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Abstract 
 

Workflow scheduling is one of the challenging problems in cloud computing, especially when 
service reliability is considered. To improve cloud service reliability, fault tolerance 
techniques such as fault recovery can be employed. Practically, fault recovery has impact on 
the performance of workflow scheduling. Such impact deserves detailed research. Only few 
research works on workflow scheduling consider fault recovery and its impact. In this paper, 
we investigate the problem of workflow scheduling in clouds, considering the probability that 
cloud resources may fail during execution. We formulate this problem as a multi-objective 
optimization model. The first optimization objective is to minimize the overall completion 
time and the second one is to minimize the overall execution cost. Based on the proposed 
optimization model, we develop a heuristic-based algorithm called Min-min based time and 
cost tradeoff (MTCT). We perform extensive simulations with four different real world 
scientific workflows to verify the validity of the proposed model and evaluate the performance 
of our algorithm. The results show that, as expected, fault recovery has significant impact on 
the two performance criteria, and the proposed MTCT algorithm is useful for real life 
workflow scheduling when both of the two optimization objectives are considered. 
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1. Introduction 

Cloud computing is a trend in distributed computing that delivers hardware infrastructure 
and software applications as services [1]. Its business model is based on the concept of paying 
only for what the users use, which overcome the limitations of the traditional software sales 
model [2]. Large-scale scientific workflows are usually represented as directed acyclic graphs 
in which computational tasks are represented by nodes and dependencies between tasks are 
represented by directed edges. They are an important class of applications [3]. Workflow 
scheduling in clouds basically involves the mapping of each task to an appropriate cloud 
resource and also ordering the tasks on each resoure so as to satisfy some performance criteria 
[4], such as the overall completion time and the overall execution cost. Workflow scheduling 
is however one of the challenging problems in the cloud computing. Since this problem is 
NP-complete, various heuristic-based algorithms have been proposed in literature [4-12].  

1.1 Motivations 
In recent years, workflow scheduling has been well studied by many researchers. However, 

one important aspect of the problem that has not been carefully addressed is that failures may 
happen on the resources. The probability of resource failures during the execution of task 
cannot be overlooked since it has direct impact on service performance. Our previous research 
works [13, 14] seem to be among the first ones that address this issue. To improve reliability, 
fault tolerance techniques such as fault recovery can be employed. Fault recovery adopts 
checkpoint and rollback/roll-forward scheme, which can enable a task to recover from an error 
and resume the executing of the task [14]. This technique can also be adopted to the problem of 
workflow scheduling in clouds and will certainly have significant impact on the two 
performance criteria, i.e., the overall completion time and the overall execution cost. Such 
impact deserves detailed research. However, existing researches on workflow scheduling in 
clouds rarely take the impact of fault recovery into account. Therefore, in this paper, we focus 
on addressing the issue of workflow scheduling in clouds considering fault recovery. 

1.2 Related Work 
Researchers investigated the problem of workflow scheduling in clouds from different points 
of views. Zeng et al. [6] proposed a budget-conscious workflow scheduling algorithm, 
ScaleStar. Arabnejad and Barbosa [7] proposed a heterogeneous budget constrained 
scheduling (HBCS) algorithm. The objective of this algorithm is to minimize the execution 
time of workflow application while guaranteeing the overall execution cost within a specified 
budget. Sakellariou et al. [8] proposed the Loss algorithm, which was basically targeted at 
minimizing the overall completion time under a user-defined budget constraint. Wu et al. [15] 
constructed analytical models to quantify the network performance of scientific workflows 
using cloud-based computing resources. They designed a critical-greedy algorithm to 
minimize the workflow end-to-end delay under a user-specified financial constraint. There is a 
rich body of research works on optimizing the completion time [17, 19-21]. However, in 
clouds, another important parameter, i.e., the overall execution cost, is rarely optimized in 
above research works. 

In order to reduce the monetary cost of workflow execution, many cost-based algorithms 
have been proposed. For example, Abrishami et al. [4] proposed two workflow scheduling 
algorithms: a one-phase algorithm called IaaS cloud partial critical paths (IC-PCP) and a 
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two-phase algorithm called IaaS cloud partial critical paths with deadline distribution 
(IC-PCPD2). Yuan et al [9] proposed a deadline distribution algorithm, deadline early tree 
(DET), to optimize the cost of workflow execution under deadline constraint. Rodriguez and 
Buyya [11] proposed a resource provisioning and scientific workflows scheduling strategy. 
Their objective is to minimize the execution cost with ensuring that all the tasks are finished 
within their deadlines. Zhou and He [18] designed a resource provisioning system to simplify 
the optimization of monetary cost for scientific workflows. Some other research works [10, 22, 
23] also aimed to find a solution that optimizes the monetary cost of workflow execution. 
However, all the above studies focus on the cost-based workflow scheduling algorithms and 
the completion time of a workflow is seen as a constraint, rather than an optimization objective, 
which is not enough for many modern workflow applications that need quick response [2, 15, 
24].  

Only a few existing research works [3, 25, 35] consider multi-objective optimization for 
workflow scheduling in clouds. More importantly, existing research works rarely consider the 
impact of fault recovery on certain performance criteria. Therefore, in this paper, we 
investigate the workflow scheduling problem by taking fault recovery into account and also 
considering two optimization objectives, i.e., minimizing both the overall completion time and 
the overall execution cost. 

1.3 Contributions 
We investigate the problem of workflow scheduling in clouds where the real world scenario of 
cloud resource failure during execution is considered. We adopt the fault recovery technique 
to address this problem. Our contributions in this paper can be summarized as follows. 

First, we formulate the problem as a multi-objective optimization model. The first 
optimization objective is to minimize the overall completion time and the second one is to 
minimize the overall execution cost. 

Second, we propose a heuristic-based algorithm called Min-min based time and cost 
tradeoff (MTCT) as a solution to the multi-objective optimization problem. 

Finally, we perform two parts of experiments to verify the validity of our multi-objective 
optimization model and to evaluate the performance of our algorithm. The first experiment 
shows that, as expected, fault recovery has significant impact on the two performance criteria. 
In the second experiment, we compare our algorithm with other two popular algorithms in 
related research works. 

The rest of this paper is organized as follows. Section 2 introduces the system models used 
in the paper. Section 3 presents the details of the proposed objective functions and the 
formulation of the multi-objective optimization model. Section 4 focuses on the details of the 
proposed MTCT algorithm. Experimental results and its analysis are given in Section 5. We 
conclude our paper in Section 6. 

2. System Models 

2.1 Workflow Model 
Many complex applications in e-science and e-business can be modeled as workflows, which 
can be described by a directed acyclic graph (DAG) [9]. Denote a DAG as ),( ETG = , in 
which T  is the set of )1( ≥nn  tasks },...,{ 21 nttt  and E  is the set of dependencies. Each 
dependency ),(, jiji tte =  represents a precedence constraint which indicates that it  is a 
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parent task of jt  and jt  is a child task of it . The size of data required to be transmitted from 

task it  to task jt  is denoted by ],[ ji ttdata . Based on this, a child task cannot be executed 
until all of its parent tasks are completed and the corresponding data are transmitted. In a given 
DAG, a task without any parent task is called an entry task and a task without any child task is 
called an exit task. Our algorithm makes use of a single entry task entryt  and a single exist task 

exitt . The two tasks are however considered as dummy tasks and are set at the beginning and 
the end of the workflow respectively. The dummy tasks have zero exertion time and zero size 
of data and as such do not influence the process of scheduling the workflow. The length of task 

it  in a given workflow is denoted by ilength , which can be achieved by some prediction 
techniques [26, 27]. Table 1 provides a summary of the symbols used in this paper. 
 

Table 1. Descriptions of symbols. 
Symbols Descriptions 

G  
T  

it  
)( itpred  

E  

jie ,  

],[ ji ttdata  
ilength  

R  
jr  

jps  
jc  

java  
jλ  
jµ  

bw  
ijdt  

ijτ  

ijAT  
)(tN j  
)(k

jRT  
)(tRTj  

),( ji rtAFT  

the directed acyclic graph (DAG) 
the set of tasks in a wokflow application 
the ith task in a wokflow application 
the set of parent tasks of task it  

the set of dependencies in a wokflow application 
the dependency between task it  and task jt  
the size of data required to be transmitted from task it  to task jt

 
the length of task it  
the set of resources offered by the resource provider 
the jth resource in R  

the processing speed of resource jr  
the cost of using resource jr  per unit time 
the available time of resource jr

 
the failure rate of resource jr

 
the recovery rate of resource jr  
the average bandwidth between the resources 
the data transfer time of dependency jie ,  
the estimated execution time of task it  on resource jr  
the actual execution time of task it  on resource jr

 
the total number of failures that occur on resource jr during the time interval (0, t] 
the kth (k=1,2,…) recovery time on resource jr  
the total recovery time on resource jr  during (0, t] 
the actual finish time of task it  on resource jr  
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ijC  
)(GM  

)(GC  
iβ  
iγ  

),( ji rtj  

the cost of executing task it  on resource jr
 

the makespan function of a workflow G  
the overall execution cost function of a workflow G  

the average finish time of task it  on all resources 
the average execution cost of task it  on all resources 
the tradeoff metric function of executing task it  on resource jr  

 

2.2 Resource Model 
The cloud system can be seen as a resource provider, which offers multiple types of resources 
to its users [4]. Suppose that the resource provider offers )1( ≥mm  resources, denoted by 

},...,,{ 21 mrrrR = . These resources may have different CPU processing speeds, different 
memory sizes and different prices, which can be selected according to users’ QoS 
requirements. jps  and jc  represent the processing speed and the cost per time unit of 

resource jr  respectively. It is reasonable to assume that users need to pay higher prices for 

using the resources with higher processing speeds. java  represents the available time of 

resource jr , which is defined as the earliest time at which resource jr  is ready for task 
execution. Suppose that all resources are available at the beginning, which means that the 
available time of all resources is zero initially. In this work, all the resources offered by the 
resource provider are assumed to be in the same physical region, so the average bandwidth 
between the resources, denoted by bw , is roughly the same [4, 11]. 

3. Problem Formulation  
In this paper, we investigate the issue of workflow scheduling in clouds considering fault 
recovery. We take into account two performance criteria, namely the overall completion time 
and the overall execution cost. The overall completion time of a workflow is also called 
makespan. In the following, we give formal formulations of the makespan function, the overall 
execution cost function and the multi-objective optimization model. 

Denote the data transfer time of a dependency jie ,  as ijdt . Since the average bandwidth 

between the resources is assumed to be equal, ijdt  only depends on the amount of data to be 

transferred between task it  and task jt , and it is independent of the resources that execute 

them. The only exception is when both tasks, it  and jt , are executed on the same resource, 

where ijdt  equals to zero. Let )( itr  denote the resource that executes task it , and ijdt  can be 
calculated as 

  






≠
=

otherwise

trtr
bw

ttdata
dt ji

ji

ij

　　　　　

　

,0

)()(,
],[

.    (1) 
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Denote the estimated execution time of task it  on resource jr  as ijτ , which is given by 

  
j

i
ij ps

length
=τ .       (2) 

Failures may happen on a resource when it is executing a task. If a failure is recoverable, 
then after some time (recovery time), the resource resumes the execution of the task [13]. In 
this paper, we only consider the case in which all failures are recoverable, since otherwise the 
task fails, which is out of the scope of this paper. Assume that the failure rate of a resource is a 
positive constant and the recovery times on a resource are independent and identically 
distributed random variables [14, 28]. Also, we assume that the occurrence of failures on 
resources, failure times, and recovery times are mutually s-independent [14]. Denote the 
failure rate of resource jr  as jλ , which occurs in accordance with a Poisson process. Let 

)(tN j  be the total number of failures that occur on resource jr  during the time interval ],0( t , 

then the probability of ktN j =)(  ( ,....2,1,0=k ) can be given by 

  t
k

j
j

je
k
t

ktN λλ −==
!
)(

})(Pr{ ,  ,...2,1,0=k .   (3) 

The mean of )(tN j  is 

  ttNE jj λ=)]([ .       (4) 

Denote the recovery rate of resource jr  as jµ . )(k
jRT  is referred as the kth ( ,....2,1=k ) 

recovery time on resource jr . The total recovery time on resource jr  during (0, t], denoted by 

)(tRTj , can be given by 

  ∑
=

=
)(

1

)()(
tN

k

k
jj

j

RTtRT .       (5) 

It can be seen that )(tRTj  is a compound Poisson process, whose mean value is 

  
j

j
j

t
tRTE

µ
λ

=)]([ .       (6) 

After this, we can get the actual execution time (shown in Eq.(7)), which is different from 
the estimated execution time when fault recovery is adopted. 

3.1 Makespan Function 

Denote the actual execution time of task it  on resource jr  as ijAT , which is equal to the 

estimated execution time plus the total recovery time on resource jr  when task it  is being 

executed. ijAT  can be given by 

  )( ijjijij RTAT ττ += .       (7) 

It can be seen that ijAT  is a random variable whose mean value is 

  
j

ijjj
ijATE

µ
τλµ )(

][
+

= .      (8) 
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Let mnijx ×= )(X  be the workflow allocation matrix. If task it  is assigned to resource jr , 

then 1=ijx ; otherwise, 0=ijx . After task it  is assigned to resource jr , we can get its actual 

finish time ),( ji rtAFT , which can be given by 

  ][}}))(,({max,max{),(
)( ijpipptpredtjji ATEdttrtAFTavartAFT

ip

++=
∈

, (9) 

where )( itpred  is the set of immediate predecessors of task it  and java  is the available time 

of resource jr , which can be obtained by 

  )},({max
})(|{ jirtriij rtAFTava

ji =∈∀
= .     (10) 

Let iβ  be the average finish time of task it  on all resources. iβ  can be obtained by 

  
m

rtAFT
m

j
ji

i

∑
== 1

),(
β .       (11) 

Since entryt  and exitt  are two dummy tasks, we have 

  0))(,( =entryentry trtAFT .      (12) 

  ))}(,({max))(,(
)( pptpredtexitexit trtAFTtrtAFT

exitp∈
= .   (13) 

Therefore, the makespan function of a workflow G  (denoted by )(GM ), which is the 
overall completion time of a workflow, is equal to the actual finish time of the exit task. So we 
have 

  ))(,()( exitexit trtAFTGM = .      (14) 

3.2 Overall Execution Cost Function 
The overall execution cost of a workflow is the total expenses for executing all tasks of the 
workflow. Many cloud resource providers do not charge for the internal data transfer, so the 
data transfer cost is assumed to be zero in our cost function [4, 11]. Since the clouds try to 
realize the pay-as-you-go pricing model, the users only need to pay for what they use. Denote 
the cost of executing task it  on resource jr  as ijC , which can be given by 

  ijjij ATcC ⋅= .        (15) 

Let iγ  be the average execution cost of task it  on all resources. In essence, iγ  can be 
computed as 

m

CE
m

j
ij

i

∑
== 1

][
γ .         (16) 

Let )(GC  be the overall execution cost function of a workflow G , which is equal to the 
sum of the cost of executing all its tasks. )(GC  can be given by 

  ∑∑
= =

⋅=
n

i

m

j
ijij CxGC

1 1
)()( .       

(17) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016                                    983 

It can be seen that )(GC  is a random variable whose mean value is 

   ])([)]([ ∑∑ ⋅=
n

i

m

j
ijij CxEGCE  

              = ( )∑∑ ⋅⋅
n

i

m

j
ijjij ATEcx ][ .    (18) 

3.3 Multi-Objective Optimization Model 
Usually, faster resources need more expenditure than slower ones for executing the same 
workflow. If a task is allocated on a faster resource, the completion time will be earlier and of 
course the cost will be higher; otherwise, the completion time will be later and of course the 
cost will be lower. Therefore, the two functions conflict with each other and the scheduler 
faces a time-cost tradeoff in selecting appropriate resources, which belongs to the 
multi-objective optimization (MOO) problem. Although we often adopt single-objective 
approach to address the MOO problem, there are some differences between MOO and 
single-objective optimization (SOO) [36, 37]. First, there are at least two distinct objectives in 
MOO, instead of only one objective in SOO; Second, MOO with conflicting objectives 
commonly results in a number of Pareto-optimal solutions, unlike the usual notion of only one 
optimal solution associated with SOO; Third, in MOO, the objective functions constitute a 
multidimensional space; and etc.  

In this paper, we investigate the problem of workflow scheduling in clouds considering fault 
recovery: given a workflow application composed of a set of tasks with precedence constraints 
and a set of available resources, how to schedule each task to a suitable resource to optimize 
the performance criteria (the overall completion time and the overall execution cost) with the 
consideration of fault recovery. We formulate this problem as a MOO model 

  min  )(GM         (19) 
  min  )]([ GCE         (20) 

Subject to: 
  },,1{ ni …∈∀ , },,1{ mj …∈∀ , }1,0{∈ijx .    (21) 

  },,1{ ni …∈∀ , ∑
=

=
m

j
ijx

1
1 .      (22) 

The optimization objectives are minimizing the makespan, (19), and minimizing the mean 
value of the overall execution cost, (20). The constraints of the proposed optimization model 
are (21) and (22), which indicate that a task can only be assigned to one resource. 

4. Min-min based time and cost tradeoff (MTCT) algorithm 
In the scheduling of each task, we concern two performance criteria, i.e., the actual finish time 
and the execution cost. As described in section 3.3, the finish time and execution cost are two 
conflicting criteria. Therefore, we propose a tradeoff between the finish time and the execution 
cost for scheduling a task. Let ),( ji rtj  represent the tradeoff metric function of executing 

task it  on resource jr , and we have 
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i

ij

i

ji
ji

CErtAFT
rt

γ
α

β
αj

][
)1(

),(
),( −+⋅= ,   (23) 

where )10( ≤≤αα  is the tradeoff factor. If a user prefers a shorter makespan, then α  can be 
set to a value near 1; otherwise, α  can be set to a value near 0. In our algorithm, α  is set to 
0.5, which means that we equally trade the makepan and the execution cost. 

The developed algorithm, Min-min based time and cost tradeoff (MTCT), is shown in 
Algorithm 1. Initially, two dummy tasks, entryt  and exitt , and their corresponding 
dependencies are added to G  and all tasks in the workflow are marked as unscheduled (lines 
2-3, Algorithm 1). Then, the MTCT algorithm sets the actual finish time of task entryt  to zero 

and marks entryt  as scheduled (lines 4-5, Algorithm 1). Finally, the ScheduleChildren 

procedure is called for entryt  to schedule all its child tasks (line 6, Algorithm 1). The children 
tasks scheduling algorithm, as shown in Algorithm 2, will schedule all the workflow tasks. 
 
Algorithm 1: The MTCT Scheduling Algorithm 
Input: a workflow ),( ETG =  and set of resources },...,{ 21 mrrr . 
Output: the allocation matrix mnijx ×= )(X . 
1 procedure ScheduleWorkflow ( ),( ETG = ) 
2     add entryt , exitt  and their corresponding dependencies to G ; 
3     mark all tasks of G  as unscheduled; 
4    0))(,(A ←entryentry trtFT ; 

5     mark entryt  as scheduled; 

6     call ScheduleChildren( entryt ); 
7 end procedure 
 

The children tasks scheduling algorithm generally receives a scheduled task as input and 
schedules all its unscheduled children tasks. First, the ScheduleChildren procedure collects all 
the children tasks of the input task to the Children Tasks Set, CTS  (lines 2-3, Algorithm 2). 
Afterwards, the while loop schedules tasks in CTS  until CTS  is empty (lines 4-19, 
Algorithm 2). In this process, the ScheduleChildren procedure always finds the longest task 
( it  might as well) and judges whether all its parent tasks are scheduled or not (lines 5-18, 
Algorithm 2): 

If all the parent tasks of it  are scheduled, the ScheduleChildren procedure finds the 
resource ( jr  might as well) with minimal value of tradeoff metric function as defined in 

Eq.(23) (lines 7-9, Algorithm 2). Afterwards, task it  is assigned to resource jr and marked as 

scheduled; as well, task it  is removed from CTS  and the available time of resource jr  
changed (lines 10-14, Algorithm 2). After this, the ScheduleChildren procedure is recursively 
called to schedule the children tasks of it  (line 15, Algorithm 2). 
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If one or more parent tasks of it  are unscheduled, the ScheduleChildren procedure just 
removes task it  from CTS  (lines 16-17, Algorithm 2). 

The above mentioned process is continued until all tasks are scheduled. 
 
Algorithm 2: Children Tasks Scheduling (CTS) Algorithm 
1 procedure ScheduleChildren( t ) 
2    Φ←CTS ; 
3    add all children tasks of t  to the set CTS ; 
4    while ( Φ=!CTS ) do 
5       ←it get the longest task in CTS ; 
6       if (all parent tasks of it  are scheduled) 
7           foreach resource jr  in R  do 
8               find the resource with minimal value of tradeoff metric function 

 
i

ij

i

ji
ji

CErtAFT
rt

γ
α

β
αj

][
)1(

),(
),( −+⋅=  

9           end foreach 
10         assign task it  to the scheduling queue of resource jr ; 

11         set 1=ijx ; 

12         mark task it  as scheduled; 
13         remove task it  from CTS ; 
14         change the available time of resource jr ; 

15         call ScheduleChildren( it );   
16      else 
17         remove task it  from CTS ; 
18     end if 
19   end while 
20 end procedure  

 
The proposed MTCT algorithm is based on the Min-Min algorithm. For each task, MTCT 

algorithm finds the resource with minimal value of tradeoff metric fuction as defined in (23). 
Since we equally trade the makepan and the execution cost in (23), MTCT algorithm can 
schedule each task to the resource which can finish the task as early as possible with relatively 
low execution cost. Afterwards, we analyze the time complexity of the proposed MTCT 
algorithm. Suppose that a workflow, DAG, has n  tasks and e  dependencies. For a given 
DAG, the number of dependencies could be at most 2n . The first part of the algorithm is to 
traverse the DAG to mark all its tasks as unscheduled. This process only needs a Depth-Fist or 
Breadth-First algorithm to traverse the nodes and the edges, so the time complexity of the first 
part is )()( 2nOenO ≈+ . The second part is the ScheduleChildren procedure which is a 
recursive procedure. Actually, for each task in the DAG, ScheduleChildren procedure will be 
called once and only once. From Algorithm 2, we can easily find that time complexity of 
ScheduleChildren procedure is determined by the while loop (lines 4-19, Algorithm 2). For a 
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certain task in the DAG, its children tasks could be at most )1( −n . So in the worst case, the 
while loop will be invocated for )1( −⋅ nn  times. Meanwhile, the resource allocation 
operation (lines 6-17) needs to find the appropriate resource from m  resources and this 
process will be invocated only once for each task. Therefore, the time complexity of 
ScheduleChildren procedure is )( 2 mnnO ⋅+ . In practice, the maximum number of resources 
is usually less than n , so the time complexity of our algorithm is )( 2nO .  

5. Experimental Studies 

In this section, we present the experiments conducted in order to evaluate the performance of 
the proposed MTCT algorithm. The comparative algorithms, real world workflows used in our 
experiments, experimental setup and experimental results are shown in the following sections. 

5.1. Comparative Algorithms 
To evaluate the performance of the proposed MTCT algorithm, we compare it with other two 
algorithms, i.e., IaaS cloud partial critical paths (IC-PCP) algorithm [4] and Loss algorithm [8]. 
The Loss algorithm is proposed by Sakellariou et al. with the objective of minimizing the 
makespan of a workflow under a user-defined budget constraint. The Loss algorithm consists 
of two phases: In the first phase, it uses HEFT algorithm to generate an initial assignment. 
HEFT [17] is a well-known makespan minimization algorithm, which selects tasks in the 
descending order of their upward rank, and schedules them on the resource which can finish 
them as early as possible. The upward rank of a task is the length of a longest path from the 
task to the exit node [29]. In the second phase, the Loss algorithm judges whether the total cost 
of the initial assignment exceeds the budget or not. If the total cost of the initial assignment is 
less than the budget, then the initial assignment can be used straightaway to assign tasks to 
corresponding resources and the algorithm stops. Otherwise, it tries to refine the initial 
assignment by reassigning a task to a new resource, which has the minimum loss in execution 
time for the highest cost decrease. For this reason, it computes a Loss weight value for each 
task to each resource as follows: 

  
newold

oldnew
ji CC

TTrtLossWeight
−
−

=),( ,     (24) 

where newT  and newC  are the execution time and the cost of executing task it  on resource jr  

respectively, and oldT  and oldC  are the execution time and cost of executing task it  on the 
initial assignment, respectively. The algorithm continues choosing the pair of task and 
resource which has the smallest value of LossWeight, and reassigning the task on the resource 
until the total cost is less than the budget. 

Different from the Loss algorithm, the IC-PCP algorithm is proposed to conduct workflow 
scheduling in cloud environment with the target of minimizing the overall execution cost 
within a deadline constraint. First, the IC-PCP algorithm calculates the earliest start time 
(EST), the earliest finish time (EFT) and the latest finish time (LFT) for each task. Second, it 
finds a critical path associated to task entryt  and assigns the tasks on the path to the cheapest 
resource, which can meet the latest finish time requirements of the tasks on the critical path. 
Then, the ESTs, the EFTs and the LFTs of all unassigned tasks are updated. Finally, the 
IC-PCP algorithm recursively finds a partial critical path associated to the already assigned 
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task and assigns the tasks on the partial critical path to a resource until all tasks are assigned. 
According to [4], we set the deadline of the IC-PCP algorithm as two times of the makespan 
obtained by the fastest scheduling. 

5.2. Experimental Workflows 
Juve et al. [30] investigate the characterizations of six realistic workflows from diverse 
scientific applications, four of which are used in our experiments. They are Montage for 
astronomy, CyberShake for earthquake science, LIGO for gravitational physics and SIPHT for 
biology. Fig. 1 shows the approximate structure of a small instance of each workflow used in 
our experiments. For each workflow, the tasks with the same color are of the same type. It can 
be seen that these four workflows have different structures, data and computational 
requirements. The full description of these workflows is presented in [30-32]. Four different 
sizes for each workflow in terms of total number of tasks are presented in [31], from where we 
download workflow cases in DAX format for our experiments. For each workflow, four 
different sizes, small, medium, large and extra-large, are used in our experiments. Small 
workflows have about 30 tasks in one workflow application whereas medium ones have about 
50, large ones 100 and extra-large ones about 1000. The detail description of the workflows 
used in our experiments is shown in Table 2. The runtimes of all tasks in the original 
workflows are relatively short, so we enlarge the size of each workflow task 1000 times to 
make the workflows large enough. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The structures of four different realistic scientific workflows. 
 
 

Table 2. Details of workflows used in experiments. 
workflows the number of tasks in different workflow sizes 

Small Medium Large XLarge 
Montage 

CyberShake 
Epigenomics 

LIGO 

25 
30 
24 
30 

50 
50 
46 
50 

100 
100 
100 
100 

1000 
1000 
1000 
977 

 

(a) Montage (b) CyberShake (c) Epigenomics (d) LIGO 
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5. 3. Experimental Setup 
All the experiments are performed on a Pentium(R) Dual-Core processor with a speed of 
2.8GHz and memory of 4GB. The CloudSim toolkit [33] is used to simulate a cloud system, 
which consists of 20 heterogeneous physical servers with different processor speeds, prices, 
failure rates and recovery rates. Each physical server has only one CPU core and executes 
tasks sequentially. For the processor speeds and prices, we apply the similar method to 
generate the values as used in [4]. The processor speed of each server is uniformly distributed 
within the range [100, 1000] with the average speed of 550 MIPS. The price of a server has 
roughly linear relationship with its processor speed, which makes sure that a faster server 
needs more execution cost than a slower server for executing a same task. The failure rates of 
the physical servers are randomly generated from the interval of [0.01, 0.1] [14, 34]. The 
recovery rates of these servers are randomly generated from the interval of [0.05, 0.15]. The 
average bandwidth between the servers is set to 20 Mbps as used in [4, 35]. Each experiment is 
run 1000 times and the results presented in the figures are the mean value of the results 
obtained by all the 1000 experiments. 

5.4. Experimental results 
In this section, we present the results obtained by different algorithms. In the first experiment, 
we evaluate the impact of resource failures on the two performance criteria. In the second 
experiment, we use the measured metrics, the normalized cost (NC), the normalized makespan 
(NM), to evaluate the performance of the proposed algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The results obtained by different failure rates of scheduling Montage workflows with MTCT 
algorithm when μ=0.1. 

5.4.1. Experiment 1 
This experiment evaluates the impact of resource failures on the two performance criteria. Fig. 
2 shows the results obtained by MTCT algorithm with different failure rates of scheduling 
Montage workflows when all the resources' recovery rate is 0.1. It can be seen that when the 
recovery rate is set to a constant, the expected cost and expected makespan smoothly increase 
with the increasing of resources’ failure rate. When the failure rate increases from 0.01 to 0.1, 
the two measured metrics increase almost two times. Likewise, Fig. 3 shows the results 
obtained by MTCT algorithm with different recovery rates of scheduling Montage workflows 
when all the resources' failure rate is 0.05. As it is seen from Fig. 3, with fixed failure rate, the 
expected total cost and expected makespan decrease significantly when the recovery rate 
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increases from 0.05 to 0.5. Therefore, it can be concluded that fault recovery, as expected, has 
significant impact on the performance criteria for workflow scheduling in clouds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The results obtained by different recovery rates of scheduling Montage workflows with MTCT 

algorithm when λ=0.05. 

5.4.1. Experiment 1 
This experiment evaluates the impact of resource failures on the two performance criteria. Fig. 
2 shows the results obtained by MTCT algorithm with different failure rates of scheduling 
Montage workflows when all the resources' recovery rate is 0.1. It can be seen that when the 
recovery rate is set to a constant, the expected cost and expected makespan smoothly increase 
with the increasing of resources’ failure rate. When the failure rate increases from 0.01 to 0.1, 
the two measured metrics increase almost two times. Likewise, Fig. 3 shows the results 
obtained by MTCT algorithm with different recovery rates of scheduling Montage workflows 
when all the resources' failure rate is 0.05. As it is seen from Fig. 3, with fixed failure rate, the 
expected total cost and expected makespan decrease significantly when the recovery rate 
increases from 0.05 to 0.5. Therefore, it can be concluded that fault recovery, as expected, has 
significant impact on the performance criteria for workflow scheduling in clouds. 

5.4.2. Experiment 2 
In this section, we evaluate the performance of the proposed algorithm by using the following 
two measured metrics, the normalized cost (NC) [9, 35] and the normalized makespan (NM). 

The normalized cost of a workflow execution, denoted by NC  (as shown in Eq.(25)), is 
defined as the total execution cost obtained by the corresponding algorithm divided by cC , 
which is the cost of executing the same workflow on the cheapest computation resource. The 
smaller the value of NC , the less expenditure a user needs to pay for executing its workflow, 
and also the better the result. 

  
cC

cost　executiontotalNC 　　
= .     (25) 

Similarly, the normalized makespan of a workflow execution, denoted by NM  (as shown 
in Eq.(25)), is defined as the makespan obtained by the corresponding algorithm divided by 

MinM , which is the makespan obtained by the fastest scheduling algorithm, i.e. the Min-min 
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algorithm, for executing the same workflow. The smaller the value of NM , the shorter 
completion time of the workflow is, and also the better the result. 

  
MinM

makespan　NM = .       (26) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comparison on NC and NM with Montage workflows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Comparison on NC and NM with CyberShake workflows. 
 

Fig. 4 - Fig. 7 show the results of the NC and NM obtained by the three algorithms for 
different kinds of workflows with different sizes. From Fig. 4(a), it can be seen that IC-PCP 
algorithm can obtain the best NC for Montage workflows, because this algorithm always 
assigns tasks on a partial critical path to the resource, which can meet the latest finish time of 
the tasks with the lowest cost. However, the NM obtained by IC-PCP algorithm for Montage 
workflows is the worst among the three comparative algorithms. From Fig. 4(b), it can be seen 
that Loss algorithm can obtain the best NM for Montage workflows. However, the NC 
obtained by Loss algorithm for Montage workflows is the worst. Compared to the Loss 
algorithm, the proposed MTCT algorithm can decrease NC by 29.2% with only a 6.9% 
increase in NM, using Montage workflows (Fig. 4(a)). Also, compared to IC-PCP algorithm, 
the proposed MTCT algorithm can decrease NM by 28.9% with only a 5.1% increase in NC 
(Fig. 4(b)). Moreover, as shown in Fig. 5 - Fig. 7, using the CyberShake, Epigenomics and 
LIGO workflows to test the comparative algorithms, the results turn out to be similar to the 
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case where Montage workflows is used. From the above comparisons, it can be obvious to 
deduce that, among the three algorithms, Loss algorithm can obtain the shortest makespan 
with relatively high execution cost; IC-PCP algorithm can obtain the lowest execution cost 
with relatively long makespan and the proposed MTCT algorithm can obtain both relatively 
low execution cost and relatively short makespan. In essence, the proposed MTCT algorithm 
is useful for real life workflow scheduling with the objective of optimizing both the overall 
execution cost and the makespan.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Comparison on NC and NM with Epigenomics workflows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Comparison on NC and NM with LIGO workflows. 

6. Conclusion and Future Work 
This paper investigates the problem of workflow scheduling in clouds considering fault 
recovery. The scenario is modeled as a multi-objective optimization problem which aims to 
minimize the overall completion time and the overall execution cost. Four well-known real 
world workflow applications are chosen to evaluate the performance of the proposed 
algorithm and the results show that the proposed MTCT algorithm is a better choice when both 
the overall execution cost and the makespan are considered. 

As future work, we will consider the situation that not all failures are recoverable and tasks 
may fail. Moreover, we may also consider the probability of failures on communication 
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channels. 
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