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Abstract 
 

Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming 
a major research focus. Due to the complicated air-ground environments in 3-D positioning, 
many of the traditional localization methods, such as received signal strength (RSS) may have 
relatively poor accuracy performance. Benefit from prior learning mechanisms, 
fingerprinting-based localization methods are less sensitive to complex conditions and can 
provide relatively accurate localization performance. However, fingerprinting-based methods 
require training data at each grid point for constructing the fingerprint database, the overhead 
of which is very high, particularly for 3-D localization. Also, some of measured data may be 
unavailable due to the interference of a complicated environment. In this paper, we propose an 
efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the 
spatial correlation of the RSS data and demonstrate the low rank property of the RSS data 
matrix. Based on this, a new training scheme is proposed that uses tensor completion to 
recover the missing data of the fingerprint database. Finally, we propose a kernel based 
learning technique in the matching phase to improve the sensitivity and accuracy in the final 
source position estimation. Simulation results show that our new method can effectively 
eliminate the impairment caused by incomplete sensing data to improve the localization 
performance. 
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1. Introduction 

Recently, the problem of the source localization in wireless sensor networks (WSNs) has 
received considerable attention due to its increasingly widespread application, such as in smart 
transportation system, monitoring systems, and intrusion target detection systems [1]-[4]. 
Among the detection area, there are a number of sensors called sensing nodes which are 
deployed for localization problems in WSNs. Based on the measured data of sensing nodes, 
the final goal of the localization problem is to estimate the position of an unknown source. 
Considering the scenarios, most of the current localization methods were designed for two- 
dimentional (2-D) problems. However, three-dimentional (3-D) localization is also needed in 
some cases, such as the localization problem of unmanned aerial vehicles (UAVs) in some 
special environments, and the target sourc localization in vocal concert environments [5]-[7].  

Many kinds of the localization methods such like received signal strength (RSS) based 
algorithms or their improved methods have been investigated which are based on the 
measured energy data [8]–[11]. Most of these methods were designed in 2-D and can be 
extended to 3-D cases. However, one problem with these distance estimated localization 
techniques is that the signal propagation model should be correctly and concisely described. 
Due to the varying air-ground topography, wireless radio channels are more seriously suffered 
by noise and other interference, the signal model can not be clearly depicted. Hence, the final 
measurements are deviating from the real data, which further decrease the final estimated 
source position precision [12]–[13].  

The fingerprint localization technique, which uses a radio map to determine user locations, 
has received considerable attention [14]–[16]. Different from determining distances, this 
method first constructs the fingerprint database by measuring the source’s RSS values at each 
point during an offline phase. Whenever the source requests services, the position can be 
quickly estimated by matching the sensing data with the previously constructed fingerprint 
database and finding the best item during the online phase. Due to the learning mechanism 
used, the fingerprinting method is less sensitive to complex conditions and can provide 
relatively accurate localization performance [17]–[19]. 

As described above, an offline fingerprint database must be constructed for  the training 
phase of the fingerprint based localization, which is composed of the RSS value collected at 
each grid point of the testing area. However, due to various obstacles, quickly building a 
complete fingerprint database may not be possible. Firstly, some measured data may not be 
available given the difficulty of a complicated environment, such as some remote corners, 
which leads to an incomplete fingerprint database. Secondly, the number of grid points to be 
trained in 3-D localization are increasing when compared to 2-D scenes, which results in a 
high computation requirement. Also, to more precisely estimat a position, a high density of 
grid points is prefered, which also increases the training burden. Thirdly, to strive for an 
accurate estimation, a recalibration procedure is needed whenever the environmental changes 
occur in the measured area, which will further increase the training effort [20]. To complete 
the data matrix and reduce the data collecting overhead, some related works based on 
signature map construction were investigated [21]-[26]. To data, this idea have mainly been 
applied in the field of data processing, which shows a bright future in the localization problem. 

In this paper, an efficient source localization technique is developed to solve the above 
mentioned problems. By analyzing the problems in the completion of the fingerprint and the 
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reduction of the sensing overhead in the training phase, we find that the core issue involves 
using less measurement data to complete the unknown data of other grid points. Aimed at the 
issue, we first exploit the RSS spatial correlation and show the low rank property of the RSS 
data matrix measured in the localization area. By using this property, a tensor completion 
scheme is then proposed to effectively recover the incomplete fingerprint database in the 
training phase. Furthermore, we propose a kernel based learning technique in the matching 
process that can simplify the localization problem and improve the sensitivity and accuracy in 
fingerprint matching.  

Specifically, the contributions of this paper are summarized as follows: 
 We exploit the spatial correlation of the RSS data and propose a novel training scheme 

based on tensor completion. Since the tensor completion can efficiently generate a 
complete fingerprint database, the effort and time spent during training phase can be 
substantially reduced by the proposed training scheme and the integrity of the 
fingerprint database is also improved. 

 We introduce a kernel based learning method in the matching phase. The kernel based 
method simplifies source localization by clarifying the complicated relationship 
between the fingerprint and the corresponding position and identifying the source 
position more effectively, which further improves the localization precision. 

 Finally, we present some deeper insights into the proposed scheme. By comparison, the 
simulation results show the effectiveness of the proposed method.  

The rest of this paper is structured as follows. In Section 2, the preliminaries of the our 
workis described, which conclude the basic signal model and the RSS spatial correlation 
property. Then, the efficient kernel based 3-D localization algorithm via tensor completion is 
proposed in Section 3. In Section 4, we provide the simulation results which to demonstrate 
the effectiveness of the new proposed algorithm. Finally, the main conclusions are 
summarized in Section 5. 

2. Preliminaries 

2.1 Signal Model 
We considered the fundamental signal model of the localization problem. In the measured 
environment, we put M  sensing nodes for localization, the positions of these nodes are 
known and the sensing nodes are gridding distributed. The target source performs random 
distribution and its position is unknown. The estimate the source position, we should firstly 
measured the received power of each sensing node from the unknown source. By using the 
radio propagation path loss model, the average received power iP  of the thi  sensing node can 
be written as [11] 

( ) ( ) 10
0

dB dB 10 log i
i t i

dP P K n
d

γ
 

− = − + 
 

,                                       (1) 

where tP  is the transmit power of the unknown source; 0d is the reference distance which is 

normally taken as 1 m; id  is the real distance of the thi sensing node and source; and in is the 
Gaussian distributed measurement noise; K  is a constant value and γ is the pass loss 
exponent. 
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2.2 RSS Correlation Property 
In this part, the spatial correlation of the RSS measurements received from the sensing nodes is 
exploited. Since that the limited number of freedom degrees means that the rank of the 
measurement data  matrix is much lower than its dimension. The correlations of the measured 
data can also be implied by the lower freedom degrees of the data matrix [20]. The RSS data 
correlation as well as thelow rank nature of the data matrix which showed by the normalized 
singular values can be observed in Fig. 1. 
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0.2
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0.6

0.8

1

Normalized singular values  
Fig. 1. Normalized singular values of the data matrix in the simulation model. 

 
The figure can clearly show that the first few singular values are containing most of the 

energy, whereas additional singular values which caused by noise-like phenomena that exhibit 
much lower energy. The exploited low rank nature of the sensing data matrix plays a pivotal 
role in our proposed localization technique. 

3. Efficient Kernel Based 3-D Source Localization via Tensor Completion 
In this part, we propose our novel efficient kernel based localization technique. The new 

algorithm exploits the spatial correlation of the RSS measurments in the sensing data matrix. 
By taking advantage of this property, the localization overhead in the training procedure is 
further reduced. The proposed algorithm is divided into two phases: the training phase, which 
provides a subset of the RSS measurements for some grid points and then recovers the grid 
points to build the complete reference fingerprint database; and the matching phase, which 
uses kernel learning to find the best estimation for the source position. In the following, we 
describe these two phases in detail. 

3.1 Training Phase 
The core task of the training phase involves building the fingerprint database. Firstly, in 

some grid points among the measurement area that were chosen randomly, we record all the 
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measured RSS data received by sensing nodes from the constructing node. Since only part of 
the grid points are used for data collecting, tensor completion was used to complete the entire 
data matrix based on the incomplete data. Finally, all RSS vector data of all the grid points 
formed the entire fingerprint database. 

Specifically, for a random sensing node m , the recorded data matrix can be written as 
,

0, otherwise
i

Ω

∈Ω
= 


Φ
Φ ,                                                (2) 

where Ω  is the subset of the grid points that are used for data collecting, i  is the 
corresponding serial number, and Φ  is the measured data matrix we want to recover as 
precisely as possible. 

After that, an optimization problem can be modeled by the tensor completion for the 
missing RSS value, which is try to complete the whole data by using the known subset. The 
problem can be which is written as 

*
min

. .s t Ω Ω=
Φ

Φ

Φ Γ
,                                                       (3) 

where 
*
 denotes the tightest convex envelop for the rank of matrix. Φ  is the incomplete 

tensor to be completed. Since the sensing data are a 3-D matrix, ΩΦ  and ΩΓ  are three-mode 
tensors and the size in each mode are the same. Entries of ΩΓ  from the set Ω are known 
whereas the remaining entries are missing. Since that computing the rank of a tensor is an NP 
hard problem which can not be directly solved, we introduce the following definition for the 
tensor trace norm [23]: 

( )

3

* *1
: i i

i
δ

=

=∑Φ Φ ,                                                 (4) 

where 
3

1
1i

i
δ

=

=∑  is content and 0iδ ≥ . ( ) *iΦ  denotes the norm of unfolded matrix ( )iΦ . 

However, a tensor’s trace norm is consistent with all the matrices unfolded along each mode. 
Based on this, the above mentioned problem is further written as: 

( )

3

*1
min

. .

i i
i

s t

δ
=

Ω Ω=

∑Φ
Φ

Φ Γ
.                                                  (5) 

Due to the interdependence among the matrix trace norm terms, the problem in Equation (5) 
is challenging to solve. Hence, we introduced the additional matrices { }1 2 3, ,Τ Τ Τ  to split 
these interdependent terms. The problem in Equation (5) can be simplified as follows: 

( )

3

*, 1
min

. . 1, 2,3
i

i i
i

iis t i

δ
=

Ω Ω

= =

=

∑Φ Τ
Τ

Φ Τ

Φ Γ

.                                            (6) 
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In order to solve this convex optimization problem, we are trying to use the alternating 
direction method of multipliers (ADMM). Firstly, we use the tensor versions iβ to replace the 
corresponding matrix iΤ : 

( )
1 2 3

3

, , , *1
min

. . 1, 2,3

i i i
i

is t i
β β β

δ
=

Ω Ω

= =
=

∑Φ
β

Φ β
Φ Γ

.                                          (7) 

Finally, we define the augmented Lagrangian function as follows: 

( ) ( )
2

*1
, , ,

2

n

i i i i i ii i F
i

Lρ
ρδ

=

= + − + −∑Φ β γ β Φ β γ Φ β .                 (8) 

According to the ADMM framework, the augmented Lagrangian function is applied to 
update iβ , Φ , and iγ iteratively. 

After the iteration, the final recovered data matrix of the thm  sensing node is achieved. The 
same procedure can be applied to the other sensing nodes for their data matrix completion, 

{ }1 2, , , MΦ Φ Φ . 

To facilitate the following analysis, we further translated the above data matrices into a new 
matrix form. Specifically, for a fixed grid p , the fingerprint vector can be written as 

1 2 3
, , , , ,, , , , M

R p R p R p R p R pF P P P P =  


 .                                         (9) 

The entire fingerprint database is: 

,1 ,2 ,3 ,, , , ,
T

R R R R NF F F F =  D
   

 .                                      (10) 

3.2 Matching Phase 
When the unknown source is set in the area, the fingerprint vector can also be achieved, 

which is written as  
1 2 3
, , , ,, , , , M

S r S r S r S r SF P P P P =  


 .                                          (11) 

In the matching phase, by defining a model ( )Ψ  to estimate the source position, the 
estimated coordinates can be written as  

( )ˆ SF=x Ψ


,                                                      (12) 

where SF


 is an input entry of the defined model ( )Ψ  and x̂  is the corresponding estimated 
position. 

Hence, the objective was to find the model ( )Ψ  associated with the fingerprint ,R pF


  and 

the corresponding output ˆ py . Since that this is a 3-D problem, let ( ),1 ,2 ,3ˆ ˆ ˆ ˆ, ,p p p py y y=y  be 

the estimated position of the reference node in point p. Also, ( )Ψ  can be written as 
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( ) ( ) ( ) ( )( )1 2 3, ,= Ψ Ψ ΨΨ , where ( )dΨ  is responsible for the estimation of the 
thd  coordinate and d  is an indicator for a random dimension.  

Table 1. Commonly used kernels with parameters 0, , 0c d N σ+> ∈ >  

Kernel Expression 

Monomial ( ),
d

i jF F
 

 

Exponential ( )2exp , 2i jF F σ
 

 

Gaussian ( )2 2

2
exp , 2i jF F σ−

 

 

Multiquadratic 
2

2
,i jF F c+
 

 

In this part, the functions ( )dΨ is determined by the kernel based learning method. Hence, 
a reproducing kernel Κ  is considered and υ is its Reproducing Kernel Hilbert Space (RKHS) 
with inner product ,

υ
 [27]. Here some of the commonly used kernel functions are showed 

in Table 1. Then, the function ( )dΨ  is obtained by minimizing the following regularized 
empirical risk: 

( )( ) ( )( )( ) ( )2
1, ,1 , ,, , , ,d d R N d d R N dp F p F

υ
ξ ηζΨ Ψ + Ψ

 

 ，                     (13) 

where ξ is an arbitrary cost function, for example, the mean squared error. ζ is defined as a 

real-valued function which is strictly monotonically increased. 
υ

is the norm in the RKHS. 
η  is set to be a positive tunable parameter, which is used to control the trade-off between the 
fitness error and the solution complexity as measured by the norm in the RKHS. 

Specifically, the first term in Equation (13) is taken using the mean squared error of the 
estimated position ( ),d R pFΨ



 and the real position ,p dy , 

( )( ) ( )( )( ) ( )( )2

1, ,1 , , , ,
1

1, , , ,
N

d d R N d d R N p d d R p
p

p F p F y F
N

ξ
=

Ψ Ψ = −Ψ∑
  

 .        (14) 

The regularization term in Equation (13) is changed in its simplest form as 2
d υ

Ψ . Hence, 
the optimization problem is finally defined, which is written as [28]: 

( )( )2 2
, ,

1

1min
N

p d d R p d
p

y F
N υ

η
=

−Ψ + Ψ∑


.                              (15) 

By determining the ,p dα  and transforming it into a finite dimension, we express the 

minimizer ( )dΨ  as a finite linear combination of the kernels. Hence, the problem of the 
minimizer of the regularized empirical risk in Equation (13) is described in a simpler form, as 
follows: 
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( ) ( ), ,
1

,
N

d p d R p
p

Fα
=

Ψ ∗ = ∗∑ Κ


.                                          (16) 

By combining Equation (15) and (16), we obtain the following optimization problem in 
terms of ,d∗α : 

( ) ( ), , , , , ,min
T T

d d d d d dNη∗ ∗ ∗ ∗ ∗ ∗− − +P Kα P Kα α Kα ,                         (17) 

where ,d∗P  is the thd  coordinate of all the grid points, which is 

, 1, , ,, , , ,d d p d N dy y y∗  =  P   . K is the N N×  matrix and the ( ), thi j  entry is ,i jυ ρ ρ , 

for { }, 1, 2, ,i j N∈  . Also, α  is defined as a N N×  matrix, which the thd  column of α  is 

,d∗α  and the pth line is ,p ∗α . 

This is a classical quadratic regression problem, we further transform it into the following 
forms:  

2
, , ,d d dNη∗ ∗ ∗+ + =KP K α Kα 0 .                                          (18) 

Thus, we obtain the following form of the solution: 

( ) 1
, ,d dNη −
∗ ∗= +α K I P ,                                               (19) 

where I is the N N×  identity matrix.  
After calculating the estimation of all the dimensions, the whole formulation can be written 

as: 

( ) 1Nη −= +α K I P                                                        (20) 

Using Equation (16) and the definition of the vector of functions ( )Ψ , we now define a 
model that allows us to estimate all three coordinates of the unknown source at once, as 
follows: 

( ) ( ), ,
1

,
N

p R p
p

F∗
=

∗ = ∗∑Ψ α Κ


                                               (21) 

Therefore, by using the source fingerprint SF


 as the input entry, the final estimated position 
x̂  is calculated. 
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The overall efficient source localization algorithm is summarized in Algorithm 1. 
Algorithm 1: Efficient Kernel-based Localization via Tensor Completion 

  , , , ,M N K ρInput P  

( )

( )

ˆ

3

1 ˆ

m = 1 to 
collecting subset data matrix
Set and 0

   k 1 to     
   i 1 to 3    

1fold

1 1
3

ii i i i

i i
i

i i i

M

K

D iδ
ρ

β
ρ

ρ
ρ

Ω

Ω Ω Ω

Ω
= Ω

ϒ
= =
=

=
  

= +  
   

 
= − 

 
= − −

∑

Phase Ι : Training Phase
for do

Φ Γ Φ
for do

for do

Φ γ

end for

Φ β γ

γ γ β Φ
en

{ }1 2, , ,
return  ;  / /completed fingerprint database

M →

d for
end for
Φ Φ Φ D

D


 

( )

( )
( ) ( )

2 2
, , 2

1

, ,
1

Collecting source fingerprint
  i=1 to N

   j=1 to N
exp , 2

,

S

R i R j

N

S p R p S
p

F

F F

N

F F F

σ

η −

∗
=

= −

= +

=∑

Phase ΙΙ : Matching Phase

for do
for do

K
endfor

endfor
α K I P

Ψ α Κ



 

  

 

ˆ  Output x  

 

4. Performance Evaluation 

4.1 Simulation Setup 
Fig. 2 shows the fundamental simulation scenario. In this scenario, the measured area was a 

20 20 20 m× ×  cube and nine sensing nodes were deployed at the known coordinates (0,0), 
(0,10), (0,20), (10,0), (10,10), (10,20), (20,0), (20,10), (20,20) in meters. The unknown source 
was distributed randomly in the area. The measured area was divided into 10 10 10× ×  grids, 
thus, each grid was about a 2 2 2 m× ×  cube area. For signal propagation modeling, the 
transmitting power of the source is 0dBmSP = . The pass loss exponent is 3γ = . The AWGN 
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is with zero mean and a variance . To reduce the overhead, only a part of the grid are 
used to collect the RSS data in the training process. The sampling rate is set to be 0.5 and the 
samples are chosen randomly. 

 
Fig. 2. The configuration of the simulation scenario. 

4.2 Effectiveness analysis of the proposed localization algorithm 
In the following analysis, the root mean square error (RMSE) metric is used to compare the 

position estimation performance of different algorithms. The RMSE can clearly show the 
performance variation under each condition. 

                                               (22) 

where  is the estimated position of the unknown source and is the correct position.  is 
set to be the simulation time. 

Also, we have performed several localization schemes under different conditions for 
comparison, which is to demonstrate the effectiveness of the proposed novel localization 
algorithm. The schemes are listed as follows. 
 A baseline scheme called “Original Data + Kernel” (OD-Kernel scheme), which 

directly uses the complete sensing data to perform the position estimation. Meanwhile, 
the kernel learning method is used for the matching phase. 

 A baseline scheme called “Tensor Completion + Kernel” (TC-Kernel scheme), which 
uses the incomplete data and processed by tensor completion method for the position 
estimation. In the matching phase, the kernel learning method is used to find the best 
point. Note that this scheme is also our proposed algorithm. 

 A baseline scheme called “Interpolation Completion + Kernel” (IC-Kernel scheme), 
which uses the incomplete data and processed by an interpolation completion method 
in [29] for the final position estimation. The kernel learning method is used to find the 
best point in the matching phase. 
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 A baseline scheme called “Tensor Completion + KNN” (TC-KNN scheme), which 
uses the incomplete data and processed by tensor completion method for the final 
position estimation. However, the matching phase uses the K-nearest neighbor (KNN) 
method to find the best matching point. 

 A baseline scheme called “Interpolation Completion + KNN” (IC-KNN scheme), 
which uses the incomplete data and processed by an interpolation completion method 
for the final position estimation. Also, the KNN method is used to find the best 
matching point. 

The effect of the data sampling rate on the RMSE of the source position estimate is 
presented in Fig. 3. Especially, the effectiveness of the tensor completion is shown in this 
simulation, so that only the localization schemes using kernel learning are compared. From 
the figure, by using the tensor completion, our proposed TC-Kernel scheme obviously 
improved the localization precision when compared with the IC-Kernel scheme. This 
occurred  because the tensor completion can efficiently recover the incomplete sensing data 
matrix, which increased the precision of the final position estimation. When the data 
sampling rate increased, our proposed TC-Kernel scheme gradually reached a comparative 
performance to the OD-kernel scheme, while the overhead was almost cut in a half. Also, a 
phenomenon is seen that our proposed method may have worse performance when the 
sampling rate is lower, such as 0.2. A rational explanation may be that too little existed 
sensing data exceed the tolerance of tensor completion, which is more sensitive compared to 
the IC-Kernel scheme. 

0.2 0.3 0.4 0.5 0.6 0.7 0.81

1.5

2

2.5

3

3.5

Sampling Rate

RM
SE

 (m
)

 

 

OD-Kernel
TC-Kernel
IC-Kernel

 
Fig. 3. Effect of the tensor completion on RMSE versus data sampling rate. 

 
Fig. 4 shows the effect of the data sampling rate on the RMSE of several localization 

schemes. The effectiveness of the kernel method on the localization performance is mainly 
verified in this part. By using the kernel method, the TC-Kernel scheme and the IC-Kernel 
scheme are all performed well when compared with the other schemes, which attained a 
position precision of about 0.8 m, when the sampling rate was greater than 0.5. However, 
when comparing the TC-Kernel scheme with the IC-Kernel scheme, an interesting 
phenomenon occurred: the superiority of our proposed scheme disappeared gradually as the 
sampling rate decreased. A rational explanation for this observation may be that the kernel 
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method is more sensitive than the KNN method especially in harsh cases. As the sampling rate 
decreased, the effciency of the tensor completion similarly decreased, the increasing error data 
generated will definitely impair the finally localization, which influences the kernel learning 
method more than the KNN method. 

0.2 0.3 0.4 0.5 0.6 0.7 0.81

1.5

2

2.5

3

3.5

Sampling Rate

RM
SE

 (m
)

 

 

TC-KNN
IC-KNN
TC-Kernel
IC-Kernel

 
Fig. 4. Effect of the kernel learning on RMSE versus data sampling rate. 
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Fig. 5. Effect of the number of sensing node on RMSE for various schemes. 

 
Fig. 5 shows the effect of the number of sensing node on the source position estimation for 

each schemes. In the figure, using different matching methods have distrinct performance 
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trends. The KNN method, the TC-KNN scheme and the IC-KNN scheme all demonstrate a 
monotonically decreasing trend along with the number of sensing nodes, which means that the 
localization performance improves gradually. For this reason, increasing the number of 
sensing nodes will enlarge the sensing data matrix and further improve the localization 
precision. However, when using the kernel based schemes (TC-KNN and IC-KNN), the 
performance decreased whenzhe number of nodes was nine or less, but as the sensing node 
number increased above nine, the localization performance decreased. A possible reason for 
this may be that since the sampling rate was fixed, increasing the number of sensing nodes 
enlarged the sensing data matrix, but also introduced more missing data that required 
completion. Since the kernel method is more sensitive than the KNN method, when the 
sensing node number is much larger, the increasing error in the completed data becomes 
excessive, so the performance of the kernel based schemes decreased. However, our proposed 
scheme still outperformed the other schemes despite the variation in the number of the sensing 
nodes. 
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Fig. 6. Effect of the noise variance on RMSE for various schemes. 

 
Fig. 6 illustrates the effect of noise variance on the source position precision for each 

schemes. The large noise variance resulted in a small signal tonoise ratio (SNR), which 
resulted in poor performance for all the schemes. From Fig. 6 we can see that whatever the 
noise variance is set, the proposed TC-Kernel scheme is always achieves a better performance 
when compared with other algorithms. 

5. Conclusion 
In this paper, an efficient kernel based source localization method via tensor completion is 
proposed. We first exploit the RSS spatial correlation and uses a tensor completion scheme to 
effectively recover the incomplete fingerprint database. Furthermore, we propose a kernel 
based learning technique which can simplify the localization problem and improve the 
sensitivity and accuracy in fingerprint matching. Simulation results showed that our new 
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localization technique can effectively eliminate the impairment caused by incomplete sensing 
data and improve the localization performance. For future work, we will consider the real 
multi-channel data and try to figure out the frequency domain property of the measured data, 
which will further improve the accuracy of the completed data and increase the precision of 
the localization estimation. 
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