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Abstract 

Intrusion Detection System (IDS) in general considers a big amount of data that are highly 
redundant and irrelevant. This trait causes slow instruction, assessment procedures, high 
resource consumption and poor detection rate. Due to their expensive computational 
requirements during both training and detection, IDSs are mostly ineffective for real-time 
anomaly detection. This paper proposes a dimensionality reduction technique that is able to 
enhance the performance of IDSs up to constant time 𝑂𝑂(1)  based on the Principle 
Component Analysis (PCA). Furthermore, the present study offers a feature selection 
approach for identifying major components in real time. The PCA algorithm transforms 
high-dimensional feature vectors into a low-dimensional feature space, which is used to 
determine the optimum volume of factors. The proposed approach was assessed using HTTP 
packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome 
demonstrated that our proposed anomaly detection achieved promising results with 97% 
detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate 
with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection 
also achieved comparable performance in terms of computational complexity when 
compared to three state-of-the-art anomaly detection systems. 
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1. Introduction 

Hackers are known as creative and talented individuals who exploit vulnerabilities in 
digital systems and network applications. Vulnerable programs are common means used by 
the hackers to attack victims and to access their individual data. Exploits are generally 
harmful codes using vulnerabilities throughout known application with intention to damage 
the machine. They are used in viruses made to manipulate our individual data. Exploits are 
also the actual philosopher’s stones in cybercrime magic regarding targeted attacks or cyber 
warfare. Most well-known cyber weapons such as the Stuxnet and Duqu utilized exploits to 
sneak into heavily guarded IT infrastructures for the purpose of sabotage and cyber 
espionage. Conti et al. [1] carried out one of the most significant studies in computer security, 
which is the Man-In-The-Middle (MITM) attack. The research categorized the MITM attack 
into two endpoints; victims and a third party (attacker). The attacker has access to 
communication channels between two endpoints, therefore manipulating their messages. In 
addition to the MITM attack, HTTP web service attacks have also been categorized and 
studied [2]. The Kaspersky Security Experts Team (KSET) reported 132 million 
vulnerabilities from customers’ personal computers over 11 million users in 52 weeks. Fig. 1 
illustrates the number of vulnerability incidents from February 2003 to December 2012 [3].  
 

 
Fig. 1. Vulnerability incidents reported to KSET 

 

In defending the computer networks, the Intrusion Detection Systems (IDS) are 
influential systems designed to discover potential exploits or malicious activities in 
vulnerabilities and network traffic. Furthermore, they are able to flag alarm in case of 
suspicious activities. Two major detection methods among the IDSs are the signature-based 
and anomaly-based [4], [5]. The signature-based intrusion detection (SID) includes a 
database of defined signatures for matching strings against the attacks. Hackers would then 
craft attack variants to beat the signature strings, or enhance the attacks to exploit new 
vulnerabilities. Whenever SID becomes short, anomaly-based intrusion detection (AID) 
attempts to close the holes. AID is a newer approach as compared to SID in the fight against 
misuse and exploits. Basically, AID is not a cure-all. However, when it is used along with an 
influential SID solution, it becomes an influential tool for network protection.  
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Other popular intrusions such as the HTTP protocol and worms include the delivery of 
anomaly payload to a susceptible application or service. These attacks might be identified by 
checking the packet payload. For example, an HTTP transaction consists of a request 
command (sent from the client to the server) in the form of formatted blocks of data called 
HTTP messages. Fig. 2 shows that HTTP transactions consist of request (inbound) and 
response (outbound) packet payloads. As illustrated in this figure, the payload patterns 
involve strings such as “GET” and “POST”. Therefore, in order to detect such attack, the 
packet payload must be checked. 
 

 
Fig. 2. HTTP transactions consist of inbound and outbound 

 
AID is a promising soultion to detect attack payload, but there are still a great deal of 

challenges associated with the encrypted payloads. This is because attacks present in 
encrypted payload data are often treated as normal. Moreover, many applications use the 
Secure Sockets Layer (SSL) – and its successor Transport Layer Security (TLS) – as a basic 
part for encrypted data but attacker can still infer a significant amount of information from 
the analysis of the properly encrypted network traffic [6]. We examined HTTP traffic as 
“clear text”, and believe that our solution can be used for encrypted  payload applied in 
decryption point.   

  Network anomaly detection has been an important research topic within the area of data 
mining  and machine  learning. Many real-world applications such as the intrusion detection 
system require  an  effective approach to identify deviated data instances along with a low 
false positive rate and a  high detection rate. Therefore, recently, many models as shown in 
[7], [8], [9], [10] have   been proposed to reduce the high false positive rates, but most of 
proposed approaches have  high  computation complexity or are based on statistical 
computation. Such detection approaches are  time- consuming, hence degrading the 
performance of an ID system due to the significant increase  of computer resources (memory 
and CPU time). Therefore, effective dimensionality  reduction  of payload- based anomaly 
detection becomes critical when considering the  computational  complexity and classification 
performance.  

To address these limitations, we proposed an improved Text Mining-based Anomaly 
Detection (TMAD) model based on the Principle Component Analysis (PCA), which is one 
of the most commonly employed dimensionality  reduction technique. In terms of feature 
selection, the Guttman-Kaiser criterion is utilized  to determine the optimum volume of 
factors while using the PCA. One of the motives behind the  selection of the PCA as the 
dimensionality reduction technique is to decrease the computational cost of the  anomaly 
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detection system through its ability to operate on the input feature vector’s space 
directly  without transforming the data into another output space, as in the case with self-
 learning techniques. In the PCA, dimensionality reduction is achieved by calculating the first 
few  principal components representing the highest eigenvalue in the components of the input 
feature  vector, without transformation on the input. This results in a translation where 𝑛𝑛 
correlated features are represented in order to  reduce the number of features to 𝑑𝑑 < 𝑛𝑛, which 
will be both uncorrelated and linear  combinations of the original ones, hence facilitating the 
detection process [11]. The present study shows that our proposed model effectively reduces 
the number of processed features  from 256 down to 25 and 20 for both ISCX 2012 and 
DARPA 1999 datasets, respectively. 

 
1.1   Motivation, Objectives and Contributions 

Ultimately, the aim of the anomaly detection system is to detect and prevent any form of 
attacks to computer systems. To effectively detect the intruders, various detection 
mechanisms are available to convert the anomaly detection system to powerful anomaly-
based IDSs. In detecting the delivery of an anomaly payload, anomaly-based intrusion 
detection (AID) attempts to fill the gap. However, the major issue with the AID is the 
computational overhead, which can become prohibitively high. When the network speed is 
faster, security analysis methods must emerge to keep up with the increased network 
throughput [12]. A potential method for simplifying the analysis of such high dimensional 
data is to use the dimensionality reduction approach, in order to decrease the number of 
features, eliminate unnecessary, redundant or noisy data, while at the same time preserving 
vital features of the original data and bringing the immediate impacts for IDS. 

In this light, the major issues with anomaly detection systems are their efficiency and 
speed. When the amount of network traffic is high, it would be challenging to use 
complicated algorithms that are fast enough to detect intrusions before being too late. 
Although many advanced algorithms achieve a high detection rate, they are computationally 
complicated for practical and real time use [13]. The present study proposes an effective 
dimensionality reduction technique in payload-based anomaly detection systems using the 
Principle Component Analysis (PCA) solution that allows the researchers to  efficiently 
calculate the dominant eigenvectors, and to rate the importance of various  components of a 
high dimensional feature space.  

During the feature selection stage,  Guttman-Kaiser criterion that is a statistical method is 
applied for identifying  major components in real-time intrusion detection system. The 
feature selection solution is then used to  determine the optimum volume of factors while 
using the PCA. From  the reviewed research on payload-based anomaly detection, TMAD 
[14] and McPAD [9] are the two  commonly used approaches. TMAD uses n-gram text 
categorization (TC) and term frequency-inverse document frequency (TF-IDF) methods, 
which serve as the commonly term weighting schemes. In TMAD, the weights reflect the 
significance of features in a particular packet payload of the considered collection. It is also 
possible to handle a huge amount of data containing redundant and irrelevant features with 
low false positive rates and high detection rates. 

Nonetheless, the main drawback of these approaches is that their computational  cost 
 might not always satisfy real-time intrusion detection systems. For example, in McPAD [9], 
a multiple one- class SVM system is used for classification of anomaly detection , but the 
proposed algorithm  requires at least 𝑂𝑂(𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑚𝑚𝑚𝑚)  for computation complexity. In this 
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   paper, the proposed model considers such problems since we only require 𝑂𝑂(1) for 
computational cost.  In summary, the main  contributions of this research would be as follows:  

1. Identifying the optimum volume of components through an efficient feature subset 
selection method. 

2. Decreasing the dimensionality of feature spaces to achieve high detection accuracy 
with low false alarm rate for anomaly detection among HTTP intrusions. 

3. Reducing computational cost by significantly reducing the optimal dimension. 

The rest of this paper is organized as follows: Section 2 surveys other related works 
especially in dimensionality reduction. Section 3 proposed an improved TMAD framework 
with the Principle Component Analysis (PCA). Section 4 describes details of experiments 
with ISCX 2012 and DARPA 1999 dataset and compares PCA-based TMAD model with 
results from three state-of-the-art; TMAD, McPAD, and LDA-based GSAD. Finally, Section 
5 draws conclusion and indicates the direction of future studies. 

 
2. Related work 

There are two methods for decreasing dimensions of the feature space. The first method is 
the feature selection by choosing a subset of the original traits, as the new traits are based on 
a selection norm. Among the examples of linear features are Chi-squared statistic, mutual 
information, information gain, and correlation coefficient [15]. The second method is the 
feature extraction by reducing the dimension through combining or projecting the original 
traits. The most popular feature extraction approaches include the principal component 
analysis (PCA) and particularly multidimensional scaling (MDS), latent semantic analysis 
(LSA), learning vector quantization (LVQ), local linear embedding (LLE) and self-
organizing maps (SOM) [16]. The present study focuses on dimensionality reduction for 
feature extraction, as new features are designed based on transformation of the input traits. 
Although there are different feature extraction methods such as the Independent Component 
Analysis (ICA) [17], Principal Component Analysis (PCA) [18], Correlation-based Feature 
Selection (CFS) [19], and Linear Discriminate Analysis (LDA) [20] that also decrease the 
packet header features, few studies have examined feature extraction methods specifically 
for packet payloads such as in [7], [8], [9] and [10]. 

In [7], the byte frequency distributions of 256 ASCII characters were directly sorted into 
six containers, including 0, 1-3, 4-6, 7-11, 12-15 and 16-255. According to Anagram [8], 
there is a content anomaly detector, which is resistant to mimicry attack. In this type of 
resistance, a Bloom Filter (BF) was utilized to decrease memory overhead. In McPAD [9], a 
multiple one-class SVM system was used to classify anomaly detection; whereby the 
dimensional feature space is 2562 = 65,536 since each byte has values ranging from 0-255 
and n = 2. Then, the dimensionality of the feature space decreased using a clustering 
technique. However, the norms of cluster selection were not explained. Next, in order to 
reduce the heavy computational cost of an anomaly intrusion detection system, Tan et al. [10] 
proposed a Linear Discriminate Analysis (LDA) for payload packet feature selection. The 
LDA is a method used in statistics, pattern recognition and machine learning to find a linear 
combination of features that characterizes or separates two or more classes of objects or 
events, since it considers class discrimination. However, this model has high computational 
requirements for the network intrusion detection. 

In addition to the mentioned works, some other anomaly detection approaches have been 
recently proposed [21], [22], and [23]. Among them, online oversampling PCA [21] is a 
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highly efficient framework to the computational cost of calculating the principle directions in 
a large dataset for anomaly detection. However, the proposed method will duplicate the 
target instance for several times. Thus, it might not be sufficient to perform anomaly 
detection simply based on the most dominant eigenvector [24]. On the other hand, the 
modified PCA does not use any other statistical and dimensionality reduction algorithms to 
help the method versus nonlinear data. Moreover, the online anomaly detection is able to 
achieve significant reduction in computational cost. This solution still suffers from 
inaccuracy in real-world datasets in comparison with other methods. 

In [22], the authors proposed an anomaly-based intrusion detection technique, Packet 
Cunk Anomaly Detector (PCkAD), which uses Chunk as small useful payload for reducing 
computation. However, the model uses n-gram (n=5), which means 256 different characters 
are possible; the model chooses n = 5, which means the maximum number of dimension 
feature space is 2565. Since the performance of many algorithms used depends on the size of 
individual feature vector, high input dimensions would make the performance slow. In 
another study, Juvonen et al. [23] proposed an online anomaly detection system that could 
detect web server log attacks using three different techniques including random projection 
(RP), principle component analysis (PCA) and diffusion maps (DM). The results from three 
methods show that this approach can be used for dimensionality reduction before anomaly 
detection. However, it has some problems as it is still pretty tough to make the right training 
data size, and the selection of anomaly threshold is challenging. Moreover, unfortunately, the 
system is unable to detect attacks that compromise the security of a web server before 
logging.  

 Difficulties associated with the high dimensionality feature space are generally resolved 
through the  application of dimensionality reduction techniques such as the PCA [25], LDA 
[26], and Co- clustering [27]. Dimensionality reduction can be either applied in a pre-
 processing step prior to clustering or be integrated into the clustering framework 
itself.  Dimensionality reduction methods are widely used in intrusion detection systems. 
Within this  paradigm, the PCA and LDA have been demonstrated to be useful for many 
applications with big  amount of data that are highly redundant and irrelevant. Although one 
might think that LDA  should always outperform PCA (since it deals directly with class 
discrimination-supervised);  however, in terms of real-time anomaly detection systems, it is 
very difficult and expensive to  obtain a labeled dataset that represents the real 
network  activities with both  normal and attack traffic [28]. One particular advantage of PCA 
is label agnostic (performs  unsupervised transformation), whereby it treats the entire dataset 
as a whole while at the same time being less  sensitive to different training datasets [29].  

Apart from the PCA and LDA, the Co-clustering algorithm has also been  applied as a 
data dimensionality reduction technique by clustering the records (rows) and fields 
(columns). It has been successfully applied in many text mining applications such as in [30] 
and [31]. However, the Co- clustering algorithm has a high time complexity, whereby 
it   requires at least  𝑂𝑂(𝑡𝑡(𝑚𝑚 + 1)𝑛𝑛𝑛𝑛), where 𝑛𝑛, 𝑛𝑛, and 𝑡𝑡 are rows, columns and the number of 
iterations, respectively [32]. It is more computationally expensive than the proposed model 
since we only require  𝑂𝑂(1) for the computational  cost.  

To fill the gap, this research proposed the use of PCA algorithm for feature 
extraction  method. PCA provides an insight into the space where the given data resides. It 
also helps eliminate  distractive noise and seek the optimal lower dimensional representation 
for data with a high  dimensionality while at the same time retaining the high detection rate. 
Moreover, this will not reduce only the traffic volume but also the processing time. In 
addition, we suggest using a component selection  based on Guttman-Kaiser criterion in the 
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feature subspace selection. This statistical solution is  employed to explain variability among 
the observed and correlated variables in determining the  threshold value for important 
principal components. The evaluation will be in terms of variance  among different 
components in multidimensional feature spaces.  

 
3. Methodology 

This research proposed a mathematical approach to feature extraction using the PCA 
algorithm. The improved TMAD framework includes data preparation, pre-processing, 
packet encoding, dimensionality reduction by PCA, and finally network classification. Fig. 3 
illustrates the proposed framework of improved TMAD with PCA. The following 
subsections present the detailed tasks in each process: 
 
 

 
 

Fig. 3. Overview of TMAD with PCA 

 

3.1   Data preparation stage   

To evaluate our proposed model, we prepared two different large datasets of Information 
Security Center of Excellence (ISCX IDS 2012) [33], and DARPA 1999/MIT Lincoln 
laboratories IDS [34]. The first stage in the improved TMAD is data preparation; whereby 
various network applications are prepared in ISCX 2012 dataset. Network applications are 
divided into different categories such as Bit Torrent, HTTP Web application, HTTP Image 
Transfer, Secure web, MSN Messenger, MS-SQL, and SMTP. Then, we extracted the packet 
payloads from HTTP Web application. The arranged dataset is utilized in the data pre-
processing stage. For the second dataset, we used HTTP packet payload of   DARPA 1999 
dataset. 

 

3.2   Data pre-processing stage 

Text categorization (TC) is a language-independent tool of gauging topical similarity in text 
documents. Traditionally, the text database is processed by passing a sliding window of ‘n’ 
characters over the dataset and counting the occurrence of each n-gram. With unigram (1-
gram) TC [35], it is possible to extract a pattern of characters from a given input flow by 
using a sliding window of length 𝑛𝑛 across a string of tokens and request feature analysis. It 
derives raw data payload characters using n-gram (𝑛𝑛 = 1) text categorization approach from 
extracting sequences of  payload request, and transforming extract sequences directly into  
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feature vectors [36]. Formally, the set 𝐹𝐹 of features corresponds to all possible patterns of 
length 𝑛𝑛 in ASCII characters that range from 0 to 255  as defined in Equation (1): 
 
𝑇𝑇 = {0, … , 255}𝑛𝑛                                                                                                                                 (1) 
  

To demonstrate how the n-gram works with HTTP packet payload, this study considered 
the simulated payload request X=‘rpnnpn’ where the set of all characters is limited to ‘r’, ‘p’, 
and ‘n’. If 𝑛𝑛 = 2, the resulting 2-grams are: ‘rp’, ‘pn’, ‘nn’, ‘np’, and ‘pn’, respectively. If 
we consider a set of raw data payload as 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … ,𝑝𝑝𝑛𝑛}  and a set of features 
(characters) as 𝐹𝐹 = {𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, … ,𝑓𝑓256} , the set P can be represented as a Payload-Feature 
Matrix (PFM), where rows and columns are indexed by the raw data payload and the 
features, respectively. Each element of this matrix refers to the weight of each feature in its 
related payload as shown in Equation 2. 

  
 

𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎡
𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
⋮
𝑝𝑝𝑁𝑁⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡
𝑤𝑤1,1 𝑤𝑤1,2 𝑤𝑤1,3 … 𝑤𝑤1,256

𝑤𝑤2,1 𝑤𝑤2,2 𝑤𝑤2,3 … 𝑤𝑤2,256
𝑤𝑤3,1
⋮

𝑤𝑤𝑁𝑁,1

𝑤𝑤3,2
⋮

𝑤𝑤𝑁𝑁,2

𝑤𝑤3,3
⋮

𝑤𝑤𝑁𝑁,3

…
…
…

𝑤𝑤3,256
⋮

𝑤𝑤𝑁𝑁,256⎦
⎥
⎥
⎥
⎤

                                                                          (2) 

 

Based on the above PFM, which is considered as a dataset, each data payload is mapped 
into an m-dimensional space as follows [37] in Equation (3): 
 

 ∀ 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁        

 𝛷𝛷: 𝑝𝑝𝑖𝑖 ⟼  𝛷𝛷(𝑝𝑝𝑖𝑖) = �𝑤𝑤𝑖𝑖,1,𝑤𝑤𝑖𝑖,2, … ,𝑤𝑤𝑖𝑖,256� ℝ256                                                                            (3) 

 In the data pre-processing stage, the unigram model (𝑛𝑛 = 1) extracts raw features using 
text categorization technique from the packet payload, and converts observations into a 
series of feature vectors. From the sample given in Table 1, we extracted the unigram values 
from the payload in order to construct a matrix with the n-gram features as shown in 
Equation (2). 

During the next stage, the value (weight) of the unigram features is computed using 
several methods, which are term frequency (TF) and inverse document frequency (IDF) to 
determine the value (weight) of each entry of 𝑤𝑤𝑖𝑖𝑖𝑖. These methods will be explained in details 
in the next stage. 
 

Table 1. Illustration of the sample payload where characters is extracted by unigram 

Payload GET /docresearch/graf22_smal9.gif HTTP/1.0  
 First 20 characters as n-gram (n=1) 

Extracts raw 
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f1 f2 

 

f3 f256 …
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3.3   Packet encoding stage 

TF-IDF examines the vector space model and serves as a weighting scheme [35] to enhance 
the text categorization performance. In the schemes, the weights refer to the importance of a 
feature in an especial document of the selected collection. Huge weights are often utilized in 
relevant documents but rarely in the entire document collection [38]. Consequently, the data 
sources are processed, and the vector space model is determined to present a convenient data 
structure for text classification. The vector space model represents the data payload as 
vectors in m-dimensional space (256 dimensions). For instance, each payload ‘𝑝𝑝𝑖𝑖 ’ is 
described through a numerical feature vector.  

Thus, a weight for a feature ‘𝑓𝑓𝑖𝑖’ in data payload ‘𝑝𝑝𝑖𝑖’ is calculated by term frequency tf 
(𝑝𝑝𝑖𝑖, 𝑓𝑓𝑖𝑖) and inverse document frequency idf (𝑓𝑓𝑖𝑖), explaining the feature specificity within the 
data payload collection. In addition to the term frequency and inverse document frequency 
(TF-IDF) as defined in Equation (4), a length normalization factor is used to assure that all 
data payloads possess equal chances of retrieving independent of their lengths as shown in 
Equation (5). ‘𝑁𝑁’ is the size of the data payload collection ‘𝑃𝑃’ and is the number of data 
payload in ‘𝑃𝑃’ involving feature ‘𝑓𝑓𝑖𝑖’. In text mining, a corpus is encoded as a matrix where 
each document is explained by a row in a matrix. The resulting matrix is recognized as a 
(weighted) Payload-Feature Matrix (PFM). 

 
 

𝑖𝑖𝑑𝑑𝑓𝑓�𝑓𝑓𝑖𝑖� =  ( 𝑁𝑁
𝑝𝑝𝑓𝑓𝑗𝑗

)                                                                                                                                 (4) 

 
 

W (𝑝𝑝𝑖𝑖,𝑓𝑓𝑖𝑖)  =  
𝑡𝑡𝑡𝑡(𝑝𝑝𝑖𝑖,𝑡𝑡𝑗𝑗) 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑁𝑁

𝑝𝑝𝑓𝑓𝑗𝑗
)

�∑ 𝑡𝑡𝑡𝑡�𝑝𝑝𝑖𝑖,𝑡𝑡𝑗𝑗�
2 ( 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑁𝑁

𝑝𝑝𝑓𝑓𝑗𝑗
))2𝑚𝑚

𝑗𝑗=1

                                                                                         (5) 

 
 

For better understanding the payload-feature matrix of the payload vector space, let us 
consider the simple example of Fig. 4, which assumes packet data collection of seven 
payloads set as {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝7}  ⊂ p  and a set of features (three-dimensional vector space) as 
{𝑓𝑓1,𝑓𝑓2,𝑓𝑓3}  ⊂ F. Then, from Equations (4) and (5), we obtain the TF-IDF weighting scheme 
for one payload vector. Table 2 presents a broader picture of the TF-IDF weighting scheme 
for one payload vector, for each feature, frequency (global), term frequency (TF), inverse 
document frequency (IDF) and TF-IDF values. 
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Fig. 4. Illustrative example of the payload-feature matrix for a sample packet payload 

Table 2. Illustrative TF-IDF weighting scheme for one payload vector 

ASCII Feature 
TF Freq IDF TF-IDF 

𝑡𝑡𝑓𝑓(𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑖𝑖) 𝑝𝑝𝑡𝑡𝑗𝑗  𝑖𝑖𝑑𝑑𝑓𝑓�𝑝𝑝𝑖𝑖,𝑓𝑓𝑖𝑖� 𝑡𝑡𝑓𝑓(𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁 𝑝𝑝𝑡𝑡𝑗𝑗� ) 
98 b 1 6962 1.10 1.05 

105 i 4 31598 0.18 0.32 
111 o 2 23959 0.46 1.24 
108 l 3 27902 0.31 0.93 
102 f 1 27375 0.33 0.33 
97 a 1 32082 0.17 0.17 

110 n 1 13560 1.03 1.03 
114 r 2 15017 0.93 1.86 
109 m 1 35161 0.08 0.08 
100 d 1 8940 1.44 1.44 

 
Based on Fig. 4, each row {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝7} of the payload-feature matrix constitutes a TF-

IDF vector representing one packet payload in the collection. Each of these vectors has three 
features {𝑓𝑓1,𝑓𝑓2,𝑓𝑓3}, which correspond to the three characters of the collection. In this regard, 
we will discuss in details (practice) three basic TF-IDF weighting procedures which help to 
improve the performance of the vector space model by assigning specific values to each non-
zero element in the payload-feature matrix.  

The combined use of term frequency and inverse document frequency is commonly 
referred to as TF-IDF weighting. The following describes the steps taken to consider the 
procedure of the TF-IDF weighting schemes over the raw character counts in a packet 
payload collection. Briefly, the steps involved in the procedure for carrying out the TF-IDF 
method are as follows:  

 
Step 1. Extract and choose an initial payload feature set. 
Step 2. Compute term frequency of each feature for the corresponding payload as 𝑡𝑡𝑓𝑓(𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑖𝑖). 

 

 

 f1 f2 f3 
P1 1.05 0.32 1.24 

P2 0.00 1.00 0.01 

P3 0.24 0.09 1.34 

P4 2.40 1.09 2.02 

P5 0.25 3.45 1.04 

P6 1.40 2.30 1.97 

P7 3.05 0.2 1.00 
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d 

Payload-Feature Matrix (PFM) 
Feature 

Pa
yl

oa
d 

V
ec

to
r 

Feature Vector 
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Step 3. Consider the logarithm of the computed ratio that is the ratio between the logarithms 
of the total number of payloads and the payload frequency corresponding to each feature as 
𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁 𝑝𝑝𝑡𝑡𝑗𝑗� ). 
Step 4. Consider the product between the term frequencies computed in step 2 and inverse 
document frequencies computed in step 3 as 𝑡𝑡𝑓𝑓(𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁 𝑝𝑝𝑡𝑡𝑗𝑗� ). 
Step 5. Divide each of the term frequencies by the total number of features occurring in the 
corresponding payload, in order to compensate for possible effects resulting from different 
lengths (in number of features) of the payload represented in the model. This normalized 
term frequency weighting can be computed based on Equation (6): 
 

𝑊𝑊 �𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑖𝑖� =  
𝑡𝑡𝑡𝑡�𝑝𝑝𝑖𝑖,𝑡𝑡𝑗𝑗� 𝑙𝑙𝑙𝑙𝑙𝑙�

𝑁𝑁
𝑝𝑝𝑓𝑓𝑗𝑗

�

�∑ 𝑡𝑡𝑡𝑡�𝑝𝑝𝑖𝑖,𝑡𝑡𝑗𝑗�
2 ( 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑁𝑁

𝑝𝑝𝑓𝑓𝑗𝑗
))2𝑚𝑚

𝑗𝑗=1

                                                                                           (6)

             
Fig. 5 indicates the average relative frequency of different types of attacks such as DoS, 

Probe, R2L, U2R and normal in HTTP packet payload. Payload features (ASCII characters) 
are plotted on X-axis and relative frequency of each byte in the payload on Y-axis. Based on 
Fig. 5, (a) DoS, (b) Probe, (c) R2L and (d) U2R show that the average relative frequencies of 
different attacks are very different from the normal traffic. It can be concluded that the 
weight factor score for normal packets is much smaller than the weight factor scores of 
attack packets, which makes a strong evidence to distinguish the attacks from normal packets.  
  

 

Fig. 5. Relative frequencies of characters (a) DoS attack, (b) Probe attack, (c) R2L, and (d) U2R 
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The character relative frequencies of attack payloads are different in Fig. 5 exposed to the 
behaviors of DoS, Probe, R2L, and U2R attacks. For the Probe attack, the “/” character has 
the highest frequency and the other characters share even frequencies. Table 3 compares the 
highest and lowest character frequencies of different HTTP attack traffics. Although it is still 
believed that the performance can be enhanced through giving various weights to the 
payload bytes based on the degree of importance, finding the suitable weights is complicated.  

Table 3. Comparison characters with the highest and lowest frequencies 
 

 

 

 

 

3.4   Dimensionality reduction and selection stage 

In this research, the dimensionality reduction technique used in the improved Text Mining-
based Anomaly Detection (TMAD) model is based on the Principle Component Analysis 
(PCA) [25] that is an influential method to reduce dimensionality by a linear mapping of the 
n-dimensional feature space into a reduced m-dimensional feature space. In the experiment, 
this research will employ the Guttman-Kaiser criterion [39] in order to reserve as much 
relevant information as possible.  

  

A) Dimensionality reduction based on PCA: PCA is an approach to analyze relationships 
among multivariable by finding the principal components denoted as a linear 
combination, and explaining the entire changes with different components. Like a linear 
mathematical method, PCA can be  enhanced depending on eigenvector-based 
multivariate evaluation. The main idea is to  proficiently represent information by 
transforming a collection of findings into a completely new  orthonormalized coordinate 
system, where the  data tend to be maximally de-correlated. The axes (eigenvectors) will 
contain much more variations (eigenvalues) with higher contributions to the data 
presentation. The initial  numbers of axes using the highest  contributions are often 
utilized to create a new lower dimensional feature space giving effective presentations 
for the data. Fig. 6 shows the algorithm for dimensionality reduction based on PCA. 
 Based on Fig. 6, the algorithm for dimensionality reduction is set to analyze the feature 
space of a given dataset 𝛸𝛸 =  [𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛] , where 𝑥𝑥𝑖𝑖 = �𝑓𝑓1𝑖𝑖 𝑓𝑓2𝑖𝑖 … 𝑓𝑓𝑡𝑡𝑖𝑖�

𝑇𝑇 (1 ≤ 𝑖𝑖 ≤
𝑛𝑛) denotes the 𝑖𝑖𝑡𝑡ℎ  D observation with 𝑡𝑡   features. First, zero-mean normalization is 
performed within the data arranged for the findings. The zero-mean dataset is presented 
through 𝛸𝛸 𝑧𝑧𝑧𝑧 =  [(𝑥𝑥1 −  𝑥𝑥 �) (𝑥𝑥2 −  𝑥𝑥 �) … (𝑥𝑥𝑛𝑛 −  𝑥𝑥 �)], where   𝑥𝑥 � = 1

𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  . Then, the 

principal components (i.e., eigenvectors) are calculated by conducting eigen 
decomposition on the sample covariance matrix where 𝐶𝐶𝑥𝑥 = 1

𝑛𝑛−1
 𝛸𝛸𝑧𝑧𝑧𝑧  𝛸𝛸𝑇𝑇𝑧𝑧𝑧𝑧. Next, 𝐶𝐶𝑥𝑥 is 

decomposed into a matrix 𝑊𝑊  and a diagonal matrix Λ. The two matrices satisfy the 
condition in which ΛW =  𝐶𝐶𝑥𝑥𝑊𝑊 . Consequently, Λ  and W  are usually  categorized  
throughout climbing down order against the variance contributed to each component. 

Attacks Feature 
type 

Character 
Total 
freq  

No. 
feature Highest Freq lowest Freq 

DoS 
Unigram 
Model 

(1-gram) 

 203438   39   ( t ) 23344  ( ~ ) 2  
Probe  298104   40   ( / ) 31492  ( = )   14  
R2L  12253   32  ( / )   1513  ( _ )  5 
U2R  136224   39   ( t ) 16619 ( = )  5 
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The columns of the matrix W indicate the particular eigenvectors (i.e., the principal 
components) from the covariance matrix 𝐶𝐶𝑥𝑥 , along with the  factors across the diagonal 
of the matrix Λ  including  the placed eigenvalues connected with the corresponding 
eigenvectors inside the matrix 𝑊𝑊. Nonetheless, PCA is not able to  identify the number of 
key factors  that should be  preserved. Therefore, to identify the best number of principal 
components preserved based on the PCA analysis, the Guttman-Kaiser selection criterion 
is proposed. 
 

Principle Component Analysis 
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑:𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷 𝑚𝑚𝑠𝑠𝑡𝑡 𝑋𝑋 {𝑋𝑋 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝐷𝐷𝑖𝑖𝑛𝑛𝑚𝑚 𝑛𝑛 𝑖𝑖𝑛𝑛𝑚𝑚𝑡𝑡𝐷𝐷𝑛𝑛𝑐𝑐𝑠𝑠, 𝐷𝐷𝑛𝑛𝑑𝑑 𝑠𝑠𝐷𝐷𝑐𝑐ℎ 𝑙𝑙𝑓𝑓  
                   𝑤𝑤ℎ𝑖𝑖𝑐𝑐ℎ ℎ𝐷𝐷𝑚𝑚 𝑡𝑡 𝑓𝑓𝑠𝑠𝐷𝐷𝑡𝑡𝑓𝑓𝑓𝑓𝑠𝑠𝑚𝑚} 
𝐄𝐄𝐄𝐄𝐄𝐄𝐑𝐑𝐑𝐑𝐑𝐑: 1 ≤ 𝑚𝑚 ≤ 𝑡𝑡 
  1:   x � ←

1
n
∑ xin
i=1   

  2:  Xzm ← X − x � {Subtract x � from each instance in X}  

  3: Cx ←
1

n − 1
  Xzm XzmT   

  4: Obtain Λ and W, which are subject to ΛW = CxW 
  5: 𝐅𝐅𝐨𝐨𝐑𝐑 i = 1 to n 𝐝𝐝𝐨𝐨 

  6:       σ𝔦𝔦2  ←� λι
i

ι=1
 

  7: 𝐄𝐄𝐄𝐄𝐝𝐝 𝐟𝐟𝐨𝐨𝐑𝐑 
  8: Plot { σ12,  σ22, … ,  σn2} 
  9: Locate the elbow on the scree and identify K  
      of the "elbow" 
  10: 𝑊𝑊𝑘𝑘   ← Top first k eigenvalues/eigenvectors of 𝑊𝑊 
  11: 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐄𝐄  𝑊𝑊𝑘𝑘   
 

 
Fig. 6. Dimensionality reduction based on the PCA algorithm 

 
B) Component selection based on Guttman-Kaiser Criterion: The Guttman-Kaiser criterion [40] 

related to  every single factor is displayed  by the related  eigenvalues. Principal components 
associated with eigenvalues are extracted from a covariance matrix. The rules propose to 
hold only principal components as they are the eigenvalues larger than 1. While 1 might be 
considered as the average variance for the standardized data, the rule has been modified in 
order to select PCs derived from the covariance matrix as follows: 
 

   𝐾𝐾𝐶𝐶 =   �
𝜎𝜎𝑖𝑖2

256

256

𝑖𝑖=1

                                                                                                                                              (7) 

 
Nonetheless, the components which are larger in magnitude than the average of the 
eigenvalues are preserved. In the case of eigenvalues extracted from a covariance matrix, the 
average is determined using Equation (7). The subset associated with  the main features, 
related to the selected 𝑚𝑚, represents the smaller feature spaces, which in turn serve as the best 
presentation for any packet payload data. Through  representing the feature vector 𝑥𝑥𝑖𝑖 =
�𝑓𝑓1𝑖𝑖 𝑓𝑓2𝑖𝑖 … 𝑓𝑓𝑡𝑡𝑖𝑖�

𝑇𝑇 onto smaller feature spaces, the dimension of the feature vector will also 
decrease into a smaller sized  values, namely 𝑚𝑚. 
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3.5 Network classification 

For network classification, this research proposes the Mahalanobis Distances Map algorithm 
as shown in Fig. 7.  

Mahalanobis Distance Map 
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑:𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷 𝑚𝑚𝑠𝑠𝑡𝑡 𝑋𝑋 {𝑋𝑋 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝐷𝐷𝑖𝑖𝑛𝑛𝑚𝑚 𝑛𝑛 𝑖𝑖𝑛𝑛𝑚𝑚𝑡𝑡𝐷𝐷𝑛𝑛𝑐𝑐𝑠𝑠, 𝐷𝐷𝑛𝑛𝑑𝑑 𝑠𝑠𝐷𝐷𝑐𝑐ℎ 𝑙𝑙𝑓𝑓  
                   𝑤𝑤ℎ𝑖𝑖𝑐𝑐ℎ ℎ𝐷𝐷𝑚𝑚 𝑚𝑚𝑡𝑡𝑖𝑖𝑛𝑛𝑓𝑓𝑙𝑙  𝑓𝑓𝑠𝑠𝐷𝐷𝑡𝑡𝑓𝑓𝑓𝑓𝑠𝑠𝑚𝑚} 
  1:   𝜇𝜇 ← 1

n
∑ xin
i=1   

  2:𝐶𝐶𝑠𝑠𝑛𝑛𝑡𝑡𝑠𝑠𝑓𝑓 𝑠𝑠𝐷𝐷𝑐𝑐ℎ 𝑣𝑣𝐷𝐷𝑙𝑙𝑓𝑓𝑠𝑠 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑠𝑠 𝑛𝑛𝑠𝑠𝐷𝐷𝑛𝑛 
        X ← X − µ {Subtract µ from each instance in X}  
3:𝐶𝐶𝐷𝐷𝑙𝑙𝑐𝑐𝑓𝑓𝑙𝑙𝐷𝐷𝑡𝑡𝑠𝑠 𝑐𝑐𝑙𝑙𝑣𝑣𝐷𝐷𝑓𝑓𝑖𝑖𝐷𝐷𝑛𝑛𝑐𝑐𝑠𝑠 𝑛𝑛𝐷𝐷𝑡𝑡𝑓𝑓𝑖𝑖𝑥𝑥 Σ�𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓×𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓� 𝑓𝑓𝑙𝑙𝑓𝑓  
    𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷 𝑆𝑆𝑠𝑠𝑡𝑡 𝑋𝑋      
  4: Obtain the transpose of (X − µ) and the inverse of Σ 
  5: 𝐶𝐶𝐷𝐷𝑙𝑙𝑐𝑐𝑓𝑓𝑙𝑙𝐷𝐷𝑡𝑡𝑠𝑠 𝑡𝑡ℎ𝑠𝑠 𝑀𝑀𝐷𝐷ℎ𝐷𝐷𝑙𝑙𝐷𝐷𝑛𝑛𝑙𝑙𝑏𝑏𝑖𝑖𝑚𝑚 𝑑𝑑𝑖𝑖𝑚𝑚𝑡𝑡𝐷𝐷𝑛𝑛𝑐𝑐𝑠𝑠 𝐷𝐷𝑚𝑚 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤𝑚𝑚: 
        𝑑𝑑𝑀𝑀 ← �(𝑥𝑥 − 𝜇𝜇)𝑇𝑇 . Σ−1. (𝑥𝑥 − µ) 
6: Calculate weight score 𝑤𝑤 to detect an intrusive  
    𝐷𝐷𝑐𝑐𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑏𝑏 

𝑤𝑤 ← �
(𝑑𝑑𝑙𝑙𝑜𝑜𝑖𝑖(𝑓𝑓,𝑜𝑜) − �̅�𝑑𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜))2

𝜎𝜎𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜)
2

𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓,𝑜𝑜=1

 ,𝑑𝑑(𝐷𝐷, 𝑏𝑏) ∈ 𝑑𝑑𝑀𝑀  

 𝑠𝑠𝑥𝑥𝐷𝐷𝑐𝑐𝑡𝑡𝑙𝑙𝑏𝑏 𝑤𝑤ℎ𝑠𝑠𝑓𝑓𝑠𝑠  �̅�𝑑𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜) ,𝜎𝜎𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜)
2  𝑖𝑖𝑛𝑛𝑐𝑐𝑙𝑙𝑓𝑓𝑑𝑑𝑠𝑠 𝑡𝑡ℎ𝑠𝑠  𝐷𝐷𝑣𝑣𝑠𝑠𝑓𝑓𝐷𝐷𝑙𝑙𝑠𝑠  

𝐷𝐷𝑛𝑛𝑑𝑑 𝑡𝑡ℎ𝑠𝑠 𝑣𝑣𝐷𝐷𝑓𝑓𝑖𝑖𝐷𝐷𝑛𝑛𝑐𝑐𝑠𝑠 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑠𝑠 (𝐷𝐷, 𝑏𝑏)𝑡𝑡ℎ 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑡𝑡 𝐷𝐷𝑛𝑛𝑑𝑑  𝑑𝑑𝑙𝑙𝑜𝑜𝑖𝑖(𝑓𝑓,𝑜𝑜) 𝑖𝑖𝑚𝑚 𝑡𝑡ℎ𝑠𝑠 (𝐷𝐷, 𝑏𝑏)𝑡𝑡ℎ 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑠𝑠 
 𝑑𝑑𝑖𝑖𝑚𝑚𝑡𝑡𝐷𝐷𝑛𝑛𝑐𝑐𝑠𝑠 𝑛𝑛𝐷𝐷𝑝𝑝 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑠𝑠 𝑛𝑛𝑠𝑠𝑤𝑤𝑙𝑙𝑏𝑏 𝐷𝐷𝑓𝑓𝑓𝑓𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛𝑙𝑙  𝑝𝑝𝐷𝐷𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡.  
 

 

Fig. 7. Mahalanobis Distances Map Algorithm 

 

The Mahalanobis distance between the particular point 𝑥𝑥 and the mean 𝜇𝜇 of the normal data 
is computed in Equation (8): 

 

 𝑑𝑑𝑀𝑀 ← �(𝑥𝑥 − 𝜇𝜇)𝑇𝑇 . Σ−1. (𝑥𝑥 − µ)                                                                                                     (8)  
                  

The hidden correlations related to the projected element vector  �𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓�  are 

obtained from the projected original feature vector 𝑥𝑥𝑖𝑖 = �𝑓𝑓1𝑖𝑖 𝑓𝑓2𝑖𝑖 … 𝑓𝑓𝑡𝑡𝑖𝑖�
𝑇𝑇 and mapped onto the 

kfinal  dimensional feature subspace �𝑓𝑓1 𝑓𝑓2 …𝑓𝑓𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓� . Next, the correlations among the 
packets are calculated using Equations (9) and (10):  

 
∑  a (xa −  µ) (xa −  µ )   T �1 ≤ 𝐷𝐷 ≤ 𝑚𝑚𝑡𝑡𝑖𝑖𝑛𝑛𝑓𝑓𝑙𝑙�                                                                                  (9) 
                    
d(a,b) = (xa− xb) (xa− xb)   T

∑ +∑  b  a
�1 ≤ 𝐷𝐷, 𝑏𝑏 ≤ 𝑚𝑚𝑡𝑡𝑖𝑖𝑛𝑛𝑓𝑓𝑙𝑙�                                                                              (10) 
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Where 𝑥𝑥𝑓𝑓 presents the 𝐷𝐷𝑡𝑡ℎ estimated  feature within the  projected feature vector, µ refers to 
the standard of each projected feature, 𝑑𝑑(𝑓𝑓,𝑜𝑜) presents the Mahalanobis distance related to  the 
𝐷𝐷𝑡𝑡ℎ  projected feature and the 𝑏𝑏𝑡𝑡ℎ  projected feature. ∑  𝑓𝑓  points to the covariance value of 
each projected feature and finally 𝑑𝑑𝑀𝑀  defines the distance map (the pattern of a network 
packet). Then, the distance map 𝑑𝑑𝑀𝑀 generates the network traffic profiles (normal and attack) 
of the training as shown in Equation 11: 
 
 

𝑑𝑑𝑀𝑀 =  

⎣
⎢
⎢
⎢
⎡ 𝑑𝑑(1,1) 𝑑𝑑(1,2)

𝑑𝑑(2,1) 𝑑𝑑(2,2)
⋯

𝑑𝑑(1,𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓)

𝑑𝑑(2,𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓)

⋮ ⋱ ⋮
𝑑𝑑(𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓,1) 𝑑𝑑(𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓,2) ⋯ 𝑑𝑑(𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓,𝑘𝑘𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓)⎦

⎥
⎥
⎥
⎤
                                                            (11)

        
 

 Mahalanobis distance is the norm utilized to calculate the dissimilarity between the 
developed profiles and the new incoming network traffic profiles. Weight score 𝑊𝑊  is 
measured using Equation (12) and is used to detect any intrusive activity. 

 

𝑊𝑊 = ∑ �𝑑𝑑𝑜𝑜𝑜𝑜𝑗𝑗(𝑓𝑓,𝑜𝑜)−𝑑𝑑�𝑓𝑓𝑜𝑜𝑛𝑛(𝑓𝑓,𝑜𝑜)�
2

𝜎𝜎𝑓𝑓𝑜𝑜𝑛𝑛(𝑓𝑓,𝑜𝑜)
2

𝐾𝐾𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓
𝑓𝑓,𝑜𝑜=1                                                                                               (12)  

  
               
Where 𝑑𝑑𝑙𝑙𝑜𝑜𝑖𝑖(𝑓𝑓,𝑜𝑜) and σ𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜)

2  are the average and the variance of the (𝐷𝐷, 𝑏𝑏)𝑡𝑡ℎ element in the 
distance map of the normal profile given in Equation (13), and 𝑑𝑑𝑙𝑙𝑜𝑜𝑖𝑖(𝑓𝑓,𝑜𝑜)  is the (𝐷𝐷, 𝑏𝑏)𝑡𝑡ℎ 
element of the distance map of the new incoming packet represented in Equation (14).  
 
 
𝐷𝐷𝑛𝑛𝑙𝑙𝑛𝑛  = �𝑑𝑑𝑛𝑛𝑙𝑙𝑛𝑛 (𝑓𝑓,𝑜𝑜)�𝐾𝐾𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓×𝐾𝐾𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓

                                                                                                (13)    

 
 𝐷𝐷𝑙𝑙𝑜𝑜𝑖𝑖  = �𝑑𝑑𝑙𝑙𝑜𝑜𝑖𝑖 (𝑓𝑓,𝑜𝑜)�𝐾𝐾𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓×𝐾𝐾𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓

                                                                                                (14) 

 
 

The tested sample payload is finally classified as an attack or a normal record using 
𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑚𝑚ℎ𝑙𝑙𝑙𝑙𝑑𝑑 = �̅�𝑑𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜), where the threshold is determined by the average total mahalanobis 
distance of normal packets. If the dtest(a,b) exceeds the threshold, the input network packet is 
determined as an intrusion; otherwise, it will be classified as normal using Equation (15). 
The details of our experiments are given in Section 4.   

 
𝑖𝑖𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓,𝑜𝑜) ≤ �̅�𝑑𝑛𝑛𝑙𝑙𝑛𝑛(𝑓𝑓,𝑜𝑜)   𝑡𝑡ℎ𝑠𝑠𝑛𝑛  𝑐𝑐𝑙𝑙𝐷𝐷𝑚𝑚𝑚𝑚𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑑𝑑 𝐷𝐷𝑚𝑚 𝑛𝑛𝑙𝑙𝑓𝑓𝑛𝑛𝐷𝐷𝑙𝑙, 𝑠𝑠𝑙𝑙𝑚𝑚𝑠𝑠 𝑓𝑓𝑠𝑠𝑡𝑡𝑓𝑓𝑓𝑓𝑛𝑛 𝐷𝐷𝑚𝑚 𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑐𝑐𝑚𝑚       (15) 
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4. Framework assessment 

This section introduces the dataset used to validate the proposed PCA-based approach to 
dimensionality reduction in TMAD model as well as the evaluation measurements, training 
and testing setup, and finally presents the results and analyses.  

4.1   Dataset 

We conducted two different  sets of experiments to evaluate the effectiveness of 
dimensionality reduction of payload-based anomaly detection in  the improved TMAD model. 
The first experiment used the ISCX datasets 2012 [33], which were collected under the 
sponsorship of Information Security Centre of Excellence (ISCX). All the network traffic in 
the dataset were included in both normal network traffic and attack traffic for system 
assessment. ISCX dataset 2012 includes categories of attacks involving scan, DoS, R2L, 
U2R and DDoS. The entire ISCX-labeled dataset is composed by 1,512,000 packets that 
cover seven days of network activity. However, both datasets were not ready for training and 
testing. In preparing the dataset, the ISCX HTTP/GET traffic was randomized into two 
groups: a training set that is composed of 80% of the HTTP/GET traffic, and a testing set 
that is composed of the remaining 20% of the traffic. 

The second experiment used the DARPA 1999/MIT Lincoln laboratories IDS [34], 
the  most  comprehensive dataset with the entire content packet available for researchers. All 
the  network traffic data include the full payload of each packet contents recorded in tcpdump 
format  and provided for evaluation. We trained the proposed model on the DARPA 1999 
dataset using  week 1 (5 days, attack free) and week 3 (7 days, attack free) and then evaluated 
the model using  week 4 and week 5 containing the anomaly traffics. Although the DARPA 
dataset is outdated and  has been criticized [28] due to the nature of the simulation 
environment that created the data, it is widely accepted for comparison. This dataset has 
been used in many studies, and results  of tests involving these data have been reported 
in  many publications.    

4.2 Evaluation measurements 

In this segment, the information involved in the confusion matrix is analyzed using the 
Detection Rate (DR) and False Positive Rate (FPR). Assessment metrics are introduced for 
the analysis. The metrics utilized are True Positive (TP) when the number of actual attack is 
classified as an attack, True Negative (TN) when the number of actual normal is classified as 
normal, False Positive (FP) when the number of actual normal is classified as attack and 
False Negative (FN) when the number of actual attack is classified as normal. Table 4 
represents the definition of a confusion matrix. Subsequently, detection and false positive 
rate can be estimated as shown in Table 4. 
 

Table 4. Confusion matrix 

  Predicted Class 
Normal Attack 

Actual  
Class 

Normal True Negative (TN) False Positive (FP) 
Attack False Negative (FN) True Positive (TP) 



3900                                                                                   Kakavand et al.: Effective Dimensionality Reduction of Payload-Based 
Anomaly Detection in TMAD Model for HTTP Payload 

 

The major objectives of intrusion detection system are to maximize the true positive rate 
(detection rate) and minimize the false positive rate of a proposed method. Table 5 displays 
the most commonly used learning metric in performance assessment of the intrusion 
detection system. Furthermore, Equations (16) and (17) show the formula to calculate the 
detection rate and the false positive rate. 

 

Table 5. Classification Metric 

Evaluation Metrics Description 
Detection Rate (DR) (TP) ÷ (TP + FN) 
False Positive Rate (FPR) (FP) ÷ (TN + FN) 
Accuracy (TP + TN) ÷ (TP+FP+TN+FN) 

 

Detection Rate   𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

 × 100%                                                                                 (16)      
                                         
False Positive    𝐹𝐹𝑃𝑃 = 𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇+𝑇𝑇𝑁𝑁
 × 100%                                                                                  (17)  

 
 
4.3 Training and testing program   

As discussed in the dimensionality reduction section, the PCA technique was used to analyze 
the raw data, namely the ASCII character occurrence frequencies in the training dataset. This 
is carried out by projecting the raw data on a reduced feature space. The principal 
components were selected using the Guttman-Kaiser criterion based on the outcome of PCA.  

When the Guttman-Kaiser criterion was first applied to find the component selection, 
principal components related to an eigenvalue in which the magnitude is higher than average 
are preserved (the average vectors, (KC)  = 1.3317e-04 and 4.5054e-04 are computed for both 
ISCX 2012 and DARPA1999 dataset, respectively). Through the Guttman-Kaiser Principle, 
the particular 90th percentiles are attained (the 90th percentile = 1.3317e-04 and 4.5054e-04). 
If the proper value of a component is higher than the 90th percentiles from the simulated 
valuations, then the particular component will be actually retained. This means the value of k 
subset equal to 25 and 20 is attained (k=25 and 20 for both ISCX 2012 and DARPA1999 
dataset, respectively). 

The result of using the Guttman-Kaiser criterion suggested a selection of the first 25 and 
20 principle components, which showed the best subspace for data presentation. Figs. 8 and 
9 illustrate how the corresponding eigenvectors were captured for ISCX and DARPA dataset, 
respectively. The principle components were sorted in a descending order with respect to the 
values of the corresponding variances, which in turn determined the number of important 
components that should be retained for network traffic analysis. This shows that there are as 
many reliable components as the eigenvalues, which were greater than average. 
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Fig. 8. Principle components selection for ISCX 2012 data traffic 

 

 

Fig. 9. Principle components selection for DARPA1999 data traffic 
 
 

4.4 Results and analysis 

For the intrusion detection model, we used the extracted HTTP packet payload from the 
ISCX 2012 IDS and DARPA 1999 datasets. We analyzed our recommended detection 
method against both the normal data and the attack data in the evaluation data collection. 
From the initial stage of the studies, we found the  optimum small set of main components. 
Subsequently, we designed many experiments to determine the  efficiency of PCA-based 
TMAD model when utilizing a variety of small sets of principal components in both  datasets.  

The particular assessment results are described in Tables 6 and 7, which demonstrate the 
relationship between the false positive rate (FPR) and detection rate (DR) with the accuracy 
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against various thresholds from 1 to 3 on both datasets. Note that the particular threshold sets 
the amount of the significant difference, which is identified by the intrusion detection system, 
which involved an analyzed object and discovered normal profiles. Tests running against the 
various sets of important components (i.e., the selected lower dimensional feature spaces) are 
shown in Figs. 8 and 9. Furthermore, Tables 6 and 7 report the results obtained from our 
proposed anomaly detection system on both ISCX 2012 IDS and DARPA 1999 datasets. 

 
Table 6. Model evaluation based on ISCX 2012 Dataset 

 
 
 
 
 
 

 

Table 7. Model evaluation based on DARPA1999 Dataset 

Evaluation 
Metrics 

Threshold 
1𝛔𝛔 1.5𝛔𝛔 2𝛔𝛔 2.5𝛔𝛔 3𝛔𝛔 

False Positive 1.4 % 1.2 % 0.1% 0.06% 0.05% 
True Positive 

 (Detection Rate) 
97% 98% 99% 100% 98% 

Accuracy 97% 98% 99% 100% 100% 
 
 

As shown in both tables, the threshold value controls the degree of the dissimilarity as 
acknowledged by the anomaly detection system, between a test object and the respective 
learnt normal profile. If the dissimilarity is higher than the determined threshold, the test 
object is classified as an anomaly. Moreover, based on Table 6, higher true positive rate was 
achieved when a greater threshold was accepted. In fact, greater thresholds produce higher 
false positive. On the other hand, from Table 7, we can see that higher true positive rate lies 
in between various thresholds ranging from 2 to 2.5 with an increase of 0.5 interval. This 
means greater thresholds represent a lower false positive rate. However, we can find out that 
the accuracy of both evaluation dataset declined when a lower threshold of 2σ is accepted. 
After this point, the performance of the proposed PCA-based TMAD dropped significantly 
to 40% and 97% for ISCX 2012 and DARPA1999 datasets, respectively.  

Fig. 10 visualizes the trade-off between accuracy and the threshold. The proposed PCA-
based TMAD model demonstrated an encouraging effectiveness on the DARPA 1999 dataset 
with 97% accuracy when the limit is determined to 1σ. As the threshold reached to 3σ, the 
accuracy rate increased to 100%. However, while considering the ISCX 2012 IDS dataset, 
the proposed detection model accomplished lower performance. Nevertheless, it still 
delivered a desirable accuracy rate (i.e., 97%) at the threshold of 3σ. 

 
 

Evaluation 
Metrics 

Threshold 
1𝝈𝝈 1.5𝝈𝝈 2𝝈𝝈 2.5𝝈𝝈 3𝝈𝝈 

False Positive 0.2% 1.1% 1.2% 1.2% 1.3% 
True Positive 

 (Detection Rate) 
14% 85% 94% 97% 97% 

Accuracy 40% 89% 95% 97% 97% 
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Fig. 10. Relationship between accuracy and threshold  

 

Based on Fig. 10, the results showed that the proposed PCA-based model performed 
better using the DARPA 1999 dataset as compared to using the ISCX 2012 dataset. However, 
the model is more effective in handling realistic networks and traffics with novel attacks in 
ISCX 2012. The DARPA 1999 dataset has its critics, as it is quite dated and Web behaviors 
have evolved significantly since its first inception. Next, Figs. 11 and 12 illustrate the trade-
off between the false positive rate and true positive through a number of principal 
components with changes in their results when a different threshold of 2.5 σ  (best 
performance achieved from threshold of 2.5σ) was used. 

Fig. 11 shows the difference between the true and false positive rates generated by PCA-
based TMAD, where 𝑚𝑚 subset equal to 25 was attained (k=25 for ISCX 2012). Based on this 
figure, the best false and true positive rates were achieved with 25-dimentional feature space. 
According to Fig. 12, the selection of the important features was performed on DARPA 
1999 dataset, where 𝑚𝑚 subset equal to 20 was attained. This shows the difference of the true 
and false positive rates among various optimal feature spaces are achieved with 20-
dimentioanl feature space. However, these optimal feature spaces are not always practicable, 
and the best performance may be achieved around these numbers. For example (where k = 
20 in our case), using only the first five principal components to represent the HTTP traffic 
is not feasible in our anomaly detection system. This is because the projections (i.e., PCA) 
constructed through only five features are always identical for all records after normalization. 
Hence, we will choose the first  20 optimal feature spaces instead of the first five principal 
components.
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Fig. 11. True and false positive rate vs. principle components (ISCX Dataset) 

 

 
 

 

 

 

 

 

 

 

 

Fig. 12. True and false positive rates vs. principle components (DARPA1999) 
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4.5   Comparison with state-of-the-art 

To demonstrate a better snapshot of the proposed PCA-based TMAD performance, we 
compared the proposed PCA-based TMAD against three state-of-the-art payload-based 
anomaly detection systems; TMAD, McPAD, and LDA-based GSAD using the same ISCX 
2012 and DARPA 1999 datasets. The computational complexity on the four models was also 
evaluated.  

4.5.1    Anomaly detection accuracy 

In the first experiment, we randomly divided the HTTP/GET traffic in ISCX 2012 dataset 
into two groups; 80% for training and 20 % for testing. In accordance with the details 
provided by Table 8, the detection rate and the false positive rate were computed for both 
TMAD and PCA-based TMAD. The comparison results illustrated that the proposed PCA-
based TMAD model achieved 97% detection rate with 1.2% false positive. The results also 
showed that all 256 features were not used for the detection of network attacks compared to 
the TMAD model that obtained 97.44% detection rate with 1.3% false positive rate which 
are based on all feature spaces for anomaly detection. Although the proposed model has low 
false positive rate compared to TMAD model [14] on ISCX 2012 dataset, it does not show a 
significant advance in terms of accuracy. It can be concluded that PCA and a feature 
selection approach can help decrease the dimensionality of dataset from 265 to 25. 
Consequently, it is more computationally efficient in handling datasets with a high 
dimensionality. 

 
Table 8. Performance comparison (ISCX 2012) 

IDS Model Number of 
PCs 

Detection Rate  
(DR) 

False positive 
 (FP) 

PCA-Based TMAD 25 97 % 1.2 % 
TMAD 256 97.44 % 1.3 % 

 
In the second experiment, we used DARPA 1999 dataset for training three anomaly 

detection models, which are the PCA-based TMAD, LDA–based GSAD and McPAD. After 
training the different models on DARPA 1999 dataset, we tested the models on the entire 
attacks datasets (ISCX 2012 and DARPA 1999). The threshold value used was 2.5σ based 
on previous finding, whereby the value provided better outcomes as compared to other 
thresholds when we attempted to achieve the detection attacks at very low false positives. 
Table 9 reports the detection rate and true positives on the number of principle components 
(PCs) obtained from PCA-based TMAD, McPAD and LDA-based GSAD models, 
respectively. We compared the anomaly detection performance of our proposed model on 
DARPA 1999 evaluation dataset with those achieved by two other anomaly detection 
approaches [9] and [10]. The performance of the proposed model and LDA-based GSAD 
showed that the detection rates of both anomaly detection systems are comparatively equal 
(100% DR). Although our proposed model has a low false positive rate ( 0.06% FPR ), the 
proposed LDA-based GSAD approach is not proven to be a good candidate with high false 
positive rate (3.7% FPR). Table 9 shows that the selected features of our proposed model 
considerably reduced the number of features in order to avoid computational cost as an 
apparent advantage in real-time intrusion detection systems. 
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Table 9. Performance comparison (DARPA 1999) 

 

 

 

 

The results in Table 9 reveal that McPAD [9] achieved very low false positive rate as 
compared to our proposed anomaly detection system, but it is only for shell-code attacks at a 
false positive rate of 10-5. Furthermore, the detection rate was 95%. Thus, it cannot confirm 
if this approach operates better than our proposed model on HTTP attack detection. 
Moreover, the proposed anomaly detection easily achieved higher detection rate while 
maintaining a relatively low false positive rate and a very small dimension in order to have 
an efficient real-time performance. 

4.5.2   Computational complexity 

We evaluated the computational complexity of the proposed PCA-based TMAD throughout 
two phases; data pre-processing and classification. Given an input payload 𝑞𝑞 of size 𝑛𝑛 and a 
set value of 𝜈𝜈, the frequency of  unigram and bigram is usually computed with 𝑂𝑂(𝑛𝑛). Since 
the number of extracted features is constant, we obtained 28 =256 by the PCA-based TMAD, 
216 = 65536 by McPAD, 28 = 256 by LDA-based GSAD and 28 = 256 by TMAD model. The 
dimensionality reduction in the McPAD model was by the occurrence frequency distribution 
of 2𝜈𝜈-grams to the 𝑚𝑚 feature clusters using a simple look-up table; therefore, the total number 
of operations is always less than 216. On the other hand, the LDA-based GSAD and PCA-
based TMAD have data pre-processing. LDA-based GSAD can be completed by 28 × 2 × 
300 = 153600, and PCA-based TMAD can be completed by 28 × 2 × PCs, even though no 
feature reduction was carried out  by the TMAD model. This means the feature reduction 
process of LDA-based GSAD and PCA-based TMAD model can be computed in 𝑂𝑂(1). 

Since GSAD and PCA-Based TMAD used a payload length of 185 and 150 bytes, 
respectively, the data pre-processing complexity is 𝑂𝑂(1). In McPAD, the feature extraction 
and reduction process must be repeated 𝑛𝑛 times for choosing a different value of 𝜈𝜈, where 𝑛𝑛 
represents the number of different classifiers used to make a decision about each payload 𝑞𝑞. 
The overall feature extraction and reduction process can be accomplished in 𝑂𝑂(𝑛𝑛𝑛𝑛), but 
there is no dimensional reduction operation in TMAD. Therefore, it can be computed in 
𝑂𝑂(𝑛𝑛).  

Next, once the features have been extracted and the features dimensionality has been 
reduced to 𝑚𝑚, each payload must be classified based on 𝑛𝑛 classifiers. To classify a payload 𝑞𝑞, 
TMAD, PCA-based TMAD, and LDA-Based GSAD computed the Mahalanobis distance 
between the payload. Therefore, the computational complexity of the classification process is 
𝑂𝑂(1). On the other hand, McPAD has 𝑛𝑛 classifiers, therefore given the number of feature 
clusters  𝑚𝑚 , and the number of support vector  𝑚𝑚 ; the classification of a pattern can be 
computed in 𝑂𝑂(𝑚𝑚𝑚𝑚). This classification process must be repeated 𝑛𝑛 times, and the results 
will then be combined. Thus, the overall classification process of McPAD can be computed 
in 𝑂𝑂(𝑛𝑛𝑚𝑚𝑚𝑚).  

IDS Model Number of 
PCs 

Detection Rate  
(DR) 

False positive 
 (FP) 

PCA-Based TMAD 20 100% 0.06% 
LDA-Based GSAD 300 100% 3.7% 

McPAD 2562 95% 10-5 
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In terms of computational complexity, the proposed PCA-based TMAD is also on a par 
with other anomaly detection models. Table 10 summarizes  the computational complexities 
of the previously mentioned approaches. 

 

Table 10. Computational complexities summary of four state-of-the-art anomaly detections 

Operations PCA-Based 
TMAD 

TMAD[14] McPAD[9] LDA-Based 
GSAD[10] 

Data pre-processing 
Complexity 

𝑂𝑂(1) 𝑂𝑂(𝑛𝑛) 𝑂𝑂(𝑛𝑛𝑛𝑛) 𝑂𝑂(1) 

Classification Complexity 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(𝑛𝑛𝑚𝑚𝑚𝑚) 𝑂𝑂(1) 
Total Complexity 𝑶𝑶(𝟏𝟏) 𝑶𝑶(𝟏𝟏 + 𝒏𝒏) 𝑶𝑶(𝒏𝒏𝒏𝒏

+ 𝒏𝒏𝒎𝒎𝒎𝒎) 
𝑶𝑶(𝟏𝟏) 

  

5. Conclusions and future work 

The present study proposed a PCA-based feature selection method using the Guttman-Kaiser 
criterion to decrease the computational cost in a payload-based anomaly detection system. 
This was the first experience in which PCA and Guttman-Kaiser were considered for 
payload-based feature selection. The proposed method not only derived a set of low-
dimensional features but also retained most of the important information for anomaly 
classification. Additionally, the Mahalanobis Distances Map (MDM) was used to recognize 
the abnormal traffic data by considering the correlations among various features (256 ASCII 
characters). The proposed method was assessed using HTTP packet payload of ISCX 2012 
IDS [33] and DARPA 1999 datasets [34].  

The experimental result showed that our proposed PCA-based TMAD model achieved 
promising results of 97% detection rate and 1.2% false positive rate for the ISCX 2012 
dataset and 100% for the detection rate and 0.06% for the false positive rate for the DARPA 
1999 dataset. On the other hand, our proposed anomaly detection achieved  a comparable 
performance in computational complexity compared to the three other anomaly detection 
models. The experimental results also showed that the improved model of TMAD has further 
reduced the computational complexity of PCA-based feature selection method using the 
Guttman-Kaiser criteria in classifying new traffic payload. By using the proposed PCA-
based feature selection method with a selection component technique such as the Guttman-
Kaiser criterion, the computational complexity of the detection process was highly reduced 
while keeping the high detection rate and low positive rate. This approach is able to decrease 
the computational cost for network payload-based anomaly detection  because the feature 
space has been optimized. It can be derived that PCA and the Guttman-Kaiser criteria are 
able to decrease the dimensionality of the number of features from 256 to 25 for ISCX 2012 
dataset IDS and 20 components for DARPA 1999, with a more accurate traffic analysis 
using Mahalanobies Distance Map (MDM). 

For future research, this study proposes to apply the enhanced TMAD across network 
applications including the secure web, FTP, SMTP and a high application level of network 
models such as SOAP-XML and RESTful web services. Furthermore, an automatic 
threshold selection for anomaly detection could be made to the implementation to ensure a 
better performance in a realistic network application. 
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