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Abstract 
 

Motion perception has been tremendously improved in neuroscience and computer vision. 
The baseline motion perception model is mediated by the dorsal visual pathway involving the 
cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. 
However, few works have been done on the extension of neural models to improve the 
efficacy and robustness of motion perception of real sequences. To overcome shortcomings in 
situations, such as varying illumination and large displacement, an adaptive V1-MT motion 
perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and 
analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for 
structure-texture decomposition is performed to manage the illumination and color changes. 
And then, we study the impact of image local context, which is processed in extra-striate 
visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 
method to extract the image contrast information at a given location. Furthermore, we take 
feedback inputs from V2 into account during the polling stage. To use the algorithm on natural 
scenes, finally, multi-scale approach has been used to handle the frequency range, and 
adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to 
diminish computational cost. Theoretical analysis and experimental results suggest the new 
Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, 
effective and robust performance. 
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1. Introduction 

Motion perception in visual scenes, the process of extracting and interpreting visual motion 
information of any vision system, has been studied extensively in last decades. Visual motion 
perception, in technical terms, could be described as optical flow estimation, a vector field 
indicating local velocity (both direction and speed) at each retinal sequence location. Given 
that the mammals' vision system has evolved highly efficient for complex motion information 
interpretation, understanding the neural mechanisms behind the visual motion analysis would 
be very beneficial and has spurred many researchers to investigate mechanisms for optical 
flow estimation. An accurate estimation of vision motion can be used effectively for many 
tasks, such as autonomous navigation, 3D scene (environment) interpretation, and target 
tracking [1-3]. 

Ever since the work of Horn and Schunck [4], many efforts have been made to increase the 
accuracy and reliability of optical flow estimation from sequence motion with a large number 
of methods, such as coarse-to-fine model to solve large displacement motion [2, 5], high-order 
filter constancy to overcome the influence of lighting varying [6], bilateral filtering to preserve 
motion boundaries [7], temporal averaging of image derivatives [8]. In addition, a prominent 
benchmarking dataset has been developed to evaluate and compare publicly estimation 
algorithms in natural image sequences [9]. However, the main remaining challenges, such as 
occlusions, motion discontinuities and large displacements, are still difficult to deal with 
because the existing models that either lack robustness or have very complex computational 
process. 

On the other hand, psychophysical and neurophysiological results of the visual cortex have 
extensively inspired investigation on visual motion interpretation. To analyze visual motion, 
neural mechanisms compute oriented elements by filtering the real sequences in both space 
and time. Neurons in visual cortex area V1 and MT are found to play a vital role in motion 
perception [10-13]. Previous studies on highly primed stimuli have shown that V1 neurons are 
selective for spatiotemporal orientation, while MT neurons respond best to a velocity (speed 
and direction). However, visual motion interpretation is not only processed in areas V1 and 
MT, other areas also contribute greatly to motion information expression, such as neurons in 
V2 and V4 project the orientation or color of local edges of motion scenes to the motor cortex. 

Even though many biological models of motion processing have been proposed to solve the 
local motion estimation problem, all these linear-nonlinear filtering models still mainly focus 
on spatially homogeneous motion inputs, such as random-dots, gratings and plaids, and 
largely ignore the temporal aspect. Thus, dynamical models based on experimental data have 
been proposed to explain the diffusion of non-ambiguous local motion cues [11, 14]. At first 
using Gabor functions or spatiotemporal oriented filters, models of motion sensitive V1 
neurons (simple neurons and complex neurons) were made to explain the responses of 
receptive fields (RF) to visual motion. For instance, [11, 15, 16] mimicked V1 simple neurons 
with a linear model followed by tuned and unturned normalization. Rectified RFs were 
localized in space-time and tuned for spatiotemporal orientation. Through combining simple 
neuron afferents, the motion energy model can be used to explain many characteristics of V1 
complex neuron responses. Then linear-nonlinear V1-MT feed-forward models were 
proposed to explain properties of MT neurons. However, it departs from the highly 
nonlinearity and adaptability of visual system. Moreover, they are barely simulated the lateral 
or feedback interactions of RFs and evaluated on complex real sequences. 
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Here, we draw inspiration from mammals' vision system to build our approach on results of 
neuroscience. Our key contributions are to (i) analyze and extend current neural models by 
adding feedback connectivity and controlling the pooling between V1, V2and MT, which is 
believed important to investigate ambiguity regions such as aperture or blank wall and 
adaptive pool image structure and contrast, (ii) modify motion perception methods to produce 
state-of-the-art velocity estimation through adaptive pyramidal approach and coarse-to-fine 
method, and focus on dealing with illumination-dependent problem through the total variation 
semi-norm model based on Gabor functions ( TV-Gabor) model. Moreover, (iii) propose 
several strategies to decode the velocity of visual motion and adapt computationally efficient 
mechanisms to cope with problems encountered in real sequences. 

In this paper, we briefly review biological vision solution of the motion processing and 
computational problems in motion perception, and the Heeger and Simoncelli framework of 
mimicking human visual processing stages, on which the new model is based in Section 2. 
Section 3 provides an overview of our Ad-V1MTMP model for motion interpretation and 
estimation, and focuses on exploiting several methods for extracting low-level features of the 
scene, and on the effect of image local contrast and texture in motion perception through 
considering neurons in area V2. Section 4 evaluates the performance of Ad-V1MTMP model 
on standard Middlebury datasets and real illumination changing sequences, while Section 5 is 
left to conclusion. 

2. Related Work 

2.1 Biological vision 
In visual neuroscience, state-of-the-art models have been proposed to explain the properties of 
low-level motion processing of neural mechanisms [17-18]. Fig. 1 depicts a schematic view of 
the hierarchical networks of motion analysis. Visual cortex, a complex hierarchical expression 
structure in the processing of visual information, is consist of two pathways: i) “What” ventral 
visual pathway, which is aimed at extracting the complex static features for hierarchical 
cognitive expression tasks, such as pattern recognition and image classification; (ii) "Where" 
dorsal visual pathway, which provides a distributed representation of visual features for the 
visual control of actions, such as motion perception and accurate positioning. 

 

Fig. 1. The hierarchical networks in primate cerebral cortex 
 
Although the two pathways proceed visual information independently, populations of 

hierarchical layers units may provide a deeper scene understanding and encode distributed 
representations with a more efficient computational framework. First layer composed of V1 
simple and complex neurons extracts local motion information through a set of spatiotemporal 
filters. V1 simple neurons are always mimicked with a set of band-pass filters like Gabor 
functions, while complex neurons integrate information at different direction and frequency 
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by performing non-linear operations over feedback afferents. Gabor functions also provide us 
with both adaptive frequency and directional image decomposition, which can be used to deal 
with illumination changes. MT neurons pool and combine the responses of populations of V1 
complex neurons over a wide range of spatio-temporal scales to percept the velocity vector. 
However, not only areas V1 and MT implement context modulations by center-surround intra- 
and inter-interactions, other areas like V2 and V4, also play very important role in visual 
motion perception. Above all, the processing of motion perception is based on a set of 
biological vision mechanisms. 

2.2 The Heeger and Simoncelli model 
In this paper, we explore the possible framework of mimicking human visual processing 
stages to provide motion information and features of visual inputs. The Heeger and Simoncelli 
(HS) model is a most canonical mechanism to detect local image velocity. HS model contains 
two layers through feedforward connections to deal with different visual problems, described 
by Fig. 2. 
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+ -

+- - ÷ ÷

Linear 
operator

Gain 
control

Output 
nonlinearity

MTV1

Linear 
operator

Gain 
control

Output 
nonlinearity

 
Fig. 2. The Heeger and Simoncelli model overview 

 
The V1 layer is often divided into the simple neurons and the complex neurons, whose 

responses can be obtained with a series of nonlinear combination of filter responses, and the 
most critical work is the appropriate analysis and simulation of V1 RF. First, we characterize 
the visual stimulus, ( , ) I p t , by its local contrast, 

=(( , ) = [ ( , )/ 1] ; , )avgA p t I p t I p x y−                                                (1) 

where avgI  is the spatial-temporal average of the input stimulus in space and time. 

Then, the linear response of the ith simple neuron, ( )iL t , is given by convolving its local 
RF ( ( , )iW p t  with the Retina output ( ( , )A p t ),  

( ) = ( , ) ( , ) αi iL t W p T A p t T dxdydT− +∫∫∫                                (2) 

where ( , )iW p t  denotes the RFs of V1 simple neurons with a set of directional third derivatives 
of Gaussian filters, and α  is a very small constant. 

Here, we define the final output of the ith simple neuron as 
22 2

1 1( ) = ( ) ( ( )  )σi i j
j

RS t K L t L t  +    ∑                                  (3) 

where K1 reflects the maximum outputs of V1 simple neurons, 1σ  is the semi-saturation 
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constant. 
Using the motion energy model, V1 complex neuron responses combine a quadrature pair 

of simple neuron responses: 

( ) = ( ) i ij j
j

C t c RS t∑                                                 (4) 

here, the weights Cij are all positive. 
( ) = ( ) i ij j

j

Q t p C t β+∑                                              (5) 

22 2
2 2( ) = ( ) ( ( )  )i i j

j

P t K Q t Q t σ  +    ∑                              (6) 

MT layer contains populations of pattern neurons whose velocity selectivity is described via 
the combination of V1 complex neuron afferents, described as equation 5 and 6. 

After above processes, HS model can compute motion energies for perceiving the local 
velocity at each point. But this linear-nonlinear filtering model only focuses on spatially 
homogeneous motion inputs, such as random-dots, gratings and plaids. The local analyzer also 
cannot perceive the velocity along the gradient for the case of local luminance changes only at 
one orientation in aperture problem, observe to any kind of motion in blank wall problem for 
the absence of illumination contrast, and arrive at an accurate estimation in multiple motions 
or multiple objects case. Therefore, it can be extended as a way of motion perception in natural 
scenes. 

3. Adaptive V1-MT motion perception (Ad-V1MTMP) 
Above neural mechanisms of the HS model involving a feedforward processing are proposed 
to account for biological tests on motion perception of homogeneously stimuli. However, it is 
not sufficient to handle visual challenges, like blank wall problem, strong textured regions, 
and occlusion boundaries. In this paper, Gabor filters are adopted to simulate the RFs of V1 
neuron, and further image texture features could be obtained through structure-texture 
decomposition technique based on TV-Gabor, which is useful to manage the illumination and 
color changes. Then, this paper takes the feedback inputs from area V2 and lateral connectivity 
in area MT into account by considering the image local contrast at a given location. Moreover, 
we use series of methods to deal with different visual problems, such as coarse-to-fine 
refinement, multi-scale approach, and adaptive pyramidal decomposition. 

3.1 Illumination adaptive processing 
In this paper, we use the structure-texture decomposition to handle illumination-dependent 

problems under shadow or shading reflection conditions. More formally, the texture image is a 
kind of residuals that reflects the homogeneity property of surface structure with slow change 
or periodic change. Different from image intensity and structure, image texture is a visual 
feature represented by the grayscale distribution of pixels and their neighborhoods. By 
employing total variation (TV) regularization, [18] had provided implementation details to 
preserve high frequencies or discontinuities of images. TV-Gabor model defined in [18] is  

2

2 2
inf  ( ( ) ( ) ) ; 

2
η -

u L
J u K f u K K+ =                                      (7) 

where ( )J ⋅  denoting the variation (TV) regularization is the indicator function of some closed 
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convex set. H is Hilbert spaces defined thanks to the operator K. 
Here, K denotes the convolution operator, so K −1 is equal to 1/K in the Fourier domain. 

During structure-texture decomposition, frequencies not included in image texture should be 
penalized with convolution K, so as K −1. Thus, Gabor functions could be used to account for 
properties of the inverse kernel.  

2

22
(0, 1 cos (2 ) ( 0.5) ; 

2
]

2
π

σπσ
-k

kh vk exp v= ∈                              (8) 

where v is the texture frequencies. 
 

 
(a) original image                       (b) the structure part                    (c) the texture part 

Fig. 3. Decomposition of synthetic input images by TV-Gabor model 
 

After the above processes, original images are decomposed into two parts. One is the 
structural part, which depicts the smooth and structure features of the input. The other one is 
the textural part, corresponding to its fine and detail features. TV-Gabor model designs a set of 
Hilbert spaces based on Gabor functions, which ensures us making the most of a-priori 
knowledge of the spatio-temporal texture information. Fig. 3 shows the decomposition results 
of synthetic input images. It clearly demonstrated that this model provides us with adaptive 
image decomposition. Through the comparison of the decomposition of both two original 
images under different illumination conditions, experiment results prove the assumption that 
motion perception with image textural part is not perturbed by shadow and shading reflection 
artifacts, which cover large image regions. 

3.2 Area V1: Divisive Normalization and Motion Energy 

The biological role of orientation-selective neurons is believed to be the extraction of contrast 
changes and local contour information. The input stimulus is also described as ( , )A p t , 
characterized by its local contrast and defined as the equation 1. Because the RFs of V1 simple 
neurons are basically simulated by band-pass filters at present, we also define the response of 
simple neurons with a set of tilted three-dimensional Gabor filters. First, we define the RF 
spatio-temporal filters with a given spatial frequencies sf and temporal frequencies tf  as 

2 2 2
s s2 ( ( ) ( ) ))( ( )/(2 ))( ) = cos sin

, ,
j f x+ f y- x +y

sp f Be e π θ θσθ                          (9) 
2 ( )( / )( ) = , tj f t-t

tt f e e πτ                                           (10) 
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where σ is the spatial scale parameter of the RF filter, and it represents the bandwidth of the 
spatial tuning function. τ defines the temporal scales parameter of the filter. 

Here, we use the odd and even symmetric 3-D Gabor filters, o  and e , to replace the third 
derivative of Gaussian filters. And the tilted Gabor filters is defined through the real and 
imaginary filters, e , o  and e , o , 

( ) = ( ) ( ) + ( ) ( ), , , , , , , , ,
c

o o s e t e s o tp t v p f t f p f t fθ θ θ                 (11) 

( ) = ( ) ( ) ( ) ( ), , , , , , , , ,
c

e e s e t e s o tp t v p f t f p f t fθ θ θ−                 (12) 

where the preferred velocity cv is expressed as =c
t sv f f . 

Moreover, to better preserve image texture edges, the responses of V1 complex neurons are 
obtained according to the sum of absolute value of the odd and even filters, 

( , , )

( ) = ( ( ) )( )θ θ, , , , , , ,

x y t
c c

o e o eR p t v v A p t⋅ ⋅ ∗                         (13) 

( ) = ( ) + ( ), , , , , , , , ,
c c c

o eE p t v R p t v R p t vθ θ θ                     (14) 
Through a normalization to avoid the special case where the denominator is zero (regions 

without energy), the output of V1 layer is defined by 

V1

1

( )( ) = 
( )

, , ,
, , ,

, , ,

c
c

N c
i

E p t vE p t v
E p t v

θθ
θ ε

=
+∑

                       (15) 

 

(b) texture images (d) V1 complex cell(c) V1 simple cell(a) Grove2  
Fig. 4. Computation results of Grove2 in area V1 

3.3 Area MT: V2-Modulated Pooling 
According to experimental results, MT region belongs to the intermediate region in the visual 
cortex for processing motion information. MT neurons can process the local motion 
information input by effectively pooling the outputs of the V1 complex neurons. However, the 
method of pooling V1-afferents linearly does not, which leads to poor velocity estimation 
results by blurring edges boundaries. Thus, it is advantageous to make the V1 to MT pooling 
adaptive as a function of texture edges. To define a measure of local context (contrast and 
image texture), we take the role of responses from area V2 into account. First, using the 
complex filters ( ), , sp fθ  in equation 9, we define 

1
( ) ( ( ), , ( )) ; ( ) | * | ( )θ θ θ= =  

N i
R p R p R p R p I p                (16) 

( )
i

R pθ  is maximal at a given edge orientation iθ  when crossing the prefered direction at the 
position p(x, y). 

 
 
 



378                                                                                    Li et al.: Adaptive V1-MT model for motion perception 

 
Then assuming µ  and 2σ  denotes the average and variance of R, respectively. Combined 

with the contrast measurement at a given position, and at the same time ensured that the 
contrast was not limited to a single direction, the local contrast is defined as 

2 2( ) ( ( ( )))(1 ( ( )) / )maxC p f R p R pξ µ σ σ= −                      (17) 
where the term ( )fξ ⋅  is the Rectified linear unit (ReLu), which is biological plausible and 
popular activation function, and 0ξ ≥  is the threshold. In regions with stronger texture this 
term is larger, whereas in regions with average value less than ξ  this term equals to zero. The 
latter term denotes the strength of contrast in a single direction: the value of contrast in a single 
direction is larger, and the value of contrast in multiple directions is small. 

The scale and anisotropy of spatial pooling function in MT motion integration stage are 
modulated by image local texture information, so as to achieve better edge preservation. MT 
pattern neurons response can be revised as  

MT V1

1

( ) = ( ( ) ( ( ))), , , , , ,

N
c c

d i i
i

E p t d v F w E p t vθ θ
=
∑                 (18) 

where ( ) ( )F x exp x= . MT weights ( ) dw θ  is a nonlinear function with central excitation 
and lateral inhibition, defined as ( ) = ( ) θ θcosdw d − . 

We define the spatial pooling strategy adapting itself to the image texture and motion 
discontinuities as follows, 

V1 V1

'

( )1( )( ) = ( ( ' ) (- ( ' )) ( )
( ) +

, , , , , ,i

i

c c
i i

p

R p
E p t v g p p f p p E p t v

N R p
θ

α ε
θ

θ θ
ε

∇
− −

∇
∑     (19) 

where ( )∇ ⋅  denotes a gradient function. As to term ( )ig ⋅ , we use the L2-norm function. 
( )fξ ⋅  is an anisotropic weight enabling discontinuities be better preserved. 
Through decoding the population responses of the MT neurons, the optical flow is finally 

estimated with a linear combination approach, 
MT MT

1 1

0 /2( ) = ( ) ;  ( ) = ( )
M M

c c c c
x i i y i i

i i

v p t v E p t v v p t v E p t vπ, , , , , , , ,

= =
∑ ∑            (20) 

 

4. Results and Discussion 
During verification of our proposed algorithm, we conducted experiments on two data sets: the 
standard Middlebury benchmark [9] and the real scenes. The first one contains several 
challenges that optical flow estimation needs to solve, such as fast-moving objects, sharp 
edges, and target occlusions. In order to better visualize the experimental results, this paper 
calculates the results with the color-coding scheme proposed in [5]. The other one is used to 
evaluates the results of our algorithm under difficult conditions, such as illumination-changing 
and large displacement. 
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4.1 Performance evaluation on Middlebury dataset 
In this paper, average angular error (AAE) and endpoint error (EPE) are estimated to evaluate 
the performance of models (See Table 1).  

 
Table 1. A comparison of error measurements between following models 

  Grove2 Grove3 RubberWhale Urban3 Yosemite 

HS 
AAE±STD 17.61±31.86 22.24±34.65 21.62±41.70 32.39±64.87 11.74±12.93 
EPE±STD 1.52±2.61 6.48±7.04 1.92±2.39 7.47±8.53 1.36±1.28 

FFV1MT AAE±STD 4.28±10.25 9.72±19.34 10.20±17.67 15.11±35.28 3.41±5.44 
EPE±STD 0.29±0.62 1.13±1.85 0.34±0.54 1.88±3.27 0.16±0.18 

Ad-V1MTMP AAE±STD 3.85±9.72 9.87±18.33 8.78±14.74 12.54±32.43 3.15±3.10 
EPE±STD 0.23±0.46 1.14±1.56 0.37±0.48 1.33±2.21 0.12±0.13 

 
 
The results of Table 1 indicate that our Ad-V1MTMP model has a state-of-the-art 

performance of motion perception. Take Yosemite sequence (without clouds) for instance, we 
have AAE=3.15±3.10 for Ad-V1MTMP. However, compared with some existing biological 
inspired models such as the HS model (AAE=11.74 [19]) and the FFV1MT model 
(AAE=3.41±5.44 [15]), our model shows a great improvement. 

Fig. 5 shows results of different approaches obtained on training dataset. The relative 
performance of our model compared with other methods can be shown subjectively by 
observing the real results of δAAE (δAAE=AAEFFV1MT-AAEAd-V1MTMP), which are presented 
in the last column. Because we incorporate function principles in human visual system, 
namely contrast adaptation based on V2-modulated pooling, image structure based on 
TV-Gabor model and ambiguity based on lateral interaction, the δAAE maps highlight a better 
performance of our Ad-V1MTMP method (Fig. 5(e)) than FFV1MT (Fig. 5(d)) on image 
edges and details as expected. The baseline FFV1MT model involving a hierarchical structure 
from area V1 to area MT is initially proposed to process the homogeneously textured regions, 
hence smooth effects on edges and fine details still exist compared with the HS method (see 
Grove2 and Grove3 in Fig. 5(c) and Fig. 5(d)). However, the proposed method partially solves 
this issue by considering inputs from area V2, the improvements are prominent, as shown in 
RubberWhale and Urban3.  

Fig. 6 shows the experiment performances of different approaches on several test sequences. 
Lower errors and better estimation results at the occlusions and sharp edges, which shows a 
better motion boundary preservation of our model (see, e.g., Urban sequences). In conditions 
such as high-speed motion and large occlusions, on which our method has good performance, 
because the multi-scale approach allows us to estimate motion on different scales with 
coarse-to-fine refinement and pyramidal decomposition, (see, e.g., Urban sequence). In the 
presence of sharp edges, our method could recover velocity vectors by taking the lateral 
connections between neurons and scale space issues into account (see, e.g., Wooden 
sequences). 
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Fig. 5. Evaluation results on Middlebury training set 
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Fig. 6. Sample results on Middlebury test set 

 

4.2 Performance evaluation on real scenes 
Obtaining accurate optical flow is very important for sensing scene information and 
interpreting sequence images. Here, what interests us is only motion perception approach on 
real-world sequences under illumination-changing conditions and high-speed motion. 

Fig. 7 shows the results of optical flow estimation with a car approaching sequences, where 
the upper one is the computation result of FFV1MT approach, and the other one is the 
proposed approach result. Because of high-speed motion in the input sequences and 
illumination changes (left images in Fig. 7), the computation of FFV1MT approach fails 
(upper-right image in Fig. 7). Due to defining adaptive frequency and directional image 
decomposition, artifacts are not visible in the structure-texture decomposed images (middle 
images in Fig. 7). The lower-right image in Fig. 7 shows a better performance on the 
approaching car with flow discontinuities at image edges by using adaptive spatial pooling 
strategy. This demonstrates that our proposed approach is very robust to illumination changes. 

 

 
Fig. 7. The results of optical flow estimation for car approaching sequences.  
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5. Conclusion 
Based on the analysis of primate visual system and existing biological approaches, we have 

proposed a new FFV1MT algorithm, which can fill the gap between studies in biological and 
computer vision for motion perception. In this paper, we analyze and extend current neural 
models by adding feedback connectivity and investigating the role of area V2 in ambiguity 
regions. We additionally propose several strategies to decode the velocity of visual motion and 
adapt computationally efficient mechanisms to cope with problems encountered in real 
sequences, such as mapping image sequences into illumination-independent sequences 
through the TV-Gabor model. We experimentally evaluated the proposed algorithm in two 
datasets: Firstly, we quantify the improvement in performance on Middlebury benchmark 
sequences. Secondly, we demonstrate that our new model has more accurate and robust 
performance on real-world sequences illumination-changing conditions and high-speed 
motion. In future work, we intend to focus on addressing other mechanisms for motion 
perception, for example recurrent interactions among MT neurons, or feedback connections 
from higher-order areas to area MT. 
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