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Abstract 
 

Malicious social robots, which are disseminators of malicious information on social 
networks, seriously affect information security and network environments. The detection of 
malicious social robots is a hot topic and a significant concern for researchers. A method 
based on classification has been widely used for social robot detection. However, this 
method of classification is limited by an unbalanced data set in which legitimate, negative 
samples outnumber malicious robots (positive samples), which leads to unsatisfactory 
detection results. This paper proposes the use of generative adversarial networks (GANs) to 
extend the unbalanced data sets before training classifiers to improve the detection of social 
robots. Five popular oversampling algorithms were compared in the experiments, and the 
effects of imbalance degree and the expansion ratio of the original data on oversampling 
were studied. The experimental results showed that the proposed method achieved better 
detection performance compared with other algorithms in terms of the F1 measure. The 
GAN method also performed well when the imbalance degree was smaller than 15%. 
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1. Introduction 

With the high-speed development of the mobile Internet, online social networking has 
become an indispensable part of our daily lives. That being said, a large number of social 
robots participate in social networks. The primary objectives of these social robots are to 
create the illusion that a social network very actively to influence public opinion [1], to be 
employed as a means of political penetration [2], and to spread malicious content. On 
popular social networks, these malicious social robots have had a negative impact on human 
users. 

As the influence of social robots on social networks has grown, malicious social robots 
have increasingly used various social engineering methods to encourage unsuspecting users 
of these networks to disclose personal and sensitive information. Therefore, social robot 
detection has become a hot research topic in recent years. Social robot detection aims to 
distinguish between robots and normal humans in social networks. Since the number of 
robots is far less than the number of normal humans in the real world, this problem has been 
considered in an experimental environment. In robot classification detection, an imbalance of 
training data is caused by an inconsistency in the number of normal humans and robots, and 
the difference in the proportion of the positive and negative samples leads to a final result 
that lacks credibility. 

Based on the above analysis, this paper proposes the use of generative adversarial 
networks (GANs) to address the imbalance between positive and negative samples in robot 
detection. By generating samples of social robots through GANs, we mediated the imbalance 
between the social robot and normal human samples in the original data set, and this 
mediation was used to improve the accuracy of social robot detection. The main work of the 
paper is shown in Fig. 1. 
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Fig. 1. We used generative adversarial networks to augment minority samples, constructed a 

balanced data set as the data input to train the classifier. 

2. Related work 

At present, popular technology involved in social robot detection is based on the dynamic 
content sent by social robots and the social relationship diagram around social robots. This 
technology requires processing data sets that are acquired ahead of schedule and then 
selecting some representativeness and discrimination features to achieve better classification 
results. Chu [3] used an entropy-based component, a machine-learning-based component, 
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and an account properties component to determine the likelihood that an unknown social 
media network user was human through the combination of features extracted from the user. 

The entropy-based component detects the periodicity for the specific user. The 
machine-learning-based component detects spam by the content of tweets, and the account 
properties component detects account information. The decision maker determines whether 
the input account is a social robot. Varol and Ferrara [4] extracted 1150 features from public 
data and metadata regarding users, friends, tweet content and sentiments, network patterns, 
and activity time series and used random forest, AdaBoost, logistic regression, and decision 
tree classifiers to detect social robots. The best classifier for the area under curve (AUC) was 
the random forest, and the AUC for each type of feature was calculated separately. The most 
effective features were user metadata and content features, but some content features and 
emotional features were redundant. Yang and Wilson [5] used the support vector machine 
(SVM) classifier to make predictions from the average invitations sent over N hours using 
the ratio of accepted outgoing requests, the ratio of accepted incoming friend requests, and a 
clustering coefficient. This was the first time that Sybil graph topology was used on a major 
online social network. Gilani and Farahbakhsh [6] divided the collected accounts into four 
groups according to the number of account fans and then observed the specific relationships 
between their characteristics and the real identity of the accounts. These features included 
account age, content generation, content popularity, content consumption, account 
reciprocity, and tweet generation sources. 

In work related to features, DARPA held a competition [7] using machine learning to 
detect a social robot. Among the five features of tweet syntax, tweet semantics, temporal 
behavior features, user profile features, and network features, six teams found the most 
effective combinations between features and machine learning algorithms by judging the 
comprehensive results of the detection. Zafarani and Liu [8] proposed a method for 
identifying malicious users with minimal information. This method had to classify the 
features of malicious users into five categories, and the detection framework generated by 
machine learning demonstrated strong robustness in the different algorithms and unbalanced 
data sets. Clark and Williams [9] maintained that the excessive dependence on user metadata 
could make robots with strong imitation abilities difficult to detect. Therefore, the language 
attributes of the tweets were used as the basis for the classification. These researchers 
calculated the mean and standard deviation of each dimension through user data of normal 
humans and then calculated the distance between the unknown user and the attribute average 
to classify a social robot. This method can be used to dynamically prevent a robot account 
from manipulating the user attributes and hiding its real identity. 

Social robot detection can also be achieved without feature extraction. Wang and 
Konolige [10] made use of a clickstream model to detect the real identity of social accounts 
on the server side. These authors input the click stream sequence and then calculated the 
sequence distance to accurately classify social accounts. Cao and Sirivianos [11] developed a 
tool called the SybilRank that ranked the user's impersonation possibilities by using social 
graph attributes. Cai and Li [12] combined (convolutional neural networks) CNNs with (long 
short-term memory) LSTM model to explore the semantic information and a potential time 
model. This method utilized the content information and behavior information and converted 
the user content into temporal text data to reduce the workload for determining the features. 
Chavoshi [13] designed the DeBot system using an unsupervised learning approach and 
proposed a new hash mapping technique that could quickly group a large number of 
associated users. The accuracy of this method reached 94% in social robot detection. In 
addition, Kudugunta and Ferrara [14] judged whether the social media account was a social 
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robot by analyzing a single tweet. They introduced the contextual LSTM deep neural 
network that used content and metadata as input. This model can accurately be used to judge 
the category of the social media account. Additionally, these investigators proposed a method 
based on synthetic minority oversampling to enhance the existing data set and generated a 
minority sample to improve the classification performance. Beutel and Xu [15] detected 
lockstep page like patterns on Facebook by analyzing only the social graph between users 
and pages and the times at which the edges in the graph found malicious social robots. 

At the same time, data augment could be applied some areas, such as computer vision, 
voice data augment and nature language. Charalambous and Bharath [16] proposed a method 
of generating synthetic video data for the data enhancement of gait sequences. This process 
allowed the generation of sequences using multiple confounding factors and ultimately 
synthesized large amounts of training and test data. Lemley and Bazrafkan [17] designed a 
network for data generation and a network for discriminating data. These researchers have 
performed many experiments using different data sets to verify that nontrivial cases, where 
two or more samples of a certain class were merged in nonlinear ways, resulting in the 
improved generalization of a target network. Antoniou and Storkey [18] proposed data 
augmentation generative adversarial networks (DAGAN) based on image conditions. The 
model fetches data from the source domain and learns to fetch any data items and generalize 
them to generate other within-class data items. Zafar and Ashraf [19] proposed a new image 
representation that combines spatial information with the bag-of-visual-words (BoVW) 
model. Spatial information is added by computing the global relative spatial orientation of 
the visual words. These researchers calculated the histogram of the visual word based on the 
size of these orthogonal vectors to improve the accuracy of the classification. The original 
input of gesture recognition are similar to picture recognition. Tran and Yin [20] proposed 
the disentangled representation learning-generative adversarial network (DR-GAN), the 
encoder-decoder structure of the generator allowed DR-GAN to learn a generative and 
discriminative representation. This representation is explicitly disentangled from other face 
variations, such as pose, through the pose code provided to the decoder and the pose 
estimation in the discriminator. Instead of directly manipulating the input image, Lenga and 
Yu [21] performed virtual sample generation at the feature level. First, the distribution of 
data features was estimated, and then the uniformly distributed random noise was taken as 
the input training sample, and finally the minority samples were generated. Some studies 
about data augment in the field of computer vision could also be extended to voice data. Hsu 
and Zhang [22] used the source and target domain data to train the variational autoencoder 
that learned the underlying laws of speech data, and modified the potential representation to 
convert attributes that are not related to recognition. This proposed method would have an 
absolute word error rate (WER) reduces by up to 35%. Cui and Goel [23] proposed a new 
data enhancement method based on random feature map (SFM) for speaker adaptive feature 
space. Improved recognition performance could be observed through experiments. 
Feature-based research methods had some similarities, so data enhancement methods could 
also be used in the natural language field. Fadaee and Bisazza [24] located low-frequency 
words by generating new sentence pairs containing rare words in the context of new 
synthetic creation. Experimental results simulating low resource settings show that our 
approach significantly improves translation quality. 

All methods based on machine learning inevitably require a large number of original 
data sets. Existing detection methods do not explicitly solve the imbalance in the ratio of the 
positive and negative samples in the original data set. An imbalance between the positive and 
negative samples reduces the effectiveness of the final detection. 
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3. Social robot detection based on GANs 

3.1 Social robot detection 
The social robot detection problem is actually a binary classification problem. The formal 
definition is as follows: 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎|𝐴𝐴|}, which represents the collection of social 
accounts to be detected on the social network. C= {𝐶𝐶𝑅𝑅 ,𝐶𝐶𝑁𝑁} is defined as the category 
collection, where 𝐶𝐶𝑅𝑅 is a collection of social robot accounts, 𝐶𝐶𝑁𝑁 is a collection of normal 
human accounts, and 𝐶𝐶𝑅𝑅 ≪ 𝐶𝐶𝑁𝑁. The essence of the social robot detection problem is to 
determine whether the account 𝑎𝑎𝑖𝑖 belongs to the social robot collection 𝐶𝐶𝑁𝑁. The decision 
function is as follows: 
 

φ�𝑎𝑎𝑖𝑖, 𝑐𝑐𝑗𝑗�: A × C → {0,1}(1 ≤ i ≤ |A|, j ∈ {R, N}).                (1) 
 
The result of φ�𝑎𝑎𝑖𝑖, 𝑐𝑐𝑗𝑗� can only be 0 or 1, which can be summarized as follows: 
 

      φ�𝑎𝑎𝑖𝑖, 𝑐𝑐𝑗𝑗� = �0,𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶𝑅𝑅
1,𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶𝑁𝑁

 .                          (2) 

 
We generated new samples by oversampling methods, appended these new samples in 𝐶𝐶𝐴𝐴 

and mixed 𝐶𝐶𝑅𝑅 in 𝐶𝐶𝐴𝐴, which made 𝐶𝐶𝐴𝐴 ≈ 𝐶𝐶𝑁𝑁. As a result, the classifier would facilitate more 
effective detection of social robots through a balanced data set. 

3.2 Overall process 
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Fig. 2. Social robot detection framework 

 
Fig. 2 shows the social robot detection framework proposed in this paper. By collecting 
tweet and user profile information, we generated the available data set from the original data 
set through feature extraction. We input the robot account from the training set into the GAN 
and then trained the GAN until it was stable. Then, we incorporated random noise into the 
stable GAN to generate fake robot accounts that were difficult to distinguish for the 
discriminator. Next, we mixed them with the normal human data sets to form an augmented 
training data set. Finally, we adopted the augmented training data set to train a classifier that 
could be used to classify an unlabeled account in the test set. 

3.3 Feature extraction 

The i-th social account 𝑎𝑎𝑖𝑖 is quantified as 𝑎𝑎𝑖𝑖 = (𝑎𝑎𝑖𝑖1,𝑎𝑎𝑖𝑖2, … ,𝑎𝑎𝑖𝑖𝑀𝑀). Here, 𝑎𝑎𝑖𝑖
𝑗𝑗 is the description 

of the j-th feature of the social account, and M is the number of features. Many available 
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features could be selected for the social robot detection process. We selected features with 
better classification abilities from the content of user tweets and behavioral features. We then 
used these features for social robot detection. Eleven types of features were involved: 
(1) Average number of topic tags 𝑎𝑎𝑖𝑖1: The average of the topic tags in the tweets. In the tweet, 

the "#" and other forms indicate that the tweet is highly correlated with a specific topic, 
and the social robot increases the speed of information dissemination by publishing 
tweets with multiple hot topics, so it can be defined as: 
 
                              𝑎𝑎𝑖𝑖1 = 𝑛𝑛𝑡𝑡

𝑛𝑛𝑎𝑎
,           (3) 

 
where 𝑛𝑛𝑡𝑡 is the number of topic tags in all tweets of social account 𝑎𝑎𝑖𝑖 and 𝑛𝑛𝑎𝑎 is the 
number of tweets of the social account 𝑎𝑎𝑖𝑖. 

(2) Average number of user mentions 𝑎𝑎𝑖𝑖2: The average value mentioned by the user in the 
tweet. Specific users can be notified via "@username,” and the social robot mentions 
users more frequently than normal users. The average number of user mentions can be 
formulated as: 
 
         𝑎𝑎𝑖𝑖2 = 𝑛𝑛𝑢𝑢

𝑛𝑛𝑎𝑎
,                             (4) 

 
and where 𝑛𝑛𝑢𝑢 denotes the number of user mentions in all tweets of social account 𝑎𝑎𝑖𝑖. 

(3) Number of links 𝑎𝑎𝑖𝑖3: The average number of URL links in the tweet, where 𝑎𝑎𝑖𝑖3 can be 
denoted as 
 
         𝑎𝑎𝑖𝑖3 = 𝑛𝑛𝑙𝑙

𝑛𝑛𝑎𝑎
,                             (5) 

 
and 𝑛𝑛𝑙𝑙 is the number of URL links in all tweets of the specific social account. The tweet 
content in social networks supports multiple forms, including URL links, and social 
robots add more links to the tweet content posted to entice normal users to click and 
launch social engineering attacks. 

(4) Number of retweets 𝑎𝑎𝑖𝑖4: The ratio of the number of tweets that belong to retweets (i.e., 
forwards of tweets) of other users to the total number of tweets. Under normal 
circumstances, normal users will only retweet tweets in which they are interested, but 
social robots will retweet other users’ tweets at a higher frequency under the control of 
an automated program. The number of retweets can be denoted as 
 
            𝑎𝑎𝑖𝑖4 = 𝑛𝑛𝑟𝑟

𝑛𝑛𝑎𝑎
,                             (6) 

 
where 𝑛𝑛𝑟𝑟 is the number of the tweets that belong to retweets (i.e., forwards of tweets) 
of other users. 

(5) Number of favorites 𝑎𝑎𝑖𝑖5: The total number of users' favorites for other tweets. Normal 
users in social networks will express their concern and attitude towards tweet content by 
supporting it, but the main purpose of social robots is to increase their influence. Hence, 
their tweet content is favorited less frequently than that of normal human users. The final 
form of 𝑎𝑎𝑖𝑖5  is an integer that is equal to the number of all favorites from social 
account 𝑎𝑎𝑖𝑖. 
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(6) Ratio of followers to the number followed 𝑎𝑎𝑖𝑖6: The specific definition can be expressed 
as follows: 
 
         𝑎𝑎𝑖𝑖6 = 𝑛𝑛𝑒𝑒

𝑛𝑛𝑑𝑑
,                             (7) 

 
where 𝑛𝑛𝑒𝑒 denotes the number of followers and 𝑛𝑛𝑑𝑑 denotes the number of friends of 
social account 𝑎𝑎𝑖𝑖. Social robots focus on a large number of normal human users on 
social networks to improve their influence in virtual networks. However, due to the lack 
of realistic friends and dynamic content, their fan base is small. 

(7) Tweet source 𝑎𝑎𝑖𝑖7: The number of tweet sources belonging to the official source. Normal 
human users use a variety of different platforms to send tweets, but these platforms use 
the interface provided by Twitter's official platform to share tweets. The source of tweets 
sent by social robots is unofficial. 𝑎𝑎𝑖𝑖7 is an integer that is equal to the type of tweet 
sources belonging to the official source. 

(8) The similarity of content 𝑎𝑎𝑖𝑖8: The latent semantic text content similarity of the original 
tweet. Latent semantic analysis (LSA) [25] extracts the “concepts” of documents and 
words through “vector semantic space” to analyze the potential connection between 
documents and words. The basic assumption of an LSA is that if multiple different words 
appear in the same document multiple times, the words are semantically similar. An LSA 
constructs a text collection matrix. The rows of this matrix represent words, the columns 
represent documents, the specific values of the matrix elements represent the number of 
times that a word appears in the document, and then the matrix is subjected to singular 
value decomposition (SVD). We convert the data text into the matrix A, 
 

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇                            (8) 
 

where Σ = �𝑆𝑆  0
0  0� and S = diag(𝜎𝜎1, … ,𝜎𝜎𝑟𝑟) with 𝜎𝜎1 ≥ ⋯ ≥ 𝜎𝜎𝑟𝑟 > 0.The SVD can reduce 

the number of rows in the matrix while retaining as much column information as 
possible, and then the similarity of each two words can be quantified by the cosine 
similarity of the two row vectors a, b. 
 

ε =  
∑ (𝑎𝑎𝑗𝑗×𝑏𝑏𝑗𝑗)𝑛𝑛
𝑗𝑗=1

�∑ (𝑎𝑎𝑗𝑗)2𝑛𝑛
𝑗𝑗=1 ×�∑ (𝑏𝑏𝑗𝑗)2𝑛𝑛

𝑗𝑗=1

                   (9) 

 
where a = (𝑎𝑎1 ⋯𝑎𝑎𝑛𝑛) and b = (𝑏𝑏1⋯𝑏𝑏𝑛𝑛). The closer ε is to one, the more similar the 
two words are. The closer ε is to zero, the more dissimilar the descriptions are. 𝑎𝑎𝑖𝑖8 is 
the mean of all ε. The semantic similarity of original tweets from a normal user is higher 
than that of original tweets from social robots. Furthermore, the interests of normal 
human users are relatively stable, but social robots often need to have considerable 
interest to expand their influence. 

(9) The similarity of the tweet length 𝑎𝑎𝑖𝑖9: The variance in the number of tweet words. The 
length of the tweet sent by the social robot is steady, while that of the normal human user 
varies greatly, so it can be defined as follows: 
 

𝑎𝑎𝑖𝑖9 =
∑�𝑥𝑥𝑗𝑗−𝜇𝜇9�

2

𝑛𝑛𝑎𝑎
                            (10) 
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           𝜇𝜇9 =
∑𝑥𝑥𝑗𝑗
𝑛𝑛𝑎𝑎

                               (11) 
 

where 𝜇𝜇9 denote the mean of the similarity of the tweet length, and 𝑥𝑥𝑗𝑗 is the number of 
the tweet length about the j-th tweet. 

(10) The similarity of punctuation usage 𝑎𝑎𝑖𝑖10: The variance in the number of punctuation 
marks in the original tweet. Normal human users have distinct punctuation usage habits, 
while the diversity of social robot tweet sources results in punctuation without a fixed 
style. 

𝑎𝑎𝑖𝑖10 = ∑ 𝑝𝑝𝑗𝑗𝑛𝑛
𝑗𝑗=1                       (12) 

 
where 𝑝𝑝𝑗𝑗 is the variance of the number of occurrences of a particular punctuation.  

(11) The similarity of stop words 𝑎𝑎𝑖𝑖11: The variance in the number of stop words in the 
original tweet. The stop word is the most frequent word in the tweet, and it represents the 
writing style of the tweet sender. Normal human users employ more consistent usage of 
stop words than do social robots. With the same definition as 𝑎𝑎𝑖𝑖9, this variable 𝑎𝑎𝑖𝑖11 
indicates the degree of change in the number of stop words. 

3.4 GAN 

GAN is an oversampling approach that was originally proposed in 2014. In terms of deep 
learning, the GAN method can generate more realistic pictures to make the deep neural 
network model develop in the desired direction. The GAN method can also automatically 
learn the potential distribution laws in the original image samples. Unlike the method of 
machine learning that defines the model in advance, a GAN can obtain the model that 
conforms to the data set distribution through iterative learning. 

Due to its characteristics, classical GANs were combined in this paper to generate 
social robot samples and ultimately improved the imbalance between positive and negative 
samples in the original data set. Fig. 3 shows the main structure of a GAN. 

 

True: real robots 

…
…

…
…

Discriminator D

False: fake robots

…
…

…
…

…
…

Generator G

(Real) 

(Fake)

 
Fig. 3. The trained generator G produces a new sample by using random noise z, and its output is 

merged with the original training set. The discriminator D cannot distinguish the source of the input 
samples. 

 
The ultimate goal of a GAN was to learn the correct distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of the social 

robot in the training data 𝐶𝐶𝑅𝑅. To learn the generator’s distribution 𝑝𝑝𝑔𝑔 over data x, random 
noise z conforming to 𝑝𝑝𝑧𝑧(𝑧𝑧) was taken as input of the generator G, and we defined a neural 
network 𝐺𝐺(𝑧𝑧;𝜃𝜃𝑔𝑔) to map, where 𝜃𝜃𝑔𝑔 was a parameter of the neural network. We also 
defined another neural network, 𝐷𝐷(𝑥𝑥;𝜃𝜃𝑑𝑑), and the output D(x) of this neural network 
represented the probability that x came from the data rather than 𝑝𝑝𝑔𝑔. We trained the neural 
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network of the generator G to optimize 𝜃𝜃𝑔𝑔 by minimizing 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))), while 𝜃𝜃𝑑𝑑 
remained unchanged. The data set mixed between G(z) and x was used as the input of 
discriminator D to train the discriminator to optimize 𝜃𝜃𝑑𝑑 while leaving 𝜃𝜃𝑔𝑔 unchanged. 
After some intervals of training, both G and D attempted to optimize their network 
parameters to form a competitive confrontation until the two sides reached a dynamic 
balance that was represented as 𝑝𝑝𝑔𝑔 = 𝑝𝑝data. Finally, discriminator D could not accurately 
determine the source of the social robot samples, which indicated that generator G could 
generate new samples that matched the distribution 𝑝𝑝data of the social robots in the training 
data 𝐶𝐶𝑅𝑅 as much as possible. That is, the optimization process of G and D was a binary 
minimax problem. 

The optimization problem consisted of two parts. The first part was that the 
discriminator D judged whether some samples were from x or 𝐺𝐺(𝑧𝑧) so 
that  𝐸𝐸𝑥𝑥~𝑝𝑝data(𝑥𝑥) log(𝐷𝐷(𝑥𝑥)) . Maximizing this part was the equivalent of enabling 
discriminator D to output 𝐷𝐷(𝑥𝑥) = 1 when x conformed to 𝑝𝑝data . Another part of the 
problem was that generator G tried to deceive discriminator D, so that there 
was  𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� . The objective function [26] could be expressed as 
follows: 
 

 𝐺𝐺min 𝑉𝑉(𝐷𝐷,𝐺𝐺)𝐷𝐷
max = 𝐸𝐸𝑥𝑥−𝑝𝑝data(𝑥𝑥)

 [log𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)���.    (13) 
 
The essence of the generator and discriminator was the neural network, and the loss function 
was their essential part. The loss function of the generator and the discriminator in this paper 
was a logarithmic loss function that increased the sparse classification. It was defined as 
follows: 
 

𝐿𝐿�𝑌𝑌,𝑃𝑃(𝑌𝑌|𝑋𝑋)� = − 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌|𝑋𝑋)                      (14) 
 

The goal of the G and D interval training was to update the parameters of the two networks 
to make them closer to each other or to reach the optimal value, thus minimizing the damage 
function. 

3.5 Detection process 

X
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Fig. 4. The trained generator 𝐺𝐺∗ is fed with random noise z, and its output is merged with the 

original training set 𝑋𝑋𝑡𝑡. The different classifiers are trained on the augmented dataset (𝐶𝐶𝑎𝑎) and the 
original training set (𝐶𝐶𝑜𝑜). 

 
We referred to the flow diagram proposed by Fiore [27] and combined it with our work. The 
framework of the entire detection process was shown in Fig. 4, and it was divided into the 
following steps: 
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Step 1: The original data were divided into a training set T and a test set S, and the neural 
network classifier 𝐶𝐶𝑜𝑜 was trained with the training set T. 
Step 2: The data set F, which consisted of all the minority samples in the training set T, was 
used as a training set, and the continual training adjusted the hyperparameters of the GAN. 
Step 3: The trained stable generator 𝐺𝐺∗ could transform the input random noise z into a 
minority class sample set 𝐹𝐹′, which was difficult to distinguish from the discriminator D. 
Step 4: We mixed 𝐹𝐹′ with the training set T and trained the neural network classifier 𝐶𝐶𝑎𝑎 
under the same parameters. We then compared the performance of 𝐶𝐶𝑜𝑜 and 𝐶𝐶𝑎𝑎 with that of 
the test set. 

4. Experiments and analyses 

4.1 Experimental preparation 

The experiment used 1971 normal human accounts and 462 social robot accounts as original 
samples, of which 891 normal users were from the data set used in [4], and the 1080 normal 
users and all the social robot users were from the data set used in [28]. Social robot accounts 
made up 18% of the total original samples. All the data that were original tweet content 
crawled from the Twitter website were converted into a raw data set that could be used 
directly through feature extraction. The first part of the data was the normal user ID crawled 
in 2014; the official Twitter API was used to crawl all the relevant content. The second part 
of the data was the Twitter account crawled by the Twitter API in 2015 as well as related 
content. The overall data distribution was shown in Table 1. 
 

Table 1. Data set composition 
Category Number of accounts 

Normal user 1971 
Social bot 462 

Total 2433 
 
Traditional evaluation metrics for the two classification problems were adopted, namely, 

accuracy rate, accuracy, recall, and F-measure. In a two-category problem, there were four 
cases in the final test results. If an instance was a positive class and was predicted to be a 
positive class, then it was considered to be a true positive (TP). If the instance was a 
negative class sample and was predicted to be a positive class, then it was called a false 
positive class (FP). Correspondingly, if the instance was a negative class and was predicted 
to be a negative class, then it was called a true negative (TN). If a positive class instance was 
predicted to be a negative class, then it was a false negative (FN). This definition was as 
follows: 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
                      (15) 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                        (16) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                         (17) 
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𝐹𝐹1 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                       (18) 

4.2 Compared Algorithms 
To analyse the effectiveness of the GAN method in detecting social robots, we used four 
types of synthetic minority over-sampling technique (SMOTE) algorithms and an adaptive 
synthetic (ADASYN) algorithm as the comparison group. These five algorithms were very 
common in the field of data augmentation, and the improvement of the effect on the 
classifier was obvious. 
（1）SMOTE [29]: The SMOTE algorithm randomly selected positions on the line of two 

minority class samples as a new minority class sample. This method improved the 
accuracy of classifiers for minority classes by increasing the number of minority classes. 
The SMOTE provided more relevant minority samples for learning so that the classifier 
could accurately learn the differences between different types of samples and correctly 
identify more samples. 

（2）SMOTE-Borderline1 [30]: The SMOTE used all the minority samples to generate new 
samples. However, some samples located on the borderline were more likely to be 
misclassified than other samples away from borderline. This method generated new 
samples through dangerous samples that at least half of the nearest neighbour samples 
were from the same category. 

（3）SMOTE-Borderline2 [30]: SMOTE-Borderline2 was not limited to the selection of 
neighbour samples for source samples, which was different from the 
SMOTE-Borderline1 method. The minority samples generated by the 
SMOTE-Borderline2 method could make the classifier better distinguish between the 
minority class and the majority class. 

（4）SMOTE-SVM [31] [32]: The SMOTE-SVM algorithm was an efficient active learning 
method that generated more samples belonging to a minority class. Active learning with 
early stopping achieved a satisfactory solution without sacrificing classification 
performance. The SMOTE-SVM provided an efficient SVM-based active learning 
selection strategy that queried a small part of the data set at each step instead of querying 
the entire data set. 

（5）ADASYN [33]: The ADASYN algorithm could adaptively generate bias by reducing 
the data imbalance for synthetic data samples of the minority classes. At the same time, 
the ADASYN algorithm could be extended to handle imbalances in different scenarios, 
and this algorithm was equally applicable to various categories of data imbalance 
problems. 
The implementation of these five algorithms was provided by the scikit-learn library 

[34]. We executed these five algorithms by calling the appropriate modules in the library. All 
of the above algorithms needed to use the training data set as data input, and these five 
algorithms contained some parameters that achieved the best performance. The use of these 
five oversampling algorithms was similar to the GAN in the experiment. The five 
oversampling algorithms used the training set as input data to generate more samples. We 
used the augmented data set to train the neural network classifier and used the test set to 
verify the performance of the classifier.  

These five algorithms needed to set some parameters to ensure that the generated data 
could conform to the laws of minority samples. We used the augmented data as input to train 
the classifier and choose the important parameters based on the performance of the classifier. 
The random state was a random number seed that guaranteed the same random sequence 
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during different oversampling processes. The value tested for the random state were in the 
range from 5 to 20. After the experimental comparison, the random state of the five 
oversampling algorithms was set to 10. In addition, the number of nearest neighbours used to 
construct synthetic samples was set to 5 empirically. For the SMOTE-Borderline1 algorithm 
and the SMOTE-Borderline2 algorithm, the number of nearest neighbours used to determine 
if a minority sample was in danger was set to 10 for optimization reason. The ratio 
represented the number ratio of the minority class to the majority class in the augmented data 
set, and this parameter was dynamically set according to subsequent experiments. 

4.3 Experimental process and results analyses 
For the original data set, we randomly allocated two thirds of the data as the training set and 
one third of the data as the test set of the positive and negative samples, respectively. 

4.3.1 Parameter selection 
The hyperparameters in the neural network affected the performance of the entire network, 
making it necessary to continuously adjust the hyperparameters for the neural network 
classifier until the classifier performance was optimal. 

Too few layers of the neural network could cause the network to fail to satisfactorily 
learn the features of the data. Too many layers, however, may result in the phenomenon of 
overfitting. In many experiments, networks with two, three, and four layers were tested in 
the generator. Both the discriminator and classifier were used to find the best number of 
layers. One of the hyperparameters was the type of activation function in each layer. Some 
activation functions included the logistic sigmoid, which was defined as follows: 

 
𝜎𝜎(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
                             (19) 

 
where the ReLU function was defined as 
 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥).                         (20) 
 

In addition, the tanh function was defined as follows: 
 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
.                         (21) 

 
The output layer result of the discriminator was the input sample. Because the sigmoid 
function mapped any range to (0, 1), the activation function selected the sigmoid function. 
When the input entered the neuron, it was multiplied by the weight, and we randomly 
initialized the weights and updated them during the model training. In addition to the 
weights, another linear component applied to the input was called the bias. It was added to 
the result of multiplying the weight by the input. For the initialization of the weights and 
biases, weight values were drawn from the normal distribution N(0,1) and biases were drawn 
from the uniform distribution U(–1,1). The neural network generally consisted of input layer, 
hidden layer and output layer. Since the data dimension and the amount of data used in the 
experiment were small, we chose three layers network as the default implementation of the 
neural network. 

Different optimization algorithms had different principles and were applicable to 
different scenarios. After many investigations, we selected the SGD and Adam algorithms as 
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the optimizers for testing the optimization algorithms. As one of the hyperparameters, the 
learning rate was the speed at which the neural network reached the optimal status. If the 
learning rate was too small, then the loss of the network would decline very slowly. If the 
learning rate was too large, then the range of the parameter updated would be too large, 
resulting in the network convergence to local optimum. We selected the values 
experimentally and observed that the performance was less dramatic with the change in 
hyperparameters. 

4.3.2 Parameter setting 
The optimal performance of GAN was that the accuracy of the discriminator D should 

be close to 50% as far as possible. There are several hyperparameters in GAN network 
which would affect the performance of GAN, including network parameters about generator 
G, discriminator D and the parameters about random noise. So we found the optimal 
combination of parameters by the grid search method. According to the experience about 
neural network parameter setting and GAN training, the structure of the discriminator D and 
the generator G was set to three layers. The dimensions of the input data and output data 
were determined by our features, so the neuron numbers about the first layer and the third 
layer of the discriminator D was fixed. For the same reason the neuron numbers about the 
third layer of the generator G was fixed. The learning rate of the generator and discriminator 
should be selected. The dimension of the noise, denoted as 𝑧𝑧𝑑𝑑, ranged from 1 to 3. The 𝑔𝑔1 
that ranged from 4 to 7 was the number of neurons in the first layer of generator, and 𝑔𝑔2 
was the number of neurons in the second layer of generator G, its range was from 8 to 11. 
The number of neurons in first layer of the discriminator D should be equal to the dimension 
of the input. The number of neurons in the second layer of the discriminator D, denoted as 
𝑑𝑑2, ranged from 4 to 9. Learning rate in a logarithmic grid (5 × 10−4, 3 × 10−4, 1 × 10−4) 
were experimented, 𝑔𝑔𝑙𝑙𝑙𝑙 was the learning rate of the generator G and 𝑑𝑑𝑙𝑙𝑙𝑙 was the learning 
rate of the discriminator D. In the training process of GAN, the discriminator D could be 
trained multiple times, denoted as 𝑑𝑑𝑡𝑡, and the generator G trained once in order to achieve 
balance faster. 𝑑𝑑𝑡𝑡 ranged from 1 to 3. The stable condition of discriminator D was that the 
discriminator accuracy was maintained stable over 500 epochs. 𝑡𝑡𝑔𝑔 was the training time of 
the generator G when GAN reached stable. 𝑡𝑡𝑑𝑑 was the training time of the discriminator D 
and 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 was the accuracy when GAN reached stable state. So 𝑡𝑡 was the running time of 
GAN. All types of hyperparameters combinations exceeded 8,000, so the top 20 results with 
the accuracy rate closest to 50% were showed in Table 2. The hyperparameters combination 
with an accuracy of 49.04% was selected as the optimal result for training the GAN to 
generate an augment robot dataset.  

 
Table 2. After the GAN reaches stability, the accuracy, training time and testing time of the GAN 
changed in different hyperparameters combinations. 

Hyperparameters of GAN Evaluation metrics 
𝒛𝒛𝒅𝒅 𝒈𝒈𝟏𝟏 𝒈𝒈𝟐𝟐 𝒈𝒈𝒍𝒍𝒍𝒍 𝒅𝒅𝟐𝟐 𝒅𝒅𝒍𝒍𝒍𝒍 𝒅𝒅𝒕𝒕 𝒅𝒅𝒂𝒂𝒂𝒂𝒂𝒂 𝒕𝒕𝒅𝒅(s) 𝒕𝒕𝒈𝒈(s) 𝒕𝒕(s) 
2 4 10 0.0005 7 0.0003 3 64.70% 33 12 45 
2 6 10 0.0001 6 0.0005 3 63.60% 95 31 126 
3 6 9 0.0003 6 0.0005 1 62.64% 21 19 40 
2 4 10 0.0003 5 0.0001 1 62.50% 28 25 53 
1 5 10 0.0005 3 0.0003 1 62.36% 26 29 55 
3 5 9 0.0005 6 0.0001 1 61.26% 94 92 186 
1 4 8 0.0003 4 0.0001 1 60.85% 32 11 43 
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2 4 10 0.0005 7 0.0003 1 60.71% 43 35 78 
2 4 10 0.0005 3 0.0001 1 59.62% 31 30 61 
1 4 9 0.0003 5 0.0001 1 59.34% 98 87 185 
2 6 9 0.0003 7 0.0001 2 57.28% 124 59 183 
2 4 9 0.0005 3 0.0001 1 52.75% 28 25 53 
2 4 11 0.0001 6 0.0003 1 51.79% 36 22 58 
3 4 9 0.0001 3 0.0001 1 49.04% 27 19 46 
3 4 10 0.0003 5 0.0003 1 42.58% 74 59 133 
2 4 10 0.0003 3 0.0003 2 42.45% 62 30 92 
3 7 9 0.0001 3 0.0001 1 41.48% 51 53 104 
3 4 10 0.0001 3 0.0003 1 41.35% 34 34 68 
2 4 9 0.0003 7 0.0001 1 41.07% 22 12 34 
3 4 9 0.0003 3 0.0005 1 40.66% 22 16 38 

 
As shown in Table 2, the optimal performance of GAN was determined by the 

hyperparameters combination. The relationship between optimal performance of GAN and 
running time for GAN was weak. The GAN running time represented as 𝑡𝑡 in Table 2 lasted 
from tens of seconds to more than one hundred seconds which is reasonable in the GAN 
training process, because the performance of the GAN also changed greatly when the 
hyperparameters combination changed slightly due to the random generation of the input 
noise for the generator G. The time of the training generator G and the time of training 
discriminator D had certain relationship with the respective network parameters. When 𝑑𝑑𝑡𝑡 
was larger, the proportion of the training time for discriminator D in the total time was larger. 
The increase of 𝑑𝑑𝑡𝑡  led to reduction in the training epoch, but the increase in the time of 
training discriminators resulted in increase in the time of one epoch. 

After a lot of experiments for the most optimal hyperparameters combination, the 
random noise z conformed to the random distribution N(0,10). The dimension of random 
noise was setting as 3. The generator G in the GAN had three layers, which contained 3 
ReLU units, 4 ReLU units, and 9 tanh units. The discriminator also had three layers 
composed of 11 ReLU units, 3 ReLU units, and 2 Sigmoid units, respectively. The learning 
rate of the generator was 1×10-4 and discriminator was selected as 1×10-4. In addition, the 
optimizer of the generator was the Adam algorithm, and the optimizer of the discriminator 
was the SGD algorithm. The loss function of the generator, classifier, and discriminator in 
this paper was a logarithmic loss function that increased the sparse classification. The 
change in loss under the optimal hyperparameters combinations is presented in Fig. 5.  

 

 
Fig. 5. The loss of generator G and discriminator D fluctuated with a change in the training epoch. 
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At the beginning of the training, the loss of generator G and discriminator D changed 
dramatically, because the generator that has not finished multiple epochs of training did not 
convert noise into some samples that conformed to the laws of social robots. After four 
hundred epochs, the loss of the GAN method tended to become flat, indicating that the 
samples generated by the current generator have been able to conform the data laws of real 
robots. Whereas Fig. 5 indicated that the loss of generator G and the loss of discriminator D 
were synchronous at most epochs. After the 1400th epoch, the loss of the generator and 
discriminator remained stable, and the entire network reached equilibrium. The loss of 
generator G changed more rapidly than does the loss of discriminator D, which indicated 
that the initial statement of generator G may be far from the final state. 

The accuracy of discriminator D with epoch changed was shown in Fig. 6.  
 

 
Fig. 6. The accuracy of discriminator D fluctuated, and finally stabilized with the change in the 

training epoch. 
 

From this figure, we could see that the tendency of the accuracy was almost the same as 
that of the loss of the discriminator D. It was well-known that the optimal accuracy of 
discriminator D was fifty percent, but it was difficult to reach this value because the classical 
GAN had some disadvantages. After many attempts, we selected specific network 
parameters in order to make the accuracy of the discriminator close to 50%. Accuracy was 
the correct rate that the discriminator D discriminated whether the source of the sample was 
the generator or the real environment. Therefore, when the loss of the discriminator slightly 
reduced, the accuracy of the discriminator increased accordingly. Under the selected 
combination of hyperparameters, the generator G and the discriminator D were alternately 
trained, and the accuracy of the discriminator changed gradually from high to low. The 
discriminator D could not accurately determine the source of the input sample, so the 
accuracy of the discriminator was low during the initial epoch. The accuracy of the 
discriminator gradually increased with the continuous training. The sample generated by the 
generator G gradually conformed to the distribution of the social robot samples, and the 
accuracy rate gradually decreased. As the discriminator D continuously affected the 
generator G, the generator G gradually adjusted the internal parameters of the network, and 
generated samples that the discriminator could not distinguish, so the accuracy of the 
discriminator D was reduced, and finally stabilized. 

The classifier had a three-layer network composed of 20 ReLU units, 50 ReLU units, 
and 2 Softmax units. A simplified Nesterov momentum was also adopted, where momentum 
was equal to 0.5. The selected learning rate of the classifier was 5×10-2, and the SGD 
algorithm was found to be the optimal algorithm. 
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4.3.3 Experimental results and analysis 
To analyze the effectiveness of the GAN method in detecting social robots, we performed 3 
experiments with five other traditional oversampling algorithms. At present, the most 
popular method of data oversampling was synthetic minority over-sampling technique 
(SMOTE). Therefore, we used four types of SMOTE algorithms and an adaptive synthetic 
(ADASYN) algorithm as the comparison group experiment. We used the same dataset and 
different oversampling methods to generate a balanced dataset. The same hyperparameters 
and balanced datasets from different sources were used in the training process of the 
classifier, and the performance of the classifier was detected through the same test set. The 
experiments were conducted with the aim of answering the following questions: 

(1) Does the GAN oversampling method improve the accuracy of robot detection? 
(2) Is the GAN oversampling method more advantageous than other oversampling 

methods? 
(3) How many samples are generated for the most obvious improvement in robot 

detection? 
(4) When the degree of data imbalance in the original data set was different, what was the 

difference in the degree of improvement of the detection effect by different 
oversampling methods? 

Experiment 1: To verify the effectiveness of the GAN method in generating minority 
samples, five traditional oversampling algorithms were compared. The ADASYN, GAN, 
and four different types of SMOTE algorithms were considered in the experiment. Minority 
class samples were generated with the oversampling algorithms until the quantity of positive 
and negative samples was the same, and then the neural network was adopted to detect the 
social bots. The detection results are shown in Fig. 7.  
 

 
Fig. 7. We took as many small samples in the class as large samples in the class. The variation trend 

of the four evaluation indexes with the change in oversampling mode is shown. 
 
 

Accuracy Precision Recall F-measure
Original 0.9779 0.9458 0.8989 0.9217
SMOTE-Regular 0.9812 0.9213 0.9345 0.9278
SMOTE-Borderline1 0.9882 0.9659 0.9503 0.958
SMOTE-Borderline2 0.9826 0.9043 0.9549 0.9289
SMOTE-SVM 0.9866 0.9647 0.9213 0.9425
ADASYN 0.989 0.9878 0.9101 0.9474
GAN 0.991 0.977 0.9557 0.9662
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The oversampling method based on a GAN model worked best in six of the 
oversampling methods in Fig. 7. Detailed detection based on a GAN achieved 96% in terms 
of the F-measure, which was 7 percentage points higher than that of the original data set. 
The accuracy of all classifiers was relatively close, and the accuracy of the classifier 
generated by GAN was one percent higher than that of the classifier generated by the 
original dataset. The recall of GAN methods, SMOTE-borderline1 and SMOTE-borderline2 
were much higher than other methods, while GAN was better than the other two methods. 
High recall indicated that the classifier generated by the GAN could detect more social 
robots than others. The GAN method exhibited obvious advantages in the scenario with high 
accuracy requirement and high recall requirement. The result that GAN was superior to 
other oversampling methods was because GAN could learn the spatial distribution 
characteristics of social robots in the process of iterative training. The SMOTE algorithms 
randomly selected a new minority sample from the connection line between the nearest 
neighbor samples and a specific sample. ADASYN automatically determined how many 
minority samples are synthesized, rather than synthesizing the same number of samples for 
each minority sample like SMOTE. 
Experiment 2: We had to determine how many generated examples were suitable for 
training the classifier. For this purpose, the expansion multiple was used. It can be defined as 
follows: 
 

𝜑𝜑 = 𝑎𝑎:𝑏𝑏                                 (22) 
                              

where b was the number of social robots in the test data, and a was the number of samples 
generated by the oversampling method. 

The main purpose of this experiment was to examine the sensitivity of the six 
oversampling methods in relation to the expansion multiple. In this experiment, the number 
of minority samples accounted for 12% of the total number of samples. Minority samples 
were generated with five different 𝜑𝜑, i.e., 1:1, 2:1, 4:1, 6:1, and 8:1. Thus, five different 
training sets were generated, the classification of the data was performed, and the results 
were shown in Table 3. Observing the accuracy trend graph of the classifier, as 𝜑𝜑 changed, 
the accuracy of the classifier generated by SMOTE-Borderline2 fluctuated significantly. The 
accuracy of the SMOTE-Borderline2 algorithm and the SMOTE-Regular algorithm were 
always lower than that of the original data set. The accuracy of the GAN methods and the 
SMOTE-Regular algorithm was stable, and their fluctuations were gentle, which proved that 
the GAN method and the SMOTE-SVM algorithm were less affected by the changes in the 
sampling proportion. 

The precision rate of the classifiers generated by the SMOTE-Borderline2 algorithm 
was worse than that of other methods, which indicated that the social robot samples 
generated by this method did not fully conform to the inherent laws of existing robot 
samples. The precision of the classifier generated by the SMOTE-SVM algorithm and the 
GAN method were stable, and it remained at 96%. Among the six oversampling methods, 
the recall rate of the SMOTE-Borderline2 algorithm fluctuated greatly. As 𝜑𝜑 changed, the 
recall of the classifier generated by the two oversampling methods of the GAN and 
SMOTE-Regular algorithm were always superior to the classifier produced by the original 
data set. The F-Measure represented the weighted average of precision and recall. In the 
classifiers generated by the six oversampling methods, the effect of the SMOTE-Regular 
algorithm and the GAN method were more stable as 𝜑𝜑 changed, and the GAN was the 
oversampling method that was least affected by the sampling proportion. 
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Table 3. The trend diagram of the evaluation indexes pertaining to the classifier generated by 
different oversampling methods with changes in 𝜑𝜑. 

𝝋𝝋 Category 
(%)  Original SMOTE

-Regular 

SMOTE
-Borderl

ine1 

SMOTE
-Borderl

ine2 

SMOTE
-SVM 

ADA
SYN GAN 

1:1 

Accuracy 98.79  98.66  98.93  98.39  98.79  98.93  99.06  
Precision 100.0  93.41  96.55  95.29  95.45  95.51  98.81  

Recall 89.89  95.51  94.38  91.01  94.38  95.51  93.26  
F-measure 94.68  94.45  95.45  93.10  94.91  95.51  95.95  

2:1 

Accuracy 98.79  98.26  98.93  97.32  98.12  98.53  98.93  
Precision 100.0 93.18  96.55  92.59  96.30  100.0  95.51  

Recall 89.89  92.13  94.38  84.27  87.64  87.64  95.51  
F-measure 94.68  92.65  95.45  88.23  91.77  93.41  95.51  

4:1 

Accuracy 98.79  98.66  98.39  97.32  98.93  98.39  98.79  
Precision 100.0 97.59  95.29  82.86  95.51  91.40  97.62  

Recall 89.89  91.01  91.01  97.75  95.51  95.51  92.13  
F-measure 94.68  94.19  93.10  89.69  95.51  93.41  94.80  

6:1 

Accuracy 98.79  98.66  98.26  98.53  99.06  98.39  99.20  
Precision 100.0 97.59  98.72  91.49  96.59  98.73  98.82  

Recall 89.89  91.01  86.52  96.63  95.51  87.64  94.38  
F-measure 94.68  94.19  92.22  93.99  96.05  92.86  96.55  

8:1 

Accuracy 98.79  98.53  98.66  97.86  98.79  99.20  98.79  
Precision 100.0 94.32  92.47  87.63  100.0  97.70  94.44  

Recall 89.89  93.26  96.63  95.51  89.89  95.51  95.51  
F-measure 94.68  93.79  94.50  91.40  94.68  96.59  94.97  

 
Experiment 3: Considering the lack of proportion between minority and majority samples in 
the original data, we extended the number of the minority samples to be equal to the number 
of the majority samples in order to influence the performance of the oversampling methods. 
Therefore, this experiment was designed to check the sensitivity of the six methods relative 
to the imbalance degree δ, which was defined as: 

𝛿𝛿 = 𝑥𝑥𝑟𝑟
𝑥𝑥

,                               (23)  
where 𝑥𝑥 was the number of accounts in the original data set, and 𝑥𝑥𝑟𝑟 is the number of 
social robots in the original data set. 

We let δ take the values of 6%, 9%, 12%, 15%, and 18%, individually. In each case, 
specific numbers of minority samples were sampled randomly and then placed into data set 
P together with all the normal samples. Thus, we obtained five different data sets with 
different δ values. Then, P was oversampled using the six methods previously mentioned, 
and classifications were performed. The experimental results were shown in Fig. 8. As δ 
increased, the accuracy of all the classifiers generated by all the oversampling methods 
gradually decreased. This showed that with a gradual increase of δ, the effect of the 
oversampling methods gradually weakened. When δ rose to 18%, the classification accuracy 
(factoring in the original data set) was optimal because the difference between the generated 
minority sample and the original sample had gradually increased. As δ increased, the 
accuracy of the SMOTE-Borderline2 algorithm dropped more quickly. Before δ was more 
than 9%, the GAN oversampling method was shown to perform better than all the other 
methods, and the detection effect of the classifiers produced by all the oversampling 
methods decreased slightly with the rise in the imbalance. 
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Fig. 8. The trend diagram of the evaluation indexes pertaining to the classifier generated by different 
oversampling methods with changes in δ: (a) accuracy, (b) precision, (c) recall, and (d) F-measure. 

5. Conclusion 
To resolve the problem of the imbalance between normal users and social robot accounts in 
terms of social robot detection, we proposed a new oversampling method that could be used 
to generate a minority sample through GANs. We also introduced specific processes for how 
to use the generated data set to detect social robots. First, we defined three different 
variables, and then analyzed the effects of these three variables on the experimental results 
through a large number of experiments. We verified that the GAN is a more effective 
method of data oversampling. The experimental results showed that the GAN method 
improved the accuracy of social robot detection.  

There is a series of questions that need to be explored and answered in our future work. 
One potential problem to resolve is the difficulty of training a stable network into a GAN to 
reach a Nash equilibrium. Moreover, we need to choose more effective features for social 
robot detection to create more realistic social robot samples. 
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