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Abstract 
 

High Efficiency Video Coding (HEVC) enables significantly improved compression 
performance relative to existing standards. However, the advance also requires high 
computational complexity. To accelerate the intra prediction mode decision, a minimum 
risk Bayesian classification framework is introduced. The classifier selects a small number 
of candidate modes to be evaluated by a rate-distortion optimization process using the sum 
of absolute Hadamard transformed difference (SATD). Moreover, the proposed method 
provides a loss factor that is a good trade-off model between computational complexity and 
coding efficiency. Experimental results show that the proposed method achieves a 31.54% 
average reduction in the encoding run time with a negligible coding loss of 0.93% BD-rate 
relative to HEVC test model 16.6 for the Intra_Main common test condition. 
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1. Introduction 

With the increasing demand for high-quality and high-resolution video content, High 
Efficiency Video Coding (HEVC) was developed by the ITU-T Video Coding Experts 
Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) standardization 
organizations, working together in a partnership known as the Joint Collaborative Team on 
Video Coding (JCT-VC) [1]–[4]. HEVC, the most recent international video coding 
standard, enables significantly improved coding efficiency compared to H.264/AVC [5]–[7] 
in the range of 50% bit rate reduction for equal perceptual video quality [8]. However, 
HEVC encoders are also expected to have higher complexity than H.264/AVC encoders 
[9]. Therefore, fast encoding algorithms have been broadly researched to decrease the 
encoding complexity of HEVC for real-time video encoding systems or power-constrained 
mobile devices. 

Many advanced coding tools have been newly adopted in HEVC. In particular, a 
hierarchical coding structure plays an important role in the improved coding efficiency. It 
provides a highly flexible hierarchy of unit representation that includes three block 
concepts: coding unit (CU), prediction unit (PU), and transform unit (TU). The coding tree 
unit (CTU) is the core of the coding layer, which is analogous to the macroblock of 
previous standards. It consists of a luma coding tree block (CTB) and the corresponding 
chroma CTBs. The size L × L of a luma CTB can be chosen as L = 16, 32, or 64 samples. 
HEVC then supports a partitioning of the CTBs into smaller CUs using a tree structure and 
quadtree-like signaling [10]. The decision to use either inter or intra prediction to code a 
picture area is made at the CU level. The PU is the elementary unit for prediction and is 
defined after the last level of CU splitting. The PU size at which the intra prediction mode 
is established is the same as the CU size for all block sizes except for the smallest CU size. 
The TU is another transform and quantization-related unit whose size does not exceed that 
of the CU. In the HEVC intra prediction, the number of prediction modes for square PU 
sizes from 4 × 4 up to 32 × 32 increases to 35 modes: directional prediction with 33 
different directional orientations, planar prediction (assuming an amplitude surface with a 
horizontal and vertical slope derived from PU boundaries), and DC prediction (a flat 
surface with a value matching the mean value of the boundary) [11]. These block concepts 
are helpful for optimizing each unit. However, HEVC encoders need to exhaust all the 
combinations of CU, PU, and TU to find the optimal solution, which is a very 
time-consuming process. Moreover, 35 intra prediction modes need to be evaluated for 
each PU to select the best direction. The increased number of intra prediction modes also 
requires substantial computational complexity. 

To relieve the burden of intra prediction coding on encoders, the HEVC Test Model 
(HM) [12] first determines a few best candidate modes among all 35 intra prediction modes 
according to the sum of the absolute Hadamard transformed difference (SATD) and the 
number of bits required for the prediction mode. This process is called rough mode 
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decision (RMD) [13]. Then, by considering the strong correlation among spatially 
neighboring blocks, most probable modes (MPMs) are added to the candidate mode set. 
Finally, a full rate-distortion optimization (RDO) process is carried out only for the 
candidate mode set. Furthermore, a large amount of research effort has focused on 
speeding up the intra prediction mode decision. One category of this research is based on 
correlation among prediction directions of the candidate mode set, the spatially 
neighboring blocks, or previous-depth CUs [15]–[19]. The other category utilizes the 
gradient or edge of the current encoding block [20]–[23]. Most of the conventional research 
directly employs the candidate modes selected by the RMD process, but rarely considers 
the characteristics of RMD costs of the candidate modes. In experimental results, it is 
observed that a mode with far lower RMD cost than other modes is likely to be the best 
mode. Therefore, discrimination using the relative RMD costs would be useful to reduce 
the number of candidate modes further. 

This paper introduces a modified minimum risk Bayesian classification framework 
employing a relative SATD that indicates how different SATDs are in a set of intra 
prediction modes. The classifier selects a small number of candidate modes, thereby 
reducing complexity. In experiments, to validate the performance of the proposed method, 
the proposed Bayesian classifier is compared with Lee’s method [15] and Zhang’s method 
[16]. Moreover, to further reduce the computational complexity, a combined scheme using 
Zhang’s method, Lee’s method, and the proposed method is also introduced. 

The rest of this paper is organized as follows. In Section II, the conventional fast intra 
prediction mode decision methods are explained. In Section III, the relative SATD cost is 
defined. Then, in Section IV, a fast intra mode decision algorithm based on the minimum 
risk Bayesian classification is proposed. Section V compares the performance of the 
proposed algorithm with conventional work, and Section VI concludes this paper. 

2. Related Work 
The HM [12] adopts a fast intra mode decision method to reduce the complexity burden on 
HEVC encoders. This fast method consists of two phases. In the first phase, the N most 
promising candidate modes are selected from among all 35 intra prediction modes by the 
RMD process, where N is set to {8, 8, 3, 3, 3} for PUs of size 4 × 4, 8 × 8, 16 × 16, 32 × 32, 
and 64 × 64, respectively. In the RMD process, all intra prediction modes are evaluated 
with respect to the following cost function: 
 

𝐶 =  𝐷𝐻𝑎𝑑 + 𝜆 ∙ 𝑅𝑚𝑜𝑑𝑒                                                     (1) 
 

where D_Had is the SATD, R_mode represents the number of bits for a prediction mode, 
and C is the RMD cost. Then, by cons+0idering the strong correlation among the 
neighboring blocks, MPMs are added to the candidate mode set [14]. In the second phase, 
the candidate modes are thoroughly evaluated in the sense of the RDO. The prediction 
mode with the minimum rate-distortion (RD) cost is selected as the final prediction mode 
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[11]. Since the RD cost is calculated through the reconstruction of residual signal and bit 
estimation, including intra prediction, transformation, quantization, and entropy coding, 
the RDO process is computationally expensive. As mentioned above, the RMD process 
reduces the number of candidate modes evaluated in the RDO process, thereby reducing 
complexity. However, the RMD process has a fixed strategy for blocks with the same size, 
and it does not consider their different characteristics. If the number of candidate modes is 
more adaptable to the block characteristics, the complexity may be further reduced. 

Recently, a number of fast algorithms have been proposed to reduce the computational 
complexity of the HEVC intra mode decision. Many of the approaches have been based on 
the similarity among intra prediction directions of the candidate mode set, the spatially 
adjacent blocks, or previous-depth CUs [15]–[19]. Lee et al. [15] proposed a simple, fast 
intra prediction mode decision method. In their work, if a mode with the minimal SATD 
cost is one of the MPMs, the mode is directly decided as being the best mode instead of 
performing the RDO process. Zhang et al. [16] introduced an adaptive, fast intra mode 
decision method, which finds a mode with the minimum SATD cost and employs the 
directional similarity between the minimum mode and the others in the candidate set to 
adaptively reduce the candidate modes for the RDO process. Zhao et al. [17] also reduced 
the candidate modes for the RDO process, utilizing direction information of the spatially 
adjacent CUs. Quanhe et al. [18] proposed an intra prediction mode decision strategy that 
sets a proper order of prediction modes according to the nearness of their directions and the 
characteristics of adjacent blocks. A fast intra mode decision based on a hierarchical 
structure [19] terminates the mode decision procedure using the intra prediction mode of 
the corresponding PU at the previous depth level and the size of TU at the current depth 
level. Shen et al 

Other approaches have used gradient or edge characteristics since the intra coding is 
inherently based on predicting the directional structures that are present in typical video 
and image content [20]–[28]. Jiang et al. [20] proposed a gradient-based fast mode decision 
algorithm that calculates gradient directions and generates a gradient-mode histogram for 
each CU. Based on the distribution of the histogram, only a few of the intra prediction 
modes are chosen for the RMD and RDO processes. Another gradient-based algorithm [21] 
obtained the texture complexity and direction of CUs by applying intensity gradient filters 
and then excluded some of the intra prediction modes according to the texture direction in 
the mode decision process. An edge-based fast intra mode decision method [22] 
determined the candidate modes by analyzing the textures of the source image block. 
Considering the difference between the prediction directions of neighboring blocks, a 
fixed-point arithmetic based edge detector was designed to improve the direction detection 
accuracy. Yan et al. [23] proposed a group-based fast intra mode decision method. First, an 
early termination method is applied if the RMD cost of one mode is much smaller than that 
of the others. Second, the candidate modes are grouped together according to their angles, 
and then a pixel-based edge detection algorithm is applied to select the optimal angular 
direction. An edge-based CU size decision method decided split or non-split for CU 
according to complexities of global and local edge [24]. H. Zhang et al. [25] reduced 
candidates of rate-distortion optimized quantization based on SATD with 2:1 
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down-sampled prediction residual. Y. Shi et al. [26] determined PU level quadtree depth 
based on correlation of PU quadtree structure between current largest coding unit and its 
spatial and temporal neighbors. G. Tian et al. [27] utilized down-sampled texture 
complexity and prediction unit size of neighboring blocks to remove unnecessary operation 
for PU split. Shen et al. [28] restricted CU depth according to characteristic of image and 
skipped some prediction modes which were rarely used in CUs of the upper depth levels or 
spatially neighboring CUs. 
On the other hand, various approaches have applied early decision schemes of coding depth 
based on temporally or spatially neighboring information [29]-[34]. Tao Fan et al. [29] 
proposed a fast CU size decision algorithm considering depth levels of neighboring CUs, 
distribution of rate distortion values and distribution of residual data. Lei Feng et al. [30] 
introduced a fast PU selection method that builds a saliency map for each largest coding 
block. Zhenglong et al. [31] determined CU depths according to a progressive gradient 
accumulation strategy obtained by adding up all the differences of every adjacent column 
and row. Liquan Shen et al. [32] proposed an early CU size decision algorithm based on the 
texture homogeneity. Xingang Liu et al. [33] also introduced a fast CU size decision 
algorithm that utilizes a CU complexity classifier built by using machine learning 
technology. H. Zhang et al. [34] proposed a fast mode decision that was made by priority 
classification according to coding information of spatial and temporal neighboring PUs. 
Liquan Shen et al. [35] proposed an intra mode classification and an early termination 
method of CU split according to intra mode information. 

Most of the aforementioned fast intra prediction methods have been developed on the 
top of the HM that includes the RMD process. That is, those methods have taken account of 
a subset of intra prediction modes selected by the RMD process and tried to reduce the 
number of candidate modes for the RDO process. Note that those methods have focused 
only on the modes that are selected by the RMD process, but they have hardly considered 
the RMD costs. It is a fact that the RMD cost is not firmly reliable in the sense of the RDO 
because it utilizes SATD instead of the kinds of discrete cosine transform (DCT) or discrete 
sine transform (DST) used in HEVC. However, it is observed in experiments that the RMD 
costs roughly follow the same trend as the RDO costs, and a mode with substantially low 
RMD cost compared with other modes is likely to be a promising competitor for the 
optimal mode. Therefore, the RMD costs can be useful in the reduction of the candidate 
modes. In this paper, considering this observation, a fast intra prediction mode decision 
method is introduced, which takes full advantage of the RMD costs to further reduce the 
encoding complexity. 

3. Relative SATD Cost 
As described in Section II, the RMD process of the HM decides the first minimum cost N 
modes as the candidate set. In this paper, for clear explanation, RDO candidate set 
represents a subset of modes to be evaluated in the RDO process, and RMD modes 
indicates the modes selected by the RMD process. In the HM, the RMD modes are directly 
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used as the RDO candidate set. The total number, N, of the RMD modes depends only on 
the size of the PUs. For example, N is three for PUs greater than or equal to 16 × 16 and is 
eight for all other PUs. The RMD process constantly selects the fixed number of modes 
according the ranking of the RMD costs, regardless of how high the RMD costs are. If 
some of the RMD modes have substantially higher RMD costs than others, they are 
unlikely to be the best mode in the sense of RDO. Therefore, the modes with relatively 
higher RMD costs may induce unnecessary computational complexity in the RDO process. 
To solve this problem, the relatively higher RMD cost modes can simply be discarded by 
means of a predefined and absolute threshold. However, the SATD of the RMD cost as 
defined in (1) tends to vary widely according to the content of the current encoding block. 
For example, if the content is simple, the intra prediction is usually precise and SATD is 
therefore low. On the other hand, if the content is complex, the prediction may generate 
many residuals, and SATD thereby reaches a very high value. Therefore, it is very difficult 
to find an appropriate constant threshold value. 

To efficiently remove the relatively higher RMD cost modes from the candidate set, the 
proposed method defines subsets of the RMD modes and selects an appropriate subset 
according to the SATD characteristics of the modes. Let 𝑆𝑆𝑘, (1 ≤ 𝑘 ≤ 𝑁), where N is the 
number of modes selected by the RMD process, be subsets of the RMD modes. 𝑆𝑆𝑘 has 𝑘 
modes. If the sizes of the PUs are 4 × 4 or 8 × 8, 𝑆𝑆8 consists of 8 modes selected by the 
RMD process, 𝑚1  through 𝑚8 , where 𝑚𝑖  notes an intra prediction mode with the i-th 
minimum SATD, (1 ≤ 𝑖 ≤ 𝑘, 𝑚𝑖 ∈ 𝑆𝑆𝑘). For all i less than j, the SATD of 𝑚𝑖 is less than 
or equal to that of 𝑚𝑗, and 𝑚1 and 𝑚𝑘 are the minimum and maximum SATD modes in the 
subset 𝑆𝑆𝑘, respectively. 𝑆𝑆𝑘−1 can be defined by discarding the maximum SATD cost mode 
in 𝑆𝑆𝑘. In this way, other subsets, 𝑆𝑆1 through 𝑆𝑆𝑘−2, are iteratively defined. For PUs greater 
than or equal to 16 × 16, the RMD process generates 𝑆𝑆3 with 𝑚1,𝑚2, and 𝑚3. 

By using the aforementioned subsets, the problem of reducing the number of RDO 
candidate modes can be converted into that of selecting a subset among 𝑆𝑆1 through 𝑆𝑆𝑁 as 
the RDO candidate set. Deciding a subset 𝑆𝑆𝑘, of which 𝑘 is smaller than 𝑁, reduces the 
computational complexity since modes that do not belong to 𝑆𝑆𝑘, 𝑚𝑘+1 through 𝑚𝑁, are not 
input to the RDO process. For example, if 𝑆𝑆2 is selected, only two modes, 𝑚1 and 𝑚2, are 
evaluated in the RDO process instead of all N modes. Selecting a subset that has fewer 
modes can thus reduce the complexity. However, an appropriate subset 𝑆𝑆𝑘 that maintains 
coding efficiency should be selected as the RDO candidate set. That is, the appropriate 
subset has to include the best mode in the sense of RDO, which is called the RDO best 
mode, 𝑚� . For example, when 𝑚�  has the 𝑏-th minimum SATD among 𝑁 RMD modes, the 
best subset that reduces complexity maximally while keeping coding efficiency is 𝑆𝑆𝑘 with 
𝑘 equal to 𝑏. If the selected 𝑘 is less than 𝑏, computational complexity can be further 
reduced, but coding efficiency can also be reduced because 𝑚�  is discarded from the RDO 
candidate set. On the other hand, if the selected 𝑘  is larger than 𝑏 , unnecessary 
computations for modes 𝑚𝑗, (𝑏 < j ≤ 𝑘), should be carried out in the RDO process. Like 
𝑚𝑗 , the mode that has a higher value of SATD than 𝑚�  is called the unnecessary 
higher-SATD mode, 𝑚� , in this paper. 𝑚�  causes unnecessary computation in the RDO 
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process. In conclusion, the proposed method is aimed at finding the subset 𝑆𝑆𝑏 that includes 
𝑚�  and does not include any 𝑚� . This subset 𝑆𝑆𝑏 is called the target subset, 𝑆̂𝑆, in this paper. 

To achieve the aim, the relative SATD of a subset 𝑆𝑆𝑘, 𝛾, is defined by 
 

γ =  𝑆𝑆𝐴𝑇𝐷𝑚1/𝑆𝑆𝐴𝑇𝐷𝑚𝑘                                                (2) 
 

where 𝑆𝑆𝐴𝑇𝐷𝑚1 and 𝑆𝑆𝐴𝑇𝐷𝑚𝑘  are the SATDs of 𝑚1 and 𝑚𝑘 in the subset 𝑆𝑆𝑘, respectively. 
For all 𝑘, (1 ≤ 𝑘 ≤ 𝑁), 𝛾 of 𝑆𝑆𝑘 is normalized in the range between 0 and 1, and γ of 𝑆𝑆𝑘−1 
is larger than or equal to one of 𝑆𝑆𝑘. The 𝛾 implies a ratio of the minimum SATD to the 
maximum SATD in a subset. By means of 𝛾, it can be assessed how much higher the SATD 
of 𝑚𝑘 is than the minimum SATD. If 𝛾 is closer to 1, all modes of 𝑆𝑆𝑘 have very similar 
SATD to the minimum SATD, 𝑆𝑆𝐴𝑇𝐷𝑚1. On the contrary, if it is closer to 0, at least one 
mode including 𝑚𝑘 has a much higher SATD than the minimum SATD. 

To exploit a relation between the target subset 𝑆̂𝑆 and the relative SATD 𝛾, experiments 
have been performed under common HM test conditions [36] for JCT-VC test sequences, 
including SteamLocomotiveTrain, Traffic, Cactus, ParkScene, BQMall, PartyScene, 
BlowingBubbles, and BQSquare. Fig. 1 illustrates the distribution of the relative SATD 𝛾 
of the target subset 𝑆̂𝑆, where the last mode is the RDO best mode 𝑚� . Note that the 
distribution of 𝛾 of 𝑆̂𝑆 equal to 1 is about 70%. In addition, for 𝛾 of 𝑆̂𝑆 that is higher than 0.9, 
the cumulative distribution is over 90%. As shown in Fig. 1, the target subset has a high 
correlation with the relative SATD. Thus, as 𝛾 of a subset is closer to 1, the subset is highly 
likely to be the target subset. 

 
 

 
Fig. 1. Distribution of relative SATD of the target subset S ,̂ where the last mode is the RDO best 

mode m .̂ 
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4. Proposed Fast Intra Prediction Mode Decision 

4.1 Minimum-risk Bayesian Classifier 
To select a subset 𝑆𝑆𝑘 according to the relative SATD, 𝛾, a modified Bayesian classification 
framework is introduced. First, the proposed method defines two-class 𝑊 = �𝜔𝑝,𝜔𝑞�, 
where 𝜔𝑝 and 𝜔𝑞 stand for whether a subset 𝑆𝑆𝑘 includes the RDO best mode 𝑚�  or not, 
respectively. For instance, assuming that there are eight RMD modes and the RDO best 
mode 𝑚�  has the 5-th minimum SATD, subsets 𝑆𝑆5 , 𝑆𝑆6, 𝑆𝑆7, and 𝑆𝑆8 correspond to 𝜔𝑝, and 
the others correspond to 𝜔𝑞. As mentioned in Section III, the proposed method is aimed at 
finding the target subset 𝑆̂𝑆 that includes 𝑚�  and has the minimum number of modes. Thus, 
in case of the above instance, 𝑆̂𝑆 is 𝑆𝑆5. 

Let P(𝜔𝑖|𝛾), 𝑖 ∈ {𝑝𝑝, 𝑞} be the a posteriori probability that 𝑆𝑆𝑘 belongs to 𝜔𝑖 given 𝛾 of 
𝑆𝑆𝑘. Here, action 𝛼𝑖 corresponds to deciding that the true state of nature is 𝜔𝑖. For simple 
notation, let 𝐶̅𝑖,𝑗 = 𝐶̅�𝛼𝑖�𝜔𝑗�, (𝑖, 𝑗 ∈ {𝑝𝑝,𝑞}) be the loss incurred for deciding 𝜔𝑖 when the 
true state of nature is 𝜔𝑗 . The loss can mean coding loss and complexity increase caused by 
a decision of the classifier. The loss can be assumed to be equal to 0 when the decision is 
true, i.e., 𝐶̅𝑝,𝑝 = 𝐶̅𝑞 ,𝑞 = 0. Therefore, the conditional risk associated with the decision 𝜔𝑖, 
𝑅(𝛼𝑖|𝛾), which is an expected loss, is represented as follows 

 
𝑅�𝛼𝑝�𝛾� = 𝐶̅𝑝,𝑝𝑃�𝜔𝑝�𝛾�+ 𝐶̅𝑝,𝑞𝑃�𝜔𝑞�𝛾� = 𝐶̅𝑝,𝑞𝑃�𝜔𝑞�𝛾�                     (3) 
𝑅�𝛼𝑞�𝛾� = 𝐶̅𝑞,𝑝𝑃�𝜔𝑝�𝛾� + 𝐶̅𝑞 ,𝑞𝑃�𝜔𝑞�𝛾� = 𝐶̅𝑞,𝑝𝑃�𝜔𝑝�𝛾�.                    (4) 

 
There are various ways of expressing the minimum-risk decision rule, each having its 

own minor advantages. The fundamental rule is to decide 𝜔𝑝 if 𝑅�𝛼𝑝�𝛾� < 𝑅�𝛼𝑞�𝛾�. In 
term of the posterior probabilities, 𝜔𝑝 is decided if 

 
𝐶̅𝑝,𝑞𝑃�𝜔𝑞�𝛾� < 𝐶̅𝑞,𝑝𝑃�𝜔𝑝�𝛾�.                                        (5) 

 
Meanwhile, the posteriori 𝑃(𝜔𝑖|𝛾) is given by Bayes rule [37] as 
 

𝑃(𝜔𝑖|𝛾) = 𝑝𝑝(𝛾|𝜔𝑖) ∙ 𝑃(𝜔𝑖)/𝑝𝑝(𝛾),                                    (6) 
 

where 𝑝𝑝(𝛾|𝜔𝑖)  is the conditional probability density function of 𝛾  whose distribution 
depends on 𝜔𝑖, and P(𝜔𝑖) is the a priori probability. By using (6), the decision rule is 
instead expressed as follows 
 

𝐶̅𝑝,𝑞𝑝𝑝�𝛾�𝜔𝑞� ∙ 𝑃�𝜔𝑞� < 𝐶̅𝑞,𝑝𝑝𝑝�𝛾�𝜔𝑝� ∙ 𝑃�𝜔𝑝�.                        (7) 
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Another alternative is to decide 𝜔1 if 
 

𝑝�𝛾|𝜔𝑝�
𝑝�𝛾|𝜔𝑞�

> 𝐶𝑝̅,𝑞

𝐶𝑞̅,𝑝
∙ 𝑃

�𝜔𝑞�
𝑃�𝜔𝑝�

.                                              (8) 

 
For simple notation, by substituting the loss term 𝐶̅𝑝,𝑞/𝐶̅𝑞,𝑝 with loss factor 𝜆 and a 

priori terms  𝑃�𝜔𝑞�/𝑃�𝜔𝑝� with 𝐾, the minimum-risk Bayesian classifier Ψ(𝛾) can be 
finally written as follows 

 

  
(a) (b) 

  
(d) (c) 

  
(e) (f) 

Fig. 2. Actual distribution and modeled Gaussian distribution of 𝒑(𝜸|𝝎𝒊), (a) 𝒑�𝜸�𝝎𝒑� for 16 × 16 
PUs, (b) 𝒑�𝜸�𝝎𝒒� for 16 × 16 PUs, (c) 𝒑�𝜸�𝝎𝒑� for 32 × 32 PUs, (d) 𝒑�𝜸�𝝎𝒒� for 32 × 32 PUs, 

(e) modeled Gaussian distributions of 𝒑(𝜸|𝝎𝒊) for 16 × 16 PUs, (f) modeled Gaussian distributions 
of 𝒑(𝜸|𝝎𝒊) for 32 × 32 PUs. 
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Ψ(𝛾) = �
 𝜔𝑝 𝑖𝑓 𝑝

�𝛾|𝜔𝑝�
𝑝�𝛾|𝜔𝑞�

> 𝜆 ∙ 𝐾

  𝜔𝑞 𝑝𝑝𝑡ℎ𝑝𝑝𝑝𝑝𝑤𝑖𝑝𝑝𝑝𝑝 
� .                                     (9) 

 
According to (9), subsets including the RDO best mode 𝑚�  can be classified as 𝜔𝑝 and 

then a subset having the smallest number of modes is selected as the RDO candidate set 
from the subsets classified as 𝜔𝑝. 

In (9), the conditional probability density function 𝑝𝑝(𝛾|𝜔𝑖) and a priori term 𝐾 can be 
derived through a training process. To obtain the statistical parameters, experiments have 
been carried out for JCT-VC test sequences [36]: SteamLocomotiveTrain, Traffic, Cactus, 
ParkScene, BQMall, PartyScene, BlowingBubbles, and BQSquare. To observe the 
probability distribution more strictly, 𝑝𝑝(𝛾|𝜔𝑖) is measured for every PU size (L × L), 
which is rewritten as 𝑝𝑝𝐿(𝛾|𝜔𝑖). Based on experimental results, 𝑝𝑝𝐿(𝛾|𝜔𝑖) is assumed to 
follow Gaussian distribution determined by the mean 𝜇𝐿,𝑖 and the variance 𝜎𝐿,𝑖

2 such as 
 

𝑝𝑝𝐿(𝛾|𝜔𝑖) =  1
√2𝜋𝜎𝐿,𝑖

exp �− 1
2
�𝛾−𝜇𝐿,𝑖

𝜎𝐿,𝑖
�
2
�.                                (10) 

Fig. 2 shows the actual distribution and modeled Gaussian distribution of 𝑝𝑝(𝛾|𝜔𝑖) for 
16 × 16 and 32 × 32 PUs given that the pattern is in class 𝜔𝑖. As observed in the figure, 
𝑝𝑝16�𝛾�𝜔𝑝� is greater than 𝑝𝑝16�𝛾�𝜔𝑞� when the relative SATD 𝛾 is smaller than about 0.9. 
Assuming that 𝜆 ∙ 𝐾 of (9) is equal to 1, the Bayesian decision boundary is set to 𝛾 = 0.9. In 
this decision boundary case, if 𝛾 of a subset 𝑆𝑆𝑘 is smaller than 0.9, the subset is decided as 
𝜔𝑝 by the minimum-risk Bayesian classifier, which means that the subset contains the 
RDO best mode 𝑚� . As 𝑘 of 𝑆𝑆𝑘 is higher, the RMD mode 𝑚𝑘 has a higher SATD and the 𝛾 
of 𝑆𝑆𝑘 gets lower. That is, 𝑘 and 𝛾 of 𝑆𝑆𝑘 are inversely proportional to each other. A higher 𝑘 
means that 𝑆𝑆𝑘 includes more modes. Therefore, a subset is likely to have the RDO best 
mode if its relative SATD 𝛾 is low. However, the subset is likely to contain more of the 
unnecessary high-SATD modes as 𝑘 gets higher. In conclusion, it is desired to find the 
subset that has the minimum number of modes as well as the RDO best mode 𝑚� . 

4.2 Fast Intra Prediction Mode Decision 
A fast intra prediction algorithm using the minimum-risk Bayesian classifier with the 
relative SATD is proposed. As shown in Fig. 3, the proposed method consists of three steps. 
First, like the HM, the RMD process decides the first minimum cost N modes as the RMD 
modes where the N depends on PU sizes. Second, for subset 𝑆𝑆𝑘, starting from 𝑆𝑆1 through 
𝑆𝑆𝑁, its relative SATD 𝛾 is calculated. Then the proposed minimum-risk Bayesian classifier 
using its relative SATD, Ψ(𝛾), is applied to find the subset with the RDO best mode. If a 
subset 𝑆𝑆𝑘 is decided as 𝜔𝑝 by Ψ(𝛾), this subset becomes the RDO candidate set 𝑆́𝑆 after 
unduplicated MPMs are added into the subset. In this case, modes from 𝑚𝑘+1 through 𝑚𝑁 
are discarded from 𝑆́𝑆. Note that subsets are evaluated not in descending order from the 
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subset 𝑆𝑆𝑁, but in ascending order from the subset 𝑆𝑆1. This ascending order is for finding the 
subset with the minimum number of modes among subsets decided as 𝜔𝑝  by Ψ(𝛾). Due to 
the ascending order evaluation, as many as possible of the unnecessary high-SATD modes 
are discarded from the RDO candidate set 𝑆́𝑆. Finally, the best intra prediction mode is 
determined through the conventional RDO process for the RDO candidate set 𝑆́𝑆 selected by 
the proposed method. The conventional HM performs the RDO process for all the RMD 
modes, whereas the proposed method does so for the subset 𝑆́𝑆, discarding some modes. 
This reduced number of RDO candidate modes can decrease the computational 
complexity. 

4.3 Loss Factor Decision 
The performance of the proposed method relies on the loss factor λ equal to 𝐶̅𝑝,𝑞/𝐶̅𝑞,𝑝 in 
(8). The loss factor is highly related to how costly the classifier mistakes are, and it can treat 
situations in which some kinds of classification mistakes are costlier than others. The 
proposed method focuses on the 𝐶̅𝑝,𝑞 that is the loss incurred for deciding 𝜔𝑝 when the true 
state of nature is 𝜔𝑞. When a subset does not include the RDO best mode, the wrong 
decision that the subset has the RDO best mode obviously results in coding loss. The higher 
the loss factor is, the more carefully the proposed classifier makes a decision. For example, 
when λ is equal to 0, that means the mode discarding has no loss, so the subset 𝑆𝑆1 including 
only 𝑚1  is always selected by Ψ(𝛾). In this case, computational complexity decreases 

 
Fig. 3. The proposed fast intra prediciton mode decision algorithm. 
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maximally, but coding loss increases. If λ  is an extremely high value, meaning that 
discarding the mode has a high risk, Ψ(𝛾) always makes the decision as the 𝜔𝑞. Thus, the 
subset 𝑆𝑆𝑁 including all of the RMD modes is selected as the RDO candidate set just like 
HM. Therefore, coding efficiency is retained as well as the HM without any complexity 
reduction. As shown in the example cases, the loss factor provides a useful feature for 
controlling the tradeoff between coding efficiency and complexity reduction. To achieve 
complexity reduction while retaining an acceptable coding loss, the proposed Bayesian 
classifier has to set an appropriate value of λ. 

To provide a guide for determining the loss factor 𝜆, various loss factor values were 
simulated under the common HM test conditions with All Intra configuration for JCT-VC 
test sequences, including SteamLocomotiveTrain, Traffic, Cactus, ParkScene, BQMall, 
PartyScene, BlowingBubbles, and BQSquare [36]. Quantization parameters, 22, 27, 32, 
and 37, are used to calculate BD-rate. Fig. 4 shows the coding loss when the proposed 
method is applied only to PUs with 16 × 16 relative to the HM according to various loss 
factor values. It is observed that the BD-rate [38] of coding loss monotonically decreases as 
the loss factor increases. The experimental results can be modeled by an exponential 
function. The modeled loss factor λ� is represented as follows 

 
λ� =  𝜇1 × 𝑝𝑝−𝜇2∗𝛽𝜇3 ,                                                 (11) 

 

 
Fig. 4. BD-rate increase according to the loss factor and its exponential fitting model for PUs 

with 16 × 16 
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where 𝛽  indicates the BD-rate increase and 𝜇1 , 𝜇2 , and 𝜇3  are parameters of the 
exponential function to fit the experimental results to the model as closely as possible. To 
achieve a more accurate fitting function, for each PU size (𝐿 ×  𝐿 ), λ�𝐿 × 𝐿  and the 
parameters 𝜇𝑖,𝐿 (𝑖 ∈ {1, 2, 3}) can be calculated. In Fig. 4, 𝜇1,16, 𝜇2,16, and 𝜇3,16 are 1.784, 
0.8113, and 0.4423, respectively, which minimizes the sum of squared errors. Given an 
acceptable coding loss represented by 𝛽, an appropriate loss factor can be derived easily by 
using the exponential model. In this way, the proposed method provides a useful feature for 
controlling the tradeoff between computational complexity and coding efficiency. 

5. Experimental Results 
To evaluate the performance of the proposed Bayesian classifier, it is compared with 
previous work by Lee [15] and Zhang [16], as well as HM [12]. All of these methods are 
implemented on the top of HM 16.6. Encoder controls follow the common HM test 
conditions with All Intra Main configuration [33]. In detail, the CTB indicating the 
maximum CU size has a fixed size of 64 × 64 pixels. The maximum depth of CTB is set to 
four, which allows CUs of sizes 8 × 8 to 64 × 64. The BD-rates, which provide the relative 
coding gain between two methods based on the average difference between their 
RD-curves, are commonly measured for objective quality evaluation by adopting HM as 
the anchor and utilizing quantization parameters of 22, 27, 32, and 37. JCT-VC test 
sequences including classes A, B, C, D, E, and F are used. Classes A, B, C, D, and E are 
camera captured content and class F contains screen content sequences. Table 1 shows the 
training sequences and test sequences that are used for the parameter derivation of the 
Bayesian classifier and the performance evaluation, respectively. To compare the 
performance of computational complexity, encoding times are measured with encoding 
time saving (ETS) as follows 

Table 1. Training and test sequences. 
Sequences Training Sequences Test Sequences 

Class A SteamLocomotiveTrain 
Traffic 

PeopleOnStreet 
NebutaFestival 

Class B Cactus 
ParkScene 

Kimono 
BasketballDrive 

BQTerrace 

Class C BQMall 
PartyScene 

BasketballDrill 
RaceHorses 

Class D BlowingBubbles 
BQSquare 

BasketballPass 
RaceHorses 

Class E  
FourPeople 

Johnny 
KistenAndSara 

Class F  

BasketballDrillText 
ChinaSpeed 
SlideEditing 
SlideShow 
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𝐸𝑇𝑆𝑆(%) = (𝐸𝑇𝑟𝑒𝑓 − 𝐸𝑇𝑡𝑒𝑠𝑡)/𝐸𝑇𝑟𝑒𝑓 × 100,                            (12) 
 

where 𝐸𝑇𝑟𝑒𝑓  and 𝐸𝑇𝑡𝑒𝑠𝑡 are encoding times of HM 16.6 and a test method, respectively. 
Table 2. Performances of the proposed method accodring to 𝜷.  

Class Sequence name 
𝛽 = 0.05 𝛽 = 0.2 𝛽 = 0.4 𝛽 = 0.6 𝛽 = 0.8 𝛽 = 1.0 

BD-BR 
(%) 

ETS 
(%) 

BD-BR 
(%) 

ETS 
(%) 

BD-BR 
(%) 

ETS 
(%) 

BD-BR 
(%) 

ETS 
(%) 

BD-BR 
(%) 

ETS 
(%) 

BD-BR 
(%) 

ETS 
(%) 

Class A 
PeopleOnStreet 0.31 17.27 0.62 22.72 0.89 25.23 1.12 26.98 1.30 27.87 1.45 29.13 

NebutaFestival 0.09 14.75 0.20 21.56 0.27 25.35 0.32 27.94 0.36 29.34 0.39 30.71 

Class B 
Kimono 0.15 15.7 0.37 21.79 0.50 24.7 0.59 26.63 0.67 27.56 0.72 28.74 

BasketballDrive 0.13 16.69 0.38 22.42 0.58 25.53 0.79 27.55 0.96 28.39 1.10 29.64 

BQTerrace 0.08 16.29 0.23 22.38 0.37 25.76 0.52 28.01 0.66 29.14 0.77 30.6 

Class C 
BasketballDrill 0.11 16.46 0.32 22.11 0.56 24.83 0.76 26.55 0.96 27.47 1.14 28.6 

RaceHorses 0.14 13.99 0.36 20.59 0.55 23.99 0.74 26.19 0.90 27.36 1.04 28.87 

Class D 
BasketballPass 0.22 16.4 0.52 22.51 0.84 25.13 1.09 27.05 1.34 27.96 1.52 29.2 

RaceHorses 0.21 13.92 0.49 20.60 0.78 23.97 1.04 26.35 1.27 27.74 1.46 29.25 

Class E 

FourPeople 0.23 19.60 0.53 23.38 0.77 25.72 0.99 28.86 1.16 28.56 1.31 28.80 

Johnny 0.23 20.52 0.62 24.05 0.82 26.33 1.02 29.60 1.17 29.26 1.30 29.45 

KristenAndSara 0.26 20.49 0.60 23.14 0.84 25.39 1.05 29.96 1.22 28.18 1.34 28.59 

Average (Class A ~ Class E) 0.18 16.84 0.44 22.27 0.65 25.16 0.84 27.64 1.00 28.24 1.13 29.30 

Class F 
(Screen 

Contents) 

BasketballDrillText 0.25 17.56 0.53 21.67 0.78 24.07 1.01 27.83 1.21 27.84 1.40 28.33 

ChinaSpeed 0.68 17.92 1.44 22.77 2.10 24.88 2.61 27.91 3.04 27.86 3.40 28.56 

SlideEditing 1.11 22.75 2.01 25.30 2.77 26.91 3.32 30.04 3.78 29.91 4.18 30.48 

SlideShow 0.71 27.88 1.12 27.94 1.54 28.69 1.73 31.61 2.03 29.79 2.16 30.02 

Overall Average 0.31 18.01 0.65 22.81 0.94 25.41 1.17 28.07 1.38 28.39 1.54 29.31 

 

Table 3. Performances of Lee’s method [15] and Zhang’s method [16].  
Class Sequence name Lee [15] Zhang [16] 

BD-BR (%) ETS (%) BD-BR (%) ETS (%) 

Class A 
PeopleOnStreet 0.86 21.43 0.17 15.68 
NebutaFestival 0.39 17.10 0.04 17.3 

Class B 
Kimono 1.26 23.26 0.05 15.37 
BasketballDrive 0.99 26.03 0.17 15.18 
BQTerrace 0.57 24.83 0.10 15.65 

Class C 
BasketballDrill 0.76 23.00 0.20 14.46 
RaceHorses 0.82 19.94 0.15 15.39 

Class D 
BasketballPass 0.94 22.28 0.30 15.09 
RaceHorses 0.70 21.04 0.27 15.67 

Class E 
FourPeople 1.05 25.31 0.34 16.15 
Johny 1.12 28.01 0.29 15.83 
KristenAndSara 1.04 27.65 0.35 15.51 

Average (Class A ~ Class E) 0.88 23.32 0.20 15.61 

Class F 
(Screen Contents) 

BasketballDrillText 0.82 23.68 0.40 17.38 
ChinaSpeed 2.34 24.30 1.23 16.33 
SlideEditing 3.31 28.32 1.59 17.82 
SlideShow 1.13 31.45 0.54 16.57 

Overall Average 1.13 24.23 0.39 15.96 
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First, the individual performance of the proposed fast intra mode decision method 
employing the modified minimum-risk Bayesian classifier with the relative SATD is 
evaluated. Table 2 shows the performance of the proposed method in terms of coding 
efficiency and computational complexity when the acceptable BD-rate increases 𝛽, which 
determines the loss factor λ� of the proposed classifier like (11), is equal to 0.05, 0.2, 0.4, 
0.6, 0.8, and 1.0. According to 𝛽, the proposed Bayesian classifier reduces complexity by 
18.01% to 29.30% in the ETS with negligible coding loss of 0.31% to 1.13% in the BD-rate 
relative to HM 16.6 for JCT-VC test sequences including classes A, B, C, D, and E. The 
experimental results of class F, screen content sequences, have higher complexity 
reduction compare to other classes, but also have increased coding loss. It is observed that 
both coding loss and complexity reduction increase as 𝛽 is a higher value. The high 𝛽 
tends to generate a low value of the loss factor λ� as in (11), which implies that the risk of 
the mode discarding is low. Affected by the low loss factor, the proposed minimum-risk 
Bayesian classifier Ψ(𝛾) is more likely to select subsets with small numbers of modes for 
the RDO candidate set. This is the reason for the higher coding loss and the higher 
complexity reduction when the 𝛽 is high. Even though the coding loss gets higher, it is just 
negligible at the maximum 1.13% BD-rate. The experimental results verify that the 
proposed method can reduce computational complexity significantly while retaining 
coding efficiency. The experiments also demonstrate that the computational complexity 
reduction and the coding efficiency are tightly associated with the loss factor determined 
by 𝛽 . Thus, the proposed method can provide a good trade-off model between the 
computational complexity and the coding efficiency that is represented as an exponential 
function as in (11). 

In most ranges of 𝛽, the sequence NebutaFestival has the largest encoding complexity 
reduction. For instance, its ETS is 30.71% when 𝛽 is equal to 1.0. Furthermore, this 
sequence has a very low coding loss. Because it has very sharp edges and dominant 
directions of texture, the SATD costs of intra prediction modes tend to be significantly 
different from each other, and the relative SATD cost of subsets thereby decreases rapidly 
as the total mode number of the subsets increases. Therefore, subsets with small numbers of 
modes are likely to be decided as the RDO candidate set by the proposed classifier. On the 
other hand, sequences PeopleOnStreet, BasketballPass, and RaceHorses containing many 
moving objects and motion blurs have worse coding losses since the RMD modes have 
similar SATD costs and thus it may be difficult to find the target subset 𝑆̂𝑆 by using only the 
relative SATD.  

For comparison with the conventional methods, experimental results of Lee’s method 
[15] and Zhang’s method [16] are listed in Table 3. Lee’s method achieves an average 
encoding time reduction of 23.32% in the ETS with coding loss of an average 0.88% 
BD-rate relative to HM 16.6. Compared with Lee’s method, the proposed Bayesian 
classifier can achieve a slightly better complexity reduction of 25.41% in the ETS with 
almost the same coding loss when 𝛽 is equal to 0.4. Zhang’s method reduces the encoding 
time by an average 15.5% in the ETS while the coding loss is 0.20% BD-rate relative to 
HM 16.6. Compared with Zhang’s method, the proposed Bayesian classifier also obtains 
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similar coding loss with increased the ETS when 𝛽 equal to 0.05. As shown in these 
experiments, Lee’s method obtains more complexity reduction with lower coding 
efficiency, whereas Zhang’s method achieves less complexity reduction with higher coding 
efficiency. It is clear that the complexity reduction and the coding efficiency are inversely 
proportional. Compared with these methods showing the constant performance, the 
proposed Bayesian classifier can provide not only the same or slightly better performance, 
but also a wide range of complexity reduction control from 16.84% to 29.30% in the ETS 
by controlling 𝛽. 

The proposed method can be harmonized with Zhang’s method and/or Lee’s method. 
Fig. 5 shows the combined scheme that harmonizes the proposed Bayesian classifier, 
Zhang’s method, and Lee’s method. In this combined scheme, Lee’s method is first applied 
since it is very simple and the RDO candidate set of Lee’s method is only one mode. If the 
criteria of Lee’s method are not satisfied, the proposed Bayesian classifier and Zhang’s 
method are conducted simultaneously. The proposed Bayesian classifier decides a 
preliminary RDO candidate set 𝑆́𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  by using decision function Ψ(𝛾). Meanwhile, 
another preliminary RDO candidate set 𝑆́𝑆𝑍ℎ𝑎𝑛𝑔  is obtained by Zhang’s method. The subset 

1st mode is MPM?

Rough Mode Decision 
(RMD)

Proposed Bayesian 
Classifier

𝑆́𝑆 = 1 

𝑆́𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝑆́𝑆 = min�𝑆́𝑆𝑍𝑍ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑆́𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � 

𝑆́𝑆𝑍𝑍ℎ𝑎𝑎𝑎𝑎𝑎𝑎  

Select best mode

yes

no

Zhang

Rate-Distortion 
Optimization for     modes𝑆́𝑆 

8 for 4x4
8 for  8x8
3 for 16x16
3 for 32x32
3 for 64x64

 
Fig. 5. The combined scheme with Zhang’s method, Lee’s method, and the proposed Bayesian 

classifier. 
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with fewer modes between 𝑆́𝑆𝑝r𝑜𝑝𝑜𝑠𝑒𝑑  and 𝑆́𝑆𝑍ℎ𝑎𝑛𝑔  is selected as the final RDO candidate set 
𝑆́𝑆. If the number of modes of 𝑆́𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  and 𝑆́𝑆𝑍ℎ𝑎𝑛𝑔  are identical, 𝑆́𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  is selected as 
the RDO candidate set. The individual combinations with Lee’s method and Zhang’s 
method, respectively, are also implemented. Table 4 lists the performance of the various 
combinations relative to HM 16.6 under the condition of 𝛽 equal to 0.05. As shown in the 
table, each of the conventional methods achieves more than 4% complexity reduction in the 
ETS with very slight additional coding loss when it is combined with the proposed method. 
In particular, the combined scheme of all the three methods obtains an average 31.53% 
ETS with a coding loss of 0.94% BD-rate. This scheme has more complexity reduction 
with less coding loss than the individual performance of the proposed method at 𝛽 equal to 
1.0.  

All of Lee’s method, Zhang’s method, and the proposed method have an approach that 
speeds up intra prediction mode decision by reducing the number of intra prediction 
candidate modes in the RDO process. The proposed method may be harmonized with fast 
RDO methods having other approaches. For example, the proposed method can be 
combined with early CU splitting and pruning methods that decide the size of CU quickly. 
The CU pruning methods should also compute costs of all intra prediction modes for each 
CU size. Therefore, the proposed method reducing the number of the candidate modes is 
able to be harmonized with these methods. The harmonized method may be efficiently 

Table 4. Performances of combinations of the proposed method, Lee’s method, and Zhang’s method 
(𝛽 = 0.05). 

Class Sequence name 
Proposed + Lee[15] Proposed + Zhang[16] Proposed + Lee [15]+ 

Zhang[16] 
BD-rate Y 

(%) 
ETS 
(%) 

BD-rate Y 
(%) 

ETS 
(%) 

BD-rate Y 
(%) 

ETS 
(%) 

Class A 
PeopleOnStreet 0.98 28.89 0.41 21.50 1.06 31.54 
NebutaFestival 0.34 27.38 0.11 21.66 0.35 31.76 

Class B 
Kimono 0.77 29.03 0.18 20.08 0.79 31.57 
BasketballDrive 1.01 31.31 0.26 20.98 1.10 33.41 
BQTerrace 0.67 31.01 0.16 21.79 0.73 33.77 

Class C 
BasketballDrill 0.94 28.91 0.28 20.67 1.08 31.44 
RaceHorses 0.78 27.62 0.24 20.00 0.86 31.10 

Class D 
BasketballPass 1.18 28.98 0.43 20.63 1.31 31.87 
RaceHorses 1.04 27.19 0.41 20.01 1.16 30.78 

Class E 
FourPeople 0.74 26.57 0.46 22.77 0.92 30.25 
Johny 0.76 28.35 0.47 22.41 0.93 30.96 
KristenAndSara 0.73 26.70 0.49 21.79 0.94 29.86 

Average (Class A ~ Class E) 0.83 28.50 0.33 21.19 0.94 31.53 

Class F 
(Screen 

contents) 

BasketballDrillText 0.72 24.95 0.53 22.12 0.95 29.38 
ChinaSpeed 1.94 24.71 1.50 22.32 2.69 28.91 
SlideEditing 2.68 27.98 2.01 26.55 3.53 33.39 
SlideShow 1.32 30.60 0.99 27.39 1.48 32.49 

Overall Average 1.04 28.14 0.56 22.04 1.24 31.41 
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faster than a single method like the results of Table 4. 

6. Conclusion 
This paper introduces a modified minimum-risk Bayesian classifier using the relative 
SATD to accelerate the intra prediction mode decision of HEVC encoders. The proposed 
Bayesian classifier decides the subset that is likely to have the RDO best mode as the RDO 
candidate set, which can reduce the total number of modes to be evaluated in the RDO 
process, discarding unnecessary higher-SATD modes. Furthermore, the proposed method 
provides a good trade-off model between the computational complexity and the coding 
efficiency that is represented by the loss factor. As shown in the experimental results, the 
proposed method could reduce the encoding time by up to 30% with a negligible coding 
loss of 1% BD-rate for the All Intra Main case. Moreover, the conventional methods, Lee’s 
and Zhang’s methods, could achieve more complexity reduction combined with the 
proposed method. The proposed method can contribute to the design of fast HEVC 
encoders. For future work, more encoding time saving would be achieved if the proposed 
method is combined with early CU splitting and pruning methods. 
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