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Abstract 
 

Discriminative correlation filter (DCF) based tracking algorithms have recently shown 
impressive performance on benchmark datasets. However, amount of recent researches 
are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we 
intend to solve these problems and handle the contradiction between accuracy and 
real-time in the framework of tracking-by-detection. Firstly, we propose an innovative 
strategy to combine the template and color-based models instead of a simple linear 
superposition and rely on the strengths of both to promote the accuracy. Secondly, to 
enhance the discriminative power of the learned template model, the spatial regularization 
is introduced in the learning stage to penalize the objective boundary information 
corresponding to features in the background. Thirdly, we utilize a discriminative 
multi-scale estimate method to solve the problem of scale variations. Finally, we research 
strategies to limit the computational complexity of our tracker. Abundant experiments 
demonstrate that our tracker performs superiorly against several advanced algorithms on 
both the OTB2013 and OTB2015 datasets while maintaining the high frame rates. 
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1. Introduction 

Visual object tracking remains a classical problem in computer vision and enjoys a wide 
popularity recently with numerous applications, such as driverless vehicles, robotics, 
surveillance, human motion analyses and human-machine interactions [1]. The most 
general scenario of visual tracking is to figure out the general trajectory of a single target 
throughout the image sequences, with its location obtained from the first frame. Despite 
substantial progress in recent years, visual object tracking still remains a challenging 
problem in computer vision due to several factors which from both the background and 
the target itself, such as occlusions, fast motion, deformations and illumination variations 
[2]. At the same time, the increasing number of background patches can drastically 
degrade the robustness of such trackers against occlusions, and eventually increases the 
risk of tracking drift specifically when the target and background possess similar visual 
cues. Moreover, for the online nature of tracking, an ideal tracker should be accurate and 
robust under the demanding computational constraints of real-time vision systems. 

In recent years, a group of correlation filter (CF) based trackers have attracted 
extensive attention due to continuous performance improvements on tracking benchmarks. 
These methods obtain the approximate dense sampling by performing the circular sliding 
window operation on a set of training images and utilize the fast Fourier transform (FFT) 
to insure the computational efficiency at both learning and detection stages [3]. And that 
is the major reasons behind the success of this tracking paradigm. Initially, Bolme et al. 
[4] introduced the correlation filter into the tracking application, and their extension 
achieved state-of-the-art performance on the benchmark videos.  

Despite substantial progress in recent years, CF trackers still have several drawbacks. 
The CF based trackers struggle against kinds of adversity, e.g. fast target motion, target 
deformations and occlusions. These harsh environmental factors may cause the lack of 
real negative training examples and lead to train an over-fitted filter. Also, the standard 
CF formula is based on the periodic assumption by utilizing a circular correlation. Due to 
the periodic assumption of the training and detection samples, one deficiency of CF is the 
harmful boundary effects (see Fig. 1). Such situation brings about an endogenous 
inclusion of substantial background information within the target. It can severely reduce 
the discrimination of the trackers, resulting in inferior results.  

       
(a)                         (b) 

Fig. 1. Original image (a) and the periodic assumption (b) under the frame of standard DCF 
methods 
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In this work, we consider the problems mentioned above and the main contributions of 
our work can be summed up as follows. First, we propose a novel collaborative method to 
take advantage of the strengths of both DCF based model and color-based model. The 
robust DCF based model we use for obtaining template scores is aimed to distinguish the 
target from the background with effect. The color-based model we use for obtaining 
histogram scores is aimed to better cope with occlusion and deformation. To combine 
these two models adaptively, two criterions and high-confidence adaptation of weights 
are utilized. Then we can obtain the final translation response. Second, in the learning 
stage of the DCF-based tracker, we formulate a spatial regularization component which is 
used to penalize the background information and promote the discriminative power of the 
tracker. Third, to surmount the deficiency that DCFs tend to be useless when the size of 
the target is changing, we utilize the discriminative multi-scale estimate method and also 
take computational complexity into account. The flowchart of our work is shown in Fig. 
2. To better verify the performance of our tracker, we perform a comprehensive 
evaluation on the Online Tracking Benchmark (OTB) datasets [5, 6]. Our approach 
improves the baseline DCF both in the aspect of accuracy and speed. 
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Fig. 2. Flowchart of our tracking algorithm 

 
The remainder of this paper is organized as follows. In Section 2, we give an 

introduction of the related work and an overview of our work. In Section 3, we minutely 
introduce our method from two main parts: collaborative translation estimate and fast 
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discriminative multi-scale estimate. The explanations and results of the comparison 
experiments is given in Section 4. And conclusions are finally provided in Section 5. 

2. Related work 
2.1 Current Tracking Algorithms 
Existing tracking approaches tend to explore an effective algorithm which can be 
designed to be either generative [7] or discriminative [8, 9] models. The generative 
appearance models are aimed at representing the target with statistical models or 
templates and perform tracking by searching the best-matching windows. The 
discriminative methods employ machine learning techniques to design a robust classifier 
or filter to detect the target from backgrounds, and establish an optimal mechanism to 
update the model at each frame.  

Correlation filters, as a discriminative method, can generate the high response for the 
interested target with the low response to the background. These DCF based trackers are 
adequate for the tasks of target location, but the tough challenging environment for online 
tracking is still an open question. To perform better on online object tracking task, many 
recent advancements in DCF based trackers are driven by the use of non-linear kernels 
[10], multi-dimensional features [11], robust scale estimation [12, 13], long-term memory 
components [14], complicated training models [15, 16] and reducing boundary effects 
[17]. Henriques et al. [10] proposed kernel correlation filter (KCF) and multi-channel 
features by solving a simple rigid regression problem over training data in the dual form. 
Multi-dimensional features, such as HOG [18], Color-Names [11] and the attentional 
features [19], depend much on harsh approximations of the standard loss function and 
lead to a suboptimal solution. Danelljan et al. [12] investigated robust scale estimation 
problem by learning discriminative correlation filter (DCF) based on incorporating a 
multi-scale template. Bertinetto et al. [20] combined two image representations to learn a 
tracking model which is robust to both deformations and illumination changes. Zhang et 
al. [21] proposed a new model to complement the strength of multi-task correlation filter 
and particle filter, which get favorable performance on multiple sequences. Danelljan et 
al. [17] introduced the method which penalizes CF coefficients in the learning depending 
on their spatial locations and achieves excellent tracking accuracy. Besides, Danelljan et 
al. [22] tackled the key causes behind the problems of computational complexity and 
over-fitting to improve both speed and performance of the tracker. Others introduced 
deep leaning method into DCF based trackers and investigated sophisticated training 
models [23, 24] which might lead to the heavy computation cost for online tracking 
applications.  

2.2 Standard DCF Tracker 
Our tracking approach is built upon the discriminative correlation filters (DCF). In this 
part, more details can be found in [10]. Here, we introduce a multi-channel correlation 
filter 𝑓 learning from a set of training examples. Each training sample 𝑥 contains a 
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𝑑-dimensional feature map extracted from the sample region. Thus we obtain a feature 
vector 𝑥(𝑚,𝑛) ∈ ℝ𝑑  with dimension  𝑑 . 𝑥𝑙  denotes 𝑥  with the feature layer 
𝑙 ∈ {1,⋯ ,𝑑}. The desired output 𝑦 is a 2D Gaussian function. The desired filter 𝑓 is 
composed of a 𝑚 ×  𝑛 convolution filter 𝑓𝑙  for every feature layer. We obtain the filter 
function by minimizing the squared error of the correlation responses to 𝑦 on the 
training samples 𝑥, 

 𝜀 = �∑ 𝑥𝑙 ⋆ 𝑓𝑙 − 𝑦𝑑
𝑙=1 �2 + 𝜆∑ �𝑓𝑙�

2𝑑
𝑙=1  (1) 

Here, 𝜆 is the weight parameter of the regularization term and ⋆ denotes circular 
convolution. Then the convolution response of the filter 𝑓 on sample 𝑥 can be given by 

 ∑ 𝑥𝑙 ⋆ 𝑓𝑙𝑑
𝑙=1  (2) 

As a linear function problem, Eq. (1) can be transformed to the Fourier domain by 
utilizing discrete Fourier Transformed (DFT) under the frame of Parseval’s formula. We 
use 𝑧 to represent the new feature map extracted from an image region. The full 
detection response over all locations is given by the convolution properties of the DFT, 

 ℱ−1�∑ �̂�𝑙 ∙ 𝑓𝑙𝑑
𝑙=1 � (3) 

Here, the hat denotes the DFT of a term and ℱ−1 denotes the inverse DFT. The ∙ 
symbol represents element-wise multiplication computation. The computation complexity 
may decline to 𝒪(𝑑𝑚𝑛 log𝑚𝑛 ) from 𝒪(𝑑𝑚2𝑛2) with the help of FFT. To be more 
efficient, a sliding-window-like method, used in the learning stage of DCF, is adopted to 
collect many translated samples around the target by cyclic shifts without much extra 
computation. But, it is noteworthy that the calculation in Eq. (2) corresponds to generate 
the periodic extension of the sample 𝑥 and brings in unwanted periodic boundary effects 
(see Fig. 1). 

3. Proposed approach 

3.1 Robust DCF Based Tracking Model 
3.1.1 Feature dimensionality reduction  
As all other DCF based trackers, the computational cost of our algorithm mainly caused 
by the FFT operations. Since the training and detection stages require one FFT operation 
on every feature layer, the computation scales of FFT have a significant linear correlation 
with the feature dimension. To simplify the computations, we introduce a feature 
dimensionality reduction method based on principal component analysis (PCA) to speed 
up the optimization process. The update process of target template is 𝑢𝑡 = (1 −
 𝜂)𝑢𝑡−1 + 𝜂𝑢𝑡 , where 𝜂 is a learning rate parameter and 𝑢𝑡  denotes the target template 
of 𝑡-th frame. The learned template 𝑢𝑡  is used to construct a projection matrix 𝑀𝑡  
which defines the low-dimensional feature subspace. The low-dimensional training 
sample 𝑥�𝑡′ = ℱ(𝑀𝑡𝑥𝑡) and the low-dimensional target template 𝑢�𝑡′ = ℱ(𝑀𝑡𝑢𝑡) can be 
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used for updating the filter. The detection response of the test sample 𝑧𝑡  is acquired 
similar to Eq. (3), with the filter on the low-dimensional sample �̂�𝑡′ = ℱ(𝑀𝑡−1𝑧𝑡). 

3.1.2 Train model with information regularization 
For the unwanted boundary effects [17], rectangular initialization bounding boxes in 
learning stages always include some background information captured from the model. 
And in the best of circumstances, we can learn a filter that has a high response for the 
target patch and a near-zero response for other patches. Therefore, we tend to achieve this 
by adding the boundary patches as a spatial regularization component to the standard 
formulation. In every frame, we sample boundary patches 𝑐𝑝(𝑝=1,⋯,𝑞) consists of the 
feature map extracted from the background. The optimization problem is expressed as, 

 𝜀𝑓 = �∑ 𝑥𝑙 ⋆ 𝑓𝑙𝑑
𝑙=1 − 𝑦�

2
+ 𝜆∑ �𝑓𝑙�

2𝑑
𝑙=1 + γ�∑ 𝑐𝑙 ⋆ 𝑓𝑙𝑑

𝑙=1 �2 (4) 

Here, the third term in Eq. (4) is the spatial penalty term with a weight parameter γ. As 
a result, the target patch is regressed to 𝑦 like in the standard formulation Eq. (1), while 
the negative boundary patches are regressed to zeros controlled by the parameter γ. The 
primal objective function 𝜀𝑓 can be rewritten by stacking the boundary patches below 
the target image patch to form a new training data matrix 𝑔 ∈ ℝ(𝑞+1)𝑚×𝑛:  
 𝜀𝑓 = ‖𝑔 ⋆ 𝑓 − 𝑦′‖2 + 𝜆‖𝑓‖2 (5) 

where 𝑔 = �𝑥;√γ𝑐1;⋯ ;√γ𝑐𝑞� and the new regression target 𝑦′ = {𝑦; 0;⋯ ; 0}. Since 
𝜀𝑓 is convex, it can be minimized by setting the gradient to zero. We can obtain: 

 𝑓 = (𝑔𝑇𝑔 + 𝜆𝐼)−1𝑔𝑇𝑦′ (6) 
Similar to all the DCF tracker, we use the identity for circulant matrices to obtain the 

following closed-form solution in the Fourier domain.  

 𝑓 = 𝑥�∗⋅𝑦�
𝑥�∗⋅𝑥�+𝜆+γ∑ 𝑐�̂�∗⋅𝑐�̂�

𝑞
𝑝=1

 (7) 

Here, the symbol ∗ denotes complex conjugation. Note that the detection formula is 
just like the standard formulation in Eq. (3). And the solution in the primal domain in Eq. 
(6) has the same form with the solution of the standard ridge regression problem [10]. We 
use 𝛼 to denote the dual conjugate of 𝑓 with 𝑓 = ∑ 𝛼𝑖𝑥𝑖𝑖 . The solution is given by: 

 𝛼 = (𝑔𝑔𝑇 + 𝜆𝐼)−1𝑦′, where 𝛼 ∈ ℝ(𝑞+1)𝑚 (8) 
Note that the detection formula is just like the standard formulation, but 𝑔 contains 

the boundary image patches in addition to the target. As a result, the detection formula 
finally can be rewritten as follows: 

 𝑆𝑓(𝑧) = ℱ−1��̂� ∙ 𝑥�∗ ∙ 𝛼�0 + √γ∑ �̂� ∙ �̂�∗ ∙ 𝛼�𝑝
𝑞
𝑝=1 � (9) 
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3.2 Schemes to Establish Collaborative Translation Model 
3.2.1 Color probability distribution based model 
One inherent problem of correlation filters is that the rigid template would not adapt to 
the shape deformation of the target in the course of a sequence. To achieve robustness to 
deformation, color-histogram based methods [25, 26] were used in plenty of previous 
object tracking algorithms for the insensitiveness to shape variation. But it is not well 
enough to distinguish the interested target from the background. In recent years, the only 
successful method we know named Distractor-Aware Tracker (DAT) [27], which 
identified distracting regions with similar colors compared to the target in advance to 
prevent the drifting and preformed competitively in modern benchmarks. 

Ideally, to differentiate object feature pixels from similar background feature, we adopt 
a color-histogram based Bayes classifier ℎ on the sample images. The histogram score is 
computed from the histogram feature 𝐼 defined on a finite region 𝛺: 

 𝑆ℎ(𝑥) = 𝛽𝑇 � 1
|Ω|
∑ 𝐼[𝑟]𝑟∈Ω � (10) 

Here, 𝑟 denotes image pixels and histogram weight vector is 𝛽. The final histogram 
score can be considered as the average vote by utilizing a single integral image and is 
invariant to spatial arrangement of its feature image. We obtain the training example from 
sample windows and the regression target is 𝑦. The loss function for color-based model 
is 

 𝜀ℎ = 1
|𝛺|
∑ (𝛽𝑇𝐼[𝑟] − 𝑦)2𝑟∈𝛺  (11) 

We intend to apply linear regression over object regions 𝑂 and background regions 𝐵 
independently, with the positive example (𝑣, 1) and negative example (𝑣, 0). 

 𝜀ℎ = 1
|𝑂|
∑ (𝛽𝑇𝐼[𝑟] − 1)2𝑟∈𝑂 + 1

|𝐵|
∑ (𝛽𝑇𝐼[𝑟])2𝑟∈𝐵  (12) 

So, the solution of the ridge regression problem is as follows. 

 𝛽𝑡𝑙 = 𝜌𝑙(𝑂)
𝜌𝑙(𝑂)+𝜌𝑙(𝐵)+𝜆ℎ

 (13) 

For each feature dimension 𝑙 ∈ {1,⋯ ,𝑑} , 𝑁𝑙(ℋ) = |{𝑟 ∈ ℋ: 𝐼[𝑟] ≠ 0}|  is the 
number of pixels in the region ℋ of 𝛺 with the non-zero feature 𝐼[𝑟] and 𝜌𝑙(ℋ) =
𝑁𝑙(ℋ) |ℋ|⁄  is the proportion of the non-zero feature in this region.  

3.2.2 Combining multiple estimates  
Sometimes color-based model is not enough to distinguish the target from the 
surrounding background. On the contrary, CF trackers, as a kind of template model, 
depend on the spatial construction of the target and often fail when the appearance of the 
target changes rapidly. We tend to search a tracker which can take advantage of both 
color-based and template models. For that, we propose a score function to combine the 
correlation filter scores and histogram scores: 
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 𝑆(𝑥) = 𝜔𝑓𝑆𝑓(𝑥) +𝜔ℎ𝑆ℎ(𝑥) (14) 

Here, we combine the two scores with setting 𝜔𝑓 = 1− 𝜔ℎ , depending on how much 
we believe in them. In general, most of presented visual tracking algorithms obtain the 
final score to locate the position of target by searching the response map. The response 
map reveals the degree of confidence about the tracking results to some extent. The 
response map should have only one sharp peak and be smooth in all other areas when the 
detected target in the current frame is extremely matched to the correct target. The 
sharper the correlation peaks are, the better the location accuracy is. But, if the object is 
occluded severely or even missing, the whole response map will fluctuate intensely, 
resulting in a pattern that is significantly different from the normal response map as 
shown in Fig. 3.  

 
(a) No occlusion  

 
(b) Occlusion 

Fig. 3. A part of the sequence and their corresponding response maps 
 

So, to better take advantage of the response map pattern and the color histogram, we 
propose a novel high confidence associative mechanism with two criteria. The first one is 
the maximum response score 𝑃𝑚𝑎𝑥 of the response map. 𝜔𝑓 and 𝜔ℎ  is related to the 
second criterion called average-peak energy (APE) which is defined as: 

 𝐴𝑃𝐸 = |𝑃𝑚𝑎𝑥−𝑃𝑚𝑒𝑎𝑛|2

∑ (𝑃𝑟−𝑃𝑚𝑒𝑎𝑛)2𝑟
 (15) 

Here, 𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑒𝑎𝑛 and 𝑃𝑟  denote the maximum, mean and the 𝑟-th pixel of the 
correlation response map. APE indicates the fluctuated degree of response maps and the 
confidence level of the maximum response score which represents detected targets. For 
sharper peaks and fewer noise, i.e., the target apparently appearing in the detection scope, 
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APE will close to 1 and far above a predefined threshold. In this situation, the template 
response map will become relatively smooth except for only one sharp peak and the 
correlation filter scores would be more confident. 𝜔𝑓 is set to a high value with the 
decrease of 𝜔ℎ . Whereas, if the object is deformed or occluded, APE will significantly 
decrease and approach to 0. In that case, the APE is lower than the predefined threshold 
and the confidence of correlation filter scores would be decreased. We need more reliance 
on the color-based models to fine-tune the final tracking results and 𝜔ℎ  will be set to a 
higher value. And the value of the predefined threshold is based on the historical 
observations of APE.  

Fig. 4 illustrates the comparison of two different associative strategies. Compared with 
the simple linear superposition, the proposed adaptive associative scheme provides a 
more flexible method to choose the better combination. For the characteristic of APE, the 
algorithm can realize the adaptive strength of the two response scores. The experimental 
results presented in Section 4 demonstrate the effectiveness of the proposed collaborative 
complementary scheme. 

 

 
  Linear superposition           Ours 

Fig. 4. The comparison of two associative strategies 

3.3 Fast Discriminative Multi-Scale Estimate Method  
3.3.1 Adaptive multi-scale correlation filter 
When tracking the target in a series of images, the size of the target is varying all the time 
with the change of relative distance. But most of the DCF based trackers cannot deal with 
that scale variation problem. To solve the problem, we utilize a separate 1- dimensional 
correlation filter to calculate correlation scores at different scale dimensions and estimates 
the best scale of target in an image. 

We use 𝑄 ×  𝑅 as the target size in the previous frame and 𝑈 × 1 as the size of the 
scale filter. At each scale level 𝑒 ∈ ��−𝑈−1

2
�  ,⋯ , �𝑈

2
��, we extract several image patches 

of size 𝑎𝑒𝑄 ×  𝑎𝑒𝑅 centered around the target in the training sample 𝑥𝑠𝑐𝑎𝑙𝑒 with the 
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scale factor 𝑎. In this case, the desired correlation output 𝑦𝑠𝑐𝑎𝑙𝑒 is a 1-dimensional 
Gaussian. The optimal scale filter can be calculated by minimizing the sum of squared 
errors, just similar to Eq. (1). The test sample  𝑧𝑠𝑐𝑎𝑙𝑒 can be obtained same as the 
training samples 𝑥𝑠𝑐𝑎𝑙𝑒. The correlation scores 𝑆𝑠𝑐𝑎𝑙𝑒 can be computed as: 

 𝑆𝑠𝑐𝑎𝑙𝑒(𝑧𝑠𝑐𝑎𝑙𝑒) = ℱ−1 ��∑
�𝑣�∗�∙ �̂�𝑠𝑐𝑎𝑙𝑒𝑙 

𝑤�  + 𝜆𝑠𝑐𝑎𝑙𝑒
� . �  𝑙 = 1,⋯ ,𝑑 (16) 

Here, 𝑣 and 𝑤 are the numerator and denominator of the formula of scale filter 
𝑓𝑠𝑐𝑎𝑙𝑒 which can be updated by Eq. (17). 

 
𝑣�𝑡 = (1− 𝜏)𝑣�𝑡−1 + 𝜏 𝑦�𝑠𝑐𝑎𝑙𝑒∗ ∙ 𝑥𝑡;𝑠𝑐𝑎𝑙𝑒

𝑤�𝑡 = (1− 𝜏)𝑤�𝑡−1 + 𝜏 ∑ 𝑥�𝑡;𝑠𝑐𝑎𝑙𝑒
∗ ∙ 𝑥𝑡;𝑠𝑐𝑎𝑙𝑒𝑙

 (17) 

where 𝑡 denotes the 𝑡-th frame and 𝜏 is a scale learning rate parameter. Typically, the 
translation filter will be applied in the new frame first, and then the scale filter is applied. 
For more details in this part, readers can refer to [12]. 

3.3.2 Dimensionality reduction on scale filter 
Because of the feature dimensionality reduction method we used in translation correlation 
filter, the feature dimensionality of scale filter is larger than the size of low-dimensional 
training samples (see Section 4.2 for more details). Moreover, the number of scales is 
more than or equal to the row of the correlation matrix. So that, the template of scale filter 
can be compressed without too much loss of target information. To compress the scale 
filter, we need to construct a projection matrix 𝑀𝑡;𝑠𝑐𝑎𝑙𝑒, and the compressed templates 
will be used in Eq. (19) to update the scale filter. This process is very similar to the one 
we noted in Section 2.1. With compression, the computational cost can be effectively 
decreased by reducing the size of the performed FFTs in the training and detection stages. 

3.3.3 Sub-grid interpolation of scale response 
For the compressed scale filter we mentioned above, we employ the sub-grid 
interpolation strategy to make sure that we can use the coarser features for the training 
and detection samples. The response map are efficiently interpolated with trigonometric 
polynomial which is suitable for the computed DFT coefficients. On each scale level, we 
use the sub-grid method respectively. And the scale level with the maximum response 
will be applied to the update of target location and scale. 

3.4 The Framework of the Proposed Tracker 
An overview of our proposed method is summarized in Algorithm 1. 

Algorithm 1 
When 𝑡-th frame arrives 

Inputs: 
Target location 𝑆𝑡−1 and scale 𝑆𝑡−1;scale. 

Output: 
Estimated target location 𝑆𝑡  based on the response and scale 𝑆𝑡;𝑠𝑐𝑎𝑙𝑒 . 
 

Translation estimate: 
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1: Extract training samples 𝑥 from the last location 𝑆𝑡−1 and extract its feature map. 
2: Calculate model scores 𝑆𝑡;𝑓 and 𝑆𝑡;ℎ via Eq. (9) and Eq. (10), and APE with Eq. (15). 
3: Judge 𝜔𝑡;𝑓 and 𝜔𝑡;ℎ in Eq. (14) by 𝑆𝑡;𝑓, 𝑆𝑡;ℎ and APE, then get the target location 

𝑆𝑡  from 𝑆(𝑥). 
Scale estimate: 

1: Extract scale samples of different sizes 𝑧𝑠𝑐𝑎𝑙𝑒  from 𝑆𝑡−1 and 𝑆𝑡−1;scale. 
2: Use Eq. (16) to compute the scale correlation responses. 
3: Set 𝑆𝑡;𝑠𝑐𝑎𝑙𝑒 to the target scale that maximize the response. 

4. Experiments 
4.1 Parameter Setup 
Our proposed algorithm is implemented with MATALB2015a on the machine equipped 
with a core 3.5 GHz with 8GB memory without any parallel framework. Dissimilar to 
most DCF based trackers, we utilize PCA-HOG features [28] to represent images, by 
using the Matlab Toolbox. In the frame of the translation model, we experimentally set 
the regularization parameter to 0.01 for both 𝜆 and 𝜆ℎ. The additional regularization 
factor 𝛾 in Eq. (4) is set to 0.5 and the number of boundary patches we sampled is set 
to 4. The learning rates are set to 𝜂 =  0.015 and 𝜂ℎ  =  0.04 respectively. For the 
joint scale space filters, the regularization parameter is set to 𝜆𝑠𝑐𝑎𝑙𝑒 = 0.01 and the 
learning rate is set to 𝜏 = 0.025. Through experiments on many sequences containing 
serious scale variation, we find the optimal solution when we interpolate the number of 
scales from 17 to 33 using the proposed method and use 𝑎 = 1.02 as the scale factor. 
The weight 𝜔𝑓 and 𝜔ℎ  is set to 0.7 and 0.3 initially. 

4.2 Evaluation Methodology 
OTB2013 [5] and OTB2015 [6] are two popular tracking benchmarks, which contain 
results of several trackers evaluated on 50 and 100 sequences, respectively. All these 
sequences are annotated with 11 attributes covering various challenges, including 
illumination variation (IV), deformation (DEF) , motion blur (MB), occlusion (OCC), 
scale variation (SV), fast motion (FM), out-of plane rotation (OPR), out-of-view (OV), 
background clutters (BC), in-plane rotation (IPR) and low resolution (LR). 

We evaluate our tracker on these benchmarks in comparison with 15 state-of-the-art 
trackers from three typical categories: (1) correlation filters-based tracking approaches, 
including DSST [12], LCT [14], SRDCF [17], fDSST [13], KCF [10], SAMF [29], 
SRDCFdecon [30] and Staple [20]; (2) deep features-based trackers, including SINT [16], 
SiamFC [15], DLSSVM [31] and DeepSRDCF [32]; and (3) other representative tracking 
methods, including MEEM [8], TGPR [7] and Struck [9]. All the results of algorithms for 
comparison mentioned above come from the released source code and results.  

Following the protocol in [5, 6], tracking quality is measured by precision rate and 
success rate. Success rate is defined as the area under curve (AUC) of each success plot, 
which shows portion of frames with the overlap rates (OR) between predicted and ground 
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truth bounding box. The OR in each frame is computed from  ℛ𝑐∩ℛ𝑙
ℛ𝑐∪ℛ𝑙

 with the areas of the 
predicted regions ℛ𝑐 and the ground truth regions ℛ𝑙. Then, for the precision plot, it 
shows similar statistics on the center location error (CLE). The CLE in each frame can be 
measured by the Euclidean distance between the centers of the tracking response and the 
ground truth. For overall performance, we present our results in the one-pass evaluation 
(OPE) using distance precision rate (DPR) and overlap success rate (OSR) as shown in 
Fig. 5. And DPR is presented at 20 pixels for quantitative comparison, OVR at 0.5. Only 
the top 10 trackers are displayed to reduce clutter in the graphs. 

 

 
(a) Comparisons on OTB2013 

 
(b) Comparisons on OTB2015 

Fig. 5. Average overall performance on OTB2013 and OTB2015 with distance precision rate 
(DPR) and overlap success rate (OSR) 

 
Table 1. Comparisons of our tracker with state-of-the-art trackers in terms of distance precision 
rate (DPR), overlap success rate (OSR) and speed on the OTB2013 and OTB2015 datasets. The 
best three results are shown in red, green and blue respectively. 

 
OTB2013 OTB2015 

DPR(%) OSR(%) Speed (𝒇𝒑𝒔) DPR(%) OSR(%) Speed (𝒇𝒑𝒔) 
MEEM 83 69.6 20.8 78.1 62.2 20.8 
TGPR 70.5 62.8 1 64.3 53.5 1 
Struck 65.6 55.9 10 63.9 51.6 9.8 
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DSST 74 67 25.9 68.7 60.9 21.9 
SAMF 78.5 73.2 18.6 75.8 68.2 16.8 
KCF 74 62.3 189.1 70 55.8 183 
LCT 84.8 81.3 21.6 76.4 70.8 20.5 

SRDCF 83.8 78.1 3.6 79.6 73.6 3.6 
Staple 79.3 75.4 44.9 79 71.7 42.9 
fDSST 80.2 74.3 61.7 42.7 39.1 58 

SRDCFdecon 87 81.4 2.4 83 77.4 2.3 
SINT 85.1 79.1 4 79.6 72.7 2.5 

SiamFC 80.9 78.3 \ 77.6 73.6 \ 
DLSSVM 82.9 72.4 2 76.8 63 2.1 

DeepSRDCF 84.9 79.4 0.2 85.5 78 0.2 
Ours 88.4 83.7 46.7 85.7 80.7 45.9 

On both the two benchmarks, our tracker performs favorably against all other advanced 
trackers. Moreover, the speed in Table 1 shows that our tracker is superior to other 
advanced trackers in both rates. Among the compared trackers, our tracker provides the 
best performance with a DPR of 88.4% and an OVR of 83.7% on OTB2013. Compared 
with SRDCFdecon [30] which ranks 2nd in Table 1, our approach performs better 
compared with its DPR of 87% and OSR of 81.4%. Besides, without the adoption of 
parallel framework, our tracker (47 fps) is much faster than SRDCFdecon (2 fps). On 
OTB2015, our tracker achieves a DPR of 85.7% and an OVR of 80.7%, while running at 
a speed of 46 fps. Though the DeepSRDCF [32] utilizes deep features to represent object 
appearance, our approach outperforms DeepSRDCF in both DPR and OSR. Besides, our 
tracker runs in real time while DeepSRDCF does not. 

4.3 Precision Evaluation 
We further analyze the performance of our tracker under different attributes in OTB2013 
[5] and OTB2015 [6]. Table 2 shows the comparison of our tracker with other top six 
tracking algorithms for these eleven attributes on OTB2015. And Fig. 6 illustrates the 
performance of our tracker with several attributes on both two datasets. 
 

Table 2. Average precision rates (%) of our tracker and other six top trackers on all attributes 
Attribute Ours DeepSRDCF SRDCFdecon SINT SRDCF Staple MEEM 

DEF 85.1 78.8 75.8 75.5 74.2 75.7 76.7 
IV 84.7 80.0 83.7 81.7 80.7 80.7 75.5 

IPR 83.7 83.0 78.2 84.2 76.3 79.0 81.7 
OPR 83.0 84.1 79.8 81.2 75.1 74.7 80.4 
OCC 81.7 82.9 76.5 75.2 74.2 73.2 74.9 
BC 81.2 85.3 85.3 77.7 79.4 78.5 76.5 
SV 79.9 82.8 81.5 76.1 75.9 74.1 75.2 
MB 78.3 83.4 82.6 74.7 78.2 72.6 72.2 
OV 77.4 79.1 61.9 70.2 61.1 68.0 70.9 
FM 77.1 80.1 77.2 73.8 75.4 69.0 72.0 
LR 69.5 70.8 64.4 76.8 65.5 63.1 63.1 

Overall 85.7 85.5 83.0 79.6 79.6 79.0 78.9 
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In terms of distance precision rates (DPR), our tracker achieves the top three results on 
all 11 attributes. As shown in Fig. 6, for the attribute of DEF, our approach obtains the 
most competitive performances and far outshines the second tracker on both two datasets. 
For the attribute of OCC, our approach achieves the best performance on OTB2013 and 
gets second on OTB2015. It should be noted that with smaller location error threshold, 
our method demonstrates its prominent superiority among all the 15 algorithms. In the 
situations with various challenging attributes, color probability distribution based model 
plays an important role in improving our tracking performance. Also, the spatial 
regularization component can further handle with the deformation and occlusion 
challenge. Compared with other correlation filter-based trackers [14, 17, 20, 29, 30] and 
MEEM [8], our tracker can better locate the target object in videos and performs more 
robustly upon most occasions with the help of collaborative translation model. 

 

 
(a) Comparisons on OTB2013 
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(b) Comparisons on OTB2015 

Fig. 6. The precision rates on OTB2013 and OTB2015 with several attributes 
 
 

4.4 Success Rate 
To demonstrate the effectiveness of the proposed multimodal target detection in detail, 
Table 3 illustrates the success plots of top seven trackers on OTB2015 dataset under 11 
challenging attributes. Fig. 7 shows that our tracker performs efficiently on most 
attributes, especially for the variation of deformation and occlusion. 
 
Table 3. Average success rates (%) of our tracker and other six top trackers on all different 
attributes 

Attribute Ours DeepSRDCF SRDCFdecon SINT SRDCF Staple SiamFC 
DEF 78.9 70.1 69.0 67.3 67.8 68.9 64.5 
IV 80.4 75.6 79.2 76.2 76.1 74.2 71.4 

IPR 75.8 74.0 70.8 73.6 68.3 69.4 71.2 
OPR 77.0 74.7 72.0 72.9 67.3 66.3 70.7 
OCC 79.1 74.4 72.4 69.8 69.0 68.3 68.7 
BC 79.7 76.7 78.5 72.3 71.8 72.8 66.2 
SV 73.1 74.6 75.2 68.3 68.4 64.2 70.2 
MB 75.9 79.6 81.2 71.4 74.7 67.6 70.3 
OV 73.0 67.4 61.6 64.9 56.9 57.2 63.8 
FM 73.4 74.2 73.4 68.6 70.7 63.1 69.7 
LR 65.7 58.7 61.9 63.7 62.6 49.1 77.7 

Overall 80.7 78.0 77.4 72.7 73.6 71.7 73.6 
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(a) Comparisons on OTB2013 

 

 
(b) Comparisons on OTB2015 

Fig. 7. The success rates on OTB2013 and OTB2015 with several attributes 
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To demonstrate the effectiveness of our tracker, Fig. 8 summarizes the qualitative 
comparisons of our tracker with other six state-of-the-art trackers (DeepSRDCF [32], 
SRDCFdecon [30], MEEM [8], SRDCF [17], Staple [20] and KCF[10]) on six typical 
challenging sequences sampled from the benchmark datasets. These six trackers include 
correlation filters-based trackers, deep features-based trackers and other representative 
trackers, as well as our baseline. 

 

 

 

 

 

 
DeepSRDCF       SRDCFdecon      MEEM      SRDCF 

Staple          KCF         Ours 
Fig. 8. Qualitative evaluation of the proposed algorithm and other six state-of-the-art trackers on 
six sequences(from top to bottom: Basketball, Jogging-2, Walking2, Bolt, Coke and CarScale) 
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The correlation filters-based trackers (KCF [10], SRDCF [17] and SRDCFdecon [30]) 
perform well in sequences with slight deformation, illumination variation and partial 
occlusion (Basketball). However, when full occlusion and heavy deformation happens 
(Coke, Walking2 and Jogging-2), they are limited by the drawback of template models 
and tend to lose the target. The KCF tracker preforms poor in dealing with the scale 
variation (CarScale). Staple [20] directly combines the scores of the two complementary 
models and can solve a portion of the occlusion problems. But, for the ability of re-detect, 
Staple cannot do well in some complex dynamic environment (Basketball and Jogging-2). 
DeepSRDCF [32] uses deep features to represent object appearance, and can deal with 
these cases to some degree. It has the powerful ability of learning and re-detection 
(Basketball). Nevertheless, it still fails when occlusion happens with other situations such 
as deformation, rotation and scale variation (Walking2 and CarScale). MEEM [8] utilizes 
multiple classifiers and chooses the prediction based on the entropy criterion to perform 
tracking and does well in most cases. However, it may lose the target especially in 
presence of heavy occlusion and scale variations (Walking2 and CarScale). Our tracker 
utilizes the high-confidence collaborative strategy which can combine two models 
efficiently. Compared with the trackers mentioned above, our tracker locates the target 
object more reliably and can deal robustly with the challenge of full occlusion and heavy 
deformation notably. 

5. Conclusion 
In this paper, we propose a novel collaborative object tracking method under the 
tracking-by-detection framework. The proposed tracker absorbs the strong discriminative 
ability from collaborative model and speeds up by the compress strategies. To really 
reduce the background clutter, boundary information punishment mechanism is utilized in 
the training stage. Otherwise, the high-confidence collaborative strategy can combine the 
strengths of both DCF based model and color-based model to increase the discriminative 
power of the learned template model and prevent model drift. Furthermore, the proposed 
tracking algorithm is equipped with the fast discriminative multi-scale estimate method to 
cope with the scale variation. Sufficient evaluations on challenging benchmark datasets 
demonstrate that the proposed tracker can perform well against most advanced methods 
and maintain the fast speed which can meet the needs of engineering applications. 
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