
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019                                   1795 
Copyright ⓒ 2019 KSII 

A method based on Multi-Convolution 
layers Joint and Generative Adversarial 

Networks for Vehicle Detection 
 

Guang Han, Jinpeng Su and Chengwei Zhang 
Engineering Research Center of Wideband Wireless Communication Technique, Ministry of Education, Nanjing 

University of Posts and Telecommunications, Nanjing 210003, China 
[e-mail: hanguang8848@njupt.edu.cn] 

*Corresponding author: Guang han 
 

Received July 2, 2018; revised September 21, 2018; accepted October 28, 2018;  
published April 30, 2019 

 

Abstract 
 

In order to achieve rapid and accurate detection of vehicle objects in complex traffic 
conditions, we propose a novel vehicle detection method. Firstly, more contextual and 
small-object vehicle information can be obtained by our Joint Feature Network (JFN). 
Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by 
adding an improved version of the region proposal network in this network, and at the same 
time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression 
(NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle 
occlusion, the generator and discriminator can learn from each other in order to further 
improve the vehicle object detection capability. Finally, these candidate vehicle detection 
boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning 
Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we 
find that in terms of mAP, our method  exceeds  Faster-RCNN by 11.15%, YOLO by 11.88%, 
and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, 
YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in 
KITTI dataset. 
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1. Introduction 

vehicle detection based on video is especially important in a variety of computer vision 
applications, especially in traffic monitoring [1]. Traditional computer vision methods have 
made great contributions to the practical application of vehicle detection. However, because of  
vehicles’ own diversity including the occlusion, deformation and the impact of extreme 
weather changing, how to detect road vehicle with high accuracy and real-time, it is still a 
difficult problem. 

Traditional object detection methods can be divided into frame subtraction [2], adaptive 
background modeling [3] and optical flow method [4]. Among them, frame subtraction is a 
time difference between two consecutive pixels or three adjacent boxes in a vehicle video, and 
the calculation amount is small, but it is easy to generate a hollow phenomenon in the interior 
of a moving vehicle. Adaptive background modeling has a relatively small amount of 
computation, the background updating technology is used to accomplish adaptive updating of 
the background, and object can be segmented more accurately, but it is strongly affected by the 
weather outside. Optical flow method needs a large amount of computation and has poor 
anti-noise capability. Besides, because this method needs special hardware equipment, its 
application is limited. In order to further improve detection precision, deformation-based 
model DPM (Deformable Parts Model) [5] uses a star structure system, including the root and 
component filters and related deformation models for object detection, even if the object is 
partially occluded, it can also be successfully detected by DPM. However, it divides the 
pictures by moving the sliding window, and carries out HOG (Histogram of Oriented 
Gradient) feature extraction and SVM (Support Vector Machines) classification for each 
divided region. This process consumes a lot of computation.  

Since 2012, the deep convolutional neural networks [6, 7] have shown their rich 
representative power in a variety of computer vision applications, including object 
segmentation, object detection and semantic recognition. In object detection, the RCNN [8] 
based region has received great attention from scholars, it combines with object proposals, 
features learned by CNN and SVM classier for improving the detection precision. In order to 
further inprove the detection speed and accuracy, Fast RCNN [9] uses a region of interest 
(ROI) pooling layer and the multi-task loss to predict bounding-box positions. More recently, 
Faster-RCNN [10] achieves the state-of-the-art performance by using the RPN with shared 
convolution features to generate potential object locations and using cascade detection 
strategies to reduce candidate boxes. At last, it runs with a speed of 5 FPS on a single GPU. 
Recently, Fully Convolution Network (FCN) [11] shows impressive performance on semantic 
segmentation, the author combines the high layer information which is coarse with the low 
layer information which is fine for semantic segmentation. But it’s slow. In order to further 
improve the real-time detection performance, end-to-end object detection algorithms such as 
YOLO [12] and SSD [13] remove the region proposal network, which improves the detection 
speed and achieving real-time results. YOLO uses a global feature map and a fully connected 
layer to predict the detection boxes in a fixed set of regions. SSD uses two different 
convolution kernels to predict the category scores and offsets of a series of default boxes in 
multiple convolutional layers, which has greatly improved the accuracy and speed of detection. 
In [14], the author presents a comprehensive study of the effect of spatial resolution and color 
on the vehicle classification process in terms of accuracy and performance. In [15], it 
introduces the novel idea of using human social norms and human emotions to improve the 
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collision avoidance of autonomous vehicles. In [16], it presents a new approach to the 
detection, localization, and recognition of vehicles in infrared imagery using a deep 
convolutional neural network that completely avoids the need for manually-labelled training 
data by using synthetic imagery and a transfer learning strategy. However, in actual scenes, 
vehicles in the traffic surveillance are easily occluded, most vehicles are small and the weather 
changing is extreme. In this case, the above methods can’t solve the problems well. 

The generative adversarial network is a new idea of object detection. Its main idea is to 
adopt a generator model and a discriminator model. The generator model captures the 
distribution of the sample data and generates Gaussian or distributed noise to generate a 
sample similar to the real training data. The discriminator model is a binary classifier that 
estimates the probability of a sample from training data. In the process of training, both 
counteract learning and eventually reach a steady state. By using the structural association 
between objects of different scales and introducing low-level and fine-grained features to 
improve the representation of small objects, perceptual generative adversarial network [17] 
improves the detection rate of small objects. The method includes two sub-networks, the 
generator and sensor network. The generator network is a deep residual feature generation 
model that converts the initial poor features into high-resolution features. Perceptually 
resolved networks to distinguish small-object generate high-resolution features from real 
large-object features. However, this method also can’t solve the vehicle occlusion problem 
well. Besides, the speed of detection in perceptual generative adversarial network is relatively 
slow. 

Inspired by the above research, we have come up with a vehicle object detection algorithm 
which achieves high precision for detecting vehicle objects especially under conditions of 
occlusion and intense lighting changes based on jointing multiple convolutional layers and the 
generative adversarial networks. Firstly, by combining deep and coarse information with 
shallow and fine information, the convolution layers are fused to make the features more 
abundant. Secondly, proposed boxes are evolved by EPRN network. Then, the generative 
adversarial network makes full use of the characteristics of the vehicle data itself in its own 
unique way. However, our goal is to generate examples where detector is difficult to 
detect/classify, rather than trying to find hard examples through vehicle data. Meanwhile, we 
only add occlusions to the current existing examples by limiting the space of new positive 
generation, and the adversarial networks will predict occlusion between vehicles and learn its  
characteristics, as such occlusion could cause misclassification. Lastly, the boxes will be 
optimized to obtain the final vehicle detection boxes. The detection speed on the GPU Titan X 
can reach 8-10 FPS. 

2. Framework 
Fig. 1 shows the framework of our detection algorithm. The framework include Joint 

Feature Network (JFN), Evolved Region Proposal Network (EPRN), Mask Network (MaskN) 
and Fine-Tuning Network(FTN). JFN is in charge of extracting rich features by fusing 
different convolution layers from an image containing vehicles. EPRN uses soft-NMS 
algorithm to filter out a big number of candidate boxes that are unlikely to contain vehicles. In 
order to further improve the vehicle target detection capability, MaskN generates an example 
that includes the vehicle occlusion. It uses the features extracted by the ROI pooling layer as 
input image patches. FTN fine-tunes the position of the candidate boxes of the previous stage 
in order to obtain more accurate detection boxes.  

http://www.baidu.com/link?url=-YJfOpaiaQBxjW4YxkcnSjx9gS5me8QhZeIwlqFi9P07SZxK89pFtNr2qL3b4V--1wwc5CksP4JtqfWIq6OvhLFVq0_SIE8oGwuc43UM9PpuCyMYKTqJruZa9wCOo6W7Hz-LDh6AajkQ-i8wA9-e8CUs3dCmrnCStwHTHMVxVqbjT3AyASnMLSictCYl4qUD&wd=&eqid=d962f317000043ef000000055ba0eedb
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Fig. 1. The framework of our detection algorithm 

 (⊕ : feature concatenation from different networks.⊗ : dropout values) 

2.1 Joint Feature Network 
For the input image, we use the convolution and max-pooling layers in the VGG-16 [18] 

network and load the pre-trained weights on the Image-Net dataset [19]. It is a common 
strategy in some excellent deep learning networks in order to ensure that the detection can 
benefit from the large dataset. The high convolutional layers have strong semantic information, 
which is good for classification, but the resolution is low, which is not conducive to 
localization. In contrary, low convolutional layers have a better range to locate objects because 
they have higher resolution. Prior studies [20] show that jointing feature maps from different 
convolutional layers can improve detection accuracy to some extent. Therefore, we combine 
feature maps from conv1, conv3, and conv5. In order to make the multi-layer feature map have 
the same resolution, we down-sample the low-level conv1, and up-samples the high-level 
conv5 to align with the middle-level conv3 feature map. Each sampled result will be sent to the 
convolutional layer (Conv). The Conv operation not only can extract more semantic features, 
but also can compress them into a unified resolution. Lastly, these feature maps are normalized 
using Batch Normalization [21] to form a joint feature map with 192 channels. The joint 
feature map has the following two characteristics: (a) multi-level abstraction; (b) better 
resolution. 

2.2 Evolved Region Proposal Network 
In real road traffic，the background objects of the vehicle are often diverse. Thus, filtering 

out bad candidate boxes is crucial for the vehicle detection algor ithm. In order to achieve this 
goal, we adopt an evolved region proposal network. Behind the joint feature map, two 
convolution kernels of size 4×3×3 and 64×3×3 are applied respectively. Conv6_1 aims to 
decrease the number of channels in the JFN fusion feature map from 192 to 4, which can speed 
up the generation of candidate regions. The whole image and the output feature map are all 
split into fixed-size grids. Each of grid generates a big number of candidate boxes with fixed 
sizes of 4×4, 8×8, 16×16, 32×32, 64×64, 128×128 and different aspect ratios of 0.5, 1 and 1.5. 
The ROI pooling 1 crops out a 7×7×4 feature vector for each candidate box, and then returns 
the initial boxes’ coordinates ( , , , )x y w h  and detection score s through a 256-d full-connected 
layer, soft-NMS is used to filter out a big number of false candidate boxes. The dimension is 
reduced to 64 by Conv6-2, and a 7×7×64 feature vector for each candidate box after the initial 
screening is generated by ROI pooling 2. 
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NMS is a commonly used algorithm in deep learning object detection. It can generate 
detection boxes according to the vehicle detection score. The other boxes that are significantly 
overlapped with the box M corresponding to the highest detection score are suppressed. If the 
small object’s detection score is within the preset overlap threshold, the small object which is 
suppressed directly won’t able to be detected, thereby the detector performance will be 
degraded. Therefore, a linear weighted soft-NMS algorithm [22] is used in our paper. Instead 
of completely removing the detection score of the non-maximum detection boxes, The 
soft-NMS algorithm is to continuously attenuate it. 

The soft-NMS will attenuate the detection score of the adjacent detection box that has an 
overlapping area with the detection box M. The more highly overlapping the detection boxes 
with M, the more likely there will be false positive results, and their fractional attenuation 
should be more severe. When the IOU between the adjacent detection boxes and M exceeds 
the the presset threshold, the detection score of the detection box will be linearly degenerated. 
In this case, the detection boxes close to M are attenuated to a large extent, while the detection 
boxes far from M are not affected. The linearly weighted soft-NMS score reset function is as 
follows: 

i , ( , )
(1 ( , ), ( , ){ i t

i i i t

S IOU M B N
i S IOU M B IOU M B Ns <

− ≥=
                                      (1) 
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. B represents the 

initial detection box set, S  represents the score set corresponding to the initial detection boxes, 
tN  represents the NMS threshold, M  represents the detection box with the highest score, and 

( , )iIOU M B  represents the overlap between the detection box of B and M. 

2.3 Mask Network  
We are committed to generating a vehicle detector which is robust to occlusion. We try to 

automatically generate data that are hard examples for the vehicle detector to learn by means 
of adding the Mask Network. We are committed to generating occlusion in a finite space rather 
than  generating data directly across the entire pixel space. 

Mathematically, it is assumed that ( )F x  represents the original object detector network 
where x  is the region of interest. We assume that x  is labeled with a ground-truth class µ  
and a ground-truth bounding-box regression object ν . So detector provides two outputs 
including ( )F xµ  that represents object class output and ( )F xν  that represents predicted box 
location. Where ( )0 1F xµ≤ ≤ . The initial detector loss function is expressed as follows: 

[ ]( ( ), ) 1 ( ( ), )cls locLoss L F x L F xµ νµ λ µ ν= + ≥
                                (2) 

There is a hyper-parameter λ  control the loss balance between classification and boxes 
location. The iverson bracket indicator function [ ]1µ ≥  evaluates to 1 when 1µ ≥  and 0 
otherwise. By convention, the catch-all background class is labeled =0µ . There is no concept 
of a ground-truth bounding box, when the ROI is the background, locL  is is equal to 0. 

The first item on the right side of the equation is about the softmax loss of the category, 
( ( ), )=-log( ( ))clsL F x F xµ µµ  is log loss function for true class µ . The second item is location loss 

function between ground truth box location and predicted bounding box location (Applies 
only for foreground classes).  
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It is assumed that ( )A x represents the generation adversarial network which is given a 
feature x computed on the image I , and generates new adversarial sample Ax . Since the 
batches contain few original images and samples of adversarial, the loss function of the 
detector remains the same. We use the following generation adversarial network loss function: 

1 ( ( ( )), )A clsL L F A xµ µ= −                                                  (3) 
When characteristics generated by the adversarial network are easily classified by the object 

detector, the loss value of AL  will be very high. On the contrary, if the features generated by 
the adversarial network are difficult to identify, we will get high loss of detector and low loss 
of adversarial network. 

We use the mask network to generate vehicle occlusions on the depth features of foreground 
objects in the vehicle image. We treat the region features obtained for each foreground object 
after ROI pooling 2 as the input to the mask network. Once the features of an object are given, 
the mask network will generate a mask, which can indicate that the specific part of the feature 
is to be discarded so that the detector cannot identify the object. The pooling feature maps 
generate masks through two fully connected layers. 

Mask is a binary mask (a value of  0 or 1) that is the same size as the input. We extract the 
feature X on the vehicle image of size d d c× × , where d represents the spatial dimension and c 
represents the number of channels. Given this feature, the mask network will predict a mask 
m  which also is d d× . We denote mij  as the value for the ith row and thj column of the mask. 
Similarly, the value in channel k at location ( , )i j of the feature map is represented by kijX . If 
mij =1, the values of all channels in the space corresponding to the feature map are removed, 
i.e. k 0,ijX k= ∀ .  

2.4 Fine-Tuning Network 
The function of the FTN network is mainly to further adjust the remaining candidate boxes. 

The 768-d full connectivity layer is obtained by adding the 256-d full connectivity layer in the 
EPRN network to the 512-d full connectivity layer channels in the FTN network. The output of 
this fully-connected layer is a 5-dimensional vector that includes fine-tuned box position 
( , , , )x y w h， ， ， ，  and detection scores s，. Unlike YOLO and Faster-RCNN, which use direct 
regression to the object box, we use the structure of channel summation, it is very helpful for 
improving object detection. 

2.5 Training 
(1) We use the ImageNet's pre-trained VGG-16 model  to initialize JFN, and the rest of the 

network is randomly initialized with a Gaussian distribution with a mean of zero and a 
standard deviation of 0.01. In our paper, we set the initial learning rate to 10-3, then it will 
decrease 10-1 every 20k iterations and execute 60k iterations. The model uses a random 
gradient descent method for training with using 128 small batches. For the EPRN network, 
when the IOU  between the anchor boxes and the ground truth is greater than 0.7, it is 
considered to be a positive sample; when IOU  between the anchor box and the ground truth is 
less than 0.3, it is used as a negative sample. The soft-NMS with a threshold of 0.6 is used to 
eliminate a big number of excrescent boxes. Finally, only 800 candidate boxes are left by this 
method. For FTN networks, when the IOU  between the anchor boxes and the ground truth is 
greater than 0.45, it is considered to be a positive sample, while candidate boxes with 
0.1 0.3IOU≤ ≤  are determined to be negative samples. In addition, the FTN network also 
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applies hard mining techniques, and the top 70% of the samples are selected by us and then 
deliver to the back propagation. 

(2) We will compare the loss of all /3 /3d d× windows and finally choose the window with 
the highest loss, the window is used to generate a single d d× mask. Then these spatial masks 
for n positive region proposals and generate n pairs of training examples 

1 1 n{( , ) ...., ( , )}nX M X M− − − −，
 

 are generated by our adversarial network. The idea is that the mask 
network should learn to generate the masks which can give the detector network high losses. 
For each sliding window, we drop out the values in all channels whose spatial locations are 
covered by the window and generate a new feature vector from the region proposal. Then the 
feature vector is used to compute the loss through classification and box regression layers. 

The binary cross entropy loss is used to train the mask network, and it can be formulated as: 

,

1 [ ( ) (1 )(1 ( ))]
n d

p P p P
MaskN ij ij ij ij

p i j
L M A X M A X

n
= − + − −∑∑

 

                              
  (4) 

where the outputs of the network in location ( , )i j  given input feature map PX is represented 
by ( )P

ijA X . We conduct 20K iterations through the loss training network. The initial learning 
rate is set to 10-3 and then decreased to 10-4 after 20k iterations.  

(3) The network outputs a continuous heat-map, instead of a binary mask. We select the 
most influential 1/2 to generate the mask. 

(4) Joint learning: combining the models obtained in steps (1) and (2), the initial learning 
rate is 10-3, 10-1 is reduced every 10k, and iterative training is performed 20k times to obtain 
the final vehicle detection model. During each training iteration, the relationship between the 
various parts of the network is optimized. In order to train the vehicle detector, during the 
forward propagation, MaskN located after ROI Pooling 2 is used to generate a mask on the 
characteristics and then sampled to generate a binary mask which used to remove the features 
behind the ROI Pooling 2. Then we calculate the loss by forwarding the modified features and 
train the detector in a end-to-end way. Parameters before the pooling layer in the Mask 
network are initialized by using the EPRN network. We initialized the two fully connected 
layers by using the pre-trained ImageNet network. The Mask network uses its own fully 
connected layer for training. In this way, the network produces "harder" and diverse examples 
for training vehicle detector. 

2.6 Multi-stage Loss 
After the ERPN and FTN networks, the output boxes and scores of the vehicle are 

( , , , , )x y w h s  and ( , , , , )x y w h s， ， ， ， ，  respectively, ( , , , )x y w h
∧ ∧ ∧ ∧

 is the location of the positive anchor 
box. ,g ( , . )x y w hg g g g=  is used to parameterize the location of the ground truth box. 

( , , , )x y w ht t t t t=  is used to parameterize the the ground-truth box associated with the positive 
anchor box. ,( , . )x y w hl l l l l=  is a vector representing 4 parameterized coordinates, it is used to 
parameterize the box generated by the ERPN network associated with the positive anchor box. 

, , , ,( , , , )x y w ht t t t t=，  is used to parameterize the the ground-truth box associated with the proposal 
box generated by the ERPN network. And , , , ,( , , , )x y w hl l l l l=，  is used to parameterize the FTN 
network output boxes associated with the proposal box generated by the ERPN network. 
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Therefore, we use the multi-stage loss L to jointly train for the classification,  bounding-box 
regression(only for foreground classes) of the EPRN and the FTN and the loss of the Mask 
network: 

, , , , ,

+2
( , ) ( ) ( , )

( , ) ( ) ( , )

ERPN FTN MaskN

ERPN cls loc

FTN cls loc

L L L L
L l s L s L l t

L l s L s L l t

α α α
λ

λ

= +
= +

= +                                              

(9)

 
where ERPNL , MaskNL and FTNL  are the loss for ERPN, MaskN, and FTN respectively. α  is used 
to balance the two networks of EPRN and FTN.  λ  is used to balance clsL  and regL . MaskNL  is 
shown in equation 4. In our algorithm, we emphasize on the loss of the MaskN. As is shown 
from table 3, when α =0.5, λ =1, the accuracy is the highest in our experiments. The 
classification regression loss is set to ( ) logs

clsL s = − , for the bbox regression, we use the 
smooth L1 method in [9], defined as follows: 

loc
{ , , , }

( , ) ( )i
i x y w h

L t s t sσ
∈

= −∑                                                                    (10) 

{ 20.5 , 1
0.5,x) x if x

x othersσ <
−=（                                                                       (11) 

3. Experiments and Discussions 

3.1 DETRAC dataset 
UA-DETRAC [23] is a highly complex multi-object detection and tracking benchmark. 

This data set is shot on 24 different locations in Beijing and Tianjin, China, using the Cannon 
EOS 550D camera. Video is recorded at 25 frames per second (FPS) with a resolution of 
960×540 pixels. Among them, 140K frames are marked. 84K images are used for training, 
56K images are used for testing, and 28K images are used for verification. DETRAC dataset is 
challenging, including data in various lighting conditions, such as sunny, cloudy, rainy and 
night time. According to statistics, each frame contains an average of 8.6 vehicles that are 
occluded frequently. This experiment only trains one category: car. all motor vehicles are 
classified as car. Fig. 2 shows the detection results of our algorithm in DETRAC test set.  
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(a)                                                           (b) 

Fig. 2. The detection results of our algorithm in DETRAC dataset 

3.2 Comparing with State-of-The-Art 
Table 1 shows the controlled experiment that use the different networks in our proposed 

framework. It also shows the comparison of not using soft-NMS and Mask network 
respectively, Faster-RCNN, EB [24], and our algorithm. Experimental results show that our 
algorithm without using soft-NMS exceeds the EB by 1.05% in mAP (mean Average 
Precision) and exceeds the Faster RCNN by 10.56% in mAP. Meanwhile, our algorithm 
without using Mask network exceeds the EB by 0.49% and exceeds the Faster RCNN  by 10% 
in mAP. But at the same time it increases the calculation burden. When  our algorithm don’t 
use JTN network, the mAP will decrease 9.15%. So fusing the conv1, conv3, and conv5 
convolutional layers to obtain the fusion feature map is of vital importance in our algorithm.   

We evaluate the running time of  our method on DETRAC test dataset, as shown in Table 2. 
With shared conv features, the speed up version only takes 25 ms to generate proposals in 
EPRN. Because of the deconvolution,  the JFN takes 75ms which costs time most. Besides, 
MaskN takes 10ms, and FTN takes 15ms,The total time is 120 ms. 

Table 3 shows the detection results of our algorithm on DETRAC test set by using different 
values of α  and λ  in equation (9). The hyper-parameter α and λ  are very important for our 
method. The best performances are highlighted in bold.when α =0.5, λ =1, the accuracy is 
the highest in our experiments. 

Fig. 3 is the comparison of the vehicle detection results of our algorithm and the latest EB. 
As shown in Fig. 3, because of the MaskN, our method can successfully detect most of the 
vehicles that are occluded.  

Fig. 4 is the comparison of vehicle detection results of Faster-RCNN, SSD, YOLO, EB and 
our algorithm. The detection score threshold is 0.4. Our algorithm can detect vehicles more 
accurately under the same conditions including the same image resolution and detection 
threshold. Because adjacent layers are strongly correlated, which indicates that the 
combination of wider coarse-to-fine CNN features is more important. 

 
Table 1. Comparison of running time and detection accuracy of different algorithm combinations 

Method Times/s mAP 
Faster-RCNN 0.087 58.45 

EB 0.110 67.96 
Our algorithm without JFN 0.090 60.45 

Our algorithm without soft-NMS 0.100 69.01 
Our algorithm without MaskN 0.110 68.45 

Our algorithm  0.120 69.60 
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Table 2. The running time of the every step in our algorithm in the training 
Steps Times/s 
JFN 0.075 

EPRN 0.025 
MaskN 0.010 

FTN 0.015 
Total 0.120 

   
Table 3. Detection results (mAP) of our algorithm on DETRAC test set using different values of α  

and λ  in equation (9) 
 0.5 1 2 

0.5 68.05% 69.60% 67.45% 
0.6 67.26% 69.02% 68.26% 

 

    
EB algorithm                                                        Our algorithm 

   
EB algorithm                                                         Our algorithm 

Fig. 3. The comparison of our algorithm and the EB 
 

   
(a) Faster-RCNN                                                              (b) SSD 

λα  
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(c) SSD 

   
                                           (d) EB                                                                          (e) our algorithm 
Fig. 4. The comparison of  the detection results of Faster-RCNN, SSD, YOLO, EB and our algorithm  

 
Table 4. The mAP of different excellent vehicle detection algorithms on the DETRAC test dataset (* is 

tested by ourselves, # is cited from the respective papers) 
 

Method Overal
l Easy Mediu

m 
Diffic

ult Sunny Cloudy Rainy Night Speed
/s 

Environ
ment 

DPM# 25.70 34.42 30.29 17.62 24.78 30.91 25.55 31.77 6 CPU@2
.4GHz 

ACF# 46.35 54.27 51.52 38.07 58.30 35.29 37.09 66.58 1.5 CPU@2
.4GHz 

RCNN# 48.95 48.95 54.06 39.47 59.73 39.32 39.06 67.52 10 GPU@
K40 

YOLO* 57.72 83.28 62.25 42.44 57.97 64.53 47.84 69.75 / GPU@T
itanX 

Faster- 
RCNN* 58.45 82.75 63.05 44.25 66.29 69.85 45.16 62.34 0.090 GPU@T

itanX 

EB* 67.96 89.65 73.12 53.64 72.42 73.93 53.40 83.73 0.110 GPU@T
itanX 

Our 
algorithm* 69.60 89.87 75.09 55.69 75.27 74.62 54.85 84.79 0.120 GPU@T

itanX 
 

Table 4 shows the comparison of our algorithm with the most advanced vehicle detection 
methods. The best performances are highlighted in bold. Detection performance is showed 
including the overall mAP and mAPs in different situations. We compare it with DPM, RCNN, 
ACF [25], Faster-RCNN, YOLO and EB. Our algorithm is implemented on Caffe [26]. The 
results of the experiments show that our algorithm is superior to the currently most advanced 
methods. While our network with a 600×1000 sized input can achieve 11.15% mAP using 
Nvidia Titan X GPU, it is higher than Faster-RCNN, 11.88% higher than YOLO, and 
approximately 1.64% higher than EB. Our algorithm has the best performance in all the 
subcategories. In terms of speed, compared with RCNN, the deep learning network proposed 
by us is faster, and it is slightly slower than Faster-RCNN and EB.  
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Fig. 5. Precision-Recall curves for different vehicle detection algorithms on the DETRAC test  

Fig. 5 shows the precision-recall curves for different vehicle detection methods on the 
DETRAC test. Our results have reached the leading level in terms of recall rate and precision 
rate. In terms of recall rate, the recall rate of our algorithm is 2% higher than that of EB. There 
are more positive samples which are predicted correctly. In terms of precision, our algorithm is 
basically the same as EB. The appropriate anchor boxes are set according to the size of the 
object in EPRN, which make our results reach the leading level in terms of recall rate and 
precision rate. 

   
 

   
 

   
Fig. 6. Selected examples of successful detection results  
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Fig. 7. Selected examples of unsuccessful detection results  

Fig. 6 and Fig. 7 show the qualitative evaluation of our algorithm on the test dataset, 
successful and partially unsuccessful results are shown. In different scenarios, especially when 
the road is seriously blocked or the vehicles are far away from the camera, our algorithm can 
achieve very good performance. However, our algorithm also has partial failure detection. Due 
to the introduction of generation adversarial network, the algorithm erroneously judges some 
black background areas as vehicles. 

3.3 Additional Experiments 
Table 5. The mAP of different excellent vehicle detection methods on the KITTI test dataset  

(* is tested by ourselves, # is cited from the respective papers) 
Method Easy Moderate Hard Speed/s Environment 

MS-CNN# 90.46 88.83 74.76 0.4 GPU @ 2.5 Ghz 
Ours* 90.15 83.25 75.16 0.12 GPU@TitanX 

YOLO-v3* 82.15 80.23 75.29 0.04 GPU@TitanX 
RefineNet# 90.10 79.21 65.71 0.2 GPU @ 2.5 Ghz 
RetinaNet# 89.93 78.85 68.73 0.2 4cores@2.5Ghz 

Faster-RCNN* 86.79 78.24 69.26 0.1 GPU@TitanX 
DSSD# 83.89 67.17 59.09 0.06 GPU@TitanX 

YOLO-v2* 74.46 64.53 53.14 0.03 GPU@TitanX 

http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=5b76f8851d9cbd8e90bd73c2b74e7f5a6dff3b24
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=3a0b30e6e756cfb03c4a70ba2f4aaa7b3eea9f78
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Table 5 shows the detection results of different state-of-the-art approaches on KITTI test 

dataset which consists of 7481 training images and 7518 test images, comprising a total of 
80256 labeled objects. We compare our approache with MS-CNN [27], YOLO-v3 [28], 
RefineNet [29], RetinaNet [30], Faster-RCNN [10], DSSD [31] and YOLO-v2 [32]. While 
our network with a 600×1000 sized input can achieve top2 using Nvidia Titan X GPU. Our 
algorithm achieves completely state-of-the-art object detection accuracy. The detection 
threshod is also 0.4. In our model, more contextual and small-object vehicle information can 
be obtained by JFN. In EPRN, we use a specific anchor box which allows the model to speed 
up the convergence and reduce the time of detection. Therefore, our model is also considerable 
in detection time compared to other methods. The MaskN and FTN are introduced in our 
algorithm, it can make our results reach the leading level in terms of mAP. 

 

   
(a) Faster-RCNN                                                     (b) YOLO-v2 

   
 (c) YOLO-v3                                                          (d) our algorithm 

Fig. 8. The comparison of  the detection results of Faster-RCNN*, YOLO-v2*, YOLO-v3* and our 
algorithm  

 
Fig. 8 shows the comparison of the detection results of Faster-RCNN, YOLO-v2, 

YOLO-v3 and our algorithm. It can be observed that the proposed algorithm in this paper can 
achieve the best performance. As shown in Fig. 8, because the MaskN is applied and the 
convolutional layers are fused, our method can successfully detect most of the vehicles which 
are small and occluded.   

4. Conclusion 
In recent years, there are mainly three directions for improving vehicle detection. The first 

direction focuses on changing the network structure. The main idea is to use more in-depth 
networks to extract vehicle characteristics. The second direction is to take more contextual 
information into account to improve vehicle detection. The third direction is to make better use 
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of the vehicle dataset itself. We consider the latter two directions and fuse the conv1, conv3, 
and conv5 convolutional layers to obtain the fusion feature map. It takes more consideration of 
the context information of the image and processes the vehicle image itself through the Mask 
network to generate vehicles with occlusion. Good performance is achieved for both class 
recognition and localization on the DETRAC and KITTI data set. Meanwhile, the runing 
speed of our algorithm is 8-10 FPS on a moderate commercial GPU Titan X.  
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