
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, Mar. 2016 976
Copyright ⓒ2016 KSII

A Multi-objective Optimization Approach to
Workflow Scheduling in Clouds Considering

Fault Recovery

Heyang Xu, Bo Yang, Weiwei Qi and Emmanuel Ahene
 School of Computer Science and Engineering, University of Electronic Science and Technology of China,

Chengdu, Sichuan 611731, P. R. China
 [e-mail: xuheyang124@126.com; yangbo@uestc.edu.cn; qiweiweiw@163.com; eahene@gmail.com]

*Corresponding author: Bo Yang

Received October 10, 2015; revised November 26, 2015; revised December 31, 2015; revised January 21, 2015;
accepted January 25, 2016; published March 31, 2016

Abstract

Workflow scheduling is one of the challenging problems in cloud computing, especially when
service reliability is considered. To improve cloud service reliability, fault tolerance
techniques such as fault recovery can be employed. Practically, fault recovery has impact on
the performance of workflow scheduling. Such impact deserves detailed research. Only few
research works on workflow scheduling consider fault recovery and its impact. In this paper,
we investigate the problem of workflow scheduling in clouds, considering the probability that
cloud resources may fail during execution. We formulate this problem as a multi-objective
optimization model. The first optimization objective is to minimize the overall completion
time and the second one is to minimize the overall execution cost. Based on the proposed
optimization model, we develop a heuristic-based algorithm called Min-min based time and
cost tradeoff (MTCT). We perform extensive simulations with four different real world
scientific workflows to verify the validity of the proposed model and evaluate the performance
of our algorithm. The results show that, as expected, fault recovery has significant impact on
the two performance criteria, and the proposed MTCT algorithm is useful for real life
workflow scheduling when both of the two optimization objectives are considered.

Keywords: Cloud computing, workflow scheduling, fault recovery, multi-objective
optimization, heuristic-based algorithm.

http://dx.doi.org/10.3837/tiis.2016.03.002 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 977

1. Introduction

Cloud computing is a trend in distributed computing that delivers hardware infrastructure
and software applications as services [1]. Its business model is based on the concept of paying
only for what the users use, which overcome the limitations of the traditional software sales
model [2]. Large-scale scientific workflows are usually represented as directed acyclic graphs
in which computational tasks are represented by nodes and dependencies between tasks are
represented by directed edges. They are an important class of applications [3]. Workflow
scheduling in clouds basically involves the mapping of each task to an appropriate cloud
resource and also ordering the tasks on each resoure so as to satisfy some performance criteria
[4], such as the overall completion time and the overall execution cost. Workflow scheduling
is however one of the challenging problems in the cloud computing. Since this problem is
NP-complete, various heuristic-based algorithms have been proposed in literature [4-12].

1.1 Motivations
In recent years, workflow scheduling has been well studied by many researchers. However,

one important aspect of the problem that has not been carefully addressed is that failures may
happen on the resources. The probability of resource failures during the execution of task
cannot be overlooked since it has direct impact on service performance. Our previous research
works [13, 14] seem to be among the first ones that address this issue. To improve reliability,
fault tolerance techniques such as fault recovery can be employed. Fault recovery adopts
checkpoint and rollback/roll-forward scheme, which can enable a task to recover from an error
and resume the executing of the task [14]. This technique can also be adopted to the problem of
workflow scheduling in clouds and will certainly have significant impact on the two
performance criteria, i.e., the overall completion time and the overall execution cost. Such
impact deserves detailed research. However, existing researches on workflow scheduling in
clouds rarely take the impact of fault recovery into account. Therefore, in this paper, we focus
on addressing the issue of workflow scheduling in clouds considering fault recovery.

1.2 Related Work
Researchers investigated the problem of workflow scheduling in clouds from different points
of views. Zeng et al. [6] proposed a budget-conscious workflow scheduling algorithm,
ScaleStar. Arabnejad and Barbosa [7] proposed a heterogeneous budget constrained
scheduling (HBCS) algorithm. The objective of this algorithm is to minimize the execution
time of workflow application while guaranteeing the overall execution cost within a specified
budget. Sakellariou et al. [8] proposed the Loss algorithm, which was basically targeted at
minimizing the overall completion time under a user-defined budget constraint. Wu et al. [15]
constructed analytical models to quantify the network performance of scientific workflows
using cloud-based computing resources. They designed a critical-greedy algorithm to
minimize the workflow end-to-end delay under a user-specified financial constraint. There is a
rich body of research works on optimizing the completion time [17, 19-21]. However, in
clouds, another important parameter, i.e., the overall execution cost, is rarely optimized in
above research works.

In order to reduce the monetary cost of workflow execution, many cost-based algorithms
have been proposed. For example, Abrishami et al. [4] proposed two workflow scheduling
algorithms: a one-phase algorithm called IaaS cloud partial critical paths (IC-PCP) and a

978 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

two-phase algorithm called IaaS cloud partial critical paths with deadline distribution
(IC-PCPD2). Yuan et al [9] proposed a deadline distribution algorithm, deadline early tree
(DET), to optimize the cost of workflow execution under deadline constraint. Rodriguez and
Buyya [11] proposed a resource provisioning and scientific workflows scheduling strategy.
Their objective is to minimize the execution cost with ensuring that all the tasks are finished
within their deadlines. Zhou and He [18] designed a resource provisioning system to simplify
the optimization of monetary cost for scientific workflows. Some other research works [10, 22,
23] also aimed to find a solution that optimizes the monetary cost of workflow execution.
However, all the above studies focus on the cost-based workflow scheduling algorithms and
the completion time of a workflow is seen as a constraint, rather than an optimization objective,
which is not enough for many modern workflow applications that need quick response [2, 15,
24].

Only a few existing research works [3, 25, 35] consider multi-objective optimization for
workflow scheduling in clouds. More importantly, existing research works rarely consider the
impact of fault recovery on certain performance criteria. Therefore, in this paper, we
investigate the workflow scheduling problem by taking fault recovery into account and also
considering two optimization objectives, i.e., minimizing both the overall completion time and
the overall execution cost.

1.3 Contributions
We investigate the problem of workflow scheduling in clouds where the real world scenario of
cloud resource failure during execution is considered. We adopt the fault recovery technique
to address this problem. Our contributions in this paper can be summarized as follows.

First, we formulate the problem as a multi-objective optimization model. The first
optimization objective is to minimize the overall completion time and the second one is to
minimize the overall execution cost.

Second, we propose a heuristic-based algorithm called Min-min based time and cost
tradeoff (MTCT) as a solution to the multi-objective optimization problem.

Finally, we perform two parts of experiments to verify the validity of our multi-objective
optimization model and to evaluate the performance of our algorithm. The first experiment
shows that, as expected, fault recovery has significant impact on the two performance criteria.
In the second experiment, we compare our algorithm with other two popular algorithms in
related research works.

The rest of this paper is organized as follows. Section 2 introduces the system models used
in the paper. Section 3 presents the details of the proposed objective functions and the
formulation of the multi-objective optimization model. Section 4 focuses on the details of the
proposed MTCT algorithm. Experimental results and its analysis are given in Section 5. We
conclude our paper in Section 6.

2. System Models

2.1 Workflow Model
Many complex applications in e-science and e-business can be modeled as workflows, which
can be described by a directed acyclic graph (DAG) [9]. Denote a DAG as),(ETG = , in
which T is the set of)1(≥nn tasks },...,{ 21 nttt and E is the set of dependencies. Each
dependency),(, jiji tte = represents a precedence constraint which indicates that it is a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 979

parent task of jt and jt is a child task of it . The size of data required to be transmitted from

task it to task jt is denoted by],[ji ttdata . Based on this, a child task cannot be executed
until all of its parent tasks are completed and the corresponding data are transmitted. In a given
DAG, a task without any parent task is called an entry task and a task without any child task is
called an exit task. Our algorithm makes use of a single entry task entryt and a single exist task

exitt . The two tasks are however considered as dummy tasks and are set at the beginning and
the end of the workflow respectively. The dummy tasks have zero exertion time and zero size
of data and as such do not influence the process of scheduling the workflow. The length of task

it in a given workflow is denoted by ilength , which can be achieved by some prediction
techniques [26, 27]. Table 1 provides a summary of the symbols used in this paper.

Table 1. Descriptions of symbols.
Symbols Descriptions

G
T

it
)(itpred

E

jie ,

],[ji ttdata
ilength

R
jr

jps
jc

java
jλ
jµ

bw
ijdt

ijτ

ijAT
)(tN j
)(k

jRT
)(tRTj

),(ji rtAFT

the directed acyclic graph (DAG)
the set of tasks in a wokflow application
the ith task in a wokflow application
the set of parent tasks of task it

the set of dependencies in a wokflow application
the dependency between task it and task jt
the size of data required to be transmitted from task it to task jt

the length of task it
the set of resources offered by the resource provider
the jth resource in R

the processing speed of resource jr
the cost of using resource jr per unit time
the available time of resource jr

the failure rate of resource jr

the recovery rate of resource jr
the average bandwidth between the resources
the data transfer time of dependency jie ,
the estimated execution time of task it on resource jr
the actual execution time of task it on resource jr

the total number of failures that occur on resource jr during the time interval (0, t]
the kth (k=1,2,…) recovery time on resource jr
the total recovery time on resource jr during (0, t]
the actual finish time of task it on resource jr

980 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

ijC
)(GM

)(GC
iβ
iγ

),(ji rtj

the cost of executing task it on resource jr

the makespan function of a workflow G
the overall execution cost function of a workflow G

the average finish time of task it on all resources
the average execution cost of task it on all resources
the tradeoff metric function of executing task it on resource jr

2.2 Resource Model
The cloud system can be seen as a resource provider, which offers multiple types of resources
to its users [4]. Suppose that the resource provider offers)1(≥mm resources, denoted by

},...,,{ 21 mrrrR = . These resources may have different CPU processing speeds, different
memory sizes and different prices, which can be selected according to users’ QoS
requirements. jps and jc represent the processing speed and the cost per time unit of

resource jr respectively. It is reasonable to assume that users need to pay higher prices for

using the resources with higher processing speeds. java represents the available time of

resource jr , which is defined as the earliest time at which resource jr is ready for task
execution. Suppose that all resources are available at the beginning, which means that the
available time of all resources is zero initially. In this work, all the resources offered by the
resource provider are assumed to be in the same physical region, so the average bandwidth
between the resources, denoted by bw , is roughly the same [4, 11].

3. Problem Formulation
In this paper, we investigate the issue of workflow scheduling in clouds considering fault
recovery. We take into account two performance criteria, namely the overall completion time
and the overall execution cost. The overall completion time of a workflow is also called
makespan. In the following, we give formal formulations of the makespan function, the overall
execution cost function and the multi-objective optimization model.

Denote the data transfer time of a dependency jie , as ijdt . Since the average bandwidth

between the resources is assumed to be equal, ijdt only depends on the amount of data to be

transferred between task it and task jt , and it is independent of the resources that execute

them. The only exception is when both tasks, it and jt , are executed on the same resource,

where ijdt equals to zero. Let)(itr denote the resource that executes task it , and ijdt can be
calculated as







≠
=

otherwise

trtr
bw

ttdata
dt ji

ji

ij

　　　　　

　

,0

)()(,
],[

. (1)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 981

Denote the estimated execution time of task it on resource jr as ijτ , which is given by

j

i
ij ps

length
=τ . (2)

Failures may happen on a resource when it is executing a task. If a failure is recoverable,
then after some time (recovery time), the resource resumes the execution of the task [13]. In
this paper, we only consider the case in which all failures are recoverable, since otherwise the
task fails, which is out of the scope of this paper. Assume that the failure rate of a resource is a
positive constant and the recovery times on a resource are independent and identically
distributed random variables [14, 28]. Also, we assume that the occurrence of failures on
resources, failure times, and recovery times are mutually s-independent [14]. Denote the
failure rate of resource jr as jλ , which occurs in accordance with a Poisson process. Let

)(tN j be the total number of failures that occur on resource jr during the time interval],0(t ,

then the probability of ktN j =)((,....2,1,0=k) can be given by

 t
k

j
j

je
k
t

ktN λλ −==
!
)(

})(Pr{ , ,...2,1,0=k . (3)

The mean of)(tN j is

 ttNE jj λ=)]([. (4)

Denote the recovery rate of resource jr as jµ .)(k
jRT is referred as the kth (,....2,1=k)

recovery time on resource jr . The total recovery time on resource jr during (0, t], denoted by

)(tRTj , can be given by

 ∑
=

=
)(

1

)()(
tN

k

k
jj

j

RTtRT . (5)

It can be seen that)(tRTj is a compound Poisson process, whose mean value is

j

j
j

t
tRTE

µ
λ

=)]([. (6)

After this, we can get the actual execution time (shown in Eq.(7)), which is different from
the estimated execution time when fault recovery is adopted.

3.1 Makespan Function

Denote the actual execution time of task it on resource jr as ijAT , which is equal to the

estimated execution time plus the total recovery time on resource jr when task it is being

executed. ijAT can be given by

)(ijjijij RTAT ττ += . (7)

It can be seen that ijAT is a random variable whose mean value is

j

ijjj
ijATE

µ
τλµ)(

][
+

= . (8)

982 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

Let mnijx ×=)(X be the workflow allocation matrix. If task it is assigned to resource jr ,

then 1=ijx ; otherwise, 0=ijx . After task it is assigned to resource jr , we can get its actual

finish time),(ji rtAFT , which can be given by

][}}))(,({max,max{),(
)(ijpipptpredtjji ATEdttrtAFTavartAFT

ip

++=
∈

, (9)

where)(itpred is the set of immediate predecessors of task it and java is the available time

of resource jr , which can be obtained by

)},({max
})(|{ jirtriij rtAFTava

ji =∈∀
= . (10)

Let iβ be the average finish time of task it on all resources. iβ can be obtained by

m

rtAFT
m

j
ji

i

∑
== 1

),(
β . (11)

Since entryt and exitt are two dummy tasks, we have

 0))(,(=entryentry trtAFT . (12)

))}(,({max))(,(
)(pptpredtexitexit trtAFTtrtAFT

exitp∈
= . (13)

Therefore, the makespan function of a workflow G (denoted by)(GM), which is the
overall completion time of a workflow, is equal to the actual finish time of the exit task. So we
have

))(,()(exitexit trtAFTGM = . (14)

3.2 Overall Execution Cost Function
The overall execution cost of a workflow is the total expenses for executing all tasks of the
workflow. Many cloud resource providers do not charge for the internal data transfer, so the
data transfer cost is assumed to be zero in our cost function [4, 11]. Since the clouds try to
realize the pay-as-you-go pricing model, the users only need to pay for what they use. Denote
the cost of executing task it on resource jr as ijC , which can be given by

 ijjij ATcC ⋅= . (15)

Let iγ be the average execution cost of task it on all resources. In essence, iγ can be
computed as

m

CE
m

j
ij

i

∑
== 1

][
γ . (16)

Let)(GC be the overall execution cost function of a workflow G , which is equal to the
sum of the cost of executing all its tasks.)(GC can be given by

 ∑∑
= =

⋅=
n

i

m

j
ijij CxGC

1 1
)()(.

(17)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 983

It can be seen that)(GC is a random variable whose mean value is

])([)]([∑∑ ⋅=
n

i

m

j
ijij CxEGCE

 = ()∑∑ ⋅⋅
n

i

m

j
ijjij ATEcx][. (18)

3.3 Multi-Objective Optimization Model
Usually, faster resources need more expenditure than slower ones for executing the same
workflow. If a task is allocated on a faster resource, the completion time will be earlier and of
course the cost will be higher; otherwise, the completion time will be later and of course the
cost will be lower. Therefore, the two functions conflict with each other and the scheduler
faces a time-cost tradeoff in selecting appropriate resources, which belongs to the
multi-objective optimization (MOO) problem. Although we often adopt single-objective
approach to address the MOO problem, there are some differences between MOO and
single-objective optimization (SOO) [36, 37]. First, there are at least two distinct objectives in
MOO, instead of only one objective in SOO; Second, MOO with conflicting objectives
commonly results in a number of Pareto-optimal solutions, unlike the usual notion of only one
optimal solution associated with SOO; Third, in MOO, the objective functions constitute a
multidimensional space; and etc.

In this paper, we investigate the problem of workflow scheduling in clouds considering fault
recovery: given a workflow application composed of a set of tasks with precedence constraints
and a set of available resources, how to schedule each task to a suitable resource to optimize
the performance criteria (the overall completion time and the overall execution cost) with the
consideration of fault recovery. We formulate this problem as a MOO model

 min)(GM (19)
 min)]([GCE (20)

Subject to:
 },,1{ ni …∈∀ , },,1{ mj …∈∀ , }1,0{∈ijx . (21)

 },,1{ ni …∈∀ , ∑
=

=
m

j
ijx

1
1 . (22)

The optimization objectives are minimizing the makespan, (19), and minimizing the mean
value of the overall execution cost, (20). The constraints of the proposed optimization model
are (21) and (22), which indicate that a task can only be assigned to one resource.

4. Min-min based time and cost tradeoff (MTCT) algorithm
In the scheduling of each task, we concern two performance criteria, i.e., the actual finish time
and the execution cost. As described in section 3.3, the finish time and execution cost are two
conflicting criteria. Therefore, we propose a tradeoff between the finish time and the execution
cost for scheduling a task. Let),(ji rtj represent the tradeoff metric function of executing

task it on resource jr , and we have

984 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

i

ij

i

ji
ji

CErtAFT
rt

γ
α

β
αj

][
)1(

),(
),(−+⋅= , (23)

where)10(≤≤αα is the tradeoff factor. If a user prefers a shorter makespan, then α can be
set to a value near 1; otherwise, α can be set to a value near 0. In our algorithm, α is set to
0.5, which means that we equally trade the makepan and the execution cost.

The developed algorithm, Min-min based time and cost tradeoff (MTCT), is shown in
Algorithm 1. Initially, two dummy tasks, entryt and exitt , and their corresponding
dependencies are added to G and all tasks in the workflow are marked as unscheduled (lines
2-3, Algorithm 1). Then, the MTCT algorithm sets the actual finish time of task entryt to zero

and marks entryt as scheduled (lines 4-5, Algorithm 1). Finally, the ScheduleChildren

procedure is called for entryt to schedule all its child tasks (line 6, Algorithm 1). The children
tasks scheduling algorithm, as shown in Algorithm 2, will schedule all the workflow tasks.

Algorithm 1: The MTCT Scheduling Algorithm
Input: a workflow),(ETG = and set of resources },...,{ 21 mrrr .
Output: the allocation matrix mnijx ×=)(X .
1 procedure ScheduleWorkflow (),(ETG =)
2 add entryt , exitt and their corresponding dependencies to G ;
3 mark all tasks of G as unscheduled;
4 0))(,(A ←entryentry trtFT ;

5 mark entryt as scheduled;

6 call ScheduleChildren(entryt);
7 end procedure

The children tasks scheduling algorithm generally receives a scheduled task as input and
schedules all its unscheduled children tasks. First, the ScheduleChildren procedure collects all
the children tasks of the input task to the Children Tasks Set, CTS (lines 2-3, Algorithm 2).
Afterwards, the while loop schedules tasks in CTS until CTS is empty (lines 4-19,
Algorithm 2). In this process, the ScheduleChildren procedure always finds the longest task
(it might as well) and judges whether all its parent tasks are scheduled or not (lines 5-18,
Algorithm 2):

If all the parent tasks of it are scheduled, the ScheduleChildren procedure finds the
resource (jr might as well) with minimal value of tradeoff metric function as defined in

Eq.(23) (lines 7-9, Algorithm 2). Afterwards, task it is assigned to resource jr and marked as

scheduled; as well, task it is removed from CTS and the available time of resource jr
changed (lines 10-14, Algorithm 2). After this, the ScheduleChildren procedure is recursively
called to schedule the children tasks of it (line 15, Algorithm 2).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 985

If one or more parent tasks of it are unscheduled, the ScheduleChildren procedure just
removes task it from CTS (lines 16-17, Algorithm 2).

The above mentioned process is continued until all tasks are scheduled.

Algorithm 2: Children Tasks Scheduling (CTS) Algorithm
1 procedure ScheduleChildren(t)
2 Φ←CTS ;
3 add all children tasks of t to the set CTS ;
4 while (Φ=!CTS) do
5 ←it get the longest task in CTS ;
6 if (all parent tasks of it are scheduled)
7 foreach resource jr in R do
8 find the resource with minimal value of tradeoff metric function

i

ij

i

ji
ji

CErtAFT
rt

γ
α

β
αj

][
)1(

),(
),(−+⋅=

9 end foreach
10 assign task it to the scheduling queue of resource jr ;

11 set 1=ijx ;

12 mark task it as scheduled;
13 remove task it from CTS ;
14 change the available time of resource jr ;

15 call ScheduleChildren(it);
16 else
17 remove task it from CTS ;
18 end if
19 end while
20 end procedure

The proposed MTCT algorithm is based on the Min-Min algorithm. For each task, MTCT

algorithm finds the resource with minimal value of tradeoff metric fuction as defined in (23).
Since we equally trade the makepan and the execution cost in (23), MTCT algorithm can
schedule each task to the resource which can finish the task as early as possible with relatively
low execution cost. Afterwards, we analyze the time complexity of the proposed MTCT
algorithm. Suppose that a workflow, DAG, has n tasks and e dependencies. For a given
DAG, the number of dependencies could be at most 2n . The first part of the algorithm is to
traverse the DAG to mark all its tasks as unscheduled. This process only needs a Depth-Fist or
Breadth-First algorithm to traverse the nodes and the edges, so the time complexity of the first
part is)()(2nOenO ≈+ . The second part is the ScheduleChildren procedure which is a
recursive procedure. Actually, for each task in the DAG, ScheduleChildren procedure will be
called once and only once. From Algorithm 2, we can easily find that time complexity of
ScheduleChildren procedure is determined by the while loop (lines 4-19, Algorithm 2). For a

986 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

certain task in the DAG, its children tasks could be at most)1(−n . So in the worst case, the
while loop will be invocated for)1(−⋅ nn times. Meanwhile, the resource allocation
operation (lines 6-17) needs to find the appropriate resource from m resources and this
process will be invocated only once for each task. Therefore, the time complexity of
ScheduleChildren procedure is)(2 mnnO ⋅+ . In practice, the maximum number of resources
is usually less than n , so the time complexity of our algorithm is)(2nO .

5. Experimental Studies

In this section, we present the experiments conducted in order to evaluate the performance of
the proposed MTCT algorithm. The comparative algorithms, real world workflows used in our
experiments, experimental setup and experimental results are shown in the following sections.

5.1. Comparative Algorithms
To evaluate the performance of the proposed MTCT algorithm, we compare it with other two
algorithms, i.e., IaaS cloud partial critical paths (IC-PCP) algorithm [4] and Loss algorithm [8].
The Loss algorithm is proposed by Sakellariou et al. with the objective of minimizing the
makespan of a workflow under a user-defined budget constraint. The Loss algorithm consists
of two phases: In the first phase, it uses HEFT algorithm to generate an initial assignment.
HEFT [17] is a well-known makespan minimization algorithm, which selects tasks in the
descending order of their upward rank, and schedules them on the resource which can finish
them as early as possible. The upward rank of a task is the length of a longest path from the
task to the exit node [29]. In the second phase, the Loss algorithm judges whether the total cost
of the initial assignment exceeds the budget or not. If the total cost of the initial assignment is
less than the budget, then the initial assignment can be used straightaway to assign tasks to
corresponding resources and the algorithm stops. Otherwise, it tries to refine the initial
assignment by reassigning a task to a new resource, which has the minimum loss in execution
time for the highest cost decrease. For this reason, it computes a Loss weight value for each
task to each resource as follows:

newold

oldnew
ji CC

TTrtLossWeight
−
−

=),(, (24)

where newT and newC are the execution time and the cost of executing task it on resource jr

respectively, and oldT and oldC are the execution time and cost of executing task it on the
initial assignment, respectively. The algorithm continues choosing the pair of task and
resource which has the smallest value of LossWeight, and reassigning the task on the resource
until the total cost is less than the budget.

Different from the Loss algorithm, the IC-PCP algorithm is proposed to conduct workflow
scheduling in cloud environment with the target of minimizing the overall execution cost
within a deadline constraint. First, the IC-PCP algorithm calculates the earliest start time
(EST), the earliest finish time (EFT) and the latest finish time (LFT) for each task. Second, it
finds a critical path associated to task entryt and assigns the tasks on the path to the cheapest
resource, which can meet the latest finish time requirements of the tasks on the critical path.
Then, the ESTs, the EFTs and the LFTs of all unassigned tasks are updated. Finally, the
IC-PCP algorithm recursively finds a partial critical path associated to the already assigned

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 987

task and assigns the tasks on the partial critical path to a resource until all tasks are assigned.
According to [4], we set the deadline of the IC-PCP algorithm as two times of the makespan
obtained by the fastest scheduling.

5.2. Experimental Workflows
Juve et al. [30] investigate the characterizations of six realistic workflows from diverse
scientific applications, four of which are used in our experiments. They are Montage for
astronomy, CyberShake for earthquake science, LIGO for gravitational physics and SIPHT for
biology. Fig. 1 shows the approximate structure of a small instance of each workflow used in
our experiments. For each workflow, the tasks with the same color are of the same type. It can
be seen that these four workflows have different structures, data and computational
requirements. The full description of these workflows is presented in [30-32]. Four different
sizes for each workflow in terms of total number of tasks are presented in [31], from where we
download workflow cases in DAX format for our experiments. For each workflow, four
different sizes, small, medium, large and extra-large, are used in our experiments. Small
workflows have about 30 tasks in one workflow application whereas medium ones have about
50, large ones 100 and extra-large ones about 1000. The detail description of the workflows
used in our experiments is shown in Table 2. The runtimes of all tasks in the original
workflows are relatively short, so we enlarge the size of each workflow task 1000 times to
make the workflows large enough.

Fig. 1. The structures of four different realistic scientific workflows.

Table 2. Details of workflows used in experiments.
workflows the number of tasks in different workflow sizes

Small Medium Large XLarge
Montage

CyberShake
Epigenomics

LIGO

25
30
24
30

50
50
46
50

100
100
100
100

1000
1000
1000
977

(a) Montage (b) CyberShake (c) Epigenomics (d) LIGO

988 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

5. 3. Experimental Setup
All the experiments are performed on a Pentium(R) Dual-Core processor with a speed of
2.8GHz and memory of 4GB. The CloudSim toolkit [33] is used to simulate a cloud system,
which consists of 20 heterogeneous physical servers with different processor speeds, prices,
failure rates and recovery rates. Each physical server has only one CPU core and executes
tasks sequentially. For the processor speeds and prices, we apply the similar method to
generate the values as used in [4]. The processor speed of each server is uniformly distributed
within the range [100, 1000] with the average speed of 550 MIPS. The price of a server has
roughly linear relationship with its processor speed, which makes sure that a faster server
needs more execution cost than a slower server for executing a same task. The failure rates of
the physical servers are randomly generated from the interval of [0.01, 0.1] [14, 34]. The
recovery rates of these servers are randomly generated from the interval of [0.05, 0.15]. The
average bandwidth between the servers is set to 20 Mbps as used in [4, 35]. Each experiment is
run 1000 times and the results presented in the figures are the mean value of the results
obtained by all the 1000 experiments.

5.4. Experimental results
In this section, we present the results obtained by different algorithms. In the first experiment,
we evaluate the impact of resource failures on the two performance criteria. In the second
experiment, we use the measured metrics, the normalized cost (NC), the normalized makespan
(NM), to evaluate the performance of the proposed algorithm

Fig. 2. The results obtained by different failure rates of scheduling Montage workflows with MTCT
algorithm when μ=0.1.

5.4.1. Experiment 1
This experiment evaluates the impact of resource failures on the two performance criteria. Fig.
2 shows the results obtained by MTCT algorithm with different failure rates of scheduling
Montage workflows when all the resources' recovery rate is 0.1. It can be seen that when the
recovery rate is set to a constant, the expected cost and expected makespan smoothly increase
with the increasing of resources’ failure rate. When the failure rate increases from 0.01 to 0.1,
the two measured metrics increase almost two times. Likewise, Fig. 3 shows the results
obtained by MTCT algorithm with different recovery rates of scheduling Montage workflows
when all the resources' failure rate is 0.05. As it is seen from Fig. 3, with fixed failure rate, the
expected total cost and expected makespan decrease significantly when the recovery rate

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 989

increases from 0.05 to 0.5. Therefore, it can be concluded that fault recovery, as expected, has
significant impact on the performance criteria for workflow scheduling in clouds.

Fig. 3. The results obtained by different recovery rates of scheduling Montage workflows with MTCT

algorithm when λ=0.05.

5.4.1. Experiment 1
This experiment evaluates the impact of resource failures on the two performance criteria. Fig.
2 shows the results obtained by MTCT algorithm with different failure rates of scheduling
Montage workflows when all the resources' recovery rate is 0.1. It can be seen that when the
recovery rate is set to a constant, the expected cost and expected makespan smoothly increase
with the increasing of resources’ failure rate. When the failure rate increases from 0.01 to 0.1,
the two measured metrics increase almost two times. Likewise, Fig. 3 shows the results
obtained by MTCT algorithm with different recovery rates of scheduling Montage workflows
when all the resources' failure rate is 0.05. As it is seen from Fig. 3, with fixed failure rate, the
expected total cost and expected makespan decrease significantly when the recovery rate
increases from 0.05 to 0.5. Therefore, it can be concluded that fault recovery, as expected, has
significant impact on the performance criteria for workflow scheduling in clouds.

5.4.2. Experiment 2
In this section, we evaluate the performance of the proposed algorithm by using the following
two measured metrics, the normalized cost (NC) [9, 35] and the normalized makespan (NM).

The normalized cost of a workflow execution, denoted by NC (as shown in Eq.(25)), is
defined as the total execution cost obtained by the corresponding algorithm divided by cC ,
which is the cost of executing the same workflow on the cheapest computation resource. The
smaller the value of NC , the less expenditure a user needs to pay for executing its workflow,
and also the better the result.

cC

cost　executiontotalNC 　　
= . (25)

Similarly, the normalized makespan of a workflow execution, denoted by NM (as shown
in Eq.(25)), is defined as the makespan obtained by the corresponding algorithm divided by

MinM , which is the makespan obtained by the fastest scheduling algorithm, i.e. the Min-min

990 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

algorithm, for executing the same workflow. The smaller the value of NM , the shorter
completion time of the workflow is, and also the better the result.

MinM

makespan　NM = . (26)

Fig. 4. Comparison on NC and NM with Montage workflows.

Fig. 5. Comparison on NC and NM with CyberShake workflows.

Fig. 4 - Fig. 7 show the results of the NC and NM obtained by the three algorithms for
different kinds of workflows with different sizes. From Fig. 4(a), it can be seen that IC-PCP
algorithm can obtain the best NC for Montage workflows, because this algorithm always
assigns tasks on a partial critical path to the resource, which can meet the latest finish time of
the tasks with the lowest cost. However, the NM obtained by IC-PCP algorithm for Montage
workflows is the worst among the three comparative algorithms. From Fig. 4(b), it can be seen
that Loss algorithm can obtain the best NM for Montage workflows. However, the NC
obtained by Loss algorithm for Montage workflows is the worst. Compared to the Loss
algorithm, the proposed MTCT algorithm can decrease NC by 29.2% with only a 6.9%
increase in NM, using Montage workflows (Fig. 4(a)). Also, compared to IC-PCP algorithm,
the proposed MTCT algorithm can decrease NM by 28.9% with only a 5.1% increase in NC
(Fig. 4(b)). Moreover, as shown in Fig. 5 - Fig. 7, using the CyberShake, Epigenomics and
LIGO workflows to test the comparative algorithms, the results turn out to be similar to the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 991

case where Montage workflows is used. From the above comparisons, it can be obvious to
deduce that, among the three algorithms, Loss algorithm can obtain the shortest makespan
with relatively high execution cost; IC-PCP algorithm can obtain the lowest execution cost
with relatively long makespan and the proposed MTCT algorithm can obtain both relatively
low execution cost and relatively short makespan. In essence, the proposed MTCT algorithm
is useful for real life workflow scheduling with the objective of optimizing both the overall
execution cost and the makespan.

Fig. 6. Comparison on NC and NM with Epigenomics workflows.

Fig. 7. Comparison on NC and NM with LIGO workflows.

6. Conclusion and Future Work
This paper investigates the problem of workflow scheduling in clouds considering fault
recovery. The scenario is modeled as a multi-objective optimization problem which aims to
minimize the overall completion time and the overall execution cost. Four well-known real
world workflow applications are chosen to evaluate the performance of the proposed
algorithm and the results show that the proposed MTCT algorithm is a better choice when both
the overall execution cost and the makespan are considered.

As future work, we will consider the situation that not all failures are recoverable and tasks
may fail. Moreover, we may also consider the probability of failures on communication

992 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

channels.

Acknowledgements
This work is supported by the Fundamental Research Funds for the Central Universities
(Grant No.: ZYGX2013J066) and Sichuan Provincial Project of International Scientific and
Technical Exchange and Research Collaboration Programs.

References
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, M. Zaharia, “A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50-58, 2010. Article (CrossRef Link).

[2] X. Yang, B. Nasser, M. Surridge, S. Middleton, “A business-oriented Cloud federation model for
real-time applications,” Future Generation Computer Systems, vol. 28, no. 8, pp. 1158-1167, 2012.
Article (CrossRef Link).

[3] K. Bessai, S. Youcef, A. Oulamara, C. Godart, “Bi-criteria strategies for business processes
scheduling in cloud environments with fairness metrics,” in Proc. of IEEE Seventh International
Conference on Research Challenges in Information Science, pp. 1-10, 2013.
Article (CrossRef Link).

[4] S. Abrishami, M. Naghibzadeh, D.H. Epema, “Deadline-constrained workflow scheduling
algorithms for infrastructure as a service clouds,” Future Generation Computer Systems, vol. 29,
no. 1, pp. 158-169, 2013. Article (CrossRef Link).

[5] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, “Algorithms for cost- and deadline-constrained
provisioning for scientific workflow ensembles in IaaS clouds,” Future Generation Computer
Systems, vol.48, pp. 1-18, 2015. Article (CrossRef Link).

[6] L. Zeng, B. Veeravalli, X. Li, “ScaleStar: Budget conscious scheduling precedence-constrained
many-task workflow applications in cloud,” in Proc. of IEEE 26th International Conference on
Advanced In-formation Networking and Applications, pp. 534-541, 2012. Article (CrossRef Link).

[7] H. Arabnejad, J.G. Barbosa, “A budget constrained scheduling algorithm for workflow
applications,” Journal of Grid Computing, vol. 12, no.4, pp. 665-679, 2014.
Article (CrossRef Link).

[8] R. Sakellariou, H. Zhao, E. Tsiakkouri, M.D. Dikaiakos, “Scheduling workflows with budget
constraints,” Integrated Research in Grid Computing, pp. 189-202, 2007. Article (CrossRef Link).

[9] Y. Yuan, X. Li, Q. Wang, X. Zhu, “Deadline division-based heuristic for cost optimization in
workflow scheduling,” Information Sciences, vol. 179, no. 15, pp. 2562-2575, 2009.
Article (CrossRef Link).

[10] M. Mao, M. Humphrey, “Auto-scaling to minimize cost and meet application deadlines in cloud
workflows,” in Proc. of 2011 Inter-national Conference for High Performance Computing,
Networking, Storage and Analysis. Article (CrossRef Link).

[11] M.A. Rodriguez, R. Buyya, “Deadline based resource provisioning and scheduling algorithm for
scientific workflows on clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222-235, 2014. Article (CrossRef Link).

[12] R.N. Calheiros, R. Buyya, “Meeting deadlines of scientific workflows in public clouds with tasks
replication,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 7, pp. 1787-1796,
2013. Article (CrossRef Link).

[13] B. Yang, F. Tan, Y. Dai, S. Guo, “Performance evaluation of cloud service considering fault
recovery,” in Proc. of the First International Conference on Cloud Computing, pp. 571-576, 2009.
Article (CrossRef Link).

[14] B. Yang, F. Tan, Y. Dai, “Performance evaluation of cloud service considering fault recovery,”
The Journal of Supercomputing, vol. 65, no. 1, pp. 426-444, 2013. Article (CrossRef Link).

http://dx.doi.org/doi:10.1145/1721654.1721672
http://dx.doi.org/doi:10.1016/j.future.2012.02.005
http://dx.doi.org/doi:10.1109/RCIS.2013.6577701
http://dx.doi.org/doi:10.1016/j.future.2012.05.004
http://dx.doi.org/doi:10.1016/j.future.2015.01.004
http://dx.doi.org/doi:10.1109/AINA.2012.12
http://dx.doi.org/doi:10.1007/s10723-014-9294-7
http://dx.doi.org/doi:10.1007/978-0-387-47658-2_14
http://dx.doi.org/doi:10.1016/j.ins.2009.01.035
http://dx.doi.org/doi:10.1145/2063384.2063449
http://dx.doi.org/doi:10.1109/TCC.2014.2314655
http://dx.doi.org/doi:10.1109/TPDS.2013.238
http://dx.doi.org/doi:10.1007/978-3-642-10665-1_54
http://dx.doi.org/doi:10.1007/s11227-011-0551-2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 993

[15] C.Q. Wu, X. Lin, D. Yu, W. Xu, L. Li, “End-to-end delay minimization for scientific workflows in
clouds under budget constraint,” IEEE Transactions on Cloud Computing, vol. 3, no. 2, pp.
169-181, 2015. Article (CrossRef Link).

[16] H. Xu, B. Yang, “An incentive-based heuristic job scheduling algorithm for utility grids,” Future
Generation Computer Systems, vol. 49, pp. 1-7, 2015. Article (CrossRef Link).

[17] H. Topcuoglu, S. Hariri, M. Wu, “Performance-effective and low-complexity task scheduling for
heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260-274, 2002. Article (CrossRef Link).

[18] A.C. Zhou, B. He, “Simplified resource provisioning for workflows in IaaS clouds,” in Proc. of
IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 650-655,
2014. Article (CrossRef Link).

[19] J. Zhang, J. Luo, F. Dong, “Scheduling of scientific workflow in non-dedicated heterogeneous
multicluster platform,” Journal of Systems and Software, vol. 86, no. 7, pp. 1806-1818, 2013.
Article (CrossRef Link).

[20] C. Lin, S. Lu, “Scheduling scientific workflows elastically for cloud computing,” in Proc. of IEEE
4th International Conference on Cloud Computing, pp. 246-247, 2011. Article (CrossRef Link).

[21] D. Jung, T. Suh, H. Yu, J. Gil, “A workflow scheduling technique using genetic algorithm in spot
instance-based cloud,” KSII Transactions on Internet and Information Systems, vol.8, no. 9, pp.
3126-3145, 2014. Article (CrossRef Link).

[22] J. Sahni, D. Vidyarthi, “A cost-effective deadline-constrained dynamic scheduling algorithm for
scientific workflows in a cloud environment,” IEEE Transactions on Cloud Computing, preprint,
2015. Article (CrossRef Link).

[23] D. Poola, K. Ramamohanarao, R. Buyya, “Fault-tolerant workflow scheduling using spot instances
on clouds,” Procedia Computer Science, vol. 29, pp. 523-533, 2014. Article (CrossRef Link).

[24] Y.W. Ahn, A.M.K. Cheng, J. Baek, M. Jo, H.H. Chen, “An auto-scaling mechanism for virtual
resources to support mobile, pervasive, real-time healthcare applications in cloud computing,”
IEEE Network, vol. 27, pp. 62-68, 2013. Article (CrossRef Link).

[25] D. Poola, S.K. Garg, R.Buyya, Y. Yang, K. Ramamohanarao, “Robust scheduling of scientific
workflows with deadline and budget constraints in clouds,” in Proc. of IEEE 28th International
Conference on Advanced Information Networking and Applications, pp. 858-865, 2014.
Article (CrossRef Link).

[26] S. Jang, V. Taylor, X. Wu, M. Prajugo, E. Deelman, G. Mehta, K. Vahi, “Performance
prediction-based versus load-based site selection: Quantifying the difference,” in Proc. of the 18th
International Conference on Parallel and Distributed Computing Systems, pp. 148-153, 2005.
Article (CrossRef Link)

[27] M. De Felice, X. Yao, “Short-term load forecasting with neural network ensembles: A comparative
study,” IEEE Computational Intelligence Magazine, vol. 6, no. 3, pp. 47-56, 2011.
Article (CrossRef Link).

[28] Y.S Dai, G. Levitin, K.S. Trivedi, “Performance and reliability of tree-structured grid services
considering data dependence and failure correlation,” IEEE Transactions on Computers, vol. 56,
no. 7, pp. 925–936, 2007. Article (CrossRef Link).

[29] Y.K. Kwok, I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to
multiprocessors,” ACM Computing Surveys, vol. 34, no. 4, pp. 406-470, 1999.
Article (CrossRef Link).

[30] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, “Characterizing and profiling scientific
workflows,” Future Generation Computer Systems, vol. 29, no. 3, pp. 682-692, 2013.
Article (CrossRef Link).

[31] Workflow Generator, https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator,
2014.

[32] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su, K. Vahi, “Characterization of scientific
workflows,” in Proc. of Third Workshop on Workflows in Support of Large Scale Science, pp. 1-10,
2008. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/TCC.2014.2358220
http://dx.doi.org/doi:10.1016/j.future.2015.02.002
http://dx.doi.org/doi:10.1109/71.993206
http://dx.doi.org/doi:10.1109/CloudCom.2014.129
http://dx.doi.org/doi:10.1016/j.jss.2012.10.029
http://dx.doi.org/doi:10.1109/CLOUD.2011.110
http://dx.doi.org/doi:10.3837/tiis.2014.09.010
http://dx.doi.org/doi:10.1109/TCC.2015.2451649
http://dx.doi.org/doi:10.1016/j.procs.2014.05.047
http://dx.doi.org/doi:10.1109/MNET.2013.6616117
http://dx.doi.org/doi:10.1109/AINA.2014.105
http://pearl.cse.tamu.edu/prophesy/publications/pdcs05.pdf.
http://dx.doi.org/doi:10.1109/MCI.2011.941590
http://dx.doi.org/doi:10.1109/TC.2007.1018
http://dx.doi.org/doi:10.1145/344588.344618
http://dx.doi.org/doi:10.1016/j.future.2012.08.015
http://dx.doi.org/doi:10.1109/WORKS.2008.4723958

994 Xu et al.: A Multi-objective Optimization Approach to Workflow Scheduling
in Clouds Considering Fault Recovery

[33] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya, “CloudSim: A toolkit for
modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms,” Software-Practice and Experience, vol. 41, pp. 23-50, 2011.
Article (CrossRef Link).

[34] B. Yang, H. Hu, S. Guo, “Cost-oriented task allocation and hardware redundancy policies in
heterogeneous distributed computing systems considering software reliability,” Computers &
Industrial Engineering, vol. 56, no. 4, pp. 1687-1696, 2009. Article (CrossRef Link).

[35] A. Verma, S. Kaushal, “Bi-criteria priority based particle swarm optimization workflow
scheduling algorithm for cloud,” in Proc. of 2014 Recent Advances in Engineering and
Computational Sciences, pp. 1-6, 2014. Article (CrossRef Link).

[36] R.T. Marler, J.S. Arora, “Survey of multi-objective optimization methods for engineering,”
Structural and Multidisciplinary Optimization, vol. 26, pp. 369-395, 2004.
Article (CrossRef Link).

[37] K. Deb. Multi-objective optimization. in Search Methodologies, pp. 403-449, Springer, 2014.
Article (CrossRef Link).

http://dx.doi.org/doi:10.1002/spe.995
http://dx.doi.org/doi:10.1016/j.cie.2008.11.001
http://dx.doi.org/doi:10.1109/RAECS.2014.6799614
http://dx.doi.org/doi:10.1007/s00158-003-0368-6
http://dx.doi.org/doi:10.1007/978-1-4614-6940-7_15

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 995

Heyang Xu is a Ph.D. candidate in the School of Computer Science and Engineering
(SCSE), University of Electronic Science and Technology of China (UESTC), Chengdu,
China. He received the B.E. degree in Computer Science from Yunnan Police Officer
Academy, Kunming, China, in 2010. His research interests include grid computing and
cloud computing. He has published a regular paper in Future Generation Computer
Systems and a paper in the 2nd IEEE International Conference on Parallel, Distributed
and Grid Computing.

Bo Yang received the B.E. (1995), and the M.E. (1998) degrees from Xi'an Jiaotong
University, Xi'an, China; and the Ph.D. (2002) from National University of Singapore,
Singapore. He is a Professor and the Deputy Head of Collaborative Autonomic
Computing Laboratory, SCSE, UESTC. His research interests include
distributed/grid/cloud computing, data mining, and software and system reliability
engineering. He has published over 50 research papers in refereed academic journals and
conferences. He is on the Editorial Board of six international journals. He served as
Program Chair of The 8th IEEE International Conference on Dependable, Autonomic and
Secure Computing (IEEE DASC 2009); Program Chair of The 2011 International
Conference on Cloud and Service Computing (CSC 2011); Program Vice-Chair of The
12th IEEE International Conference on High Performance and Communications (IEEE
HPCC 2010); General Chair of The 2010 International Workshop on Knowledge and
Data Engineering in Web-based Learning (IWKDEWL’10); and Program Committee
Member of over 30 international conferences or workshops. He is a senior member of
IEEE, China Computer Federation (CCF), Chinese Institute of Electronics (CIE), and
member of CCF Technical Committee on Collaborative Computing (CCF TCCC).

Weiwei Qi is an M.E. candidate in SCSE, UESTC, Chengdu, China. He received the
B.E. degree in Computer Science from UESTC, Chengdu, China, 2014. His research
interests include cloud computing and data mining.

Emmanuel Ahene is an M.E. candidate in SCSE, UESTC, Chengdu, China. He
received the B.S. degree in Computer Science from the University for Development
Studies, Ghana, in 2012. His research interests include cloud computing and information
security.

