
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, Oct. 2018 4856
Copyright ⓒ 2018 KSII

An Automatic and Scalable Application
Crawler for Large-Scale Mobile Internet

Content Retrieval

Mingyi Huang, Yongqiang Lyu and Hao Yin
Department of Computer Science and Technology, Tsinghua University

Beijing 100084, P.R. China
[e-mail: tobyxdd@gmail.com (M. Huang)]
[e-mail: luyq@tsinghua.edu.cn (Y. Lyu)] *
[e-mail: h-yin@tsinghua.edu.cn (H. Yin)]
*Corresponding author: Yongqiang Lyu

Received February 28, 2018; revised April 19, 2018; revised April 28, 2018; accepted May 31, 2018;

published October 31, 2018

Abstract

The mobile internet has grown ubiquitous across the globe with the widespread use of smart
devices. However, the designs of modern mobile operating systems and their applications
limit content retrieval with mobile applications. The mobile internet is not as accessible as the
traditional web, having more man-made restrictions and lacking a unified approach for
crawling and content retrieval. In this study, we propose an automatic and scalable mobile
application content crawler, which can recognize the interaction paths of mobile applications,
representing them as interaction graphs and automatically collecting content according to the
graphs in a parallel manner. The crawler was verified by retrieving content from 50 non-game
applications from the Google Play Store using the Android platform. The experiment showed
the efficiency and scalability potential of our crawler for large-scale mobile internet content
retrieval.

Keywords: Mobile internet, app, crawler, content retrieval, automatic test

http://doi.org/10.3837/tiis.2018.10.013 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4857

1. Introduction

Usage of smart devices, such as mobile phones and tablets, has been growing rapidly in
recent years, exerting significant influence on the daily lives of humans around the globe.
Advancements in computer hardware, software and network technologies mean that smart
devices are no longer limited to manufacturers’ pre-built functions. Instead, they serve as
multi-purpose platforms that allow users to install additional applications to enjoy more
features and enhanced functionality.

The wide variety of messaging services, news sites, social platforms, blogs, and
microblogging applications available to existing smart devices have become a ubiquitous
source of information and user-generated content. However, many of the services restrict the
way users access their content. These services are not actually incorporated into the open
Internet [1], and it is difficult to retrieve their content with traditional methods (e.g., web
crawlers). The technical differences between traditional web pages and mobile applications
require new techniques to collect content from the mobile internet.

Most of the relevant studies on this topic have focused on automated tesing for applications
[2],[3] and commercial advertising [4]. Few studies have worked directly on content retrieval.
Compared to traditional web crawling techniques, there are several major challenges to be
overcome.

The first challenge is the difficulty in locating and labeling contents. Lacking a mechanism
like a URL, there is no universal standard to locate specific contents within an application.
Traditional web crawling is therefore not useful for mobile applications.

The second challenge is the lack of a unified language for content presentation. Traditional
web pages are delivered to browsers as HTML (Hypertext Markup Language). HTML makes
it possible for traditional crawlers to parse content from different pages in standardized ways,
but mobile application interfaces may call graphics APIs and implement custom behaviors.
Newer standards have been developed to address such challenges, such as HTML5-based
application frameworks like React Native [5]. However, the severely limited adoption of such
frameworks in various applications still frustrates content collection from mobile application
interfaces.

The last challenge is the diversity in application designs. Differences in hardware
functionality and system designs between devices can be huge, resulting in applications that
change content presentation and user interaction from device to device. For a traditional
website, hyperlinks are usually the only way to link pages together. In contrast, mobile
applications may use touches, swipes, shakes, or sensor interaction to present new content.

To address the challenges above, we propose an automatic and scalable mobile content
crawler (MCC), which does not need to directly access the source code of target applications
or their extracted resources. It can be executed by any third party to obtain content from
released applications without manually customizing configurations. The crawler can
automatically collect content from mobile applications running on “mobile device server
farms” consisting of real devices, emulators, or virtual machines by traversing the interaction
paths with the application interfaces.

Our primary contributions are as follows:

4858 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

∙ A mobile crawler that automatically collects several types of content (e.g., text, images,
audio, and video) in parallel from target mobile applications.

∙ An interaction-path graph generation (IGG) algorithm specifically designed for the
crawler, which can analyze the target application structure and then direct the content
crawler to execute interactive operations, traverse each interface, and collect the contents.
The interaction-path graph is partitionable into independent subgraphs that enable the
crawler to retrieve content in parallel for large-scale retrieval or multiple applications.

∙ Verification of our method’s capability and efficiency with real applications using a
statistical testing method for content coverage and accuracy.

We have organized our paper as follows. Section 2 discusses the background, basic rules,
and requirements for the mobile crawler. Section 3 analyzes the design of each component.
Section 4 describes the MCC implementation in detail. Section 5 reports the results of our
performance tests on the proposed system. Section 6 concludes the paper.

2. Background and Motivation

2.1 Significance and Necessity of Retrieving Content from Mobile Applications

The importance of mobile applications, as opposed to web browsers, in users’ online
experiences has risen alongside the expanding use of mobile devices. The number of Android
applications available from the Google Play store currently exceeds 2.2 million, with a similar
number, 2 million, for iOS in the Apple App Store [6]. By 2015, U.S.-based social networks
had 150 million mobile terminal users [7]. There are 574 million users in China [8]. Over half
of the world’s population (52.7%) uses the mobile Internet [9]. According to Cisco [10], the
monthly data flow across the mobile internet has increased by 76%, from 2.1 EB in 2014 to 3.7
EB in 2015. Mobile internet traffic accounted for 8% of the world’s Internet usage in 2015 and
is expected to reach 30% in 2020.

However, technical and imposed limitations prevent web crawlers from retrieving
significant portions of mobile internet content. The instant messaging service Telegram has a
Channels feature for individuals and organizations to post content only available within the
Telegram application. Xianyu, a popular Chinese trading site, has recently shut down its
browser version completely, leaving their mobile applications the only way to use their
services. The relocation of data from browsers to applications makes the acquisition and
analysis of data more difficult. To show the significance of the issue, we tested 42 popular
mobile applications on iOS and Android and determined the accessibility of their content
using a web browser. Table 1 shows the results, separated into three categories. “Functions
limited” means that the operations that can be performed via the web are fewer than those from
the mobile applications. “Content limited” means that the content is less accessible from the
web than mobile applications. “Non-accessible” content is completely inaccessible from the
web and encompasses both the “functions limited” and “content limited” categories.

Table 1. Level of content openness of 42 web applications
Application types Non-accessible Functions limited Content limited
Social media (11) 9% (1) 27% (3) 9% (1)

Instant messaging (10) 30% (3) 60% (6) 30% (3)
News (14) 7% (1) 7% (1) 14% (2)

Education (7) 29% (2) 43% (3) 43% (3)
Total: 42 17% (7) 31% (13) 21% (9)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4859

2.2 Requirements

After careful consideration, we propose the the following requirements for our new mobile
application crawler.

Portability: The crawler should use only documented APIs and features of the target
platform, avoiding the use of private interfaces or source code modifications to the platform.
Using undocumented features or modifying the platform may result in undefined behaviors
and severely limit the number of environments supported by the crawler.

Black box [11]: Application traversal and content retrieval should be performed in a
black-box manner. That is, the crawler should not need to access target applications’ source
code. The main logic of traversal and retrieval should also be platform-independent to support
implementation on other platforms with similar designs.

Sandbox [12]: Content collection from various applications automatically and
comprehensively means that it is impossible to ensure that the behavior of the target
applications can be fully trusted. The operating environment should be isolated to prevent
potential malicious code in the target applications from damaging collected data or even the
crawler program itself. This isolation (“sandboxing”) prevents harmful actions from executing
and interrupting the crawling process. The crawling environment can be restored to its original
state at any time. Additionally, the use of these sandboxes permits our design to scale by using
more virtualized crawler environments.

2.3 Challenges

The underlying technologies, development workflow, and user experiences of mobile
applications differ significantly from traditional desktop web pages. In this subsection, we will
discuss these differences and the technical challenges of creating a crawler for mobile
platforms.

Locating and labeling pages: Web pages are usually located by URLs and linked to each
other by hyperlinks. Standardization simplifies parsing of web page contents [13]. Mobile
applications lack such a mechanism and, thus, a standard way to locate specific content. Lack
of knowledge about the application’s structure makes it harder to discover a consistent path to
specific content.

Variety of content types and presentation methods: Traditional web pages are formatted
and structured in HTML, which has a standardized parsing process for web crawlers. In
contrast, mobile application interfaces are generated and rendered by the application itself and
may contain more types of content. The absence of a unified standard increases the challenge
in recognizing and retrieving mobile content.

Diversity in interaction methods: Additional hardwares in mobile devices provide more
types of application interactions to the user. The crawler must support more methods to
explore content accessible with specific interactions.

2.4 Comparison between the State-of-the-Art Techniques

Many tools, frameworks, and libraries are currently available to simulate hardware events and
verify content across popular mobile platforms, mostly for automatic testing and performance
evaluation. Table 2 lists features and capabilitites of some of these packages.

4860 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

Table 2. Android automation frameworks and tools
Technique

name
Method Operations

supported
Data returned Customization

Monkey Automated testing
(monkey test, crash

test)

Random UI
event

Application
crash/error log

Number and frequency
of random events

A3E [14] Exploration for
systematic testing

Bytecode
analysis/UI

events

Structure of the
application

/

SmartAds
[4]

Display ads UI events / /

Robotium
[15]

Automated testing UI/hardware
events

Script Script

PUMA Automated testing UI/hardware
events

Script Script

Monkey is a tool developed by Google for Android. It sends a pseudo-random stream of

user events into the system, which acts as a stress test on the target application. It cannot
retrieve actual content from the application. Instead, it watches the system and generates
reports if something goes wrong. It is a popular choice for monkey testing, but is not useful for
content retrieval.

The Automatic Android App Explorer, commonly known as A3E, is an automated GUI
testing toolkit for Android applications. It simulates user actions to explore and discover
application functions, including those that might be hidden from the user. However, its main
purpose is to analyze the application structure, so it offers only limited behavior and content
retrieval customizations.

SmartAds is a contextual advertising technique that scrapes application content at runtime,
extracting keywords and fetching contextually relevant ads. It does implement content
retrieval and analysis, but these functions are limited to the content the user is currently
viewing. Because it is designed for showing contextual ads, it does not need to automatically
explore the application by itself.

Robotium and PUMA automate application testing. They are frameworks that support
simulation of various inputs and events and retrieval of UI content. However, they can only
execute pre-defined test cases written by test developers. They are unable to perform
automated crawling.

3. Designs

In this section, we present the design of our MCC along with the methods it uses to explore
application structures and collect content. We used Android as our target implementation
platform, so we also provide a brief introduction to the Android operating system and
application architecture.

3.1 Overview

Most modern mobile applications consist of multiple independent interfaces, where users
interact with applications by touching and manipulating visual elements or by pressing
hardware buttons. For example, a news application usually has three main components: a page
showing a list of news titles and thumbnails, a page that shows content for a specific news item

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4861

including text, images, videos, etc., and a page that shows user comments and an input field to
enter a new one.
To process such a structure, our crawling system consists of three major steps:
∙ Interaction graph generation (IGG);
∙ Task generation;
∙ Task execution (content collection).

Discovering the logic and structure of an interface is similar to sitemap discovery with a
traditional web crawler, and the discovery is extremely helpful to the content collection logic.
The process begins with IGG, an exploration of the application coupled with analysis of the
interfaces to produce an interaction graph representing the application’s structure. The crawler
then uses this graph to generate the list of tasks, which then retrieve content concurrently.

3.2 Architecture of Android Applications

We chose to implement our proposal on Android because the platform currently has the
highest market share among all such smart mobile devices [16], with a tremendous variety of
applications to use as crawling targets. It is open-source, available for many hardware
platforms, and supported by manycross-platform development tools. Thus, it is an excellent
platform for testing our implementation of MCC. Our aim here is to present the general
architecture of Android applications and the common components of their user interfaces in
order to facilitate our presentation of the design and implementation of the MCC.

Android applications are typically written in Java. The Android SDK (Software
Development Kit) is a prebuilt Java environment including all necessary libraries for
mainstream Android development. The SDK compiles the source code into the DEX byte
codes used by the Dalvik virtual machine. The byte code output, along with other resources,
dependencies, and manifest files, are compressed and packed into Android package (APK)
files for distribution. When installed on a user device, the byte codes are compiled to the
device architecture and executed. Unlike many traditional desktop applications that use
numerous different libraries or even directly render user interfaces with graphics APIs, most
Android applications use the XML-based interface engine provided by the system. Doing so
gives the Android system the capability to retrieve and manage content on the screen in
support of auxiliary APIs such as accessibility services. The overall mechanism provides a
reliable way for our crawler to query the content of target applications.

The term “activity” refers to the application component that directly interacts with the user.
This component can be regarded as a single page of interfaces. An interface is created by
filling the activity with elements such as labels, buttons, text boxes, images, or progress bars.
The user interacts with the application via these elements. Each interaction action can alter the
current interface or the application’s status, or it can open a new activity. An application
typically consists of many activities loosely connected to one another; different activities are
used for different content. For example, a blogging application first shows an activity
presenting titles of blog posts from all followed users. Touching an item in the list brings up an
activity showing the content of a blog post, and touching an avatar brings up the user’s profile.
Other activities enable users to create new posts or change settings. Table 3 shows the number
of activities used by a few popular applications.

4862 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

Table 3. The count of activities for some common applications
Names Types Number of Activities
Twitter Social media 36

Dropbox Cloud storage 16
Engadget News 9

BBC News 9
NYTimes News 15

3.3 Generation of Interaction Graph

Each Android application has only one entry point, but different interactions can then lead to
different content. One series of interactions forms one interaction path. Fig. 1 shows an
interaction graph of an ideal news application.

Fig. 1. Interaction graph of an ideal news application

The IGG algorithm first explores the structure of the target application and then

automatically generates an interaction graph by collecting and analyzing elements within the
interfaces for both type and content.

If we assume that the structure of an application’s interfaces is a tree where each interface is
a node in the tree, and the nodes are connected by some types of interaction (e.g., touching an
item or swiping), then ideally, a depth-first search (DFS) is suitable for searching the whole
application. With the main entry interface as the root, it is possible to interact with all elements
sequentially, obtain all new elements after reaching a new interface, and then interact with
them again. This process is repeated until every path has reached a node that has no child. Fig.
2 shows the result of searching that ideal news application above in this way.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4863

Fig. 2. DFS result of an ideal news application

The DFS results are inaccurate for multiple reasons. First, the path from the main activity to

the news content page to the comment page is collected multiple times. This occurs because
the main interface usually contains a long list of multiple news titles while the actual activity
used for showing the content is a reusable NewsContentActivity. Second, both the main and
settings interfaces provide an entry to the sign-in interface, SignInActivity, thereby generating
two paths to it. The limitations of this simple DFS algorithm and tree structure prevent
detection of the situation and the representation of them as the same interface.

The interaction paths of real-world applications are often more complicated than those in
ideal applications. It unlikely, for example, that an application would ever have an interface
with no elements leading to another interface. Consider a modern news application with a
recommendation function. At the bottom of each content activity, there is a “similar articles”
list offering other articles. Touching these items presents another news item which also
contains a “similar articles” list, generating an endless path.

After testing and analyzing the interface structure of several popular applications, we
grouped all nodes into 3 categories (Table 4) and identified 3 types of special structures that
can lead to problems (Table 5, Fig. 3)

Table 4. Node catalogs

Names Description
Identical The nodes have identical types of elements and content.

Same
type

The nodes with same logical functions and structures but provide different contents. (the
content pages of different news articles / the profile pages of different users…)

Distinct Nodes of completely different types, structures and contents that can be regarded as
logically and functionally distinct.

Table 5. Special structures

Names Description
Multi-entry interface The user can enter several completely identical nodes by performing

different actions
Interconnection of same-type

interfaces
Nodes of the same type and same level connect to each other directly.

Cyclic interconnection A certain interaction path leads to a sequence of interfaces being
connected end-to-end, creating a loop.

4864 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

Fig. 3. Special types of connection

As a result, a robust IGG should also have the following features.
Depth-first search: In the breadth-first search strategy, all direct children of the root must

first be traversed once before moving to the next level. In this project, the actions to access
connected nodes themselves are time-consuming since they require simulated interactions
with target applications. The target applications may require time to communicate with servers,
perform calculations or play animations before showing the actual content. Due to the inability
to switch directly between child nodes, BFS requires returning to the parent node every time
before proceeding to the next child node.

If the target application has a full binary tree structure with depth d, the average time for one
interaction is T.

The total time spent on interactions usinga DFS-based IGG to traverse the tree and
determine there are no more nodes TTDFS is

TTDFS = T × �2∑ 2nd−1
n=0 � (1)

A BFS approach would require

TTBFS = T×(2∑ 2d-n(2n+2)d-1
n=0) (2)

Therefore, the DFS approach greaty reduces unnecessary switching, improving the
performance of the crawler.

Appropriate approach to handle special structures: Detection schemes are required to
handle the three special structures described above. If the comparison result indicates that the
current node differs entirely from the previous node, it is added to the path as a new node. If
the node is of the same type but has different content, it is necessary to verify whether it has the
same parent as the previous node of the same type. If they share the same parent, an
interconnection exists between the interfaces of the same type, and no new node should be
added. If they do not share the same parent, the node is added as a new node. If the nodes are
identical to one another by comparison, they are tested to determine whether they share the
same parent or whether they are themselves parents. If they share the same parent, this
operation is considered invalid (there is no change after interaction) and no new node is added.
If they have different parents, there are two ways forward. One, if the identical nodes are in the
same sub-graph, a cyclic interconnection exists, and no new node is added. Two, if the
identical nodes are in different sub-graphs, they are labeled as a multi-entry interface, a
reference node is established at the current location, and the previous node identical to the
current node is pointed towards it.

Interaction count limitations: Some applications have a special list layout called a
“waterfall layout”. This enables users to view more content by scrolling down infinitely with
the contents being loaded asynchronously. For this type of layout, our IGG algorithm has
options to limit the maximum number of interactions a container (list, table…) can receive.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4865

Algorithm 1: IGG-Simple (A, depth, dlimit, alimit)
Input: Entry point activity A;
 Current depth depth;
 Depth limit dlimit;
 Action limit alimit;
Output: Interaction graph G;

if dlimit <= 0 then
 return;
end if
if !G.hasIdentical(A) then
 if !G.hasSimilar(A) then
 add A to G;
 end if
else
 return;
end if
stack of controls C;
C = {all interactable elements in A};
while C.size() > 0 and alimit > 0 do
 tc = C.pop();
 tc.interact();
 ca = device.currentActivity();
 if ca != A then
 IGG-Simple (ca, depth+1, dlimit-1, alimit);
 device.back();
 alimit -= 1;
end while

3.4 Content Retrieval
After generation of the interaction graph, the MCC collects the content along each path based
on the recorded interaction sequences. According to the described design, the crawler collects
common elements on the application interfaces (e.g., text, images, audio, and video). Text and
images for Android applications are usually implemented using common controls (e.g.,
TextView, ImageView, ImageButton), making it easy to extract them from the interface
directly. Audio and video elements may use different presentation or rendering for each
application. For these two content types, MCC performs packet inspection to collect the
content from network requests generated by the application at the corresponding interfaces.

Text: After obtaining interface information from the device, the crawler analyzes and
extracts the properties of all available text controls. Most of the text information in the
Android text controls is available from the text or content-desc properties.

Images: The image control’s properties provide the control’s coordinates as well as the size
and source of images. Accordingly, MCC first analyzes the image’s source. If the images
come from local application resources bundled with the application, MCC directly copies
them based on the path. Otherwise, MCC obtains the images by capturing the entire screen and
cropping the screenshot based on the coordinates and image size.

Audio and video: MCC analyzes the network traffic generated by the application. Because
mobile applications usually communicate through HTTP [17], the crawler analyzes these
types of network traffic and collects recognizable multimedia content (i.e., audio and video).
MCC also attempts to decrypt encrypted HTTPS traffic by replacing original certificates with

4866 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

self-signed ones. The “MCC CA” used for signing certificates is trusted in the crawler’s
Android environment. Therefore, MCC can decrypt and analyze the HTTPS traffic generated
by almost all applications except for a small number of applications using special hardcoded
certificate checks (“key pinning”).

3.5 Concurrent Retrieval
An interaction graph is divisible into multiple subgraphs, each representing a different path
for crawling different content. If we assign different tasks following unique paths to multiple
devices with the same initial state, we can retrieve content from multiple interfaces
simultaneously. Our current implementation uses a thread pool with a fixed number of threads
(configurable by the user) and performs tasks on multiple devices at the same time. It can be
further optimized by recording and predicting the time spent on each operation and scheduling
the tasks in a more balanced way.

4. Implementations

We implemented MCC for Android to collect content from several real-world applications
including WeChat, a messaging and social media application; Toutiao, a news application; and
Jike, an information agent and social media application. This section describes our experiment,
the results, and relevant technical solutions.

Fig. 4. The experimental flow of the content retrieval tests

4.1 Overview

Fig. 4 describes the architecture and operating process of MCC, which consists of two parts:
the interaction path explorer and the content crawler. Both parts run on a desktop computer.
The devices that run the applications can be real Android devices or virtual machines or
emulators. The crawler installs a daemon application on the devices to enable communication
with and remote control by the controlling computer.

MCC deploys the interaction path explorer first in order to determine the structure of the
target application and generate the corresponding interaction graph. The explorer traverses
and continually analyzes the status of the target application. It then constructs the graph and
stores it as a file, which the crawler uses directlyA visualization of the graph is useful for
reference and manual adjustments to the crawling rules.

The content crawler gathers information according to the graph. It runs either automatically
or manually. In automatic mode, there is no need to write scripts to direct the process. With the
graph and necessary device information, , the crawler runs and gathers automatically. The user
initiates directed (but still automatic) crawling by pruning the previously generated graph. In

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4867

manual mode, the user must create scripts and specify the interaction pattern for the target
application. This mode allows advanced users to extract specific information from specific
elements in specific interfaces. In both cases, the crawler saves retrieved data as well as
screenshots of the pages that appeared on the device in a hierarchical directory structure.

4.2 Environment
The official Android Emulator released by Google in the Android SDK and the Android 6.0.1
x86 Android Open Source Project image (AOSP; akin to a standard Linux distribution) are
used as the MCC crawling environment. To protect the environment from potential malicious
behaviors in the applications, we preserved a snapshot of the emulator’s configured
environment, ensuring that the system could be restored to its original state prior to each
collection task. An x86 server running Ubuntu 16.04 LTS was used as the crawling controller.

4.3 Content collection

4.3.1 Devices

The automated testing framework UIAutomator was used to direct interaction with the
Android devices via the MCC daemon. The daemon binds a TCP port on the controlled device
to communicate commands and responses and transmit content over our internal protocol.
Each device parses and executes the commands sent from PC. The internal protocol
implements the remote procedure call protocol (RPC) wrapped within the JSON data
exchange layer. HTTP was used to exchange commands and data between the PC and the
controlled device. The daemon’s command set includes: retrieval of device information and
status, collection of all current interface components, simulation of physical button and sensor
and screen events, and screenshot.

We wrote the daemon in Java and compiled it into a normal Android APK application. It is
installable on any Android platform (Version 4.3 or above) that has the necessary APIs.

4.3.2 Traffic Analysis

As discussed above, we extract audio and video content in applications from network traffic.
Because we are using an Android Emulator on the PC platform, the host operating system
handles all network traffic generated by applications in the emulator. Our crawler uses libpcap
[18], a system library designed to capture network traffic, to implement real-time packet
capture, analysis, and manipulation. The crawler extracts image, audio, and video traffic
transmitted via HTTP or HTTPS and saves it into files.

4.3.3 Controller
The daemons implement features such as content and status retrieval and event simulation
using only abstracted platform-independent commands. Doing so allows us to limit the
controlling server to the core tasks of exploration and content collection. We implemented our
controlling server in Python. Each of the crawling tasks generated from an interaction graph is
also a Python script that can be run independently. This achieves our requirement to
implement the crawling mechanism in a platform-independent way.

4868 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

4.4 Sample output

Fig. 5. Output files

Our current implmentation takes a screenshot on each page and saves supported media and
text into files as shown in Fig. 5.

5. Evaluations

This section reports our evaluation of the function and efficiency of the proposed crawling
system. The coverage of collected content is an important performance metric of the crawler;
exploration and generation of the interaction graph in MCC is a significant factor influencing
its coverage. We first tested the performance of IGG with popular applications and then
analyzed the efficiency of the crawler accordingly.

5.1 Samples

We designed MCC for a broad variety of real-world applications. We downloaded the top 50
non-game applications from Google Play covering a range of news, social media,
communication, music, video, map, and utility applications as summarized in Fig. 6. We ran
the fully automated crawler first to generate the interaction graph and collect all the content
without any human guidance or manual adjustments.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4869

Fig. 6. Application types

5.2 Content Coverage

An activity in any real-world application is capable of representing multiple types of content
with the same layout. For a hypothetical instant messaging application with 5 contacts, a single
activity is sufficient to show conversations with all of them, while there are 5 pages of
different content.

Only activities reachable during the exploration are added to the interaction graph and
subsequently collected. Activity reached (AR) is the number of interfaces that are successfully
covered by IGG during its execution. Activity defined (AD) is the total number of interfaces
designed by the developers in the application. Activity coverage (AC) is defined as the ratio of
the interfaces that can be explored by IGG.

 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

.
Due to the limited ways to interact with applications, it is not always possible to reach all the

interfaces. A higher AC value indicates that the gathered content represents a greater
proportion of the total content. Table 6 provides a sample of the IGG test results.

Table 6. Coverage of IGG

Application Total
number of
Activities

Number of
IGG

explorations

AC Types of activities not reached

Twitter 36 16 44.4% Advertisement/function/setting/sharing
Dropbox 16 7 43.8% Function/sharing/Inside
Engadget 9 6 66.7% Advertisement/Sharing/ widget

BBC 9 7 77.8% Function/Setting
NYTimes 15 7 46.7% Sharing/Internal
YouTube 18 8 44.4% Function/Setting/Analysis/Internal/Widget
Average 54.0%

Significantly, some types of application activities were designed by the application creators

to not show up at all. Some of them contain hidden activities for internal debugging,
unreleased features, and the like. Launcher widgets that display application information on a
user’s Android home screen are activities that are never reachable.

4870 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

We evaluated both Monkey and our own MCC with pages that presented actual content
using an execution time of 120 s; Table 7 provides the results.

Table 7. MCC vs Monkey

Applications MCC: Number of pages Monkey: Number of pages Ratios
Twitter 39 22 177%

Engadget 25 10 250%
Bloomberg 31 16 194%
NYTimes 31 17 182%

5.3 Execution Efficiency

Table 8 and Fig. 7 compare the total amount of time consumed for exploration and content
collection. We also compare the execution efficiency across several devices to that of a single
device.

Table 8. Execution time
Application Visited pages IGG (s) Crawling Tasks 1 device (s) 4 devices (s)

Engadget 22 110 5 141 76
Bloomberg 43 267 9 470 186
NYTimes 29 116 4 244 153

Fig. 7. Parallel efficiency

Fig. 7 shows that assigning tasks to multiple devices and executing them concurrently

significantly shortened the time required to obtain the same amount of content. The specific UI
designs of some target applications (e.g., “next” and “previous” buttons instead of an article
list)), prevented large tasks from being broken down effectively, causing some tasks to take
significantly longer than others. This explains why some applications showed no reduction in
time even with an increase in the number of parallel tasks.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 4871

6. Conclusions

Although the mobile internet ecosystem is growing rapidly, the content generated in this
ecosystem is often isolated from the open internet. It is trapped in a “walled garden”—hard to
access, and even harder to collect with a unified approach. To address this challenge, we drew
inspiration from traditional web crawling and analysis techniques. We designed and
implemented a program to analyze and crawl mobile application content automatically. We
also built a general scheme for us to discover the interaction paths of various mobile
applications and to collect their data concurrently. The result shows that MCC can be a
feasible solution for both automated and manually assisted mobile application content
crawling.

References
[1] Karen Church, Barry Smyth, Paul Cotter and Keith Bradley, “Mobile information access: A study

of emerging search behavior on the mobile Internet,” ACM Transactions on the Web (TWEB), vol.
1, no. 1, May, 2007. Article (CrossRef Link).

[2] Tanzirul Azim and Iulian Neamtiu, “Targeted and depth-first exploration for systematic testing of
android apps,” ACM SIGPLAN Notices, vol. 48, no. 10, pp. 641-660, October, 2013.
Article (CrossRef Link).

[3] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond and Ramesh Govindan, “PUMA:
programmable UI-automation for large-scale dynamic analysis of mobile apps,” in Proc. of 12th
Annu. Int. Conf. on Mobile Systems, Applications, and Services (MobiSys'14), pp. 204-217, June
16-19, 2014. Article (CrossRef Link).

[4] Suman Nath, Felix Xiaozhu Lin, Lenin Ravindranath and Jitendra Padhye, “SmartAds: bringing
contextual ads to mobile apps,” in Proc. of 12th Annu. Int. Conf. on Mobile Systems, Applications,
and Services (MobiSys'13), pp. 111-124, June 25-28, 2013. Article (CrossRef Link).

[5] Facebook, “React Native, a framework for building native apps using React.”
Article (CrossRef Link)

[6] Statista, “Number of apps available in leading app stores as of June 2016.” Article (CrossRef Link)
[7] Statista, “Number of smartphone social network users in the United States from 2014 to 2020 (in

millions),” 2016. Article (CrossRef Link)
[8] CNNIC, “Statistical Report on China's Internet Development (2016.1),” 2016.

Article (CrossRef Link)
[9] Statista, “Mobile Internet-Statistics & Facts.” Article (CrossRef Link)
[10] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021

White Paper,” 2017. Article (CrossRef Link)
[11] Patton Ron, Software Testing, 2nd Editon, Sams Publishing, Indianapolis, 2005.
[12] Ian Goldberg, David Wagner, Randi Thomas and Eric A. Brewer, “A secure environment for

untrusted helper applications: Confining the wily hacker,” in Proc. of 6th Conf. on USENIX
Security Symposium, Focusing on Applications of Cryptography, vol. 6, pp. 1, July 22-25, 1996.
Article (CrossRef Link)

[13] Eda Baykan, Monika Henzinger and Ingmar Weber, “A Comprehensive Study of Techniques for
URL-Based Web Page Language Classification,” ACM Transactions on the Web (TWEB), vol. 1,
no. 1, article no. 3, March 2013. Article (CrossRef Link).

[14] 4Tanzirul Azim and Iulian Neamtiu, “Targeted and depth-first exploration for systematic testing of
android apps,” ACM SIGPLAN Notices, vol. 48, no. 10, pp. 641-660. October, 2013.
Article (CrossRef Link).

[15] RobotiumTech, “Robotium.” Article (CrossRef Link)
[16] International Data Corperation (IDC), “Smartphone OS Market Share,” 2016.

Article (CrossRef Link)

http://dx.doi.org/10.1145/1232722.1232726
http://dx.doi.org/10.1145/2544173.2509549
http://dx.doi.org/10.1145/2594368.2594390
http://dx.doi.org/10.1145/2462456.2464452
https://facebook.github.io/react-native/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/238636/number-of-mobile-social-network-users-in-the-us/
https://cnnic.com.cn/IDR/ReportDownloads/201604/P020160419390562421055.pdf
https://www.statista.com/topics/779/mobile-internet/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://dl.acm.org/citation.cfm?id=1267569&picked=prox
http://dx.doi.org/10.1145/2435215.2435218
http://dx.doi.org/10.1145/2544173.2509549
https://github.com/RobotiumTech/robotium
https://www.idc.com/promo/smartphone-market-share/os

4872 Huang et al.: An Automatic and Scalable Application Crawler for Large-Scale Mobile
Internet Content Retrieval

[17] Ricardo Anacleto, Lino Figueiredo, Ana Almeida and Paulo Novais, “Server to Mobile Device
Communication: A Case Study,” Ambient Intelligence-Software and Applications, vol. 219, pp.
79-86, 2013. Article (CrossRef Link).

[18] Tcpdump & Libpcap, “TCPDUMP/LIBPCAP public repository,” Article (CrossRef Link)
[19] Soumen Chakrabarti, Martin Van Den Berg and Byron Dom, “Focused crawling: a new approach

to topic-specific Web resource discovery,” Computer Networks, vol. 31. no. 11-16, pp. 1623–1640,
May, 1999. Article (CrossRef Link).

[20] Ziv Bar-Yossef, Alexander Berg, Steve Chien, Jittat Fakcharoenphol and Dror Weitz,
“Approximating Aggregate Queries about Web Pages via Random Walks,” in Proc. of 26th Int.
Conf. on Very Large Data Bases (VLDB'00), pp. 535-544, September 10-14, 2000.
Article (CrossRef Link)

Mingyi Huang is an undergraduate student of North China University of
Technology, currently participating in research in Tsinghua National Laboratory for
Information Science and Technology at Tsinghua University. His research mainly
focuses on internet and security technologies.

Yongqiang Lyu, Ph.D., is an associate professor in Tsinghua National Laboratory
for Information Science and Technology at Tsinghua University. His research interest
focuses on the hardware-software fusion computer systems, including HCI, internet
and security technologies. He leads an interdisciplinary team at Tsinghua University
working on the innovative cyber-physical technologies and systems from a fusion
perspective of computer science, art and medicine. The team also works with several
international companies for consumer electronics and healthcare services to make their
production applied in emerging applications.

Hao Yin is a Professor in the Research Institute of Information Technology (RIIT) at
Tsinghua University. He received the B.S., M.E., and Ph.D. degrees from Huazhong
University of Science and Technology, Wuhan, China, in 1996, 1999, and 2002,
respectively, all in electrical engineering. He was elected as the New Century Excellent
Talent of the Chinese Ministry of Education in 2009, and won the Chinese National
Science Foundation for Excellent Young Scholars in 2012. His research interests span
broad aspects of Multimedia Communication and Computer Networks.

https://doi.org/10.1007/978-3-319-00566-9_11
http://www.tcpdump.org/
https://doi.org/10.1016/S1389-1286(99)00052-3
https://dl.acm.org/citation.cfm?id=671873

	An Automatic and Scalable Application Crawler for Large-Scale Mobile Internet Content Retrieval
	1. Introduction
	2. Background and Motivation
	2.1 Significance and Necessity of Retrieving Content from Mobile Applications
	2.2 Requirements
	2.3 Challenges
	2.4 Comparison between the State-of-the-Art Techniques

	3. Designs
	3.1 Overview
	3.2 Architecture of Android Applications
	3.3 Generation of Interaction Graph
	3.4 Content Retrieval
	3.5 Concurrent Retrieval

	4. Implementations
	4.1 Overview
	4.2 Environment
	4.3 Content collection
	4.3.1 Devices
	4.3.2 Traffic Analysis
	4.3.3 Controller

	4.4 Sample output

	5. Evaluations
	5.1 Samples
	5.2 Content Coverage
	5.3 Execution Efficiency

	6. Conclusions
	References

