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Abstract 
 

Biometric recognition systems have been widely used for information security. Among the 
most popular biometric traits, there are fingerprint and face due to their high recognition 
accuracies. However, the security system that uses face recognition as the login method are 
vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this 
study, we propose a fast and robust method to detect face-spoofing attacks based on the 
analysis of spatial frequency differences between the real and fake videos. We found that the 
effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier 
spectra and, therefore, it is adequate to use the information about those regions to classify the 
input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we 
first divide the frequency domain image into local blocks, classify each local block 
independently, and then aggregate all the classification results by the weighted-sum approach. 
The effectiveness of the methodology is demonstrated using two different publicly available 
databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. 
Experimental results show that the proposed method provides state-of-the-art performance by 
processing fewer frames of each video. 
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1. Introduction 

Unlike a password-protected security system, biometric-based information security system 
use behavior, physical movement, or chemical traits to recognize an authorized person. The 
most common cues of the biometric system are face, iris, periocular [1], fingerprint, voice, and 
DNA. Recently, face recognition, in particular has gained wide attention and is being 
extensively applied in security system [2]. Since the release of Ice Cream Sandwich, the 
Android OS has come with a built-in face authentication system to unlock the mobile phone 
[3]. However, the vulnerabilities of the security system, which are based on facial 
characteristics, have been experimentally shown. The Security and Vulnerability Research 
Team of the University of Hanoi has demonstrated how to spoof and bypass the practical 
security system using fake facial images of the authorized users [4]. Therefore, addressing the 
face spoofing attacks is crucial to enhance the security of the facial biometric system to the 
level of practical use. 

A spoofing attack occurs when a person with no authority tries to masquerade an authorized 
person by falsifying the data captured by acquisition sensors [5]. In the case of iris-based login 
system, it is difficult to acquire a high-resolution iris image of an authorized person [6], [7]. 
Spoofing in fingerprint-based login system is also rather difficult, as it requires obtaining the 
fingerprint of an authorized person and printing it on a special piece of paper or silicon surface 
[8]. On the other hand, face recognition-based login system are more user-friendly, but are 
more susceptible to spoof attacks, as the source data of an authorized person can easily be 
obtained from social network websites, such as Facebook, Twitter, Instagram, etc., or can be 
directly taken from the user at a distance [9].  

In the context of facial biometrics, with regard to the modalities of the data, spoofing attacks 
can be classified into the following three categories: (1) photograph, (2) video, and (3) 3D 
facial mask. If anyone of these types of data is successfully used, the facial biometric system 
becomes fragile [10]. In order to enhance the security of this system, the biometric community 
has developed many countermeasures. A typical counter-measure against spoofing is 
movement detection that aims at detecting physiological signs of life, such as eye blinking, 
facial expression changes, and mouth movements. Another counter-measure consists of 
combining facial recognition with other biometrics modalities, such as speech. There are also 
other approaches to detect face spoofing based on the structure from motion using the depth 
information [5]. 

In this paper, we propose a fast and robust method to detect spoofing attacks in face 
recognition-based login system. The proposed approach analyzes 2D Fourier spectra as the 
countermeasures of video-based spoofing attacks, namely, the replay-video attack and the 
print-photo attack. To this end, we use gradient-based descriptor to extract discriminant 
features from frequency domain spectra of the real and fake videos. Then, these features are 
used to train multiple Support Vector Machine (SVM) classifiers [49], [50] to distinguish 
between real and fake videos.  

This paper is organized as follows. Section 2 overviews related works on face-spoofing 
detection methods. Section 3 provides a comprehensive description of the proposed method. 
Section 4 presents the experimental setup using publicly available databases, outlines the 
experimental results of the proposed method, and compares them with those available with the 
state-of-the-art system. Section 5 draws conclusions and discusses further research directions. 
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2. Related Work 
Overall, there are four categories of countermeasures for spoofing attacks: (1) data-driven 
characterization, (2) user behavior modeling, (3) user interaction, and (4) additional devices 
for multi-modalities [11]. Our proposed method belongs to the data-driven characterization 
category, which does not require to process consecutive frames in contrast with (2), no user 
interaction in contrast with (3), and no additional devices as in (4). In what follows, we review 
some of the major countermeasures for spoofing attacks. 

Data-driven characterization methods are based on the analysis of texture and reflectance 
properties. For example, Li et al. [12] proposed an anti-spoofing method for photo-based 
spoofing attacks under the assumptions that the size of a photo is usually smaller than a live 
face and that facial expressions in photos are static. Under these circumstances, spoofing 
videos would contain fewer high frequency components than real videos. These characteristics 
can be captured by analyzing the 2D Fourier spectrum. Furthermore, Tan et al. [13] proposed 
an anti-spoofing method which considers Lambertian reflectance to distinguish between real 
accessing videos and spoofing-attack videos. This approach is based on the assumption that 
surface roughness is different between valid accessing videos and spoofing-attack videos. The 
authors used the variational retinex-based method and difference-of-Gaussian (DoG) to 
extract latent reflectance features. The authors reported the results on a publicly available 
database (NUAA Database) that consists of true accesses and spoofing attacks of 15 subjects 
in two different qualities, i.e., photo and laser-print. In addition, Peixoto et al. [14] proposed a 
method by extending the technique proposed by Tan and co-authors [13] to detect video-based 
spoofing attacks. They used the fact that the brightness of the LCD screen affects the 
re-captured image from the original image. The method proposed a preprocessing step which 
consists of adaptive histogram equalization before extracting latent reflectance features for 
capturing the effect of the brightness of the LCD screen. The experimental results on the 
NUAA Database showed that the proposed method reduces the classification error by over 
50% for the quality of laser-print dataset. Furthermore, Maatta et al. [5] proposed a method 
based on the micro-texture analysis. In this methods, Local Binary Patterns (LBP) for 
micro-texture analysis and Support Vector Machine (SVM) classifier are used. In the method 
proposed by Schwartz et al. [15], several feature descriptors to describe facial information are 
combined. This method focuses on facial regions and extracted holistic feature descriptors to 
describe facial information, such as shape, color, and texture. Gragnaniello et al. [47] assess 
the potential of several descriptors including Weber Local Descriptor (WLD) for the liveness 
detection task in anti-spoofing systems. Another local descriptor called Weber Local Binary 
Pattern (WLBP) [53], which combines the discriminability of LBP and WLD is effectively 
used for blink (liveliness) detection [52]. Sometimes, feature learning methods such as [54-56] 
are also used along with these feature extraction methods to avoid the curse of dimensionality 
problem.  

A new and more challenging face anti-spoofing database called CASIA Face Anti 
Spoofing Database (CASIA-FASD) was published by Zhang et al. [16], introducing a new 
type of spoofing attack named Cut Photo Attack. The authors also presented 6 different 
protocols (see Section 4 for further detail) and the corresponding baseline results. The 
proposed method uses multiple Difference of Gaussian filters (DoG) to extract high-frequency 
information from face images, which is treated as the liveness clue. Galbally et al. [17] 
proposed 14 image quality features to distinguish between real and fake videos. The image 
quality measure (IQM) includes pixel difference measures, correlation-based measures, 
edge-based measures, etc. Once the feature vector is generated, the input image is classified as 
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real or fake using a simple Linear Discriminant Analysis (LDA) classifier [51]. However, the 
IQM approach largely depends on the quality of the spoof video and hence does not yield good 
results on various data in CASIA-FASD. Similarly to Galbally et al. [17], Wen et al. [18] 
proposed the use of four different features (specular reflection, blurriness, chromatic moment, 
and color diversity) to define the image distortion for face-spoof detection. An ensemble 
classifier with multiple SVMs trained for different face spoof attacks, such as printed photo 
and replay video, was used for classification. The authors also collected a new database, 
MSU-MFSD [18] and published baseline results on this dataset. The proposed technique 
shows good results under both intra- and inter-database settings. 

Contrary to using only gray-scale images [19], Boulkenafet et al. [20] recently proposed 
including the chrominance information alongside with the luminance information while 
considering texture analysis for face anti-spoofing. The authors used the joint color-texture 
information from the luminance and chrominance channels using a color LBP descriptor and 
presented promising results on CASIA and Replay-Attack databases. Extending this work one 
step ahead, Boulkenafet et al. [21] conducted extensive experiments on the two datasets and 
MSU-MFSD. In their experiments, they analyzed two more feature descriptors, 
Co-Occurrence of Adjacent Local Binary Patterns (CoALBP) and Local Phase Quantization 
(LPQ), and presented the state-of-the-art results. 

Rather than using different texture-based features and evaluating their performances, Yang 
et al. [22] trained a deep convolutional neural network (CNN) that could learn features of a 
high discriminative ability in a supervised manner. The authors also demonstrated the positive 
role of the background region in face anti-spoofing by training the CNN with frames of 
different spatial scales, including the background region other than the face region. The 
features extracted from the last fully-connected layer of the CNN were then used to train SVM 
to classify the video as real or spoof. Xu et al. [23] extended this work by incorporating Long 
Short-Term Memory (LSTM) units with CNN. Their results show a great improvement on 
CASIA-FASD as compared to the hand-crafted features. The use of CNN presents an effective 
measure for anti-spoofing; however, the computational complexity in the training phase incurs 
extra delays that require special hardware for acceleration. 

Regarding the methods based on user behavior modeling, typical anti-spoofing methods 
consider physiological signs, such as eye blinking or movements of facial parts [10] for 
detecting photo-based spoofing attacks. For example, using the physiological sign of eye 
blinking that occurs approximately once every 2-4 seconds, Pan et al. [24]proposed a 
photo-based anti-spoofing attack method. Specifically, they used an undirected conditional 
random field framework to model eye-blink with hidden Markov models. Furthermore, 
Tirunagari et al. [25] used the property of dynamic mode decomposition (DMD) to represent 
temporal information of entire video as a single image with the same dimension as the images 
contained in the video for the purpose of capturing liveness cues. Tirunagari et al. claimed that, 
unlike Principle Component Analysis (PCA), DMD treats a video as a sequence of images and 
projects them in the principle motion subspaces. As a result, DMD is superior to PCA in 
classifying motions. The authors proposed a classification pipeline that consists of DMD, LBP 
feature extraction, and SVM-based classification. Although the DMD-based method showed 
0% HTER on Replay-Attack dataset when all frames of the complete video (240 frames) were 
processed, the HTER increased drastically when fewer than 240 frames were used. 

In addition, Pinto et al. [26] proposed to capture noise signatures generated by the replay 
video to distinguish between spoofing attacks and valid access. To capture the noise signature, 
the authors used visual rhythm on the 2D Fourier spectrum space and extracted the gray-level 
co-occurrence matrices (GLCM) from the visual rhythm. They reported perfect classification 
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performance on a subset of Print-Attack Database [9]. However, their method requires several 
frames to compute the visual rhythm. The authors considered only two regions of interest in 
the 2D Fourier spectrum image to construct two types of visual rhythms, namely: (i) horizontal 
and (ii) vertical visual rhythm formed by central horizontal and vertical lines, respectively. 
Pinto et al. recaptured the print-attack dataset from Print-Attack Database using 6 different 
monitors for the evaluation of their method. However, this biases their evaluation results with 
respect to the quality of the used LCD screens. 

Contextual information comes into play when the quality of texture is not sufficiently good 
to distinguish between noises generated by recapturing or the low-quality camera or the 
recapturing device does not produce visible noisy patterns. In this case, scenic cues can be 
exploited to determine whether any suspicious object is present in the observed scene [27]. 
Yang et al. [22] and Xu et al. [23] also proved that the use of the background region has a 
positive effect on face anti-spoofing. Pan et al. [28] used the background region by proposing 
the scene context analysis method. They considered not only the facial region but also the 
background scene that is already known for the security system in their experiments. The 
authors used cues related to facial information, such as eye blinking, and also analyzed the 
background scene context. Komulainen et al. [29] proposed to detect the spoofing medium in 
order to detect a spoofing attack. They made use of the fact that we, humans, rely on contextual 
information (e.g., the presence of hand holding the screen or photo) to perform spoofing 
detection. In a similar fashion, their algorithm tries to find the scenic cues, including the 
presence of an attacker, hand, and misalignments in the upper-body and torso, to detect 
spoofing attacks. Some other work addressed the multi-modal analysis of the system 
combining facial analysis with other biometric traits, such as speech [30] and gait. Application 
specific sensors were also used to acquire multi-spectral [31] or near-infrared images [32]. 

In this study, we also propose to use 2D Fourier spectrum images; however, rather than 
using the complete spectrum images, we divide the spectrum image into discrete regions. We 
compute the SIFT descriptors from the discrete regions and train SVM classifiers. At test time, 
the regions with high classification accuracies are used, which not only reduces the 
computational cost but also yields state-of-the-art results using only a small number of frames.  

3. Proposed method 
One of the key foci of the proposed method is to find noisy patterns (including but not limited 
to moiré patterns) appearing in the spoofing video. Firstly, these noisy patterns are induced in 
the spoofing video due to the spatial frequency differences between the display and the 
acquisition device [33]. Spatial frequency is a characteristic of any structure that is periodic 
across positions in space. It is a measure of how often sinusoidal components (as determined 
by the Fourier transform) of the structure repeat per unit of distance. Alternatively, the spatial 
frequency can be defined as the level of detail present in a stimulus per degree of visual angle. 
A scene with small details and sharp edges contains more amount of high spatial frequency 
information than the one composed of large coarse stimuli [16], [34]. For example, Fig. 1 (a) 
has much detail (i.e., high spatial frequency information), while the high spatial frequency 
components have been removed in Fig. 1 (b), (c), and (d). The same effect of spatial frequency 
difference is observed in Fig. 1(e) and (g), especially in the forehead region (Fig. 1(f)). Fig. 1 
(h), (i), and (j) are the mesh plots of frequency domain equivalents of Fig. 1 (a), (d), and (g) 
respectively (mesh plots are used for illustrating the distribution of low and high frequency 
components). It is also evident that the removal of high spatial frequency components from 
Fig. 1(h) (frequency domain equivalent of Fig. 1 (a)) causes the concentration of 
low-frequency components in the center region of the 2D frequency plot in Fig. 1 (i) 
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(frequency domain equivalent of Fig. 1 (d)) and Fig. 1 (j) (frequency domain equivalent of Fig. 
1 (j)), respectively. 
 

 
Fig. 1. (a) Original image, (b), (c), and (d) are blurred images of (a). (e) Original video frame, (g) spoof 
video frame (warped photo attack) from CASIA-FASD and (f) shows a closer look of (e) and (g). (h), (i), 

and (j) are the frequency domain equivalent images of (a), (d), and (g), respectively. 
 

Secondly, consider the scenario when a camera captures the video of a real-world scene 
with the face of person ‘A’ (real video). Later, the same camera captures the video (fake video) 
of the printed photo of person ‘A’ or it recaptures the video of person ‘A’ being played on an 
LCD (of a cell phone, tablet PC, or desktop monitor). Even though the same camera is used to 
capture the real video and the fake video, an additional noise will be added while undergoing 
the capturing process twice [13]. Thirdly, face images printed on the paper surface (whether 
flat or warped) or the LCD screen are considerably different from that of a live face [12]. 
These differences also come from the fact that a human face is a 3D object and different parts 
of the human skin have their own optical qualities (i.e., absorption, reflection, scattering, or 
refraction), which other materials (e.g., paper, photographic paper, or electronic display) do 
not possess [6]. According to the Lambertian model [35], the intensity of light reflected from a 
point on a surface is given by the following (see Eq. (1)): 

( ) ( )0,max ILLdilluminatereflected uuuLIntensity •⋅⋅= ρ                                 (1) 
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where dilluminateL  is the illuminated light intensity coming from the direction Lu , reflected with 
intensity reflectedIntensity  from the surface point with albedo ρ  (constant of the surface that 

determines the ratio of light absorbed by the surface) and normal direction Iu . It is clear from 
Eq. (1) that even if we fix the lighting conditions, the reflected intensity is largely dependent 
on albedo ( ρ ) and the surface normal alone. In the case of 3D printed face masks, the normal 
surface can be made closer to that of a real 3D face, but it will generate a different albedo 
constant from that the skin of a person. Consequently, the frequency distribution analysis can 
reveal the difference of the reflectivity of light between the real and the fake video. 

 
Fig. 2. (a) Original Image (b) Warped Photo Attack (c) Cut Photo Attack and (d) Replay Video 

Attack. (e), (f), (g), and (h) are the frequency domain images of (a), (b), (c), and (d), respectively. Red 
boxes in the frequency domain images highlight that the characteristic patterns of spoofing attacks are 

more prominent in certain regions.  
 

All artifacts or noisy patterns, mentioned above get embedded in the recaptured image as 
high- and low-frequency spikes at different intervals and, therefore, the Fourier domain 
analysis can give a closer look at the difference between a real and a fake video. Fig. 2 shows 
the difference between a real video frame (Fig. 2 (a)) and three frames of a spoofing video (Fig. 
2 (b), (c), and (d)). Even though it is difficult to distinguish between a real and a spoofing 
video in the color domain, their differences become apparent in the frequency domain, as 
Fourier transform can better handle the small differences in spatial frequencies between the 
real and the spoof video. Therefore, we use the Fourier transformation to find the noisy 
patterns and difference of spatial frequency in the spoofing video. 

Another novelty of the proposed method is that, rather than processing the complete 2D 
frequency domain images to classify real and fake video frames, we exploited the fact that the 
impact of spoofing attacks is more severe in certain regions of 2D frequency domain images. 
This is evident in the highlighted areas (red boxes) in Fig. 2 (f), (g), and (h). To detect these 
specific frequency regions in a frequency image, we used a gradient-based descriptor (i.e., 
SIFT), as gradient-based descriptors are robust against brightness and small local variations. 
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This divide-and-conquer approach is widely used in face recognition tasks [48] to alleviate the 
dilemma of high data dimensionality and small samples.  
 

3.1 Fourier Transformation 
The Fourier transformation, which is an extension of the Fourier series, has been widely used 
in signal processing. A Fourier series is an expansion of a periodic function )(xf  in terms of 
an infinite sum of sin and cosine functions. The Fourier series make use of the orthogonality 
relationships of the sine and cosine functions. In image processing, the discrete Fourier 
transform (DFT) converts the pixel values into frequencies, which enables for a separate 
analysis of low and high frequencies [36]. The low frequency generally represents a brightness 
of an image and the high frequency represents edges or noise. 

For an image of size Height × Width (H × W), the 2-D Discrete Fourier Transform is given 
by the following (see Eq. (2)): 
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where ),( jif  is the image in the color domain and the exponential term is the basis function 
corresponding to each point ( )yxF ,  in the Fourier space. Eq. (2) represents that the value of 
each point ( )yxF ,  is obtained by summing up the multiplications of pixel domain values 
with the corresponding base function. Throughout this paper, we call this ( )yxF ,  the 
frequency domain image. Also, in our paper, we used the Fast Fourier Transform (FFT) 
algorithm, which is a faster implementation of the DFT algorithm [36].  
 

3.2 Gradient-based descriptors 
Gradient, usually calculated by derivatives, is one of the most fundamental concepts in 
analyzing images in computer vision. The approach to object detection with gradient 
descriptors is robust against the changes of brightness, as gradient values are computed from 
the relative difference with the neighboring pixels.  

In our proposed method, we used the descriptors in Scale Invariant Feature Transform 
(SIFT) to extract features from a 2D Fourier spectrum image. SIFT [37] is a computer vision 
algorithm to detect and describe local features in images, which is successfully adapted in the 
object detection and recognition problems. The SIFT algorithm mainly consists of four steps. 
The first step is scale-space extrema detection from the Difference of Gaussian (DoG) 
pyramid of the input image. The second step is key-point localization, which includes 
discarding low contrast and edge response and refining positions of key points. The third step 
assigns an orientation value to each key-point to achieve invariance to image rotation. The 
final step assigns a descriptor to each key-point. To create the SIFT keypoint descriptor, a 
16×16 neighborhood around the key-point is taken, which is further divided into 16 sub-blocks 
(4×4 size each). For each sub-block, an 8-bin orientation histogram is created. Therefore, the 
dimension of the SIFT descriptor vector is 128 bin values. 
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Fig. 3. Overall schematic representation of our proposed method 

 

3.3 Feature extraction and classification method 
Fig. 3 shows the overall schematic of the proposed counter-measure. The frames from the train 
videos were first resized to 320×240 and then converted to frequency domain images. 
Furthermore, each frequency domain image was divided into equal-sized blocks (i.e., 20×20 
pixels), without any overlap area, hence there are 192 blocks in a 320×240 frame. The reason 
for dividing the frame into smaller blocks is that the noisy patterns are more apparent in small 
local regions, rather than in the complete frame, in the frequency spectra. Next, we extracted 
the SIFT descriptors from each block. SIFT extracts 384-dimensional (128×3 channels) 
feature vectors from each block. Then we trained the SVM classifiers with the RBF kernel for 
each of the 192 blocks and used the development set to find the accuracies of the SVM 
classifiers of each block. We extracted 50 frames from each train video for training. The 
parameters for the RBF kernel were also tunned using the development set. Fig. 4 shows an 
example of classification accuracies of the SVM classifiers for all the 192 blocks in a 
frequency domain image. The accuracies highlighted with red color show the regions where 
the spatial frequency differences are prominent. Therefore, these discrete regions can 
effectively discriminate between the fake and the real frames. Those high accuracy regions are 
concentrated in four areas around the center of the image. According to this result, the center 
region and corner regions have less effectiveness in detecting the spoofing attacks. Dividing 
the frequency domain image into smaller blocks and using a small number of blocks with 
higher classification accuracies enables us to develop a fast and effective face-spoofing 
detection system. 
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Fig. 4. Classification accuracies of valid and fake videos for each block in a frequency domain image 

 

At the testing step, we extracted the SIFT descriptors only from the blocks that have 
classification accuracies above the threshold value (= 85%). We calculated the decision score 
for each selected block region using the trained SVM classifier of that block region. The final 
decision score for the complete frame was calculated by the sum of the weighted score values 
from different block regions. Let ir  be the accuracy of each selected box region at training 
time and intkeypoN  be the number of selected block regions. The weight value is the probability 
distribution for the accuracy of the selected block (see Eq. (3)). 

∑
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Let is  be the decision score of each selected box at test time and iS  be the decision score 
of each frame with intkeypoN  block regions. Then (see Eq. (4)): 
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Let frameN be the number of frames from a video used for spoofing attack detection, the 

final decision score finalS  can be calculated as follows (see Eq. (5)): 
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In summary, Eq.(4) and (5) correspond to the decision scores on the frame level and the 
video level, respectively. In the remainder of this paper, we will use the video level decision 
scores to evaluate the proposed method on the video level.    

 

4. Experimental results 
4.1 Databases 
We used four publicly available video anti-spoofing datasets to evaluate the proposed method, 
i.e., CASIA-FASD, Replay Attack DB, 3D Mask Attack Dataset (3DMAD) [43] and Unicamp 
Video Attack Database (UVAD) [44]. These databases have the characteristics that are 
mutually exclusive to each other (some of the subjects in Replay Attack DB overlap with those 
in 3DMAD dataset, but the attack videos in these two datasets completely differ), which helps 
to develop a generalized video anti-spoofing system to deal with real-world scenarios. We 
provide a brief introduction to these databases in the following section. 
 

4.1.1 CASIA Face Anti-spoofing DB 
This open-source dataset, collected by the Chinese Academy of Sciences (CASIA) Center of 
Biometrics and Security Research (CASIA-CBSR), contains a total of 50 subjects [16]. The 50 
subjects are divided into two subsets: 20 for train, and 30 for test. The real video of each 
subject is captured in three different qualities, described as High Quality (HQ), Normal 
Quality (NQ), and Low Quality (LQ). Furthermore, three different types of spoofing attacks 
(i.e., Cut Photo (CP), Warped Photo (WP) and Replay-Video (RV)) are recorded in three 
different qualities. Consequently, there are nine fake and three real videos per subject ((9 fake 
+ 3 real) × 50 subjects = 600 videos in total). The CP attack is implemented by capturing the 
video of the printed photo of a subject, whose eyes portion from the printed photo is cut and 
the attacker put his/her eyes behind the eyeholes of the printed photo to mimic the eye blinking 
effect. The WP attack is performed by capturing the video of the printed photo of a subject; the 
photo is slightly warped, rotated, and moved backward and forward to forge the liveliness 
effect. The RV attack is performed by recapturing the video of a subject played on an iPad. 
 

4.1.2 Replay Attack DB 
This publicly available dataset is provided by the IDIAP Research Institute, which is divided 
into train, development, and test subsets [9]. The database contains real and fake videos of 50 
subjects in two different background conditions: controlled (with uniform background and 
artificial lighting) and adverse (with non-uniform background and natural illumination). Three 
different types of attacks are performed, namely: i) mobile attacks are performed by capturing 
the print photo and video of a subject using iPhone and replaying them on the iPhone screen; 
ii) print attacks are implemented by videotaping the printed photo of a subject; and iii) high- 
definition video attacks are performed by displaying the video and photo of a subject on iPad 
at resolution (1024×768) and recapturing. Based on whether the attacking medium is held by 
hand or fixed with some rigid support, the fake videos are further divided into i) hand and ii) 
fixed. Hence, there are a total of 1,000 fake videos (50 subjects × 2 backgrounds × 2 (fixed or 
hand-held) × (2 mobile attacks + 1 print attack + 2 high definition attacks)) and 200 real videos 
(50 subjects × 2 backgrounds × 2 sessions). 
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4.1.3 3D Mask Attack Dataset 
This dataset is also publicly provided by IDIAP Research Institute, and similar to Replay 
Attack DB, this dataset is divided into train, development and test sets [43]. The overall dataset 
was acquired using a Kinect camera in 3 sessions, out of which first two sessions capture 5 real 
videos of each of the 17 subjects with frontal-view and neutral expressions. A time delay of 2 
weeks is kept between the acquisition of the first two sessions. The third session is dedicated to 
capturing 5 3D mask attack videos of each of the 17 subjects using the same acquisition device. 
The protocol to report the results divides the 17 subjects into 3 randomly chosen 
non-overlapping sets, i.e., the first 7 subjects for training, next 5 subjects for development and 
last 5 subjects for testing. In total there are 76,500 frames in the complete dataset (3 sessions × 
17 subjects × 5 videos per subject × 300 frames per video), out of which 21,000 frames belong 
to train valid and 10,500 frames belong to train fake set, 15,000 frames belong to development 
valid and 7,500 frames belong to development fake set, 15,000 frames belong to test valid and 
7,500 frames belong to test fake set. Each frame consists of an RGB and a depth image. 
However, we only used RGB images in our experiments. 
 

4.1.4 Unicamp Video Attack DB 
This open dataset consisting of 404 subjects is published by the Institute of Computing at 
University of Campinas (Unicamp) [44]. A total of 808 valid access videos of 404 subjects are 
acquired (2 videos per subject with different background) using 6 different cameras, and a 
total of 16,268 attack videos are acquired using 6 different cameras. The fake videos are 
displayed on 7 different display devices and each video is recaptured using 6 different quality 
cameras. The release version of the dataset contains 404 valid access and 9,882 attack videos. 
We followed the protocol III defined in [45] to report the results. Protocol III divides the 
dataset into training videos acquired using Sony, Kodak and Olympus cameras, and test videos 
captured using the other three cameras, i.e., Nikon, Canon and Panasonic. 

4.2 Evaluation Results 

4.2.1 Evaluation on CASIA Face Anti-spoofing DB 
As CASIA-FASD lacks a pre-defined validation set, we have used two-fold cross-validation 
to train and tune the parameters. We used the first 50 frames of the 10 train videos of the first 
10 subjects to train and tune our SVM classifiers by validating them on the rest of the 10 train 
videos of the next 10 subjects in one fold and interchanged the train and validation sets in the 
other fold. We also computed the per block accuracy of the SVM classifiers in each fold and 
averaged them over two folds. Then, the individual results on each CASIA-FASD protocol, as 
well as overall results on the entire database, were evaluated to compare our results with those 
available using the state-of-the-art techniques. Individual results on CASIA-FASD protocols 
are reported by [16], [17], [18], and [20]. Therefore, we summarize our experimental results 
on CASIA-FASD and the comparison of our method with [16], [17], [18], and [20] in terms of 
Equal Error Rate (EER) in Table 1. We used the maximum voting method to obtain the 
performances in the last column in Table 1 as [18]. Buolkenafet et al. [20] used feature 
averaging, while [16] and [17] did not specify which method they used to obtain the 
performances for all modalities. The results in Table 1 show that our proposed approach 
outperforms the results available with the use of the methods reported in [16], [17], [18] and 
[20]. It is also notable that our method achieves the performance given in Table 1 by 
processing only 10 frames, while [16], [17], and [18] processed 30 or more frames to obtain 
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their results. The results in Table 1 demonstrate that the proposed method is effective on 
different levels of certainty, but provides the best performance for each type of attacks among 
similar studies. 
 

Table 1. Spoofing attack detection performance on CASIA-FASD in EER (%) by the proposed 
method for different protocols and its comparison with [16], [17], [18], and [20] 

Method Protocol Warped Cut Video All modalities 
Zhang et al. 
[16] 

LQ 
NQ 
HQ 
All Qualities 

- 
- 
- 

16.00 

- 
- 
- 

6.00 

- 
- 
- 

24.00 

13.00 
13.00 
26.00 
17.00 

Galbally et al.  
[17] 

LQ 
NQ 
HQ 
All Qualities 

25.00 
23.30 
10.00 
26.10 

23.30 
16.70 
11.70 
18.30 

21.70 
23.30 
6.70 

34.40 

31.70 
22.20 
5.60 
32.40 

Wen et al. [18] HQ - - - 6.70 (max vote) 
Buolkenafet et 
al. [20] 

LQ 
NQ 
HQ 
All Qualities 

- 
- 
- 

7.5 

- 
- 
- 

5.40 

- 
- 
- 

8.10 

7.80 
10.10 
6.40 

6.20 (feature 
averaging) 

Proposed LQ 
NQ 
HQ 
All Qualities 

5.00 
10.00 
7.25 
6.00 

3.00 
8.33 
3.64 
2.20 

6.67 
1.67 
1.82 
0.00 

3.33 
5.56 
5.56 

0.00 (max vote) 
 

4.2.2 Evaluation on Replay Attack DB 
In our experiments on Replay-Attack DB, we also used 50 frames from each video in the 
train-valid and train-fake dataset to train the SVM classifiers. As the development dataset is 
separately provided with Replay-Attack database, we used this development dataset to tune 
the parameters of the RBF kernels and evaluate the classification accuracies of the SVMs of all 
the blocks per frame. We also set the threshold value at the minimum EER using train and 
development sets, to find the HTER value from the test set of Replay-Attack DB. The overall 
experimental results on Replay-Attack DB are shown in Table 2. Following the official 
Replay-Attack protocol, we have presented the results in terms of EER on the development set 
and Half Total Error Rate (HTER) on the test set, where HTER is given by the following (see 
Eq. (6)): 
 

( )
2

),(, DFRRDFARHTER ττ +
=                                              (6) 

where ),( DFAR τ and ),( DFRR τ  represent the false acceptance rate and false rejection rate, 
respectively, at a certain threshold value τ , on dataset D [19]. The value of τ is estimated on 
the EER using the development set. 

4.2.3 Evaluation on 3DMAD 
For the 3D Mask Attack Dataset, there are separate training, development and testing sets, and 
hence we trained our model using the train set, and fine-tuned our models using the 
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development set. Using the threshold obtained from the development set, we computed the 
HTER on the test set. We used the first 50 frames from all videos for training purpose, and we 
achieved best results when we processed 60 frames of the videos in development and test sets. 
Our spoofing detection scheme achieved HTER of 2.44% on the 3DMAD dataset, which is 
very close to the state-of-the-art [42] as shown in Table 2. 

4.2.4 Evaluation on UVAD 
Due to the unavailability of separate development set in UVAD, we divided the given train set 
into a new train set (approx. 70% of the given train set) and a development set (approx. 30% of 
the given train set). According to Protocol III, the training videos (valid access and attack) 
from Sony, Kodac and Olympus cameras consist of 344 valid access and 3,528 attack videos. 
The total test videos from Canon, Nikon and Panasonic cameras comprises of 60 valid access 
and 6,354 attack videos. We further divide the total train videos into a train set of 240 valid 
access and 2,470 attack videos, and a development set of 140 valid access and 1,058 attack 
videos, while we keep the test set the same as defined by Protocol III in [45]. We trained the 
proposed classifiers using a new train set and fine-tuned using the new development set. 
Finally, we computed the value of EER on the test set and reported the results in Table 2.  

4.5 Overall results 
The comparison between the proposed method and the state-of-the-art methods on the four 
datasets are summarized in Table 2. As can be seen in the results, the proposed method shows 
the best performance among similar studies on CASIA FASD and Replay-Attack DB. It is 
noticeable that the proposed method achieves the results on CASIA FASD given in Table 2 by 
processing only 10 frames of the video, while [21], [20], [18], [16], [23], [22],[19], [3], [25], 
and [17] use 30 or more frames to achieve the results given in Table 2.  
 

Table 2. Comparisons of spoofing attack detection performance between the proposed method and 
state-of-the-art methods on CASIA-FASD, Replay-Attack, 3DMAD and UVAD DB 

Method Replay-Attack CASIA 3DMAD UVAD 
EER (%) HTER (%) EER (%) HTER (%) EER (%) 

CoALBP+LPQ+HSV+YCbCr [21] 0.00 3.50 3.20 - - 
LBP+YCbCr+HSV [20] 0.40 2.90 6.20 - - 
LBP+SVM [18] - 7.41 - - - 
WLD [47] - 17.5 - 5.2  
DMD [25] - 0.00 21.75 - - 
LSTM-CNN [23] - - 5.17 - - 
DIP [38] - 5.00 5.07 - - 
CNN [22] 2.14 6.10 4.87 - - 
LBP-TOP [19] 7.90 7.60 10.00 - - 
14-IQF [17] - 15.20 32.40 - - 
Fisherface [39] - - 11.80 - - 
Correlation [3] - 11.80 30.33 - - 
DoG+SVM [16] - - 17.00 - - 
Deep Repesentation [42]  0.75 - 0.00 - 
Codebook [45] - 2.75 14.00 8.00 29.87 
Deep dictionary via greedy learning 
(DDGL) [46] 

- 0.00 1.3 0.00 16.50 

Proposed method 0.00 0.00 0.00 2.44 26.00 
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We did not use the depth information for detecting spoofing attack in 3DMAD dataset 
because our proposed method is based on the analysis of 2D frequency spectrum. Still, our 
scheme performs very well on the 3D mask attack database as compared to [45], and is closer 
to the state-of-the-art methods [42][46]. On UVAD dataset, our scheme achieved 26% EER on 
the test set, which is better than [45]. We believe that the reason for high EER on UVAD 
dataset is  small number of valid videos for training (as small as 20 valid access videos 
acquired using one type of camera), highly unbalanced numbers of valid and attack videos (20 
valid videos captured using Kodac camera against 2,828 attack videos recaptured using Nikon 
camera), and  high false positive in face detections. Thus, as can be seen from Table 1 and 
Table 2, our proposed method outperforms the state-of-the-art algorithms on CASIA-FAS and 
Replay Attack databases and shows comparable performances on 3DMAD and UVAD. We 
will consider using the depth information in our future work on the 3DMAD dataset. For the 
future work on UVAD dataset, we will employ a better face detection approach instead of 
using the face locations provided by the dataset, and perform extensive experiments by 
covering all the protocols of the dataset to handle the multi-modalities of the UVAD 
dataset. 

 

4.5 Processing overhead 
One of the key achievements of our proposed scheme is that it can process the frames at testing 
time very quickly. At testing time, FFT is applied to the input frame and then the SIFT 
descriptors are extracted from a small local region in the frequency image. On a core i5 2.40 
GHz processor and 8GB RAM, using opencv 2.4.9 implementation of FFT and SIFT and 
SVM implementation of LibSVM [40], the processing speed is found to be 0.024 
seconds/frame (the average of 50 frames of 20 videos). This processing time does not include 
face detection time, as  [18], [41] and [46] in Table 3 do not include face detection time either. 
The processing time of most of the published studies on face anti-spoofing is unknown and, 
therefore, we compare the computational time with only four other studies in Table 3. On the 
other hand, computation of the SIFT descriptors can be parallelized; thus, the processing speed 
is expected to get faster on a parallel processing platform like FPGA. Despite this, the 
processing speed of 0.024 seconds/frame is sufficiently fast for real-time processing. It is 
worth noticing that the proposed method shows worse EER as compared with that of the 
state-of-the-art method [46] by 9.5%, it is 14.5 times faster than [46], and 1.87 times faster 
than [42]. 
 

Table 3. Comparison of computational cost 
Method Processing Time (sec) Hardware Language 

Proposed 0.024 Core i5 @ 2.40 GHz, 
8GB RAM 

C++ 

IDA [18] 0.260 Core i7 @ 2.40 GHz, 
8GB RAM 

Matlab 

DDGL [46] 0.347 Xeon E5-2695 (12 
Cores) @ 2.40 GHz, 
128GB RAM 

Matlab 

Deep Representation 
[42] 

0.045 Intel i7 @ 3.50 GHz, 
Tesla K40 GPU 

Mixed 
implementation 
(Python, C++, Cuda) 

HOOF [41] 0.900 - Matlab 
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4.6 Deep learning based methods vs proposed method 
If we compare the results in Table 2 and Table 3 simultaneously, we can conclude that our 
scheme has several benefits over the deep learning based methods: 
 

a) The proposed scheme is lightweight/computationally less expensive as compared to 
the deep learning based techniques. 

b) The proposed scheme does not require special acceleration hardware to enable 
real-time processing, while the deep learning based methods require acceleration 
hardware for real-time processing. Table 3 shows that the proposed method achieves 
24millisecond processing time with just 4 CPU cores @ 2.4GHz and 8GM RAM, 
while the deep learning based method [46] achieve 347millisecond processing time 
even with 12 CPU cores @ 2.4GHz and 128GB of RAM. The scheme in [42] uses 
Intel i7 @ 3.5GHz with a Tesla K40 GPU. 

c) As shown in Table 3, the proposed scheme is 14.5 times and 1.875 times faster than 
the deep learning methods of [46] and [42], respectively. 

d) The deep learning methods typically require multiple hours to complete the training 
process, while the proposed scheme takes an average of 12 minutes to train the SVM 
classifiers. The deep learning method of [42] takes about one day to train the deep 
network, on average. 

5. Conclusions 
In this study, we proposed a face anti-spoofing method for the three types of face-spoofing 
attacks, namely i) Replay video attack, ii) Warped photo attack and iii) Cut photo attack. The 
proposed method uses the spatial frequency of the input frame to classify it as real or fake. We 
showed that a recaptured photo or a video contains distinctive characteristics due to the double 
capturing processes, which can be effectively detected by the 2D Fourier spectral analysis. We 
extracted the SIFT descriptors and trained the RBF kernel-based SVM from different regions 
of the 2D Fourier spectra; then, only those regions which have high distinctiveness were 
selected. At the testing time, we extracted the SIFT descriptors from the selected regions only 
and computed decision scores from them. We used weighted sum of the per-block decision 
scores for the frame level classification and the sum of the per-frame decision scores for the 
video level classification. The proposed method achieves state-of-the-art performances on the 
two publicly available challenging face anti-spoofing databases (0% EER on CASIA-FASD 
and 0% HTER on Replay-Attack DB) by processing only 10 frames in CASIA, as well as 50 
frames in Replay-Attack DB from the input video with minimal processing time (0.024 
seconds for each frame). The proposed method also performed reasonably well on 3D Mask 
Attack and UVAD datasets with unbalanced valid and attack videos and erroneous face 
detections. Directions for further research include the following: i) testing the proposed 
method under the cross-database scenario, ii) evaluation on MSU-MFSD and iii) fusion of 
different gradient-based descriptors. 
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