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Abstract 
 

Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology 
for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE 
can be divided into two classes: small universe with polynomial attribute space and large 
universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) 
assumption has characteristics of simple algebraic structure and simple calculations, based on 
R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the 
scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded 
attribute space and improve the expression of attribute, we propose a large universe CP-ABE 
scheme with the help of a full-rank differences function. In this scheme, all polynomials in the 
R-LWE can be used as values of an attribute, and these values do not need to be enumerated at 
the setup phase. Different trapdoors are used to generate secret keys in the key generation and 
the security proof. Both proposed schemes are selectively secure in the standard model under 
R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more 
efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more 
flexibility, so our research is suitable in practices. 
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1. Introduction 

Attribute-based encryption (ABE) has attracted much attention because it can achieve 
flexible one-to-many encryption, provide the ability to encrypt the data without knowing the 
specific information of receivers and realize fine-grained access control to encrypted data [1, 
2]. In 2007, Bethencourt et al. [3] introduced a variant of ABE called ciphertext policy ABE 
(CP-ABE), which enables data owners to freely define access structures over attribute sets and 
encrypt the data under the structures. Since then, CP-ABE is widely used in many scenarios, 
such as access control for data stored on the cloud [4, 5] and secure online social networks [6, 
7] and so on. 

Over the past few years, many ABE/CP-ABE schemes have been proposed to achieve 
various functional purposes. Cheung and Newport [8] proposed a CP-ABE scheme in which 
access structures are AND-gates, and the scheme is proved to be secure under the decisional 
bilinear Diffie-Hellman (DBDH) assumption. Hur [9] presented a CP-ABE scheme to achieve 
immediate user revocation. An access control (CP-ABE) scheme is proposed by Zhang et al. 
[10] to realize both user revocability and attribute update, and the scheme is secure to the 
DBDH assumption. Liu et al. [11] presented a hierarchical ABE scheme from the learning 
with errors (LWE) assumption. Zhu et al. [12] constructed an ABE scheme from the learning 
with errors over rings (R-LWE) assumption. Fun and Samsudin [13] presented a CP-ABE 
scheme from R-LWE, which applied the linear secret sharing scheme to express an access 
structure. 

However, once public parameters have been set in the setup phase, they are bounded in 
the whole encryption system for the above schemes. Especially, a data owner cannot set 
flexible and arbitrary access structures. Lewko et al. [14] solved this problem by introducing 
fresh local randomness at the phases of key generation and encryption, and divided ABE 
schemes into two classes: small universe and large universe. In a small universe ABE scheme, 
the size of the attribute space is polynomially bounded in the security parameter, and the size 
of the public parameters grows linearly with the number of attributes, such as [3, 8-11]. In a 
large universe ABE scheme, the attribute universe is exponentially large, and the public 
parameters do not impose additional restrictions on the functionality of the scheme, thus 
“unbounded” is achieved. Okamoto and Takashima [15] proposed first fully secure 
unbounded ABE scheme, and proved that the scheme is secure under the decisional linear 
assumption in the standard model. Rouselakis and Waters [16] described how to construct an 
unbounded CP-ABE scheme over prime order groups. Li et al. [17] constructed an unbounded 
multi-authority CP-ABE scheme with no needless restriction on the public parameters. 
Agrawal et al. [18] combined a small universe ABE scheme with a compatible standard model 
identity-based encryption scheme to construct a large universe ABE scheme from LWE. 
Zhang et al. [19] proposed a large universe CP-ABE scheme from LWE, and proved that the 
scheme is selectively secure against chosen plaintext attacks (CPA). 

The above ABE schemes from LWE have the characteristic of simple algebraic structure, 
but these schemes are not efficient enough in practices because of an intrinsic quadratic 
computation overhead when using LWE. Thereby, Lyubashevsky et al. [20] introduced the 
LWE assumption over rings (R-LWE) whose distribution is pseudorandom. They also proved 
that the security of the R-LWE assumption can be reduced to the hardness of SVP in the worst 
case on ideal lattices. Cryptographic schemes based on R-LWE have many advantages, such 
as fast implementation and small public key size, ciphertext size and secret key size. As far as 
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we know, there are two papers on ABE schemes based on R-LWE: one is proposed by Zhu et 
al. [12] and the other is proposed by Fun and Samsudin [13]. However, the scheme proposed 
by Zhu et al. [12] does not satisfy CPA security. Here is the reason: assume 
C PK r pe M= ⋅ + +  is the ciphertext which contains the plaintext M, where PK and p are public. 
The adversary randomly chooses two equal length messages 0M  and 1M , and sends them to 
the challenger. The challenger picks {0,1}ϑ∈  randomly and encrypts the message Mϑ  to 
construct a challenge ciphertext *C , then sends *C  to the adversary. The adversary obtains 

*C  and computes *( mod  ) mod( mod )C p PK p , then he can distinguish which message is 
encrypted. This explains that the scheme in [12] is not correct. Similar attack also exists in the 
CP-ABE scheme proposed by Fun and Samsudin [13]. 

1.1 Our contribution 
Because the R-LWE assumption can use the fast Fourier transform (FFT) to compute the 
product of polynomials in the rings, encryption schemes based on R-LWE are more efficient 
than those based on LWE in the similar framework. In this paper, we first propose a small 
universe CP-ABE scheme from R-LWE for threshold access structure. We apply a Gaussian 
sampling algorithm over rings to generate a secret key whose size is reduced by nearly half 
compare with the first scheme in [19]. In the decryption phase, the Lagrange interpolation 
coefficients are used to reconstruct the secret embedded in the ciphertext. Making convenience 
of computation, we need to clear the denominators of the Lagrange interpolation coefficients. 
In order to do this, we take a sufficiently large constant which is associated with the number of 
system attributes multiplies the results derived from the sampling algorithm. 

Then, we extend the proposed scheme to a large universe scheme supporting unbounded 
attribute space with the help of a full-rank differences (FRD) function, which means that the 
public parameters do not impose additional restriction on the values of attributes used for key 
generation and encryption. Two lattices called left lattice and right lattice are used in the key 
generation of the proposed scheme and its security proof, respectively. We apply the FRD 
function to map the coefficient vector of each attribute value to matrix, then combine a 
trapdoor of the left lattice to generate a secret key for a user in the large universe scheme such 
that the distribution of the secret key is statistically close to the discrete Gaussian distribution, 
and in the security proof, a trapdoor of the right lattice is used to generate a secret key for the 
adversary. In the encryption phase, we apply a low norm randomization matrix to ensure that 
attacks cannot distinguish between pseudorandom and true randomness. Both schemes are 
secure against CPA in the selective model. Moreover, compared with the schemes in [19], our 
small universe scheme has shorter public key, secret key and ciphertext sizes, and needs fewer 
operations for encryption per bit; our large universe scheme also has shorter public key size 
and needs fewer operations for encryption per bit, while the secret key and ciphertext sizes are 
equal to those in [19]. 

1.2. Organization 
This paper is organised as follows. In Section 2, we introduce the preliminaries. In Section 3, 
we propose a small universe CP-ABE scheme from R-LWE and analyze its security. In 
Section 4, we propose a large universe CP-ABE scheme from R-LWE and also analyze its 
security. We compare our schemes with the existing CP-ABE schemes based on the LWE 
assumption in Section 5. Finally, we summarize the results of the paper in Section 6. 
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2. Preliminaries 

2.1. Notations 
Let bold lowercase and capital letters denote vectors and matrices, respectively. Let Z  and R  
represent sets of integers and real numbers, and n be a power of 2. Let poly(n) represent an 
indeterminate function ( ) ( )cg n O n=  for a certain constant c. Let 1 mod  2q n=  represent a 
sufficiently large public prime modulus, Zq  denote a set of integers modulo q, Z[ ]x  be a set of 
polynomials with integer coefficients. We take ( ) 1 Z[ ]nf x x x= + ∈ , which is irreducible over 
the rational field. Let Z[ ]/ ( )R x f x= < >  be ring of integer polynomials modulo ( )f x . Let 

Z [ ]/ ( )q qR x f x= < >  be ring of integer polynomials modulo both ( )f x  and q. Let qR×  be a set 
of invertible polynomials in qR . Unless stated otherwise, we let qRαγ ⊂  represent the error 
distribution, which is defined in [21]. 

For two matrices 1Rm n×∈ X  and 2Rm n×∈ Y , ( )1 2( ;  ) R m m n+ ×∈ X Y  is the concatenation of 
the rows of X  and Y . Let 1

0 1 1
n

n qa a a x a x R−
−= + + + ∈ and 1 2( ,  ,  ,  ) m

m qx x x RΤ= ∈x . Define 
1( ) ( ,  mod ,  ,  mod )n n

f qrot a a ax f ax f R− Τ= ∈ and 1 2( ) ( ( );  ( );  ;  ( ))f f f f mRot rot x rot x rot x= x
mn
qR∈ . Let 0 1 1( ,  ,  ,  ) Zn

n qa a a −= ∈a  represent the coefficient vector of a , and let || ||⋅  and 
|| ||∞⋅  denote the Euclidean norm and infinity norm, respectively. Then || ||a and || ||a ∞  can be 

denoted as 2 2 2
0 1 1na a a −+ + +  and 

0 1
max (| |)ii n

a
≤ ≤ −

, respectively. 

( ) ZmnMap= ∈e x  is a column vector generated by concatenating coefficients of 
 (1 )ix i m≤ ≤ in sequence, and 1( ) mMap R−= ∈x e  is the inverse process of Map . ({ 1, 1} )n m m×− +  

is a matrix with m rows and m columns, of which the elements whose coefficients are −1 or 1 
are chosen from qR . = ( ) Zm n

V M qTrans ×
→ ∈X x  is a m×n matrix whose rows are comprised of 

coefficient vectors of  (1 )ix i m≤ ≤ , and = ( ) m
M V qTrans R→ ∈x X  is a m-dimensional vector by 

viewing elements of each row in X  as coefficients of a polynomial in qR . 

qa R←  is used to represent that a  is uniformly selected in qR  at random. When we say 
x αγ← , we mean that x  is a ‘small’ random error term chosen from αγ  uniformly. 

2.2. Lattices 

Definition 1. There are n linear independent vectors 1 2,  ,  ,  Rn
n ∈ a a a , let 

1 2[ ,  ,  ,  ]n= A a a a , the lattice Λ  generated by A  has the following form:  

1
( ) { | Z,  1 }

n

i i i
i

x x i n
=

Λ = = ∈ ≤ ≤∑ A a  

where 1 2,  ,  ,  na a a  is a basis of  , and its rank is n. 
Definition 2. For q prime, Zn m

q
×∈A and Zn

qu∈ , define: 
( ) { Z  . . 0(mod  )}m

q e s t e q⊥Λ = ∈ =A A  
( ) { Z  . . (mod  )}u m

q e s t e u qΛ = ∈ =A A  
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2.3. Discrete Gaussians 
Definition 3. Let ( )sρ x  denote the standard n-dimensional Gaussian distribution with center 0 

and variance s , such as
2

2
|| ||( ) exp( )s s

ρ π= −
xx  . For a given lattice Λ  and s > 0, the sum 

( ) ( )s sρ ρ∈ΛΛ =∑ x x  is finite, then define the lattice Gaussian distribution ,sDΛ  as 

,
( ),  ( )
( )

s
s

s
D ρ

ρΛ∃ ∈Λ =
Λ
yy y  

Lemma 1. ([18]) For any lattice Λ of integer dimension m  and any two reals (0,  1)ε ∈  and 
( log )mσ ω≥ , we have 

,
1Pr{ ~ :  || || } 2
1

mD mσ
εσ
ε

−
Λ

+
> ≤

−
x x  

2.4. The R-LWE hardness assumption 
Definition 4. For a uniformly random element qs R∈  (secret) and an error distribution αγ  
over qR , a sample from the R-LWE distribution , As γα

 is generated by selecting qb R←  and 
an error term x αγ′← , and outputting ( ,  ) q qb bs x R R′+ ∈ × . 
Definition 5. ([22]) The Decisional R-LWE assumption is defined as follows: consider a 
prime 1 mod  2q n=  and an error distribution αγ  over qR , a decisional R-LWE assumption 
instance consists of access to an unspecified challenge oracle O which is either a truly random 
sampling oracle $O  or a pseudo-random sampling oracle sO , where $O  outputs truly uniform 
random samples from q qR R× , and sO  outputs samples ( ,  )i i ib b s x+  according to the R-LWE 
distribution. We say that an adversary A can solve the decisional R-LWE assumption if A’s 
advantage $( ) | Pr[ 1] Pr[ 1] |OosAdv A A A= = − = is non-negligible for a random qs R∈ . 

Assuming that the worst case -Ideal-SVPγ  cannot be efficiently solved by using quantum 
algorithms for small γ , Steinfeld [21] showed that the R-LWE problem is hard (see Theorem 
1). 
Theorem 1. Assume that ( (log ))q n nα ω= and (0,  1)α ∈  and ( )q poly n= . There is a 
randomized polynomial time quantum reduction from -Ideal-SVPγ  to ,R-LWEq α ,with 

1.5( log ) /n nγ ω α= . 
Lemma 2. ([21]) Assume that q nα ≥ . For any r R∈ , we have 

(1)Pr [|| || (log ) || ||]y yr q n r n ω
γα

α ω −
← ∞≥ ⋅ ≤  

2.5. Important algorithms 
2.5.1. Preimage sampling algorithm 

RingSamplePre ( ( ),  ,  ,  )fRot T u σΤ
aa . Let q be a prime and a  be a m-dimensional vector 

in m
qR . On input a row vector ( )fRotΤ a  with short trapdoor basis Ta , a target image qu R∈  and 

a Gaussian parameter σ , output Zmn∈e  which sampled from a distribution statistically close 
to 

Z ,mnD
σ

. 

2.5.2. Trapdoor generation algorithm 
The following theorem is used by Yang et al. [22] to generate the trapdoor over ideal 
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lattices, we call the theorem as the trapdoor generation algorithm over rings, short for 
RingGenTrap. 
Theorem 2. ([22]) There is a PPT algorithm with the following properties. It takes as inputs n, 
r > 0, q, 1 Zm ∈ , 2 Zm ∈ , a degree n polynomial Z[ ]f x∈  and random vector 1

1 ( )m
qR×∈g . It 

also takes as inputs 1
2(0 )m

i R i m∈ ≤ ≤u  whose coefficients are selected from 
1Z ,m nD

σ× . Let 

ii t
f f

≤
=∏ be its factorization over Zq , 1 log qκ =  +  , deg( ) 1/2( (1 ( / 3 ) ) 1)fr i

i t
q

≤
∆ = + −∏  and 

1 2m m m= + . Compute 2 1 1 2 1 12( ,  ,  ,  )m
Τ Τ Τ= g u g u g u g . The algorithm succeeds with probability 

1 p≥ − , where deg( )(1 (1 ))fi
i t

p q σ−
≤

= − −∏ , when it does, it outputs 1 2( ;  ) m
qR= ∈g g g  and a 

(trapdoor) basis Zmn mn×∈S  of the lattice ( ( ))q fRot⊥ ΤΛ g , such that: 
1. The distance to uniformity of g  is at most 2p m+ ∆ ; 
2. || || 2 (9 )n r σ≤ +S . 

2.5.3. Secret key extraction algorithm 
 ExtractLeft ( ,  ,  ,  ,  )T u σaa b . On input m

qR∈a  and a trapdoor Ta  of ( ( ))q fRot⊥ ΤΛ a , m
qR∈b , 

qu R∈ , || || ( log )T mσ ω≥ a , then do: 
 1. Randomly sample a vector 2 Zmn′ ∈e  distributed statistically close to 

Z ,mnD
σ

 and  

compute 1
2 2( ) mMap R− ′= ∈e e ; 

 2. Run RingSamplePre 1( ( ),  ,  ,  )fRot T u σΤ
aa  to get 1 Zmn′ ∈e  and compute 1

1 1( )Map− ′=e e  
mR∈ , where 1 2 qu u RΤ= − ∈b e ; 

 3. Output 2
1 2( ;  ) mR= ∈e e e . 

 ExtractRight ( ,  ,  ,  , ,  )T R u σba b . On input m
qR∈a , m

qR∈b  and a trapdoor Tb  of 
( ( ))q fRot⊥ ΤΛ b , ({ 1, 1} )n m mR ×∈ − + , qu R∈  and || || ( log )T mσ ω≥ a , then do: 

 1. Set 2( ;  ) mRΤ= + ∈d a R a b ; 
 2. Construct a trapdoor Td  of ( ( ))q fRot⊥ ΤΛ d , which is similar to [23]; 
 3. Run RingSamplePre ( ( ),  ,  ,  )fRot T u σΤ

dd  to get 2Z mn′∈e  and compute 1( )Map− ′=e e  
2mR∈ ; 

 4. Output e . 

2.6. CP-ABE 
Definition 6. (CP-ABE [3]) A CP-ABE scheme consists of the following algorithms: 
• Setup( 1κ ) → (PK, MSK). The Setup algorithm inputs a security parameter κ  and 

produces the public key PK and master key MSK. 
• KeyGen(MSK, S) → SK. The KeyGen algorithm inputs MSK and an attribute set S that 

depict the key, then produces a secret key SK. 
• Encrypt(PK, T, M) → CT. The Encrypt algorithm inputs PK, an access structure T and a 

message M. It encrypts M and produces a ciphertext CT. Suppose CT implicitly contains T. 
• Decrypt(PK, SK, CT) → M. The Decrypt algorithm inputs PK, SK and CT. It decrypts CT 

and outputs the message M if and only if S satisfies T. 
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2.7. CPA security game 
The selective CPA security game for the CP-ABE scheme can be described like [19]. Before 
the Setup phase, the adversary A needs to state a challenge access structure *T that he wishes to 
be challenged upon. Detailed steps of the selective security game are described in the 
following. 
 Initialization. A picks *T  and sends it to the challenger C. 
 Setup. C performs the Setup algorithm and gives PK to A. 
 Phase 1. A submits an attribute set S for secret key query. The restriction is that S dose not 

satisfy *T . For S, C performs the KeyGen algorithm and sends the secret key SK to A. 
 Challenge. A sends two equal length messages 0M  and 1M  to C. C randomly selects one 

bit {0,  1}ϑ∈ , and encrypts Mϑ  by running the Encrypt algorithm under *T . Then, C 
returns a challenge ciphertext *CT  to A. 

 Phase 2. The same as Phase 1. 
 Guess. A produces a guess ϑ′  of ϑ . 
 In the above selective security game, A s′  advantage is 

( ) | Pr( ) 1 / 2 |Adv A ϑ ϑ′= = −  
Definition 9. A CP-ABE scheme is said to be selective CPA secure if all the PPT adversaries 
have at most a negligible advantage in the above game. 

3. A small universe CP-ABE scheme from R-LWE 
Based on the R-LWE problem, we propose a small universe CP-ABE scheme which is 
denoted as R-LWECP-ABEs . For simplicity, we suppose there exists l normal attributes 

{1,  2,  ,  }L l=   in the system. In R-LWECP-ABEs , there is an access structure (T, t) being 
embedded in the ciphertext, which means that anyone who has t attributes in T can decrypt the 
ciphertext to obtain the right message, where T L⊆  and Zt∈  is a threshold whose maximum 
value is d ( )t d l≤ ≤ . In order to decrypt correctly, we need to introduce d default attributes 

{ 1,  ,  }D l l d= + +  into our system, these default attributes should be handled in the Setup 
phase, and all users have to add these attributes to generate their secret keys. The data owner 
also needs to add some default attributes to generate the ciphertext according to the access 
structure. Let 2(( )!)P l d= + . Now, detailed steps of R-LWECP-ABEs  are described as follows. 
 Setup(1κ ) → (PK, MSK). On input a security parameter κ  which is a power of 2, do: 
 1. For each i L D∈ ∪ , use the RingGenTrap algorithm to select a vector m

i qR∈b  and a 
trapdoor 

iTb  of ( ( ))q f iRot⊥ ΤΛ b . 
 2. Set u Pu′=  by randomly selecting qu R′← . 
 3. Output the public key {{ | },  }iPK i L D u= ∈ ∪b  and master key { | }iMSK T i L D= ∈ ∪b . 
 KeyGen(PK, MSK, U) → SK. On input the public key PK, the master key MSK and an 

attribute set U, do: 
 1. Let /u u P′ =  and U U D′ = ∪ . 
 2. Select a uniformly random polynomial 1( ) d j

j jp y u t y=′= +∑  of degree d, where 

j qt R← . 
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 3. For each i U ′∈ , set ( )i qu p i R= ∈  and perform RingSamplePre ( ( ),  ,  ,  )f i iiRot T u σΤ
bb  to 

obtain Zmn
i′′∈e , then compute 1( )i iMap−′ ′′=e e  and i iP ′=e e  ( . .,  )i i ii e PuΤ =b e . 

 4. Output the secret key { | }iSK i U ′= ∈e . 
 Encrypt ( ,  ( ,  ),  )PK T t CT→m . On input the public key PK, an access structure ( ,  )T t  

(1 min{| |, })t T d≤ ≤  and a message 0 1 1( ,  ,  , )nm m m −m = , where {0,  1}im ∈ . Here, m  
can be viewed as a coefficient vector of a polynomial 1

0 1 1( )  n
n qm x m m x m x R−
−= + + + ∈  

( m  for short), then do: 
1. Choose a uniformly random element qs R← . 

 2. Let { 1, , 1}T T l l d t′ = ∪ + + − + . 
 3. Set / 2c su x q m′ ′= + +    , where x αγ′← . 
 4. For each i T ′∈ , compute i i is= +c b x , where m

i αγ←x .  
 5. Output the ciphertext { ,{ | }}iCT c i T′ ′= ∈c . 
 Decrypt ( ,  ,  )PK SK CT → m . On input the public key PK, the secret key SK and the 

ciphertext CT, then do: 
 1. If | |U T t∩ < , output ⊥. Otherwise, due to | |U T t∩ ≥ , we have | | 1U T d′ ′∩ ≥ + . 

Randomly choose a subset I U T′ ′⊆ ∩  with | | 1I d= + . 
 2. For each i I∈ , compute i i iK Τ= e c . 
 3. Compute 

(0)i i
i I

K L K
∈

= ∑  

 4. Compute 1
0 1 1

n
nz c K z z x z x −
−′= − = + + + . 

 5. For 0,  1,  ,  1i n= − , if | | / 4iz q< , then output 0im = , otherwise, output 1im = . 

3.1. Correctness and parameter setting 
In this subsection, we show that our construction is correct. 
 For each i I∈ , compute 
    ( ) ( )i i i i i i i i i i i i iK s s Pu sΤ Τ Τ Τ Τ Τ= = ⋅ + = + = +e c e b x b e e x e x  
We have 

1
(0) (0) ( )

l

i i i
i L i

L u i L p i u
∈ =

′= = =∑ ∑  

Then, 
    (0) (0)( ) (0)i i i i i i i i i

i I i I i L
K L K L Pu s us LΤ Τ

∈ ∈ ∈

= = + = +∑ ∑ ∑e x e x  

Finally, compute 

  / 2 (0)

  / 2 (0)

  / 2

i i i
i I

i i i
i I

z c K

us x q m us L

q m x L

q m

Τ

∈

Τ

∈

′= −

′= + + − −  

′= + −  

≈   

∑

∑

e x

e x
 

 To decrypt the ciphertext correctly, it requires that the absolute value of each coefficient of 
the error term ( (0) )i i ii I

x L Τ
∈

′ −∑ e x  is less than 4q  with overwhelming probability. Here, we 
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only need to compute || ( (0) ) || 4i i ii I
x L qΤ

∞∈
′− <∑ e x  . Then 

    || ( (0) ) || || || || (0) ||i i i i i i
i I i I

x L x LΤ Τ
∞ ∞ ∞

∈ ∈

′ ′− ≤ +∑ ∑e x e x  

 By Lemma 2, we have || || (log )x q nα ω∞′ < . Let 1 2( ,  ,  ,  )i i i imx x x Τ= x  and 

1 2( , , , )i i i ime e eΤ′ ′ ′ ′= e . Then 

1
|| || || || (log ) || ||

m

i i ij ij ij
j

e x m q n eα ωΤ
∞ ∞

=

′ ′ ′≤ < ⋅∑e x  

From Lemma 1, || ||ije nσ′ < . Hence, 
|| || (log )i i m q n nα σ ωΤ

∞′ <e x  
Let logq n nα = . Since 3| (0) | ( !)jPL n≤ , we have 

3

4 2.5 1.5

|| (0) || (log ) ( 1)(( )!) (log )

                                  4(( )!) log

i i i
i I

x L q n d l d m q n n

l d n n

α ω α σ ω

σ

Τ
∞

∈

′ ′− < + + +

< +

∑ e x
 

We set 4 2.5 1.516(( )!) logq l d n nσ≥ +  to ensure correctness. Simultaneously, other parameters 
are set as: 
• m κ=  and / 2n m= . 
• (log )m mσ ω= ⋅ . In the KeyGen algorithm, i′e  obeys Gaussian distributions with center 0 

and varianceσ , while i iP ′=e e  obeys Gaussian distributions with center 0 and variance 
2P σ , and 2P σ  also satisfies 2 (log )P m mσ ω= ⋅ . 

• l nε=  for a certain constant (0,  1 / 2)ε ∈ . 
• Due to d l≤ , we have 2 2 log 2( )! (2 )! (2 ) 2l l ll d l l+ ≤ ≤ = , thus log /n n qα =  

log 2 61 ( ( ))8n n/ 2 poly n
ε ε += ⋅ . 

Combining above parameter setting and Theorem 1, we get security under the hardness of 
( log 2 )2O n nε ε

-approximating Ideal-SVP applying algorithms that run in time ( log 2 )2O n nε ε
. 

3.2. Security analysis 

Now, we reduce CPA security of R-LWECP-ABEs  to the decisional R-LWE assumption. 
Theorem 3. If there exists a PPT adversary A can win the R-LWECP-ABEs scheme with 
non-negligible advantage 0ε > , then there is a PPT algorithm B that can solve the decisional 
R-LWE assumption with the same advantage. 
Proof. Recall from Definition 5 that a R-LWE assumption instance is provided as a sampling 
oracle O  which can be either a truly random sampling oracle $O  or a pseudo-random 
sampling oracle sO  for a certain secret qs R∈ . The simulator B uses A to distinguish the two, 
and does as follows: 
 Instance: B requests from O and obtains ( ) 1l d m+ +  R-LWE samples 0 0( , ) q qv w R R∈ × , 

( , )j j
i i q qv w R R∈ × , (1 ,  1 )i l d j m≤ ≤ + ≤ ≤ , where 0v  implies that there exists 0 qv R′ ∈  such 

that 0 0v Pv′= . 
 Initialization: A picks a challenge access structure ( ,  )T t∗ ∗  (1 min{| |, })t T d∗ ∗≤ ≤  and 

sends it to A. 
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 Setup: After receiving ( ,  )T t∗ ∗ , B generates the public key PK as: 
1. Let { 1,  ,  1 }T T l l d t∗ ∗′ = ∪ + + + − . 
2. Set 0u v=  and 1 2( ,  ,  ,  )m

i i i iv v v Τ= b  for each i T ′∈ . 
3. For each ( ) \i L D T ′∈ ∪ , use the RingGenTrap algorithm to choose m

i qR∈b  and a 
trapdoor 

iTb  of ( ( ))q f iRot⊥ ΤΛ b . 
Finally, B sends {{ | },  }iPK i L D u= ∈ ∪b  to A, and keeps { | }iT i L D∈ ∪b  secret. 

 Phase 1 : A can ask B to get the secret key SK corresponds to any attribute set U, where 
* *| |U T t∩ < . B creates SK as follows. 

1. Let U U D′ = ∪  and * *| | 1U T t∩ ≤ − . Then we have | |U T d′ ′∩ ≤ . Assume that 
| |U T η′ ′∩ =  and the first η  attributes of U ′ are the same as T ′ . 

2. Represent the shares of /u P  as 
1

( ) / d j
jj

p y u P t y
=

= +∑  , where 1 2,  ,  ,  d qt t t R←  are 
variables. 

3. For each i U T′ ′∈ ∩ , sample 
Z ,i mnD

σ
′′←e , compute 1( )i iMap−′ ′′=e e  and i i iu Τ ′= b e . Then 

set ( ) ip i u=  and i iP ′=e e  for every i U T′ ′∈ ∩ . 
4. Since dη ≤ , randomly choose d η−  shares 1 2,  ,  ,  d qu u u Rη η+ + ←  and set ( ) ip i u=  

( 1,  2,  ,  )i dη η= + +  . Then the values for 1 2,  ,  ,  dt t t  are determined. This 
determines all | |U ′  shares (1),  ,  (| |)p p U ′

 . 
5. For each \i U T′ ′∈ , perform RingSamplePre ( ,  ,  ,  )i iiT u σbb  to obtain i′′e , then 

compute 1( )i iP Map− ′′= ⋅e e . 
At last, B sends { | }iSK i U ′= ∈e  to A. 

 Challenge: A sends messages 0m  and 1m  to B, where 0 00 01 0, 1( ,  ,  ,  )nm m m −= m , 

1 10 11( ,  ,  ,m m= m  1, 1)nm − , , {0,  1}i jm ∈ , 0,  1i = ; 0,  1,  ,  1j n= − . After receiving the 
messages, B picks {0,  1}ϑ∈  at random and constructs the challenge ciphertext *CT  as: 

 – Set 0 / 2c w q mϑ′ = +    ; 
 – For each i T ′∈ , set 1 2( ,  ,  ,  )m

i i i iw w w= c . 
B sends * { ,{ | }}iCT c i T′ ′= ∈c  to A. 

 Phase 2 : The same as Phase 1. 
 Guess: A produces a guess ϑ′  of ϑ . B applies A’s guess to determine an answer on the 

R-LWE oracle: if ϑ ϑ′ = , B produces “R-LWE”, otherwise it produces “truly random”. 
 If O is a R-LWE oracle for a certain secret qs R∈ , we show that *CT  is a valid ciphertext 
for s as follows: 0 0/ 2 / 2c w q m v s x q mϑ ϑ′ ′= + = + +       , and 1 2( ,  ,  ,  )m

i i i i i iw w w s= = +c b x  for 
each i T ′∈ . If the probability that A guesses the right ϑ  is 1 / 2ε + , then B can win the game 
with the same probability. 
 If O is $O , the ciphertext *CT  is completely random from A’s view, thus the probability 
that A guesses the right ϑ  is 1 / 2 , B also has the same probability to win the game. 
 Therefore, if A can win the above security game with non-negligible advantage 0ε > , then 
B can solve the decisional R-LWE assumption with the same advantage 
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$( ) | Pr[ 1] Pr 1] |
             | 1 / 2 1/ 2 |
             

OOsAdv B B B
ε
ε

= = − =
= + −
=

 

4. A large-universe CP-ABE scheme from R-LWE 
The proposed scheme in Section 3 is bounded in selecting parameters for key generation and 
encryption once the public parameters have been set. And the expression of attribute is not 
flexible enough. In order to support unbounded attribute space and improve the expressiveness 
of attribute, we combine the above scheme and some fixed FRD function to construct a large 
universe CP-ABE scheme which is denoted as R-LWECP-ABEl . 
Definition 10. [23] Let q be a prime. If there is a function : Z Zn n n

q qH ×→  satisfies: 
• for all the different ,  Zn

qu v∈ , the matrix ( ) ( ) Zn n
qH u H v ×− ∈  is full rank; 

• H is computable in polynomial time in logn q . 
Then we call H is an encoding with full-rank differences (FRD). 

 Suppose there exists l normal attributes 1 2{ ,  ,  ,  }lL attr attr attr=   in the system. Each 
polynomial in qR  is the possible value of iattr . Let i it attr<<  denote i qt R∈  is a value of iattr , 
where 1,  2,  ,  i l=  . Now, detailed steps of R-LWECP-ABEl  are described as follows. 
 Setup(1κ ) → (PK, MSK). On input a security parameter κ which is a power of 2, do: 
 1. Use the RingGenTrap algorithm to select a vector m

qR∈a  and a trapdoor Ta  of 
 ( ( ))q fRot⊥ ΤΛ a . 

 2. For each i L D∈ ∪ , select a uniformly random vector m
i qR←b . 

 3. Select a uniformly random vector 1 2( ,  ,  , ) m
m qb b b R= ←b . 

 4. Set u Pu′=  by selecting qu R′←  at random. 
 5. Select a FDR function : Z Zn n n

q qH ×→ . 
 6. Output the public key { ,  ,  { | },  ,  }iPK i L D u H= ∈ ∪a b b  and master key { }MSK T= a . 
 KeyGen(PK, MSK, U) → SK. On input the public key PK, the master key MSK and an 

attribute set { | }i i iU t t attr= << , do: 
 1. Let /u u P′ =  and U U D′ = ∪ . 
 2. Compute ( )V MTrans →=B b . 

 3. Select a uniformly random polynomial 
1

( ) d j
jj

p y u t y
=

′= +∑  of degree d, where 

j qt R← . 
 4. For each i U∈ , compute ( ( )) m

i M V i qTrans H RΤ
→= ∈h B t , set ( )i qu p i R= ∈  and 

( ;  )i i iE = +a b h , then perform ExtractLeft ( ,  ,  ,  ,  )i i iT u σ+ aa b h  to obtain 2m
i R′∈e , and 

compute i iP ′=e e . 
5. For every i D∈ , set ( )i qu p i R= ∈  and 2( ;  ) m

i i qE R= + ∈a b b , then perform 
 ExtractLeft ( ,  a b  ,  ,  ,  )i iT u σ+ ab  to obtain 2m

i R′∈e , and compute i iP ′=e e . 
 6. Output the secret key { | }iSK i U ′= ∈e . 
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 Encrypt ( ,  ( ,  ),  )PK T t CT→m . On input the public key PK, an access structure ( ,  )T t  and 
a message 0 1 1( ,  ,  , )nm m m −m = , where { | }i i iT t t attr= << , 1 min{| |,  }t T d≤ ≤  and 

{0,  1}im ∈ . Here, m  is viewed as a coefficient vector of a polynomial 
1

0 1 1( )  n
n qm x m m x m x R−
−= + + + ∈  ( m  for short), do: 

 1. Choose a uniformly random element qs R← . 
 2. Compute ( )V MTrans →=B b . 
 3. Let { 1, , 1}V l l d t= + + − +  and T T V′ = ∪ . 
 4. Set / 2c us x q m′ ′= + +    , where x αγ′← . 
 5. Set 0 s= +c a x , where m

αγ←x . 
 6. For each i T∈ , compute ( ( )) m

i M V i qTrans H RΤ
→= ∈h B t , randomly select 

({ 1, 1} )n m m
i

×← − +R  and compute ( )i i i is Τ= + +c b h R x . 
 7. For each i V∈ , select ({ 1, 1} )n m m

i
×← − +R  at random and compute ( )i i is Τ= + +c b b R x . 

 8. Output the ciphertext 0{ , , ,{ | }}iCT T c i T′ ′= ∈c c . 
 Decrypt ( ,  ,  )PK SK CT → m . On input the public key PK, the secret key SK and the 

ciphertext CT, then do: 
 1. If | |U T t∩ < , output ⊥. Otherwise, due to | |U T t∩ ≥ , we have | | 1U T d′ ′∩ ≥ + . 

Randomly choose a subset I U T′ ′∈ ∩  with | | 1I d= + . Let 1S  denote the subscript  set 
of normal attributes in I, and 2S  denote the default attributes in I. For convenience, we 
set 1 2I S S= ∪ . 

 2. For each i I∈ , compute 0( ;  )i i iK Τ= e c c . 
 3. Compute 
                 (0)i i

i I
K L K

∈

= ∑  

 4. Compute 1
0 1 1

n
nz c K z z x z x −
−′= − = + + + . 

 5. For 0,  1,  ,  1i n= − , if | | / 4iz q< , then output 0im = , otherwise, output 1im = . 

 4.1. Correctness 

In this subsection, we show that the R-LWECP-ABEl  scheme is correct. 
 Suppose 1| |S t= , 2| | 1S d t= + − . For each 1i S∈ , compute 

0

    
( )

    ( )

    

i i
i

i
i i i

i i i
i

i i
i

K

s

s

E s

Pu s

Τ

Τ
Τ

Τ Τ
Τ

Τ
Τ

 
=  

 
+ 

=  
+ + 

 
= +  

 
 

= +  
 

c
e

c

a x
e

b h R x

x
e e

R x

x
e

R x

 

For each 2i S∈ , compute 
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0

    
( )

    ( )

    

i i
i

i
i i

i i i
i

i i
i

K

s

s

E s

Pu s

Τ

Τ
Τ

Τ Τ
Τ

Τ
Τ

 
=  

 
+ 

=  
+ 
 

= +  
 

 
= +  

 

c
e

c

a x
e

b + b R x

x
e e

R x

x
e

R x

 

For every i I∈ , let i i iK Pu sξ = − . Then, 
(0) (0)( ) (0)i i i i i i i

i I i I i I
K L K L Pu s us Lξ ξ

∈ ∈ ∈

= = + = +∑ ∑ ∑  

Finally, compute 

  / 2 (0)

  / 2 (0)

  / 2

i i
i I

i i
i I

z c K
us x q m us L

q m x L

q m

ξ

ξ
∈

∈

′= −

′= + + − −  

′= + −  

≈   

∑

∑
 

As Subsection 3.1, we can select appropriate parameters to satisfy 
|| (0) || / 4i i

i I
x L qξ ∞

∈

′− <∑  

4.2. Security analysis 

In this subsection, we prove the security of R-LWECP-ABEl  in the selective model in Subsection 
2.7. 
Theorem 4. If there exists a PPT adversary A can win the R-LWECP-ABEl  scheme with 
non-negligible advantage 0ε > , then there is a PPT algorithm B that can solve the decisional 
R-LWE assumption with the same advantage. 
Proof. Recall from Definition 5 that a R-LWE assumption instance is provided as a sampling 
oracle O which can be either a truly random sampling oracle $O  or a pseudo-random sampling 
oracle sO  for a certain secret qs R∈ . The simulator B uses A to distinguish the two, and does: 
 Instance: B requests from O and obtains 1m +  R-LWE samples ( ,  )i i q qv w R R∈ ×  

(0 )i m≤ ≤ , where 0v  implies that there exists 0 qv R′ ∈  such that 0 0v Pv′= . 
 Initialization: A sends a challenge access structure * *( ,  )T t  to A, where 

* * *{ | }i i iT t t attr= <<  and * *1 min{| |,  }t T d≤ ≤ .  
 Setup: After receiving * *( ,  )T t , B generates the public key PK as follows: 
 1. Let *{ 1,  ,  1 }V l l d t= + + + −  and *T T V′ = ∪  . 
 2. Set 0u v=  and 1 2( ,  ,  ,  ) m

m qv v v RΤ= ∈a . 
 3. Use the RingGenTrap algorithm to choose 1 2( ,  ,  ,  ) m

m qb b b R= ∈b  and a trapdoor Tb  
of ( ( ))q fRot⊥ ΤΛ b . Simultaneously, compute ( )V MTrans →=B b . 
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 4. For each *i T∈ , compute ( ( )) m
i M V i qTrans H RΤ

→= ∈h B t , select ({ 1,  1} )n m m
i

×∈ − +R  at 
random and set i i i

Τ= −b R a h . 
 5. For every *\i L T∈ , select ({ 1,  1} )n m m

i
×∈ − +R  randomly and set i i

Τ=b R a . 
 6. For each i V∈ , select ({ 1,  1} )n m m

i
×∈ − +R  at random and set i i

Τ= −b R a b . 
 7. For each \i D V∈ , randomly choose ({ 1,  1} )n m m

i
×∈ − +R  and set i i

Τ=b R a . 
Finally, B sends { ,  ,  { | },  }iPK i L D u= ∈ ∪a b b  to A, and keeps ( ,  { | })iT i L D∈ ∪b R  secret. 

 Phase 1: A can ask B to get the secret key SK corresponds to any attribute set 
{ | }i i iU t t attr= << , where * *| |U T t∩ < . B creates SK as follows. 

 1. Let U U D′ = ∪  and * *| | 1U T t∩ ≤ − . Then we have | |U T d′ ′∩ ≤ . Assume that 
| |U T η′ ′∩ =  and the first η  attributes of U ′  are the same as T ′ . 

 2. Represent the shares of /u P  as 
1

( ) / d j
jj

p y u P t y
=

= +∑ , where 1 2,  ,  ,  d qt t t R←  are 
variables. 

 3. For each i U∈ , compute ( ( )) m
i M V i qTrans H RΤ

→= ∈h B t , define ( ;  )i i iE = +a b h , sample 

2Z ,i mnD
σ

′′←e , compute 1( )i iMap−′ ′′=e e and i i iu EΤ ′= e . Then set ( ) ip i u=  and i iP ′=e e  for 

every i U∈ . 
 4. For each i V∈ , define ( ;  )i iE = +a b b , sample 2Z ,i mnD

σ
′′←e , compute 1( )i iMap−′ ′′=e e  

and i i iu EΤ ′= e . Then set ( ) ip i u=  and i iP ′=e e  for every i V∈ . 
5. Since dη ≤ , randomly choose d η−  shares 1 2,  ,  ,  d qu u u Rη η+ + ←  and set ( ) ip i u=  

( 1,  2,  ,  )i dη η= + +  . Then the values for 1 2,  ,  ,  dt t t  are determined. This 
determines all | |U ′  shares (1),  ,  (| |)p p U ′

 . 
 6. For every \i D V∈ , take ( ;  )i iE = +a b b  and perform ExtractRight ( ,  ,  ,  ,  ,  )i iT u σba b R  

to obtain i′e , then compute i iP ′=e e . 
At last, B sends { | }iSK i U ′= ∈e  to A. 

 Challenge: A sends messages 0m  and 1m  to B, where 0 00 01 0, 1( ,  ,  ,  )nm m m −= m , 

1 10( ,m=m  11 1, 1,  ,  )nm m − , , {0,  1}i jm ∈ , 0,  1i = ; 0,  1,  ,  1j n= − . After receiving the 
messages, B picks {0,  1}ϑ∈  at random and constructs the challenge ciphertext *CT  as: 

 – Let 1 2( ,  ,  ,  )mw w w= w ; 
 – Set 0 / 2c w q mϑ′ = +     and 0 =c w ; 
 – If i T ′∈ , set i i

Τ=c R w . 
B sends *

0{ ,  ,  { | }}iCT c i T′ ′= ∈c c  to A.  
 Phase 2: The same as Phase 1. 
 Guess: A produces a guess ϑ′  of ϑ . B applies A’s guess to determine an answer on the 

R-LWE oracle: if ϑ ϑ′ = , B produces “R-LWE”, otherwise it produces “truly random”. 

5. Performance analysis 
We compare the performance of our schemes with the existing schemes in [19]. We denote the 
first scheme in [19] as LWECP-ABEs , and the second one as LWECP-ABEl . In order to make the 
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analysis more understandable, new notations used in comparison are shown as follows: 
 l : the number of the attribute universe 
 k : the number of attributes a user has 
 t : the number of the least attributes to decrypt the ciphertext  
 θ : the number of attributes appeared in the access structure 
 δ : a real such that 1 ( 1) log (log )n n q nδ ω+ > + +    (in [19]) 
 Table 1 shows the performance comparison results among our schemes and the ones in 
[19], each scheme is compared in terms of PK size, SK size, message size, CT size, 
multiplications in encryption per bit (MEPB), multiplications in decryption per bit (MDPB) , 
underlying hardness assumption (UHA), principle of operation (POO) and worst case problem 
(WCP). All sizes are in bits. For convenience, we let 1v l tθ= + − +  and logw q= . 

Table 1. Performance comparison among our schemes and the ones in [19] 

 
As shown in Table 1, compared with LWECP-ABEs  and LWECP-ABEl  in [19], PK size in our 

schemes are reduced nearly 3n times when encrypting messages of the same size, our schemes 
also have smaller SK size and CT size. Our schemes require less computation in the encryption 
and decryption phases, mainly because our scheme is constructed based on the R-LWE 
assumption, which can use FFT to improve the efficiency of encryption from 2( )O vn  to 

( log )O vn n  and decryption from 2(  )O l n  to (  log )O l n n . Especially, MEPB in s
R LWECP ABE −−  

is ( log )O vn n , which is much more less than that in LWECP-ABEs . In Table 1, LWECP-ABEs  and 

LWECP-ABEl  are secure under the LWE assumption, which can be reduced to SIVPγ  on 
arbitrary lattices; while our schemes are secure under the R-LWE assumption, which also can 
be reduced to γ-Ideal-SVP on ideal lattices. As a whole, our schemes are secure and more 
efficient than LWECP-ABEs  and LWECP-ABEl  in [19]. 

6. Conclusion 
Based on the R-LWE assumption, a small universe CP-ABE scheme is proposed, which has a 
flexible and simple threshold access structure. On this basis, we proposed a large universe 
CP-ABE scheme from R-LWE with the help of a FRD function, which can achieve unbounded 

Schemes 
Small universe Large universe 

LWECP-ABEs  R-LWECP-ABEs
 LWECP-ABEl  R-LWECP-ABEl  

PK size 1[(12 12) 1]l n nwδ++ +  (4  1)l n nw+  1[(12 12) 1]l n nwδ++ +  [(4 4) 1]l n nw+ +  

SK size 1(2 2 )k l n wδ++  2(2 2 )k l n w+  1(2 2 )k l n wδ++  2(4 4 )k l n w+  
Message 

size {0,1} {0,1}n  {0,1} {0,1}n  

CT size 1[( 1) 1]v n wδ++ +  (2 1)vn nw+  1[( 1) 1]v n wδ++ +  [(2 2) 1]v n nw+ +  

MEPB 2 2( )O vn δ+  ( log )O vn n  3 3( )O vn δ+  2( log )O vn n  

MDPB 1(  )O l n δ+  (  log )O l n n  1(  )O l n δ+  (  log )O l n n  
UHA LWE R-LWE LWE R-LWE 
POO Matrix operation FFT Matrix operation FFT 
WCP SIVPγ  Ideal SVPγ − −  SIVPγ  Ideal SVPγ − −  
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attribute space and enhance the expressiveness of attribute. Both schemes are proved to be 
secure under the R-LWE assumption. Moreover, we compared our schemes with the schemes 
in [19], and then found that ours are more efficient and have shorter public key, secret key and 
ciphertext sizes. 
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