. See Definition 4.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 139

Then, the Algorithm 1 returns a list (c1, …, cl), is the number of items selected from each
each w .

Based upon the above description, the main algorithm (Algorithm 2) optimizes the WLS
recursively when it optimizes the WLS of v, v ∊ SLCA(S). In Section 4.3, we provide
descriptions of SLCA so as to make the Algorithm 2 clear. We present descriptions of
Algorithm 1 and Algorithm 2 in Section 4.4 and 4.5, and analyze the time complexity of them.
In Section 4.6, we completely describe the WLS-min algorithm and discuss the total time
complexity.

Fig. 1. Peer selection example.

4.3 SLCA(S): set of LCAs of all subsets of S
Lemma 1 Let be a rooted tree, traverse by using the DFS (depth-first search) algorithm
and label each node of the tree by the order of traversing. Let u and v be nodes of , and

. Then, the relation of u and v must be

LCA(u, v) = u, or u ∩ v = Φ

Proof. The proof is too simple due to the property of the depth-first search algorithm itself, we
omit it to keep page limitation.

Lemma 2 Let be a rooted tree with node set, S = {s1, …, sm}, m >1. Let W1,…, Wn be a
covering of S, which is, .

140 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

Proof. Let u = LCA(S), by defninition, u is a common ancestor of all the nodes of Wi, 1 i
n. It means that u is the lowest common ancestor of all the LCA(Wi)'s. If v ≠ u and is the LCA
of all the LCA(Wi)'s, then v must be a descendant of u as well as a common ancestor of S. This
is contradictory to the assumption.

Lemma 3 Supposet (s1, s2,s3) is a list of nodes of tree .

Proof
LCA(s1,s2,s3) = LCA(LCA(s1,s2), LCA(s2,s3))

The equality above is by Lemma 2. By Lemma 1, the relation of (s1,s2) and (s2,s3) must be
following cases.

– Case 1: LCA(s1,s2) =s1 and LCA(s2,s3)=s2

– Case 2: LCA(s1,s2) =s1 and s2 ∩ v3 =Φ

Same as Case 1.
– Case 3:

By Definition 4, LCA(s1,s2)=LCA(s1,s3).

– Case 4:
Assume LCA(s1,s2,s3) ≠ LCA(s1, s3) and let v=LCA(s1,s2,s3). By the definition
of the depth first search, LCA(s1,s3) is an ancestor of s1, s2, and s3. If LCA(s1,s3)
≠ v, LCA(s1,s3) must be an ancestor of v, which contradicts with LCA(s1,s3).

Lemma 4 Supposet (s1, s2,s3) is a list of nodes of tree .

Proof We use the induction on n. The base case n=3 has been proven in Lemma 3. Then, we
assume that it is true for (s1, … ,sl), 3 <l<n. The next step is to prove it is true for (s1, … ,sl+1).

LCA(s1, …,sl+1) = LCA(LCA(s1, …,sl), sl+1) (1)
 = LCA(LCA(s1,sl), sl+1) (2)

= LCA(s1, sl, sl+1) (3)
= LCA(s1, sl+1) (4)

(1) and (3) are by Lemma 2, (2) is by assumption, (4) is by Lemma 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 141

Lemma 5 Supposet (s1, s2,s3) is a list of nodes of tree .

Proof Let S = {s1, … ,sn}. By Lemma 2 and Definition 3,

We prove by induction. Suppose Si = {s1, … ,si}, for 2 ≤ i ≤n. The base case, i=2, it is simple
to see the lemma is true. We assume that it is true for Sl, where 2 ≤ l<n.

 (5)

Consider LCA(si, sl+1) for some 1 ≤ i ≤ l-1. Then,

LCA(si, sl+1) = LCA(si, sl, sl+1) by Lemma 4
 = LCA(LCA(si,sl), LCA(sl,sl+1)) by Lemma 2
 = LCA(si,sl) or LCA(sl,sl+1)

The first equality is by Lemma 4, the next equality is by Lemma 2, and the third equality is true
because (LCA(si,sl) = sl) or (LCA(sl,sl+1) = sl) or (LCA(si,sl) = LCA(sl,sl+1) = sl .
We already showed that LCA(si, sl+1) is either the same as LCA(sl, sl+1), or LCA(si, sl), as in
SLCA(Sl). Therefore, by (5)

Theorem 1 The time complexity of line 5 in Algorithm 2 is O(n2).

Proof By Lemma 5, the running time for constructing the set of LCAs of all pairs of
consecutive nodes in S is O(n2).

4.4 Optimal allocation (Algorithm 1)
The Algorithm 1 is called with arguments, (l, (b1, …, bl), q), where (b1, …, bl) is a list of
integers, and l and q are integers, and returns a list of l integers.

Assume l sets and set j has bj elements, and we select total q elements from these l sets. The
Algorithm 1 returns the list of the number of elements taken from each set cj, for 1 ≤j≤l, so as to
minimize the maximum cj and . In other words, it minimizes the maximum number
of elements to be taken from each set. Algorithm 2 calls Algorithm 1 to decide the number of
peers to be selected from each subtrees.

142 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

ALGORITHM 1: MIN-MAX

1: input: l and q are integers, l is the number of sets and q is the total number of elements to be selected

from l sets.

2: output: list of (c1, …, cl), (1≤j≤l) is the number of elements to be chosen from set j,

 is minimized.

3: then

4: return

5: end if

6: by ascending order and reindex as

7:

8:

9: for do

10:

11: if then

12:

13:

14: else

15:

16:

17:

18: break

19: end if

20: end for

21: for do

22:

23: end for

24: for do

25:

26: end for

27: recover the original set indices

28: return

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 143

4.5 Construction of
The Algorithm 2 (Section 4.6) traverses all the nodes of the virtual tree which is formed by
the nodes . The virtual tree is constructed at line 6 of Algorithm 2.

Definition 6 Let S be a set containing multiple nodes of tree , the virtual tree
consists of the nodes . If u and v are in and u is the parent of v, then

. LCA(S) is the root of .

Fig. 1 shows an example of the virtual tree . All the nodes in triangle are in and the
edges of are highlighted. The the virtual tree of can be easily derived by Lemma 5. In
line 6, the nodes of S are sorted by their IDs. Suppose S = (s1,… ,sn) is a sorted list, then

. Hence, is the root of
due to Lemma 4. All the edges in can be identified by the routes from all the nodes of to
the root. Thus, the time complexity of constructing is O(n2).

Lemma 7 The time complexit of line 6 in Algorithm 2 is O(n2).

4.6 Peer Selection with minimum WLS
Algorithm 2 traverses all the nodes, , in the virtual tree by the breadth-first manner. It has
a queue, Q, which stores nodes to visit. Suppose Mv is the set of nodes whose parent in is v
and have no descendants in S. Suppose Sv , v∈ , is a set of candidates of v. Then, Mv ⊂ Sv,

and for each node w ∊ Mv , w ≠ v, w has no descendants and v is the only virtual node which
is on the routes from w.

4.6.1 A peer selection example
Fig. 1 present an example of peer selection. Suppose a tree whose root node is the user and the
squared nodes, S = {3,5,8,11,12,13,14,17,18}, are candidates. We select k=4 nodes to connect
from the candidates with the minimum worst link stress. The virtual nodes, , are triangled,
and the virtual edges of are highlighted. The optimal peer set generated by Algorithm 2 are
pointed by arrow. The root node selects 4 peers from its 3 subtrees. The Algorithm 1 allocates
(2, 1, 1) nodes to be selected from subtree from 1, 9, and 15. Then, the algorithm is called
recursively at 1, 9, and 15, respectively.

4.6.2 Extending virtual tree

The Algorithm 2 constructs an extended virtual tree e which has nodes u, u ∈ SLCA(S) or u

∈ S and edges (u, v), path from v to root includes u without any node of e is on the route
from v to u. In line 7, e is built by adding nodes and edges in S. For each node v which is in
SLAC(S), Algorithm 2 counts the number of nodes, |Sv|, under the subtree v. After building

e, the set Mv and its size |Mv| are stored by node v. Thus, the time complexity of line 7 is
O(n2) , it is same to result of Lemma 7.

144 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

ALGORITHM 2: WLS-MIN (S, T, k)
1: Input:
 , candidate nodes
 T : Tree whose root is user and candidates are located at some non-leaf nodes and all the
leaf nodes
 k: number of nodes to be selected,
2: Output:
 G: selected k nodes with optimal WLS
3:
4: traverse T by using DFS (depth-first search) algorithm and label each node of the tree by the

order of traversing
5:
6: Construct
7: At each
8:
9:
10: while do
11:
12: if then
13:
14:
15: else if then
16: Insert subset of with items to G
17:
18: end if
19: if then
20:
21:
22: for do
23: if then
24: Enqueue
25: end if
26: end for
27: end if
28: Dequeue
29: end while
30: return G

4.6.3 Description of lines 10 ~ 29

Suppose q(u), u ∈ u, is number of peers yet to be selected. In lines 12 through 18, Algorithm
2 tries to select the nodes which are in Mu. These nodes are either leaf nodes of e or nodes of
S. In line 21, Algorithm 1 is called to optimally allocate the number of peers to be selected at
each of subtree rooted at the children of u in and inserts the value of allocation into the
queue, Q (lines 23 through 25).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 145

4.6.4 Time complexity of Algorithm 2
The time complexity of the while loop can be analyzed as below.

Lemma 8 The lines 10 through 29 of Algorithm 2 can be done in O(n log n).
Proof The worst case scenario is when the root of the virtual tree has O(n) children. In line
16, it inserts a node to the set G at most n times since the loop iterations can not exceed |G|. In
lines 22 through 26, the for loop iterations can not exceed O(n), since it visits every nodes of
SLCA(S) one by one.
We assume that the size of the candidate set S is n with virtual tree containing l non-leaf

nodes which are denoted by v1,… ,vl. Then, the size of node set can not exceed n-1, and l is
no greater than n-2. We assume node vi has ni immediate descendants in , for i = 1, …, l.
Then,

 = (| | - 1) ≤ (n -2)

In lin 21, the Algorithm 1 is called l times, and the number of operations taken is ni log ni for
each vi. If T(n,l) is the number of operations of the worst scenario, then

T(n,l) ≤ (n - 2) log ((n-2)/l) (6)

T(n,l) is maximized when l is 1. Therefore, the number of operations for a tree containing n
candidates is of O(n log n).

Theorem 2 The time complexity of Algorithm 2 is O(n2).
Proof By Theorem 1 and Lemma 7 and 8, the time complexity of Algorithm 2 is O(n2).

5. Evaluation

5.1 Case of single user
The PlanetLab [6] is an open platform for developing Internet technology on a global scale. It
is composed of 1353 nodes at 717 sites worldwide in current.

We randomly selected three nodes from United States, Japan and France as the users1. We
assume each user found 90 nodes as the candidates. These candidates were randomly selected
with different random seeds in each experiment. Each user selects 15 nodes from 90
candidates for a swarming session. We ran traceroute and collected routing information to
construct network topology. We checked each routing paths and calculate the RTTs, DOIs and
WLSs. For each experiment, different candidate nodes were randomly selected and we
averaged the measures of the experiments.

We present the comparison results of the WLS-min algorithm with existing selection
algorithms, the random algorithm where the user randomly selects peers whereas the closest
algorithm selects the nearest peers with the RTT criterion. They are the most popular methods
in current P2P applications. (See Section 2.)

1 They are planetlab1.eecs.ucf.edu, planet0.jaist.ac.jp and planetlab1.eurecom.fr.

146 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

We use three performance metrics to compare these algorithms.

 Worst link stress (WLS): We count the number of flows on each link to calculate the

worst link stress of a link and average 10 worst link stresses.
 Degree of interference (DOI): We calculate the DOI generated by the concurrent

connections to measure the burden of the swarming session.
 Average number of flows on a link: We calculate the average number of flows of a

link to measure the load-balance of a network.

In Fig. 2, we measure the number of routes on each link and average the 10 largest for the

random algorithm, the closest algorithm and the WLS-min algorithm, respectively. The
WLS-min algorithm clearly shows the best performances in all cases. If a user in
planetlab1.eecs.ucf.edu used the WLS-min algorithm rather than the closest algorithm, the
average of 10 worst stresses was reduced about 44%. Though the closest algorithm minimizes
the RTTs of connections, it may cause congestion if the selected peers are nearby. The
WLS-min algorithm effectively reduces the bottleneck stress of a swarming session.

We measure the DOI of a swarming session in Fig. 3. The results show similar trends to
the results in Fig. 2. We see that the WLS-min algorithm offers much lower DOI than others.
For instance, the WLS-min algorithm generated 35% less DOI than the random algorithm and
the closest algorithm in average. It is interesting that the closest algorithm is not remarkably
better than the random algorithm in the DOI criterion.

Fig. 4 compares the average number of data flows on a link. The WLS-min algorithm
performs best, and the closest is the worst in all cases. The average numbers of the random
algorithm, the closest algorithm and the WLS-min algorithm are 1.83, 2.27 and 1.48. The
WLS-min algorithm is best in distributing the link stress or network load.

Fig. 2. The average link stress of 10 most congested links

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 147

Fig. 3. The DOI measures

Fig. 4. The average of flows on a link

5.2 Case of multiple users
In this experiment, we show the benefits of the proposed algorithm for multiple concurrent
swarming sessions. When every session uses the WLS-min algorithm in selecting peers, the
probability is high that all sessions can benefit.

Our experiments were simulated on the Transit-Stub model2 [31] where domains are
classified into two types: transit domains and stub domains. Nodes in a stub domain are
typically an endpoint in a network flow and nodes in a transit domain are typically
intermediate routes. Nodes within a domain tend to be fairly interconnected but rarely connect
to nodes outside of the domain. Our model consists of 2100 nodes with two level layers and
the average diameter is about 12.0. We assume all the links have similar delay and bandwidth.
We do not consider either packet loss or nodal delay. We conduct simulations with different
random seeds and present the averages.

There are 20 concurrent swarming sessions, each has a user and 100 candidates which are
randomly scattered over the transit-stub model. Each user chooses k=20 peers from its

2 We conducted this experiment on the Transit-Stub model instead of PlanetLab because
the experiments were misunderstood as DDOS attacks.

148 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

candidates using same selection scheme.
We calculate the average number of routes on the 10 worst congested links for the three

selection algorithms in Fig. 5. The random and the WLS-min algorithm generate better results
as compared to the closest algorithm. The WLS-min algorithm works well in improving the
bottleneck level, the average number of routes on the 10 most congested links was reduced
from 31.4 to 22.

Fig. 5. Average of flows on the 10 most congested links with 20 concurrent swarming sessions

In Fig. 6, we present the DOI of all the swarming sessions. The results show similar trends

to the results in Fig. 5.
In Fig. 7, we show the average of flows on a link. We see that the WLS-min algorithm

offers lower result than the others. The average numbers of the random algorithm, the closest
algorithm and the WLS-min algorithm are 3.1, 3.32 and 2.81, respectively.

Fig. 8 shows the distribution of the link stress. It is remarkable that the slope of the curves
of the closest algorithm is relatively moderate and longer than the random algorithm and the
WLS-min algorithm. If every user follows the WLS-min algorithm in selecting peers, all the
links will have less than 24 routes on it. It means the WLS-min algorithm works well in
balancing network stress for multiple concurrent swarming sessions.

Fig. 6. The DOI of all connections for the case of 20 concurrent swarming sessions

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 149

Fig. 7. The average of flows on a link for the case of 20 concurrent swarming sessions

Fig. 8. The link stress distribution for the case of 20 concurrent swarming sessions

6. Conclusion
We conduct a research on the issue of optimal peer selection, which is critical in the

mesh-based P2P networks. In this paper, we consider a new performance metric, the worst link
stress (WLS), and propose a peer selection algorithm that produces the set of peers generating
optimal WLS. Then we theoretically prove the optimality and discuss the complexity.
 We have presented experimental results that show the advantages of our algorithm over the
existing algorithms. It is remarkable that our algorithm outperforms existing popular
algorithms, the random algorithm and the closest algorithm, in all performance metrics.

We now summarize the benefits of the proposed algorithm in the following aspects. the
algorithm optimizes the congestion level of the bottleneck link, it enables to provide larger
number of users and service sessions. Second, the congestion of the network is distributed. It
improves not only the utilization of network but also the speed of content distribution.
Furthermore, we also notice that if every swarming session uses the algorithm, the overall
network load is well balanced, which ultimately benefits all sessions.

150 Han et al.: An Optimal Peer Selection Algorithm for Mesh-based P2P Networks

For future works, when describing the worst link stress, we assume a homogeneous
network where all the links have same bandwidth, but if there is a big difference in the link
bandwidths, our formulation and algorithm should consider this heterogeneity. We expect that
our ongoing research will derive new and valuable insights in peer-to-peer networking.

References
[1] D.Coilean and D.O'mahony, “Accounting and Accountability in Content Distribution

Architectures: A Survey,” Journal ACM Computing Survey, vol. 47, no. 4, 2015.
Article (CrossRef Link)

[2] R.Rejaie and N.Mahgarei, “On performance evaluation of swarm-based live peer-to-peer
streaming applications,” Multimedia Systems, vol. 20, pp. 415-427, 2014. Article (CrossRef Link)

[3] M.Zhao, P.Aditya, A.Chen, Y.Lin, B.Maggs, B.Wishon, and M.Ponec, “Peer-assisted content
distribution in Akamai netsession,” in Proc. of the 2013 conference on Internet measurement
conference, pp. 31-42, 2013. Article (CrossRef Link)

[4] C.Y.Gho, H.S.Yeo,H.Lim, P.Hoong, and I.I.T.Tan, “A Comparative Study of Tree-based and
Mesh-based Overlay P2P Media Streaming,” International Journal of Multimedia and Ubiquitous
Engineering, vol. 8, no. 4, 2013. Article (CrossRef Link)

[5] K.Xu, X.Liu, Z.Ma, Y.Zhong, and W.Chen, “Exploring the policy selection of the P2P VoD
system: A simulation-based research,” Peer-to-Peer Networking and Applications, vol. 8, no. 3,
pp.459-473, 2015. Article (CrossRef Link)

[6] PlanetLab website, http://www.planet-lab.org
[7] V.S.Pai, “Next-Generation CDN: A CB Perspective,” Advanced Content Delivery, Streaming, and

Cloud Services, 2014. Article (CrossRef Link)
[8] I.C.Yen, “Deploying Virtual Clusters through P2P-based Content Distribution,” in Proc. of 11th

IEEE International Symposium on Network Computing and Applications, pp.167-170, 2012.
Article (CrossRef Link)

[9] BitTorrent website, http://www.bittorrent.com
[10] D.Kosti, R.Braud, C.Killian, E.Vandekieft, J.W.Anderson, A.C.Snoeren, and A.Vahdat,

“Maintaining high bandwidth under dynamic network conditions,” in Proc. of USENIX Annual
Technical Conference, 2005. https://infoscience.epfl.ch/record/99653
D.Bickson, D.Malkhi, and D.Rabinowitz, “Efficient large scale content distribution,” in Proc. of
the 6th Workshop on Distributed Data and Structures, 2004. Article (CrossRef Link)

[11] X.Zheng, C.Cho, and Y.Xia, “Optimal Swarming for Massive Content Distribution,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 6, 2010.
Article (CrossRef Link)

[12] Y.Xia, S.Chen, C.Cho, and V.Korgaonkar, “Algorithms and Performance of Load Balancing with
Multiple Hash Functions in Massive Content Distribution,” Computer Networks, vol. 53, no. 1,
pp.110-125, 2009. Article (CrossRef Link)

[13] PPLive website, http://www.pplive.com
[14] TVAnts website, http://www.tvants.com
[15] SopCast website, http://www.sopcast.com
[16] Mixed Media Grid (MiMeg) – Distringuishing Features and Functions,

http://eprints.ncrm.ac.uk/821
[17] UUSee website, http://www.uusee.com
[18] PPStream website, http://www.ppstream.com
[19] MySee website, http://mysee.com
[20] Pando website, http://www.pando.com
[21] RedSwoosh website, http://www.akamai.com/redswoosh
[22] S.C.Han and Y.Xia, “Constructing an optimal server set in structured peer-to-peer network,” IEEE

Journal on Selected Areas in Communications, vol. 25, no. 1, 2007. Article (CrossRef Link)

https://doi.org/10.1145/2723701
https://doi.org/10.1007/s00530-014-0363-3
https://doi.org/10.1145/2504730.2504752
https://doi.org/10.1109/INFCOM.2007.168
https://doi.org/10.1007/s12083-014-0268-0
http://www.planet-lab.org/
https://doi.org/10.1002/9781118909690.ch17
https://doi.org/10.1109/NCA.2012.47
http://www.bittorrent.com/
https://infoscience.epfl.ch/record/99653
https://doi.org/10.1.1.357.5164
https://doi.org/10.1109/TPDS.2009.133
https://doi.org/10.1016/j.comnet.2008.10.003
http://www.pplive.com/
http://www.tvants.com/
http://www.sopcast.com/
http://eprints.ncrm.ac.uk/821
http://www.uusee.com/
http://www.ppstream.com/
http://mysee.com/
http://www.pando.com/
http://www.akamai.com/redswoosh
https://doi.org/10.1109/JSAC.2007.070117

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 151

[23] P.Felber, P.Kroopf, and E.Schiller, “Survey on Load Balancing in Peer-to-Peer Distributed Hash
Tables,” IEEE Communications Surveys and Tutorials, vol. 16, no. 1, 2014.
Article (CrossRef Link)

[24] B.Eriksson, G.Dasarathy, P.Barford, and R.Nowak, “Toward the Practical Use of Network
Tomography for Internet Topology Discovery,” in Proc. of IEEE INFOCOM, 2010.
Article (CrossRef Link)

[25] X.Zhang and C.Phillips, “A Survey on Selective Routing Topology Inference Through Active
Probing,” IEEE Communications Surveys and Tutorials, vol. 14, no. 4, 2012.
Article (CrossRef Link)

[26] P.Sattari, C.Fragouli, and A.Markopoulou, “Active topology inference using network coding,”
Physical Communication, vol. 6, pp.142-163, 2012. Article (CrossRef Link)

[27] B.Yao, R.Viswanathan, F.Chang, and D.Waddington, “Topology inference in the presence of
anonymous routers,” in Proc. of IEEE INFOCOM, 2003. Article (CrossRef Link)

[28] J.Ni, H.Xie, S.Tatikonda, and Y.R.Yang, “Efficient and dynamic routing topology inference from
end-to-end measurements,” IEEE/ACM Transactions on Networking, vol. 18, no. 1, 2010.
Article (CrossRef Link)

[29] K.Calvert, M.Doar, and E.Zegura, “Modeling internet topology,” IEEE Communications
Magazineg, vol. 35, no. 6, 1997. Article (CrossRef Link)

Seung Chul Han is a head professor at the Dept. of Computer Science and
Engineering, Myongji University, Seoul, Korea. He has his Ph.D. from Dept.
Computer Science, University of Florida, M.S. from Purdue University. His primary
research interests include P2P networks, graph theory, computer security, and OS.

Ki Won Nam is an assistant professor at the Department of Early Childhood
Education at the Chungang University, Seoul, Korea. She has a Ph.D from the
Chungang University in 2013, and M.S degree in 2001 and a B.S. degree in 1999 from
Chungang University, Seoul, Korea. Her primary research iterests include Computer
education, computational thinking, and physical computing.

https://doi.org/10.1109/SURV.2013.060313.00157
https://doi.org/10.1109/INFCOM.2010.5461970
https://doi.org/10.1109/SURV.2011.081611.00040
https://doi.org/10.1016/j.phycom.2012.02.006
https://doi.org/10.1109/infom.2003.1208687
https://doi.org/0.1109/tnet.2009.2022538
https://doi.org/10.1109/35.587723

