
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019 5594
Copyright ⓒ 2019 KSII

Detecting Malicious Social Robots with
Generative Adversarial Networks

Bin Wu1, Le Liu1*, Zhengge Dai3, Xiujuan Wang2, Kangfeng Zheng1

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications
Beijing, CN 100876

[e-mail: binwu@bupt.edu.cn]
2 Faculty of Information Technology, Beijing University of Technology

Beijing, CN 100124
[e-mail: xjwang@bjut.edu.cn]

3Telecommunication Engineering with Management, Beijing University of Posts and Telecommunications
Beijing, CN 100876

[e-mail: zhenggedai@163.com]
*Corresponding author: Le Liu
[e-mail: liulejob@foxmail.com]

Received December 21, 2018; revised March 2, 2019; revised April 8, 2019; revised May 13, 2019;

accepted June 25, 2019; published November 30, 2019

Abstract

Malicious social robots, which are disseminators of malicious information on social
networks, seriously affect information security and network environments. The detection of
malicious social robots is a hot topic and a significant concern for researchers. A method
based on classification has been widely used for social robot detection. However, this
method of classification is limited by an unbalanced data set in which legitimate, negative
samples outnumber malicious robots (positive samples), which leads to unsatisfactory
detection results. This paper proposes the use of generative adversarial networks (GANs) to
extend the unbalanced data sets before training classifiers to improve the detection of social
robots. Five popular oversampling algorithms were compared in the experiments, and the
effects of imbalance degree and the expansion ratio of the original data on oversampling
were studied. The experimental results showed that the proposed method achieved better
detection performance compared with other algorithms in terms of the F1 measure. The
GAN method also performed well when the imbalance degree was smaller than 15%.

Keywords: malicious robots, social robots detection, generative adversarial networks,
supervised classification, unbalanced data

This work was supported part by National Key R&D Program of China and National Natural Science Foundation
of China (No. 2017YFB0802703, 61602052)

http://doi.org/10.3837/tiis.2019.11.018 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5595

1. Introduction

With the high-speed development of the mobile Internet, online social networking has
become an indispensable part of our daily lives. That being said, a large number of social
robots participate in social networks. The primary objectives of these social robots are to
create the illusion that a social network very actively to influence public opinion [1], to be
employed as a means of political penetration [2], and to spread malicious content. On
popular social networks, these malicious social robots have had a negative impact on human
users.

As the influence of social robots on social networks has grown, malicious social robots
have increasingly used various social engineering methods to encourage unsuspecting users
of these networks to disclose personal and sensitive information. Therefore, social robot
detection has become a hot research topic in recent years. Social robot detection aims to
distinguish between robots and normal humans in social networks. Since the number of
robots is far less than the number of normal humans in the real world, this problem has been
considered in an experimental environment. In robot classification detection, an imbalance of
training data is caused by an inconsistency in the number of normal humans and robots, and
the difference in the proportion of the positive and negative samples leads to a final result
that lacks credibility.

Based on the above analysis, this paper proposes the use of generative adversarial
networks (GANs) to address the imbalance between positive and negative samples in robot
detection. By generating samples of social robots through GANs, we mediated the imbalance
between the social robot and normal human samples in the original data set, and this
mediation was used to improve the accuracy of social robot detection. The main work of the
paper is shown in Fig. 1.

Twitter Robot
(Minority class)

Normal Human
(Majority class)

Generator G Discriminator D

GAN

 Augment Dataset
（balanced dataset）

Classifier

Twitter User Data
（Unbalanced Dataset）

Twitter Robots Augment Robot Detection

Testing

Training

Normal Human

Social RobotAugment Robots

Normal Human

Fig. 1. We used generative adversarial networks to augment minority samples, constructed a

balanced data set as the data input to train the classifier.

2. Related work

At present, popular technology involved in social robot detection is based on the dynamic
content sent by social robots and the social relationship diagram around social robots. This
technology requires processing data sets that are acquired ahead of schedule and then
selecting some representativeness and discrimination features to achieve better classification
results. Chu [3] used an entropy-based component, a machine-learning-based component,

5596 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

and an account properties component to determine the likelihood that an unknown social
media network user was human through the combination of features extracted from the user.

The entropy-based component detects the periodicity for the specific user. The
machine-learning-based component detects spam by the content of tweets, and the account
properties component detects account information. The decision maker determines whether
the input account is a social robot. Varol and Ferrara [4] extracted 1150 features from public
data and metadata regarding users, friends, tweet content and sentiments, network patterns,
and activity time series and used random forest, AdaBoost, logistic regression, and decision
tree classifiers to detect social robots. The best classifier for the area under curve (AUC) was
the random forest, and the AUC for each type of feature was calculated separately. The most
effective features were user metadata and content features, but some content features and
emotional features were redundant. Yang and Wilson [5] used the support vector machine
(SVM) classifier to make predictions from the average invitations sent over N hours using
the ratio of accepted outgoing requests, the ratio of accepted incoming friend requests, and a
clustering coefficient. This was the first time that Sybil graph topology was used on a major
online social network. Gilani and Farahbakhsh [6] divided the collected accounts into four
groups according to the number of account fans and then observed the specific relationships
between their characteristics and the real identity of the accounts. These features included
account age, content generation, content popularity, content consumption, account
reciprocity, and tweet generation sources.

In work related to features, DARPA held a competition [7] using machine learning to
detect a social robot. Among the five features of tweet syntax, tweet semantics, temporal
behavior features, user profile features, and network features, six teams found the most
effective combinations between features and machine learning algorithms by judging the
comprehensive results of the detection. Zafarani and Liu [8] proposed a method for
identifying malicious users with minimal information. This method had to classify the
features of malicious users into five categories, and the detection framework generated by
machine learning demonstrated strong robustness in the different algorithms and unbalanced
data sets. Clark and Williams [9] maintained that the excessive dependence on user metadata
could make robots with strong imitation abilities difficult to detect. Therefore, the language
attributes of the tweets were used as the basis for the classification. These researchers
calculated the mean and standard deviation of each dimension through user data of normal
humans and then calculated the distance between the unknown user and the attribute average
to classify a social robot. This method can be used to dynamically prevent a robot account
from manipulating the user attributes and hiding its real identity.

Social robot detection can also be achieved without feature extraction. Wang and
Konolige [10] made use of a clickstream model to detect the real identity of social accounts
on the server side. These authors input the click stream sequence and then calculated the
sequence distance to accurately classify social accounts. Cao and Sirivianos [11] developed a
tool called the SybilRank that ranked the user's impersonation possibilities by using social
graph attributes. Cai and Li [12] combined (convolutional neural networks) CNNs with (long
short-term memory) LSTM model to explore the semantic information and a potential time
model. This method utilized the content information and behavior information and converted
the user content into temporal text data to reduce the workload for determining the features.
Chavoshi [13] designed the DeBot system using an unsupervised learning approach and
proposed a new hash mapping technique that could quickly group a large number of
associated users. The accuracy of this method reached 94% in social robot detection. In
addition, Kudugunta and Ferrara [14] judged whether the social media account was a social

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5597

robot by analyzing a single tweet. They introduced the contextual LSTM deep neural
network that used content and metadata as input. This model can accurately be used to judge
the category of the social media account. Additionally, these investigators proposed a method
based on synthetic minority oversampling to enhance the existing data set and generated a
minority sample to improve the classification performance. Beutel and Xu [15] detected
lockstep page like patterns on Facebook by analyzing only the social graph between users
and pages and the times at which the edges in the graph found malicious social robots.

At the same time, data augment could be applied some areas, such as computer vision,
voice data augment and nature language. Charalambous and Bharath [16] proposed a method
of generating synthetic video data for the data enhancement of gait sequences. This process
allowed the generation of sequences using multiple confounding factors and ultimately
synthesized large amounts of training and test data. Lemley and Bazrafkan [17] designed a
network for data generation and a network for discriminating data. These researchers have
performed many experiments using different data sets to verify that nontrivial cases, where
two or more samples of a certain class were merged in nonlinear ways, resulting in the
improved generalization of a target network. Antoniou and Storkey [18] proposed data
augmentation generative adversarial networks (DAGAN) based on image conditions. The
model fetches data from the source domain and learns to fetch any data items and generalize
them to generate other within-class data items. Zafar and Ashraf [19] proposed a new image
representation that combines spatial information with the bag-of-visual-words (BoVW)
model. Spatial information is added by computing the global relative spatial orientation of
the visual words. These researchers calculated the histogram of the visual word based on the
size of these orthogonal vectors to improve the accuracy of the classification. The original
input of gesture recognition are similar to picture recognition. Tran and Yin [20] proposed
the disentangled representation learning-generative adversarial network (DR-GAN), the
encoder-decoder structure of the generator allowed DR-GAN to learn a generative and
discriminative representation. This representation is explicitly disentangled from other face
variations, such as pose, through the pose code provided to the decoder and the pose
estimation in the discriminator. Instead of directly manipulating the input image, Lenga and
Yu [21] performed virtual sample generation at the feature level. First, the distribution of
data features was estimated, and then the uniformly distributed random noise was taken as
the input training sample, and finally the minority samples were generated. Some studies
about data augment in the field of computer vision could also be extended to voice data. Hsu
and Zhang [22] used the source and target domain data to train the variational autoencoder
that learned the underlying laws of speech data, and modified the potential representation to
convert attributes that are not related to recognition. This proposed method would have an
absolute word error rate (WER) reduces by up to 35%. Cui and Goel [23] proposed a new
data enhancement method based on random feature map (SFM) for speaker adaptive feature
space. Improved recognition performance could be observed through experiments.
Feature-based research methods had some similarities, so data enhancement methods could
also be used in the natural language field. Fadaee and Bisazza [24] located low-frequency
words by generating new sentence pairs containing rare words in the context of new
synthetic creation. Experimental results simulating low resource settings show that our
approach significantly improves translation quality.

All methods based on machine learning inevitably require a large number of original
data sets. Existing detection methods do not explicitly solve the imbalance in the ratio of the
positive and negative samples in the original data set. An imbalance between the positive and
negative samples reduces the effectiveness of the final detection.

5598 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

3. Social robot detection based on GANs

3.1 Social robot detection
The social robot detection problem is actually a binary classification problem. The formal
definition is as follows: 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎|𝐴𝐴|}, which represents the collection of social
accounts to be detected on the social network. C= {𝐶𝐶𝑅𝑅 ,𝐶𝐶𝑁𝑁} is defined as the category
collection, where 𝐶𝐶𝑅𝑅 is a collection of social robot accounts, 𝐶𝐶𝑁𝑁 is a collection of normal
human accounts, and 𝐶𝐶𝑅𝑅 ≪ 𝐶𝐶𝑁𝑁. The essence of the social robot detection problem is to
determine whether the account 𝑎𝑎𝑖𝑖 belongs to the social robot collection 𝐶𝐶𝑁𝑁. The decision
function is as follows:

φ�𝑎𝑎𝑖𝑖, 𝑐𝑐𝑗𝑗�: A × C → {0,1}(1 ≤ i ≤ |A|, j ∈ {R, N}). (1)

The result of φ�𝑎𝑎𝑖𝑖, 𝑐𝑐𝑗𝑗� can only be 0 or 1, which can be summarized as follows:

 φ�𝑎𝑎𝑖𝑖, 𝑐𝑐𝑗𝑗� = �0,𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶𝑅𝑅
1,𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶𝑁𝑁

 . (2)

We generated new samples by oversampling methods, appended these new samples in 𝐶𝐶𝐴𝐴

and mixed 𝐶𝐶𝑅𝑅 in 𝐶𝐶𝐴𝐴, which made 𝐶𝐶𝐴𝐴 ≈ 𝐶𝐶𝑁𝑁. As a result, the classifier would facilitate more
effective detection of social robots through a balanced data set.

3.2 Overall process

Data Normalization

Data Pre-Processing

Feature Extraction

User-based features

Content features

Network features

Testing Dataset

Minority class

Majority class

 Training Dataset

Social robot Normal human

Neural Network
Classifier

Train

Test

…
…

…
…

Original Dataset

… … …

GAN

… …

 Augment Dataset
Result

Fig. 2. Social robot detection framework

Fig. 2 shows the social robot detection framework proposed in this paper. By collecting
tweet and user profile information, we generated the available data set from the original data
set through feature extraction. We input the robot account from the training set into the GAN
and then trained the GAN until it was stable. Then, we incorporated random noise into the
stable GAN to generate fake robot accounts that were difficult to distinguish for the
discriminator. Next, we mixed them with the normal human data sets to form an augmented
training data set. Finally, we adopted the augmented training data set to train a classifier that
could be used to classify an unlabeled account in the test set.

3.3 Feature extraction

The i-th social account 𝑎𝑎𝑖𝑖 is quantified as 𝑎𝑎𝑖𝑖 = (𝑎𝑎𝑖𝑖1,𝑎𝑎𝑖𝑖2, … ,𝑎𝑎𝑖𝑖𝑀𝑀). Here, 𝑎𝑎𝑖𝑖
𝑗𝑗 is the description

of the j-th feature of the social account, and M is the number of features. Many available

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5599

features could be selected for the social robot detection process. We selected features with
better classification abilities from the content of user tweets and behavioral features. We then
used these features for social robot detection. Eleven types of features were involved:
(1) Average number of topic tags 𝑎𝑎𝑖𝑖1: The average of the topic tags in the tweets. In the tweet,

the "#" and other forms indicate that the tweet is highly correlated with a specific topic,
and the social robot increases the speed of information dissemination by publishing
tweets with multiple hot topics, so it can be defined as:

 𝑎𝑎𝑖𝑖1 = 𝑛𝑛𝑡𝑡

𝑛𝑛𝑎𝑎
, (3)

where 𝑛𝑛𝑡𝑡 is the number of topic tags in all tweets of social account 𝑎𝑎𝑖𝑖 and 𝑛𝑛𝑎𝑎 is the
number of tweets of the social account 𝑎𝑎𝑖𝑖.

(2) Average number of user mentions 𝑎𝑎𝑖𝑖2: The average value mentioned by the user in the
tweet. Specific users can be notified via "@username,” and the social robot mentions
users more frequently than normal users. The average number of user mentions can be
formulated as:

 𝑎𝑎𝑖𝑖2 = 𝑛𝑛𝑢𝑢

𝑛𝑛𝑎𝑎
, (4)

and where 𝑛𝑛𝑢𝑢 denotes the number of user mentions in all tweets of social account 𝑎𝑎𝑖𝑖.

(3) Number of links 𝑎𝑎𝑖𝑖3: The average number of URL links in the tweet, where 𝑎𝑎𝑖𝑖3 can be
denoted as

 𝑎𝑎𝑖𝑖3 = 𝑛𝑛𝑙𝑙

𝑛𝑛𝑎𝑎
, (5)

and 𝑛𝑛𝑙𝑙 is the number of URL links in all tweets of the specific social account. The tweet
content in social networks supports multiple forms, including URL links, and social
robots add more links to the tweet content posted to entice normal users to click and
launch social engineering attacks.

(4) Number of retweets 𝑎𝑎𝑖𝑖4: The ratio of the number of tweets that belong to retweets (i.e.,
forwards of tweets) of other users to the total number of tweets. Under normal
circumstances, normal users will only retweet tweets in which they are interested, but
social robots will retweet other users’ tweets at a higher frequency under the control of
an automated program. The number of retweets can be denoted as

 𝑎𝑎𝑖𝑖4 = 𝑛𝑛𝑟𝑟

𝑛𝑛𝑎𝑎
, (6)

where 𝑛𝑛𝑟𝑟 is the number of the tweets that belong to retweets (i.e., forwards of tweets)
of other users.

(5) Number of favorites 𝑎𝑎𝑖𝑖5: The total number of users' favorites for other tweets. Normal
users in social networks will express their concern and attitude towards tweet content by
supporting it, but the main purpose of social robots is to increase their influence. Hence,
their tweet content is favorited less frequently than that of normal human users. The final
form of 𝑎𝑎𝑖𝑖5 is an integer that is equal to the number of all favorites from social
account 𝑎𝑎𝑖𝑖.

5600 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

(6) Ratio of followers to the number followed 𝑎𝑎𝑖𝑖6: The specific definition can be expressed
as follows:

 𝑎𝑎𝑖𝑖6 = 𝑛𝑛𝑒𝑒

𝑛𝑛𝑑𝑑
, (7)

where 𝑛𝑛𝑒𝑒 denotes the number of followers and 𝑛𝑛𝑑𝑑 denotes the number of friends of
social account 𝑎𝑎𝑖𝑖. Social robots focus on a large number of normal human users on
social networks to improve their influence in virtual networks. However, due to the lack
of realistic friends and dynamic content, their fan base is small.

(7) Tweet source 𝑎𝑎𝑖𝑖7: The number of tweet sources belonging to the official source. Normal
human users use a variety of different platforms to send tweets, but these platforms use
the interface provided by Twitter's official platform to share tweets. The source of tweets
sent by social robots is unofficial. 𝑎𝑎𝑖𝑖7 is an integer that is equal to the type of tweet
sources belonging to the official source.

(8) The similarity of content 𝑎𝑎𝑖𝑖8: The latent semantic text content similarity of the original
tweet. Latent semantic analysis (LSA) [25] extracts the “concepts” of documents and
words through “vector semantic space” to analyze the potential connection between
documents and words. The basic assumption of an LSA is that if multiple different words
appear in the same document multiple times, the words are semantically similar. An LSA
constructs a text collection matrix. The rows of this matrix represent words, the columns
represent documents, the specific values of the matrix elements represent the number of
times that a word appears in the document, and then the matrix is subjected to singular
value decomposition (SVD). We convert the data text into the matrix A,

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 (8)

where Σ = �𝑆𝑆 0
0 0� and S = diag(𝜎𝜎1, … ,𝜎𝜎𝑟𝑟) with 𝜎𝜎1 ≥ ⋯ ≥ 𝜎𝜎𝑟𝑟 > 0.The SVD can reduce

the number of rows in the matrix while retaining as much column information as
possible, and then the similarity of each two words can be quantified by the cosine
similarity of the two row vectors a, b.

ε =
∑ (𝑎𝑎𝑗𝑗×𝑏𝑏𝑗𝑗)𝑛𝑛
𝑗𝑗=1

�∑ (𝑎𝑎𝑗𝑗)2𝑛𝑛
𝑗𝑗=1 ×�∑ (𝑏𝑏𝑗𝑗)2𝑛𝑛

𝑗𝑗=1

 (9)

where a = (𝑎𝑎1 ⋯𝑎𝑎𝑛𝑛) and b = (𝑏𝑏1⋯𝑏𝑏𝑛𝑛). The closer ε is to one, the more similar the
two words are. The closer ε is to zero, the more dissimilar the descriptions are. 𝑎𝑎𝑖𝑖8 is
the mean of all ε. The semantic similarity of original tweets from a normal user is higher
than that of original tweets from social robots. Furthermore, the interests of normal
human users are relatively stable, but social robots often need to have considerable
interest to expand their influence.

(9) The similarity of the tweet length 𝑎𝑎𝑖𝑖9: The variance in the number of tweet words. The
length of the tweet sent by the social robot is steady, while that of the normal human user
varies greatly, so it can be defined as follows:

𝑎𝑎𝑖𝑖9 =
∑�𝑥𝑥𝑗𝑗−𝜇𝜇9�

2

𝑛𝑛𝑎𝑎
 (10)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5601

 𝜇𝜇9 =
∑𝑥𝑥𝑗𝑗
𝑛𝑛𝑎𝑎

 (11)

where 𝜇𝜇9 denote the mean of the similarity of the tweet length, and 𝑥𝑥𝑗𝑗 is the number of
the tweet length about the j-th tweet.

(10) The similarity of punctuation usage 𝑎𝑎𝑖𝑖10: The variance in the number of punctuation
marks in the original tweet. Normal human users have distinct punctuation usage habits,
while the diversity of social robot tweet sources results in punctuation without a fixed
style.

𝑎𝑎𝑖𝑖10 = ∑ 𝑝𝑝𝑗𝑗𝑛𝑛
𝑗𝑗=1 (12)

where 𝑝𝑝𝑗𝑗 is the variance of the number of occurrences of a particular punctuation.

(11) The similarity of stop words 𝑎𝑎𝑖𝑖11: The variance in the number of stop words in the
original tweet. The stop word is the most frequent word in the tweet, and it represents the
writing style of the tweet sender. Normal human users employ more consistent usage of
stop words than do social robots. With the same definition as 𝑎𝑎𝑖𝑖9, this variable 𝑎𝑎𝑖𝑖11
indicates the degree of change in the number of stop words.

3.4 GAN

GAN is an oversampling approach that was originally proposed in 2014. In terms of deep
learning, the GAN method can generate more realistic pictures to make the deep neural
network model develop in the desired direction. The GAN method can also automatically
learn the potential distribution laws in the original image samples. Unlike the method of
machine learning that defines the model in advance, a GAN can obtain the model that
conforms to the data set distribution through iterative learning.

Due to its characteristics, classical GANs were combined in this paper to generate
social robot samples and ultimately improved the imbalance between positive and negative
samples in the original data set. Fig. 3 shows the main structure of a GAN.

True: real robots

…
…

…
…

Discriminator D

False: fake robots

…
…

…
…

…
…

Generator G

(Real)

(Fake)

Fig. 3. The trained generator G produces a new sample by using random noise z, and its output is

merged with the original training set. The discriminator D cannot distinguish the source of the input
samples.

The ultimate goal of a GAN was to learn the correct distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of the social

robot in the training data 𝐶𝐶𝑅𝑅. To learn the generator’s distribution 𝑝𝑝𝑔𝑔 over data x, random
noise z conforming to 𝑝𝑝𝑧𝑧(𝑧𝑧) was taken as input of the generator G, and we defined a neural
network 𝐺𝐺(𝑧𝑧;𝜃𝜃𝑔𝑔) to map, where 𝜃𝜃𝑔𝑔 was a parameter of the neural network. We also
defined another neural network, 𝐷𝐷(𝑥𝑥;𝜃𝜃𝑑𝑑), and the output D(x) of this neural network
represented the probability that x came from the data rather than 𝑝𝑝𝑔𝑔. We trained the neural

5602 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

network of the generator G to optimize 𝜃𝜃𝑔𝑔 by minimizing 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))), while 𝜃𝜃𝑑𝑑
remained unchanged. The data set mixed between G(z) and x was used as the input of
discriminator D to train the discriminator to optimize 𝜃𝜃𝑑𝑑 while leaving 𝜃𝜃𝑔𝑔 unchanged.
After some intervals of training, both G and D attempted to optimize their network
parameters to form a competitive confrontation until the two sides reached a dynamic
balance that was represented as 𝑝𝑝𝑔𝑔 = 𝑝𝑝data. Finally, discriminator D could not accurately
determine the source of the social robot samples, which indicated that generator G could
generate new samples that matched the distribution 𝑝𝑝data of the social robots in the training
data 𝐶𝐶𝑅𝑅 as much as possible. That is, the optimization process of G and D was a binary
minimax problem.

The optimization problem consisted of two parts. The first part was that the
discriminator D judged whether some samples were from x or 𝐺𝐺(𝑧𝑧) so
that 𝐸𝐸𝑥𝑥~𝑝𝑝data(𝑥𝑥) log(𝐷𝐷(𝑥𝑥)) . Maximizing this part was the equivalent of enabling
discriminator D to output 𝐷𝐷(𝑥𝑥) = 1 when x conformed to 𝑝𝑝data . Another part of the
problem was that generator G tried to deceive discriminator D, so that there
was 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� . The objective function [26] could be expressed as
follows:

 𝐺𝐺min 𝑉𝑉(𝐷𝐷,𝐺𝐺)𝐷𝐷
max = 𝐸𝐸𝑥𝑥−𝑝𝑝data(𝑥𝑥)

 [log𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)���. (13)

The essence of the generator and discriminator was the neural network, and the loss function
was their essential part. The loss function of the generator and the discriminator in this paper
was a logarithmic loss function that increased the sparse classification. It was defined as
follows:

𝐿𝐿�𝑌𝑌,𝑃𝑃(𝑌𝑌|𝑋𝑋)� = − 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌|𝑋𝑋) (14)

The goal of the G and D interval training was to update the parameters of the two networks
to make them closer to each other or to reach the optimal value, thus minimizing the damage
function.

3.5 Detection process

X

Z

U

t

Ca

Co

G*

Fig. 4. The trained generator 𝐺𝐺∗ is fed with random noise z, and its output is merged with the

original training set 𝑋𝑋𝑡𝑡. The different classifiers are trained on the augmented dataset (𝐶𝐶𝑎𝑎) and the
original training set (𝐶𝐶𝑜𝑜).

We referred to the flow diagram proposed by Fiore [27] and combined it with our work. The
framework of the entire detection process was shown in Fig. 4, and it was divided into the
following steps:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5603

Step 1: The original data were divided into a training set T and a test set S, and the neural
network classifier 𝐶𝐶𝑜𝑜 was trained with the training set T.
Step 2: The data set F, which consisted of all the minority samples in the training set T, was
used as a training set, and the continual training adjusted the hyperparameters of the GAN.
Step 3: The trained stable generator 𝐺𝐺∗ could transform the input random noise z into a
minority class sample set 𝐹𝐹′, which was difficult to distinguish from the discriminator D.
Step 4: We mixed 𝐹𝐹′ with the training set T and trained the neural network classifier 𝐶𝐶𝑎𝑎
under the same parameters. We then compared the performance of 𝐶𝐶𝑜𝑜 and 𝐶𝐶𝑎𝑎 with that of
the test set.

4. Experiments and analyses

4.1 Experimental preparation

The experiment used 1971 normal human accounts and 462 social robot accounts as original
samples, of which 891 normal users were from the data set used in [4], and the 1080 normal
users and all the social robot users were from the data set used in [28]. Social robot accounts
made up 18% of the total original samples. All the data that were original tweet content
crawled from the Twitter website were converted into a raw data set that could be used
directly through feature extraction. The first part of the data was the normal user ID crawled
in 2014; the official Twitter API was used to crawl all the relevant content. The second part
of the data was the Twitter account crawled by the Twitter API in 2015 as well as related
content. The overall data distribution was shown in Table 1.

Table 1. Data set composition
Category Number of accounts

Normal user 1971
Social bot 462

Total 2433

Traditional evaluation metrics for the two classification problems were adopted, namely,

accuracy rate, accuracy, recall, and F-measure. In a two-category problem, there were four
cases in the final test results. If an instance was a positive class and was predicted to be a
positive class, then it was considered to be a true positive (TP). If the instance was a
negative class sample and was predicted to be a positive class, then it was called a false
positive class (FP). Correspondingly, if the instance was a negative class and was predicted
to be a negative class, then it was called a true negative (TN). If a positive class instance was
predicted to be a negative class, then it was a false negative (FN). This definition was as
follows:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
 (15)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 (16)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 (17)

5604 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

𝐹𝐹1 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (18)

4.2 Compared Algorithms
To analyse the effectiveness of the GAN method in detecting social robots, we used four
types of synthetic minority over-sampling technique (SMOTE) algorithms and an adaptive
synthetic (ADASYN) algorithm as the comparison group. These five algorithms were very
common in the field of data augmentation, and the improvement of the effect on the
classifier was obvious.
（1）SMOTE [29]: The SMOTE algorithm randomly selected positions on the line of two

minority class samples as a new minority class sample. This method improved the
accuracy of classifiers for minority classes by increasing the number of minority classes.
The SMOTE provided more relevant minority samples for learning so that the classifier
could accurately learn the differences between different types of samples and correctly
identify more samples.

（2）SMOTE-Borderline1 [30]: The SMOTE used all the minority samples to generate new
samples. However, some samples located on the borderline were more likely to be
misclassified than other samples away from borderline. This method generated new
samples through dangerous samples that at least half of the nearest neighbour samples
were from the same category.

（3）SMOTE-Borderline2 [30]: SMOTE-Borderline2 was not limited to the selection of
neighbour samples for source samples, which was different from the
SMOTE-Borderline1 method. The minority samples generated by the
SMOTE-Borderline2 method could make the classifier better distinguish between the
minority class and the majority class.

（4）SMOTE-SVM [31] [32]: The SMOTE-SVM algorithm was an efficient active learning
method that generated more samples belonging to a minority class. Active learning with
early stopping achieved a satisfactory solution without sacrificing classification
performance. The SMOTE-SVM provided an efficient SVM-based active learning
selection strategy that queried a small part of the data set at each step instead of querying
the entire data set.

（5）ADASYN [33]: The ADASYN algorithm could adaptively generate bias by reducing
the data imbalance for synthetic data samples of the minority classes. At the same time,
the ADASYN algorithm could be extended to handle imbalances in different scenarios,
and this algorithm was equally applicable to various categories of data imbalance
problems.
The implementation of these five algorithms was provided by the scikit-learn library

[34]. We executed these five algorithms by calling the appropriate modules in the library. All
of the above algorithms needed to use the training data set as data input, and these five
algorithms contained some parameters that achieved the best performance. The use of these
five oversampling algorithms was similar to the GAN in the experiment. The five
oversampling algorithms used the training set as input data to generate more samples. We
used the augmented data set to train the neural network classifier and used the test set to
verify the performance of the classifier.

These five algorithms needed to set some parameters to ensure that the generated data
could conform to the laws of minority samples. We used the augmented data as input to train
the classifier and choose the important parameters based on the performance of the classifier.
The random state was a random number seed that guaranteed the same random sequence

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5605

during different oversampling processes. The value tested for the random state were in the
range from 5 to 20. After the experimental comparison, the random state of the five
oversampling algorithms was set to 10. In addition, the number of nearest neighbours used to
construct synthetic samples was set to 5 empirically. For the SMOTE-Borderline1 algorithm
and the SMOTE-Borderline2 algorithm, the number of nearest neighbours used to determine
if a minority sample was in danger was set to 10 for optimization reason. The ratio
represented the number ratio of the minority class to the majority class in the augmented data
set, and this parameter was dynamically set according to subsequent experiments.

4.3 Experimental process and results analyses
For the original data set, we randomly allocated two thirds of the data as the training set and
one third of the data as the test set of the positive and negative samples, respectively.

4.3.1 Parameter selection
The hyperparameters in the neural network affected the performance of the entire network,
making it necessary to continuously adjust the hyperparameters for the neural network
classifier until the classifier performance was optimal.

Too few layers of the neural network could cause the network to fail to satisfactorily
learn the features of the data. Too many layers, however, may result in the phenomenon of
overfitting. In many experiments, networks with two, three, and four layers were tested in
the generator. Both the discriminator and classifier were used to find the best number of
layers. One of the hyperparameters was the type of activation function in each layer. Some
activation functions included the logistic sigmoid, which was defined as follows:

𝜎𝜎(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
 (19)

where the ReLU function was defined as

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥). (20)

In addition, the tanh function was defined as follows:

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
. (21)

The output layer result of the discriminator was the input sample. Because the sigmoid
function mapped any range to (0, 1), the activation function selected the sigmoid function.
When the input entered the neuron, it was multiplied by the weight, and we randomly
initialized the weights and updated them during the model training. In addition to the
weights, another linear component applied to the input was called the bias. It was added to
the result of multiplying the weight by the input. For the initialization of the weights and
biases, weight values were drawn from the normal distribution N(0,1) and biases were drawn
from the uniform distribution U(–1,1). The neural network generally consisted of input layer,
hidden layer and output layer. Since the data dimension and the amount of data used in the
experiment were small, we chose three layers network as the default implementation of the
neural network.

Different optimization algorithms had different principles and were applicable to
different scenarios. After many investigations, we selected the SGD and Adam algorithms as

5606 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

the optimizers for testing the optimization algorithms. As one of the hyperparameters, the
learning rate was the speed at which the neural network reached the optimal status. If the
learning rate was too small, then the loss of the network would decline very slowly. If the
learning rate was too large, then the range of the parameter updated would be too large,
resulting in the network convergence to local optimum. We selected the values
experimentally and observed that the performance was less dramatic with the change in
hyperparameters.

4.3.2 Parameter setting
The optimal performance of GAN was that the accuracy of the discriminator D should

be close to 50% as far as possible. There are several hyperparameters in GAN network
which would affect the performance of GAN, including network parameters about generator
G, discriminator D and the parameters about random noise. So we found the optimal
combination of parameters by the grid search method. According to the experience about
neural network parameter setting and GAN training, the structure of the discriminator D and
the generator G was set to three layers. The dimensions of the input data and output data
were determined by our features, so the neuron numbers about the first layer and the third
layer of the discriminator D was fixed. For the same reason the neuron numbers about the
third layer of the generator G was fixed. The learning rate of the generator and discriminator
should be selected. The dimension of the noise, denoted as 𝑧𝑧𝑑𝑑, ranged from 1 to 3. The 𝑔𝑔1
that ranged from 4 to 7 was the number of neurons in the first layer of generator, and 𝑔𝑔2
was the number of neurons in the second layer of generator G, its range was from 8 to 11.
The number of neurons in first layer of the discriminator D should be equal to the dimension
of the input. The number of neurons in the second layer of the discriminator D, denoted as
𝑑𝑑2, ranged from 4 to 9. Learning rate in a logarithmic grid (5 × 10−4, 3 × 10−4, 1 × 10−4)
were experimented, 𝑔𝑔𝑙𝑙𝑙𝑙 was the learning rate of the generator G and 𝑑𝑑𝑙𝑙𝑙𝑙 was the learning
rate of the discriminator D. In the training process of GAN, the discriminator D could be
trained multiple times, denoted as 𝑑𝑑𝑡𝑡, and the generator G trained once in order to achieve
balance faster. 𝑑𝑑𝑡𝑡 ranged from 1 to 3. The stable condition of discriminator D was that the
discriminator accuracy was maintained stable over 500 epochs. 𝑡𝑡𝑔𝑔 was the training time of
the generator G when GAN reached stable. 𝑡𝑡𝑑𝑑 was the training time of the discriminator D
and 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 was the accuracy when GAN reached stable state. So 𝑡𝑡 was the running time of
GAN. All types of hyperparameters combinations exceeded 8,000, so the top 20 results with
the accuracy rate closest to 50% were showed in Table 2. The hyperparameters combination
with an accuracy of 49.04% was selected as the optimal result for training the GAN to
generate an augment robot dataset.

Table 2. After the GAN reaches stability, the accuracy, training time and testing time of the GAN
changed in different hyperparameters combinations.

Hyperparameters of GAN Evaluation metrics
𝒛𝒛𝒅𝒅 𝒈𝒈𝟏𝟏 𝒈𝒈𝟐𝟐 𝒈𝒈𝒍𝒍𝒍𝒍 𝒅𝒅𝟐𝟐 𝒅𝒅𝒍𝒍𝒍𝒍 𝒅𝒅𝒕𝒕 𝒅𝒅𝒂𝒂𝒂𝒂𝒂𝒂 𝒕𝒕𝒅𝒅(s) 𝒕𝒕𝒈𝒈(s) 𝒕𝒕(s)
2 4 10 0.0005 7 0.0003 3 64.70% 33 12 45
2 6 10 0.0001 6 0.0005 3 63.60% 95 31 126
3 6 9 0.0003 6 0.0005 1 62.64% 21 19 40
2 4 10 0.0003 5 0.0001 1 62.50% 28 25 53
1 5 10 0.0005 3 0.0003 1 62.36% 26 29 55
3 5 9 0.0005 6 0.0001 1 61.26% 94 92 186
1 4 8 0.0003 4 0.0001 1 60.85% 32 11 43

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5607

2 4 10 0.0005 7 0.0003 1 60.71% 43 35 78
2 4 10 0.0005 3 0.0001 1 59.62% 31 30 61
1 4 9 0.0003 5 0.0001 1 59.34% 98 87 185
2 6 9 0.0003 7 0.0001 2 57.28% 124 59 183
2 4 9 0.0005 3 0.0001 1 52.75% 28 25 53
2 4 11 0.0001 6 0.0003 1 51.79% 36 22 58
3 4 9 0.0001 3 0.0001 1 49.04% 27 19 46
3 4 10 0.0003 5 0.0003 1 42.58% 74 59 133
2 4 10 0.0003 3 0.0003 2 42.45% 62 30 92
3 7 9 0.0001 3 0.0001 1 41.48% 51 53 104
3 4 10 0.0001 3 0.0003 1 41.35% 34 34 68
2 4 9 0.0003 7 0.0001 1 41.07% 22 12 34
3 4 9 0.0003 3 0.0005 1 40.66% 22 16 38

As shown in Table 2, the optimal performance of GAN was determined by the

hyperparameters combination. The relationship between optimal performance of GAN and
running time for GAN was weak. The GAN running time represented as 𝑡𝑡 in Table 2 lasted
from tens of seconds to more than one hundred seconds which is reasonable in the GAN
training process, because the performance of the GAN also changed greatly when the
hyperparameters combination changed slightly due to the random generation of the input
noise for the generator G. The time of the training generator G and the time of training
discriminator D had certain relationship with the respective network parameters. When 𝑑𝑑𝑡𝑡
was larger, the proportion of the training time for discriminator D in the total time was larger.
The increase of 𝑑𝑑𝑡𝑡 led to reduction in the training epoch, but the increase in the time of
training discriminators resulted in increase in the time of one epoch.

After a lot of experiments for the most optimal hyperparameters combination, the
random noise z conformed to the random distribution N(0,10). The dimension of random
noise was setting as 3. The generator G in the GAN had three layers, which contained 3
ReLU units, 4 ReLU units, and 9 tanh units. The discriminator also had three layers
composed of 11 ReLU units, 3 ReLU units, and 2 Sigmoid units, respectively. The learning
rate of the generator was 1×10-4 and discriminator was selected as 1×10-4. In addition, the
optimizer of the generator was the Adam algorithm, and the optimizer of the discriminator
was the SGD algorithm. The loss function of the generator, classifier, and discriminator in
this paper was a logarithmic loss function that increased the sparse classification. The
change in loss under the optimal hyperparameters combinations is presented in Fig. 5.

Fig. 5. The loss of generator G and discriminator D fluctuated with a change in the training epoch.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 100012001400160018002000

lo
ss

epoch

D loss
G loss

5608 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

At the beginning of the training, the loss of generator G and discriminator D changed
dramatically, because the generator that has not finished multiple epochs of training did not
convert noise into some samples that conformed to the laws of social robots. After four
hundred epochs, the loss of the GAN method tended to become flat, indicating that the
samples generated by the current generator have been able to conform the data laws of real
robots. Whereas Fig. 5 indicated that the loss of generator G and the loss of discriminator D
were synchronous at most epochs. After the 1400th epoch, the loss of the generator and
discriminator remained stable, and the entire network reached equilibrium. The loss of
generator G changed more rapidly than does the loss of discriminator D, which indicated
that the initial statement of generator G may be far from the final state.

The accuracy of discriminator D with epoch changed was shown in Fig. 6.

Fig. 6. The accuracy of discriminator D fluctuated, and finally stabilized with the change in the

training epoch.

From this figure, we could see that the tendency of the accuracy was almost the same as
that of the loss of the discriminator D. It was well-known that the optimal accuracy of
discriminator D was fifty percent, but it was difficult to reach this value because the classical
GAN had some disadvantages. After many attempts, we selected specific network
parameters in order to make the accuracy of the discriminator close to 50%. Accuracy was
the correct rate that the discriminator D discriminated whether the source of the sample was
the generator or the real environment. Therefore, when the loss of the discriminator slightly
reduced, the accuracy of the discriminator increased accordingly. Under the selected
combination of hyperparameters, the generator G and the discriminator D were alternately
trained, and the accuracy of the discriminator changed gradually from high to low. The
discriminator D could not accurately determine the source of the input sample, so the
accuracy of the discriminator was low during the initial epoch. The accuracy of the
discriminator gradually increased with the continuous training. The sample generated by the
generator G gradually conformed to the distribution of the social robot samples, and the
accuracy rate gradually decreased. As the discriminator D continuously affected the
generator G, the generator G gradually adjusted the internal parameters of the network, and
generated samples that the discriminator could not distinguish, so the accuracy of the
discriminator D was reduced, and finally stabilized.

The classifier had a three-layer network composed of 20 ReLU units, 50 ReLU units,
and 2 Softmax units. A simplified Nesterov momentum was also adopted, where momentum
was equal to 0.5. The selected learning rate of the classifier was 5×10-2, and the SGD
algorithm was found to be the optimal algorithm.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
is

cr
im

in
at

or
 A

cc
ur

ac
y

epoch

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5609

4.3.3 Experimental results and analysis
To analyze the effectiveness of the GAN method in detecting social robots, we performed 3
experiments with five other traditional oversampling algorithms. At present, the most
popular method of data oversampling was synthetic minority over-sampling technique
(SMOTE). Therefore, we used four types of SMOTE algorithms and an adaptive synthetic
(ADASYN) algorithm as the comparison group experiment. We used the same dataset and
different oversampling methods to generate a balanced dataset. The same hyperparameters
and balanced datasets from different sources were used in the training process of the
classifier, and the performance of the classifier was detected through the same test set. The
experiments were conducted with the aim of answering the following questions:

(1) Does the GAN oversampling method improve the accuracy of robot detection?
(2) Is the GAN oversampling method more advantageous than other oversampling

methods?
(3) How many samples are generated for the most obvious improvement in robot

detection?
(4) When the degree of data imbalance in the original data set was different, what was the

difference in the degree of improvement of the detection effect by different
oversampling methods?

Experiment 1: To verify the effectiveness of the GAN method in generating minority
samples, five traditional oversampling algorithms were compared. The ADASYN, GAN,
and four different types of SMOTE algorithms were considered in the experiment. Minority
class samples were generated with the oversampling algorithms until the quantity of positive
and negative samples was the same, and then the neural network was adopted to detect the
social bots. The detection results are shown in Fig. 7.

Fig. 7. We took as many small samples in the class as large samples in the class. The variation trend

of the four evaluation indexes with the change in oversampling mode is shown.

Accuracy Precision Recall F-measure
Original 0.9779 0.9458 0.8989 0.9217
SMOTE-Regular 0.9812 0.9213 0.9345 0.9278
SMOTE-Borderline1 0.9882 0.9659 0.9503 0.958
SMOTE-Borderline2 0.9826 0.9043 0.9549 0.9289
SMOTE-SVM 0.9866 0.9647 0.9213 0.9425
ADASYN 0.989 0.9878 0.9101 0.9474
GAN 0.991 0.977 0.9557 0.9662

85%

90%

95%

100%

5610 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

The oversampling method based on a GAN model worked best in six of the
oversampling methods in Fig. 7. Detailed detection based on a GAN achieved 96% in terms
of the F-measure, which was 7 percentage points higher than that of the original data set.
The accuracy of all classifiers was relatively close, and the accuracy of the classifier
generated by GAN was one percent higher than that of the classifier generated by the
original dataset. The recall of GAN methods, SMOTE-borderline1 and SMOTE-borderline2
were much higher than other methods, while GAN was better than the other two methods.
High recall indicated that the classifier generated by the GAN could detect more social
robots than others. The GAN method exhibited obvious advantages in the scenario with high
accuracy requirement and high recall requirement. The result that GAN was superior to
other oversampling methods was because GAN could learn the spatial distribution
characteristics of social robots in the process of iterative training. The SMOTE algorithms
randomly selected a new minority sample from the connection line between the nearest
neighbor samples and a specific sample. ADASYN automatically determined how many
minority samples are synthesized, rather than synthesizing the same number of samples for
each minority sample like SMOTE.
Experiment 2: We had to determine how many generated examples were suitable for
training the classifier. For this purpose, the expansion multiple was used. It can be defined as
follows:

𝜑𝜑 = 𝑎𝑎:𝑏𝑏 (22)

where b was the number of social robots in the test data, and a was the number of samples
generated by the oversampling method.

The main purpose of this experiment was to examine the sensitivity of the six
oversampling methods in relation to the expansion multiple. In this experiment, the number
of minority samples accounted for 12% of the total number of samples. Minority samples
were generated with five different 𝜑𝜑, i.e., 1:1, 2:1, 4:1, 6:1, and 8:1. Thus, five different
training sets were generated, the classification of the data was performed, and the results
were shown in Table 3. Observing the accuracy trend graph of the classifier, as 𝜑𝜑 changed,
the accuracy of the classifier generated by SMOTE-Borderline2 fluctuated significantly. The
accuracy of the SMOTE-Borderline2 algorithm and the SMOTE-Regular algorithm were
always lower than that of the original data set. The accuracy of the GAN methods and the
SMOTE-Regular algorithm was stable, and their fluctuations were gentle, which proved that
the GAN method and the SMOTE-SVM algorithm were less affected by the changes in the
sampling proportion.

The precision rate of the classifiers generated by the SMOTE-Borderline2 algorithm
was worse than that of other methods, which indicated that the social robot samples
generated by this method did not fully conform to the inherent laws of existing robot
samples. The precision of the classifier generated by the SMOTE-SVM algorithm and the
GAN method were stable, and it remained at 96%. Among the six oversampling methods,
the recall rate of the SMOTE-Borderline2 algorithm fluctuated greatly. As 𝜑𝜑 changed, the
recall of the classifier generated by the two oversampling methods of the GAN and
SMOTE-Regular algorithm were always superior to the classifier produced by the original
data set. The F-Measure represented the weighted average of precision and recall. In the
classifiers generated by the six oversampling methods, the effect of the SMOTE-Regular
algorithm and the GAN method were more stable as 𝜑𝜑 changed, and the GAN was the
oversampling method that was least affected by the sampling proportion.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5611

Table 3. The trend diagram of the evaluation indexes pertaining to the classifier generated by
different oversampling methods with changes in 𝜑𝜑.

𝝋𝝋 Category
(%) Original SMOTE

-Regular

SMOTE
-Borderl

ine1

SMOTE
-Borderl

ine2

SMOTE
-SVM

ADA
SYN GAN

1:1

Accuracy 98.79 98.66 98.93 98.39 98.79 98.93 99.06
Precision 100.0 93.41 96.55 95.29 95.45 95.51 98.81

Recall 89.89 95.51 94.38 91.01 94.38 95.51 93.26
F-measure 94.68 94.45 95.45 93.10 94.91 95.51 95.95

2:1

Accuracy 98.79 98.26 98.93 97.32 98.12 98.53 98.93
Precision 100.0 93.18 96.55 92.59 96.30 100.0 95.51

Recall 89.89 92.13 94.38 84.27 87.64 87.64 95.51
F-measure 94.68 92.65 95.45 88.23 91.77 93.41 95.51

4:1

Accuracy 98.79 98.66 98.39 97.32 98.93 98.39 98.79
Precision 100.0 97.59 95.29 82.86 95.51 91.40 97.62

Recall 89.89 91.01 91.01 97.75 95.51 95.51 92.13
F-measure 94.68 94.19 93.10 89.69 95.51 93.41 94.80

6:1

Accuracy 98.79 98.66 98.26 98.53 99.06 98.39 99.20
Precision 100.0 97.59 98.72 91.49 96.59 98.73 98.82

Recall 89.89 91.01 86.52 96.63 95.51 87.64 94.38
F-measure 94.68 94.19 92.22 93.99 96.05 92.86 96.55

8:1

Accuracy 98.79 98.53 98.66 97.86 98.79 99.20 98.79
Precision 100.0 94.32 92.47 87.63 100.0 97.70 94.44

Recall 89.89 93.26 96.63 95.51 89.89 95.51 95.51
F-measure 94.68 93.79 94.50 91.40 94.68 96.59 94.97

Experiment 3: Considering the lack of proportion between minority and majority samples in
the original data, we extended the number of the minority samples to be equal to the number
of the majority samples in order to influence the performance of the oversampling methods.
Therefore, this experiment was designed to check the sensitivity of the six methods relative
to the imbalance degree δ, which was defined as:

𝛿𝛿 = 𝑥𝑥𝑟𝑟
𝑥𝑥

, (23)
where 𝑥𝑥 was the number of accounts in the original data set, and 𝑥𝑥𝑟𝑟 is the number of
social robots in the original data set.

We let δ take the values of 6%, 9%, 12%, 15%, and 18%, individually. In each case,
specific numbers of minority samples were sampled randomly and then placed into data set
P together with all the normal samples. Thus, we obtained five different data sets with
different δ values. Then, P was oversampled using the six methods previously mentioned,
and classifications were performed. The experimental results were shown in Fig. 8. As δ
increased, the accuracy of all the classifiers generated by all the oversampling methods
gradually decreased. This showed that with a gradual increase of δ, the effect of the
oversampling methods gradually weakened. When δ rose to 18%, the classification accuracy
(factoring in the original data set) was optimal because the difference between the generated
minority sample and the original sample had gradually increased. As δ increased, the
accuracy of the SMOTE-Borderline2 algorithm dropped more quickly. Before δ was more
than 9%, the GAN oversampling method was shown to perform better than all the other
methods, and the detection effect of the classifiers produced by all the oversampling
methods decreased slightly with the rise in the imbalance.

5612 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

Fig. 8. The trend diagram of the evaluation indexes pertaining to the classifier generated by different
oversampling methods with changes in δ: (a) accuracy, (b) precision, (c) recall, and (d) F-measure.

5. Conclusion
To resolve the problem of the imbalance between normal users and social robot accounts in
terms of social robot detection, we proposed a new oversampling method that could be used
to generate a minority sample through GANs. We also introduced specific processes for how
to use the generated data set to detect social robots. First, we defined three different
variables, and then analyzed the effects of these three variables on the experimental results
through a large number of experiments. We verified that the GAN is a more effective
method of data oversampling. The experimental results showed that the GAN method
improved the accuracy of social robot detection.

There is a series of questions that need to be explored and answered in our future work.
One potential problem to resolve is the difficulty of training a stable network into a GAN to
reach a Nash equilibrium. Moreover, we need to choose more effective features for social
robot detection to create more realistic social robot samples.

94%

96%

98%

100%

6% 9% 12% 15% 18% δ

(a)

Original GAN
SMOTE-Regular SMOTE-Borderline1
SMOTE-Borderline2 SMOTE-SVM
ADASYN

80%

90%

100%

6% 9% 12% 15% 18% δ

(b)

Original GAN
SMOTE-Regular SMOTE-Borderline1
SMOTE-Borderline2 SMOTE-SVM
ADASYN

70%

80%

90%

100%

6% 9% 12% 15% 18% δ

(c)

Original GAN
SMOTE-Regular SMOTE-Borderline1
SMOTE-Borderline2 SMOTE-SVM
ADASYN

80%

90%

100%

6% 9% 12% 15% 18% δ

(d)

Original GAN
SMOTE-Regular SMOTE-Borderline1
SMOTE-Borderline2 SMOTE-SVM
ADASYN

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5613

References
[1] Christopher A. Cassa, Rumi Chunara, Kenneth Mandl, and John S. Brownstein, “Twitter as a

sentinel in emergency situations: lessons from the Boston marathon explosions,” PLoS Current,
vol. 5, July, 2013. Article (CrossRef Link)

[2] Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonc¸alves, Filippo Menczer,
and Alessandro Flammini, “Political polarization on Twitter,” in Proc. of the 5th International
AAAI Conference on Weblogs and Social Media, pp. 89-96, July 17-21, 2011.
Article (CrossRef Link)

[3] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Who is tweeting on twitter: Human, bot, or
cyborg?” in Proc. of the 26th Annual Computer Security Applications Conference, pp.21-30,
December 6-10, 2010. Article (CrossRef Link)

[4] Onur Varol, Emilio Ferrara, Clayton A. Davis, Filippo Menczer and Alessandro Flammini,
“Online human-bot interactions: detection, estimation, and characterization,” in Proc. of the
Eleventh International AAAI Conference on Web and Social Media, pp.280-289, May 15-18,
2017. Article (CrossRef Link)

[5] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y. Zhao, and Yafei Dai, “Uncovering
social network sybils in the wild,” in Proc. of the 2011 ACM SIGCOMM conference on Internet
measurement conference, pp.259-268, November 2-4, 2011. Article (CrossRef Link)

[6] Zafar Gilani, Reza Farahbakhsh, Gareth Tyson, Liang Wang and Jon Crowcroft, “Of Bots and
Humans (on Twitter),” in Proc. of the 2017 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, pp.349-354, July 31- August 3, 2017.
Article (CrossRef Link)

[7] V. S. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, L. Zhu, E. Ferrara,
A. Flammini, and F. Menczer, “The darpa twitter bot challenge,” Computer, vol.49, no. 6,
pp.38-46, June, 2016. Article (CrossRef Link)

[8] R. Zafarani and H. Liu, “10 Bits of Surprise: Detecting Malicious Users with Minimum
Information,” in Proc. of the 24th ACM International on Conference on Information and
Knowledge Management, pp.423-431, October 18-23, 2015. Article (CrossRef Link)

[9] E. M. Clark, J. R. Williams, R. A. Galbraith, C. A. Jones, C. M. Danforth, and P. S. Dodds,
“Sifting robotic from organic text: a natural language approach for detecting automation on
twitter,” Journal of Computational Science, vol. 16, pp.1-7, September 2016.
Article (CrossRef Link)

[10] Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and Ben Y Zhao,
“You Are How You Click: Clickstream Analysis for Sybil Detection,” in Proc. of the 22nd
USENIX Security Symposium, pp.241-256, August 14-16, 2013. Article (CrossRef Link)

[11] Qiang Cao, Michael Sirivianos, Xiaowei Yang and Tiago Pregueiro, “Aiding the Detection of
Fake Accounts in Large Scale Social Online Services,” in Proc. of the 10th USENIX Symposium
on Networked Systems Design and Implementation, pp.15-15, April 25-27, 2012.
Article (CrossRef Link)

[12] C Cai , L Li and D Zengi, “Behavior Enhanced Deep Bot Detection in Social Media,” in Proc. of
IEEE International Conference on Intelligence and Security Informatics, pp.128-130, July 22-24,
2017. Article (CrossRef Link)

[13] Nikan Chavoshi, Hossein Hamooni and Abdullah Mueen, “DeBot: Twitter bot detection via
warped correlation,” in Proc. of the 16th IEEE International Conference on Data Mining,
pp.817-822, December 12-15, 2016. Article (CrossRef Link)

[14] Sneha Kudugunta and Emilio Ferrara, “Deep Neural Networks for Bot Detection,” Information
Sciences, vol. 467, pp.312-322, October, 2018. Article (CrossRef Link)

[15] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow and Christos Faloutsos,
“CopyCatch: stopping group attacks by spotting lockstep behavior in social networks,” in Proc.
of the 22nd international conference on World Wide Web, pp.119-130, May 13-17, 2013.
Article (CrossRef Link)

https://doi.org/10.1371/currents.dis.ad70cd1c8bc585e9470046cde334ee4b
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.470.6086
https://doi.org/10.1145/1920261.1920265
https://arxiv.org/abs/1703.03107
https://doi.org/10.1145/2068816.2068841
https://doi.org/10.1145/3110025.3110090
https://doi.org/10.1109/MC.2016.183
https://doi.org/10.1145/2806416.2806535
https://doi.org/10.1016/j.jocs.2015.11.002
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang
https://dl.acm.org/citation.cfm?id=2228319
https://doi.org/10.1109/ISI.2017.8004887
https://doi.org/10.1109/ICDM.2016.0096
https://doi.org/10.1016/j.ins.2018.08.019
https://doi.org/10.1145/2488388.2488400

5614 Wu et al.: Detecting Malicious Social Robots with Generative Adversarial Networks

[16] Christoforos C. Charalambous and Anil A. Bharath, “A data augmentation methodology for
training machine/deep learning gait recognition algorithms,” in Proc. of the British Machine
Vision Conference (BMVC), pp. 110.1-110.12, September 19-22, 2016. Article (CrossRef Link)

[17] Joseph Lemley, Shabab Bazrafkan and Peter Corcoran, “Smart Augmentation Learning an
Optimal Data Augmentation Strategy,” IEEE Access, vol. 5, pp. 5858-5869, March 2017.
Article (CrossRef Link)

[18] Antreas Antoniou, Amos Storkey and Harrison Edwards, “Data Augmentation Generative
Adversarial Networks,” arXiv:1711.04340, 2017. Article (CrossRef Link)

[19] Bushra Zafar, Rehan Ashraf, Nouman Ali, Mudassar Ahmad, Sohail Jabbar and Savvas A.
Chatzichristofis, “Image classification by addition of spatial information based on histograms of
orthogonal vectors,” PLoS ONE, vol. 13, no. 6, June 2018.e01198175. Article (CrossRef Link)

[20] Luan Quoc Tran, Xi Yin and Xiaoming Liu, “Disentangled Representation Learning GAN for
Pose-Invariant Face Recognition,” in Proc. of IEEE Computer Vision and Pattern Recognition,
pp. 1415-1424, July 22-25, 2017. Article (CrossRef Link)

[21] Biao Lenga, Kai Yua and Jingyan Qin, “Data augmentation for unbalanced face recognition
training sets,” Neurocomputing, vol. 235, pp. 10-14, December 2016. Article (CrossRef Link)

[22] Wei-Ning Hsu, Yu Zhang and James Glass, “Unsupervised Domain Adaptation for Robust
Speech Recognition via Variational Autoencoder-Based Data Augmentation,” in Proc. of IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), Dec 16-20, 2017.
Article (CrossRef Link)

[23] Xiaodong Cui, Vaibhava Goel and Brian Kingsbury, “Data Augmentation for deep neural
network acoustic modeling,” in Proc. Of IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 23, no. 9, pp. 1469-1477, Sept 2015. Article (CrossRef Link)

[24] Marzieh Fadaee, Arianna Bisazza, and Christof Monz, “Data Augmentation for Low-Resource
Neural Machine Translation,” in Proc. of Association for Computational Linguistics, pp. 567–
573, July 30-August 4, 2017. Article (CrossRef Link)

[25] Thomas K Landauer, Peter W. Foltz and Darrell Laham, “An introduction to latent semantic
analysis,” Discourse Processes, vol. 25, no. 2-3, pp. 259-284, November, 2009.
Article (CrossRef Link)

[26] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville and Yoshua Bengio, “Generative adversarial nets,” in Proc. of Annual
Conference on Neural Information Processing Systems, December 8-13, 2014.
Article (CrossRef Link)

[27] Ugo Fiore, Alfredo De Santis, Francesca Perla, Paolo Zanetti and Francesco Palmieri, “Using
generative adversarial networks for improving classification effectiveness in credit card fraud
detection,” Information Sciences, vol. 479, pp. 448-455, April, 2019. Article (CrossRef Link)

[28] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi and Maurizio Tesconi,
“The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race,” in Proc.
of the 26th International Conference on World Wide Web Companion, pp.963-972, April 3-7,
2017. Article (CrossRef Link)

[29] Nitesh V. Chawla, Kevin W. Bowyer and Lawrence O. Hall, “SMOTE: Synthetic Minority
Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.321-357,
January, 2002. Article (CrossRef Link)

[30] Hui Han，Wen Yuan Wang，Bing Huan Mao, “Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning,” in Proc. of International Conference on Intelligent
Computing, pp.878-887, August 23-26, 2005. Article (CrossRef Link)

[31] Seyda Ertekin，Jian Huang，Léon Bottou and C. Lee Giles, “Learning on the Border: Active
Learning in Imbalanced Data Classification,” in Proc. of the Sixteenth ACM Conference on
Information and Knowledge Management, pp. 127-136, November 6-10, 2007.
Article (CrossRef Link)

[32] Seyda Ertekin，Jian Huang and C. Lee Giles, “Active Learning for Class Imbalance Problem,” in
Proc. of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, pp.823-824, July 23-27, 2007. Article (CrossRef Link)

https://arxiv.org/abs/1610.07570
https://doi.org/10.1109/ACCESS.2017.2696121
https://arxiv.org/abs/1711.04340
https://doi.org/10.1371/journal.pone.0198175
http://openaccess.thecvf.com/content_cvpr_2017/html/Tran_Disentangled_Representation_Learning_CVPR_2017_paper.html
https://doi.org/10.1016/j.neucom.2016.12.013
https://doi.org/10.1109/ASRU.2017.8268911
https://ieeexplore.ieee.org/author/37284786800
https://doi.org/10.1109/TASLP.2015.2438544
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.1080/01638539809545028
https://arxiv.org/abs/1406.2661
https://doi.org/10.1016/j.ins.2017.12.030
https://doi.org/10.1145/3041021.3055135
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/11538059_91
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1145/1277741.1277927

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5615

[33] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li, “ADASYN: Adaptive Synthetic
Sampling Approach for Imbalanced Learning,” in Proc. of International Joint Conference on
Neural Networks, pp.1322-1328, July 1-6, 2008. Article (CrossRef Link)

[34] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel，“Scikit-learn:
Machine Learning in Python,” Journal of Machine Learning Research, vol.12, pp.2825-2830，
February 2011. Article (CrossRef Link)

Bin Wu: He received his Ph.D. degree in signal and information processing from Beijing
University of Posts and Telecommunications. He is currently a lecture in the National
Disaster Recovery Technology Engineering Laboratory, Beijing University of Posts and
Telecommunications. His research interests include network security, intrusion detection,
social engineering, and artificial intelligence security.

Le Liu: He is now pursuing his master degree in School of Cyberspace Security, Beijing
University of Posts and Telecommunications (BUPT), he received the bachelor’s degree in
cyberspace security from BUPT. His research interests include network security, social
engineering, and artificial intelligence security.

Zhengge Dai: He is now pursing the bachelor degree with International school, Beijing
University of Posts and Telecommunications, Beijing, China. His main research interests lie
in recurrent neural network, variational auto-encoder and generative adversarial network.

Kangfeng Zheng: He received his Ph.D degree in Information and Signal Processing in
July 2006 from Beijing University of Posts and Telecommunications. He is currently an
associate professor at School of Cyberspace Security, Beijing University of Posts and
Telecommunications. His research interests include network security and network data
analysis.

Xiujuan Wang: She received her PhD degree of Information and Signal Processing in July
2006 at Beijing University of Posts and Telecommunications. She is currently an instructor
lecturer at College of Computer Sciences, Beijing University of Technology. Her research
interests include information and signal processing, network security and network coding.

https://doi.org/10.1109/IJCNN.2008.4633969
http://www.jmlr.org/papers/v12/pedregosa11a.html

