
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 82
Copyright ⓒ 2008 KSII

Digital Object Identifier 10.3837/tiis.2008.02.002

A Scalable Recovery Tree Construction
Scheme Considering Spatial Locality of

Packet Loss

 Jinsuk Baek1, Member and Jehan-François Pâris2, Non-member
1Department of Computer Science, Winston-Salem State University,

601 M. L. King Jr Dr, Winston-Salem, NC 27110, USA
[e-mail: baekj@wssu,edu]

2Department of Computer Science, University of Houston,
4800 Calhoun Rd, Houston, TX 27204, USA

[e-mail: paris@cs.uh.edu]
*Corresponding author: Jinsuk Baek

Received January 15, 2008; revised February 26, 2008; accepted March 1, 2008;

published April 25, 2008

Abstract

Packet losses tend to occur during short error bursts separated by long periods of
relatively error-free transmission. There is also a significant spatial correlation in loss
among the receiver nodes in a multicast session. To recover packet transmission errors
at the transport layer, tree-based protocols construct a logical tree for error recovery
before data transmission is started. The current tree construction scheme does not scale
well because it overloads the sender node. We propose a scalable recovery tree
construction scheme considering these properties. Unlike the existing tree construction
schemes, our scheme distributes some tasks normally handled by the sender node to
specific nodes acting as repair node distributors. It also allows receiver nodes to
adaptively re-select their repair node when they experience unacceptable error
recovery delay. Simulation results show that our scheme constructs the logical tree with
reduced message and time overhead. Our analysis also indicates that it provides fast
error recovery, since it can reduce the number of additional retransmissions from its
upstream repair nodes or sender node.

Keywords: Multicast, reliability, scalability, recovery tree, spatial locality

83 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

1. Introduction

Many network applications require a sender to distribute the same data to a large number
of receivers. Multicast is an efficient way to support these applications. One of the most
difficult issues in end-to-end multicasting is that of providing an error-free transmission
mechanism. Ensuring reliability requires efficient schemes for retransmission control, flow
control, congestion control and so on. This has led to numerous proposals [1][2][3][4][5][6]
[7][8] aiming at providing scalable reliable schemes.

Among the many protocols [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16], most
recently, overlay reliable multicast protocols [1][2][3], controlling and maintaining an
efficient overlay for data transmission, have been proposed. However, there are still many
issues to be considered including addressing and advertisement, path quality measurement,
tree refinement, and failure recovery. In this paper, we focus on the tree-based protocol that
has been known to provide high scalability and reliability. They construct a logical tree at the
transport layer. This logical tree comprises three types of nodes: a sender node, repair nodes,
and receiver nodes. The sender node is the root of the logical multicast tree. It controls the
overall tree construction and is ultimately responsible for resending lost packets within the
group. Each repair node acts as a local server for its downstream nodes. It stores in its buffer
recently received packets and performs local error recovery for these nodes. Hence, tree-
based protocols achieve scalability by distributing the server retransmission workload among
the repair nodes.

There are still some open issues in tree-based protocols. One of the most important and
difficult of them is how to construct the logical tree in an efficient manner. Logical tree
construction schemes can be classified into top-down [12] and bottom-up schemes [13]. Both
schemes suffer from their own limitations. In most cases, the top-down scheme guarantees
caching of data somewhere in the tree hierarchy, and produces loop-free tree construction
with fewer control messages than the bottom-up scheme. At the same time, it does not
provide concurrent tree creation and takes a long time to construct a logical tree. Conversely,
the bottom-up scheme forms the optimal logical tree more quickly thanks to its parallelism
but requires more messages than the top-down scheme does.

One of the authors has recently proposed two efficient hybrid schemes [14] combining the
advantages of the top-down and bottom-up approaches. Both schemes construct their logical
tree in a semi-concurrent manner while minimizing the number of control messages.
Unfortunately, these two schemes also imposed some additional overheads on the sender
node.

A common objective of all tree-building schemes is constructing a logical tree that reflects
best the physical structure of the network. In fact, this has often been the main criterion for
evaluating the efficiency of a particular tree-building scheme [12][13][14]. Unfortunately, the
physical tree-like logical trees constructed by previous schemes did not always provide a fast
error recovery as they expected because they did not consider that packet transmission errors
often are strongly correlated. As a result, these schemes were unable to take into account the
temporal and spatial locality of packet losses especially when each receiver node selects its
repair node having a shortest Time-to-Live (TTL) distance.

We propose a more efficient tree construction scheme taking advantage of this temporal
and spatial locality. In most networks, transmission errors tend to happen in bursts separated
by long periods of relatively error-free transmission. Unlike our previous schemes, this new
scheme delegates some of the tasks previously handled by the sender node to specific nodes
acting as repair node distributors. In addition, it provides a mechanism for relocating repair

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 84

nodes that cannot fulfill their duties because they fail to receive the packets their receiver
nodes did not receive. Our new scheme constructs the logical tree without increasing the
number of control messages and tree construction time.

The remainder of this paper is organized as follows. Section 2 reviews existing logical
tree construction schemes. In section 3, our new scheme is described in detail. Section 4
contains the simulation results of the proposed scheme. Finally, Section 5 contains directions
for future work and our conclusions.

2. Existing Schemes

The common purpose of all tree construction schemes is to construct a tree having the sender
node of the multicast session as root, the repair nodes as non-terminal nodes and the receiver
nodes as leaves.

A logical tree construction includes several steps: 1) advertising the multicast session, 2)
discovering a repair node for each receiver node, and 3) binding each receiver node to its
repair node. In the multicast session advertisement phase, all nodes obtain the group address
of the multicast, the address of the sender node, and other necessary information for tree
construction. This process can be realized by using a mechanism such as a web page
announcement [12][13][14]. After that, each receiver node starts to find one or more
candidate repair nodes that are available in the session for its error recovery. Finally, each
receiver nodes selects and binds to the repair node having a shortest TTL distance among the
candidate repair nodes.

This logical tree can be constructed using a bottom-up [13], a top-down [12], or a hybrid
scheme [14]. There are two options in deploying the repair nodes in tree-based protocols.
First, they can be elected from all the multicast participants. Second, they can be pre-
deployed dedicated nodes, which are able to act as representatives for their local groups. In
this case, it should be decided whether a node will function as a repair node or not before
data transmission is started. We note that the first case introduces additional overhead in
electing the repair nodes among all nodes. Also, defining the repair node selection criterion
is critical to performance. In this paper, we consider the second case. Even though the repair
nodes are pre-determined by the multicast service provider, we assume they are not known in
advance to any node in the multicast session. Hence, each node will try to locate a favorable
repair node that is an active end-host in its local group. All schemes are based on the
following assumptions. These are standard hypotheses made by all tree construction schemes
[8][12][13][14].

 There is one sender node (S) and it controls overall tree constructions. |S| = NS = 1.
 There are NRP repair nodes and the repair nodes are pre-determined.
 RP is the set of repair nodes with |RP| = NRP.
 There are N receiver nodes that want to join a multicast session.
 RC is the set of receiver nodes with |RC| = N.
 The repair node i (RPi ∈ RP, 1 ≤ i ≤ NRP) can accept up to Ni receiver nodes as its child

nodes.
 The control messages are reliably transmitted.

2.1 Bottom-Up Scheme
In the bottom-up scheme [13], each receiver node actively finds its repair node by
multicasting a QUERY message. Hence, in some cases, each repair node forms its own group

85 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

even before becoming attached to the logical tree. As seen in Fig. 1, the nodes perform the
following sequence of actions:

Sender node Repair node 1 Repair node 2 Receiver node

1. BEACON

5. ACCEPT or REJECT

4. BIND

5. ACCEPT or REJECT

6.(d) BIND

7. ACCEPT or REJECT

2. QUERY

3. ADVERTISE

6.(a) QUERY

1. BEACON 1. BEACON

2. QUERY
2. QUERY

3. ADVERTISE
3. ADVERTISE

4. BIND

6. (b) QUERY

6.(c) ADVERTISE

Fig. 1. Bottom-up scheme

1. The sender node first sends a session BEACON message to all nodes to indicate the
start of a tree construction. This message includes a metric. Based on the metric, each
repair node and receiver node can measure the TTL distance from the sender.

2. Each node multicasts a QUERY message to the group it wishes to join. The Initial
TTL of this query is set to one.

3. One or more repair nodes (possibly sender node for some nodes which are closely
located to the sender node) may response to the receiver node with an ADVERTISE
message. This message contains the specific TTL distance from the repair node to the
sender node. The receiver node selects the repair node with the shortest TTL distance
from the sender node. In case of two or more repair nodes with the same TTL distance
from the sender node, the lowest IP address among them is used as a tie-breaker. The
node then selects the best-suited repair node. If there is no response from any repair
node, the node goes back to STEP 2 and re-sends a QUERY message with an
increased TTL value. This step will be repeated with ever increasing TTL values until
at least one repair node answers.

4. Upon selecting the best repair node, the receiver node sends a BIND message to the
repair node.

5. On receiving a BIND message, a sender node or repair node will verify the message
and check its capacity. If there is an available space for a new member, they will send
an ACCEPT message. If a REJECT message is received, the node goes back to STEP

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 86

4. If they fail to receive an ACCEPT message after a number of attempts, they try to
bind to the next best repair node. If an ACCEPT message is received, the node is
attached to the tree (Let us call this status ON_TREE).

6. If the repair node is still not attached to the tree (Let us call this status NON_TREE), it
also begins the process of finding its parent node.

7. The parent node responds to the repair node with an ACCEPT or REJECT message.

This bottom-up scheme provides a simple and robust method for tree construction. It also
provides concurrent tree construction by allowing each node to actively find its repair node.
However, it causes message overhead, as each nodes must generate a lot of QUERY
messages to find their repair node. We would like to argue that this property can make loop
relationship among the repair nodes when two or more repair nodes simultaneously bind
together.

2.2 Top-Down Scheme
In the top-down scheme [12], the tree is constructed from the sender node. That is, the sender
node starts to construct the tree by accepting some repair nodes and receiver nodes that are
located close to it. After becoming a member of some group, each repair node accepts a
number of receiver nodes as a member. As seen in Fig. 2, the nodes perform the following
sequence of actions:

Sender node Repair node 1 Repair node 2 Receiver node

1. BEACON

3. ACCEPT or REJECT

2. BIND

4. ADVERTISE

5. BIND

6. ACCEPT or REJECT

1. BEACON 1. BEACON

4. ADVERTISE

7.(a) ADVERTISE

7.(b) BIND

7.(c) ACCEPT or
REJECT

Fig. 2. Top-down scheme

1. The sender node sends a session BEACON message to all nodes to indicate tree
construction. This message includes a metric. Based on the metric, each repair node
and receiver node can measure the TTL distance from the sender.

87 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

2. Some neighboring nodes whose TTL distance is less than the threshold send a BIND
message to the sender node indicating that they wish to join the group.

3. On receiving a BIND message, a sender node or repair node will verify the message
and check its capacity. If there is an available space for a new member, they will send
an ACCEPT message. If an ACCEPT message is received, the nodes are attached to
the tree and said to be ON_TREE. Otherwise, they must go back to STEP 2.

4. ON-TREE repair nodes begin to periodically transmit an ADVERTISE message to
invite other (NON_TREE) nodes. This message contains the specific TTL distance
from the repair node to the sender node.

5. Each NON_TREE node collects information from repair nodes and maintains a list of
them based on the ADVERTISE messages. Upon selecting the best repair node, the
NON_TREE node sends a BIND message to the repair node. If it fails to receive an
ACCEPT message after a number of attempts, it tries the next best repair node.

6. The repair node verifies the message sent from the NON_TREE node and responds
with an ACCEPT or REJECT message after checking its capacity. If an ACCEPT
message is received, the node is attached to the tree (ON_TREE).

7. Otherwise, it goes back to STEP 5. The newly joined ON_TREE repair nodes now
perform their process at STEP 4.

The top-down scheme guarantees that its outcome will be a loop-free logical tree. It also
reduces the message overhead as it eliminates the need for multicast QUERY message from
the receiver node. However, it does not achieve concurrent tree construction, because it does
not allow repair nodes to form local group before they are themselves attached to the tree. In
addition, it still generates a high number of control messages, because each repair node
periodically transmits an ADVERTISE message.

2.3 Hybrid Scheme
The hybrid scheme [14] has two major differences from the other two schemes. First, unlike
the bottom-up scheme, a receiver node does not multicast a blind QUERY message in order
to find its repair node. Second, unlike the top-down scheme, a repair node does not
periodically send an ADVERTISE message to invite receiver nodes. These two features
significantly reduce the message overhead. As seen in Fig. 3, the hybrid scheme requires all
nodes to go though the following sequence of actions:

1. The sender node sends a session BEACON message to all nodes to indicate tree

construction. This message includes a metric. Based on the metric, each repair node
and receiver node can measure the TTL distance from the sender node.

2. When a repair node receives a BEACON message, it sends an InfoRP message
containing the repair node’s information, such as IP address, and repair node ID. The
sender node collects information of the repair nodes based on the InfoRP messages it
has received and maintains a list of repair nodes.

3. After receiving the BEACON message, each repair node and receiver node measures
the TTL distance from the sender node. The repair nodes and receiver node with a
favorable TTL distance to the sender node reply with a BIND message to indicate they
want to join the tree.

4. The sender node verifies the message and responds with an ACCEPT or REJECT
message based on its capacity. Nodes that receive an ACCEPT message attached
themselves to the tree (ON_TREE). Otherwise, they go back to STEP 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 88

5. Upon receiving the BEACON message, the nodes that have not joined the session yet
send a RPQuery message to the sender node to get some candidate repair nodes.

6. The sender node selects some candidate repair nodes for the given node, based on the
InfoRP messages it has received from the active repair nodes and responds with a
RPList message that includes a list of available candidate repair nodes.

7. The nodes will then select the best-suited repair node among the candidates by
sending a QUERY message to them.

8. The candidate repair nodes will reply with an ADVERTISE message containing their
TTL values. The receiver node will use these TTL values to select the repair node to
which it will bind. If there are two or more repair nodes having the same TTL value,
round-trip times will be used as a tie-breaker.

9. The node sends a BIND message to the best-suited repair node.
10. The repair node replies to the node with a ACCEPT or REJECT message after

checking its capacity. These procedures are repeated until all the nodes are assimilated
into the logical tree.

Sender node Repair node 1 Repair node 2 Receiver node

1. BEACON

4. ACCEPT or REJECT

3. BIND

8. ADVERTISE

9. BIND

10. ACCEPT or
REJECT

2. InfoRP

5. RPQuery

7. QUERY

6. RPList

1. BEACON 1. BEACON

2. InfoRP

5. RPQuery

6. RPList

7. QUERY

8. ADVERTISE

9. BIND

10. ACCEPT or
REJECT

Fig. 3. Hybrid scheme

The hybrid scheme combines the advantages of both the top-down and bottom-up schemes
by constructing a logical tree with a reduced message overhead within a reasonable time. In
addition, it does not require receiver nodes to have any multicast capability because they do
not need to multicast QUERY messages. The sole drawback of this scheme is that it does not
scale well because it overloads the sender node. As we will see, our new hybrid scheme
solves this problem by distributing some tasks normally handled by the sender node to
specific nodes acting as repair node distributors. It also allows receiver nodes to adaptively
re-select their repair node when they experience unacceptable error recovery delay.

89 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

3. New Hybrid Scheme

All the tree construction schemes we have reviewed so far construct logical repair trees that
mimic the physical topology of the network. This logical tree is independent of the routing
tree at the network layer. But, if the repair node is located at a level even lower than its
receiver node in the physical tree hierarchy, the packet is not likely to be available at the
repair node.

In order to avoid this, we need to construct a logical tree that reflects the physical
topology. This is the natural outcome of a process in which receiver nodes always select the
repair node with the shortest distance among all potential candidates. Locating repair nodes
as close as possible to their receiver nodes offers the advantage that repairs nodes will
answer more rapidly retransmission requests from their receiver nodes. It would be an
optimal solution if we assumed that packet losses are independent events.

This is not the case for most real networks. Packet losses tend instead to happen in bursts
separated by long periods of relatively error-free transmission. There is also a significant
spatial correlation in losses among the receiver nodes in a multicast session. These facts are
discussed in detail in [16]. Consider for instance the case of a repair node receiving its
packets from the sender nodes through the same routers as its receiver nodes. Any failure of
any of these routers will cause the repair node and all its receiver nodes not to receive some
packets.

Our new scheme takes into account these packet loss correlations. In addition, it
constructs a loop-free logical tree in a more scalable manner by decreasing sender node’s
workload. Our objective is to build a logical tree satisfying the following conditions.

• It should be loop-free.
• It should reflect the topology of the network while allowing receiver nodes to select a

new repair node whenever the current one fails to perform its recovery tasks due to
correlated packet losses.

• It should be constructed at least as fast as the fastest existing tree construction scheme
with the smallest possible message overhead.

Our scheme is based on the following assumptions.

• There are NRPD repair node distributors and the repair node distributors are pre-
determined and the sender knows their locations and characteristics.

• RPD is the set of repair node distributor with |RPD| = NRPD.

Like for the repair nodes, we also assume the repair node distributors are pre-determined.
In our scheme, all receiver nodes will obtain the group address of the multicast, the address
of sender node and the list of the repair node distributors. This process can be realized by
using out-of-band mechanism such as a web page announcement.

3.1 Decentralized Sender’s Workload
Our most recent scheme [14] constructs loop-free logical trees with reduced message and

time overhead. At the same time, it requires the sender node to perform too many tasks. In
order to reduce this sender node workload, our new scheme employs dedicated servers called
repair node distributors established for the logical tree construction in the network. Hence,
all tree nodes will contact their repair node distributor rather than the sender node to get their
candidate repair node list.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 90

3.2 Loop-free Logical Tree

Let us assume a receiver-initiated error recovery process that requires receiver nodes to send a
NAK to their repair node every time they detect a packet loss. As a result, a receiver node that
does not experience any packet loss will not send back any feedback to its repair node. Let us
also assume that a repair node will immediately discard any packet that has exceeded its
retention time. In practice, we expect these packets to be expelled whenever the repair node
schedules a buffer sweep.

Observe that this NAK-based buffer management scheme does not guarantee that every
repair node will always have in its buffer all the packets requested by any of its receiver
nodes. In this case, the missing packets should be retransmitted from the upstream repair
nodes, to provide reliable transmission. This will only work if that these upstream repair
nodes have bigger retention times than their downstream repair nodes.

In addition, we need to consider that the possibility of having loop relationships between
repair nodes. If this is the case, the receiver node, which had originally requested the packets,
will never receive them. In the bottom-up scheme, loop relationships can be formed when two
repair nodes simultaneously send a QUERY message to each other. The hybrid scheme can
form these relationships whenever the RPList message includes repair nodes that are still not
attached to the tree. Fig. 4 shows an example of this situation.

j

i

m

l

k j

i

m

l

k

i

m

i

m

i

m

(a) (b) (c) (d) (e)

: Bind : Reject : ACCEPT : Connected

Fig. 4. Example of loop scenario

In our example shown in Fig. 4, (a) the repair node i sends a RPQuery message to the
sender node to get some candidate repair nodes. The sender node will respond to the repair
node i with RPList message including repair node j, k, l as candidate repair nodes. Let us also
assume the repair node m sends a RPQuery message and the sender node’s response includes
repair node i. The repair node m will try to bind to repair node i as its upstream repair node.
(b) Then, the repair node i will accept the repair node m as a downstream repair node. (c) Let
us assume now that it was not possible to attach the repair node i to any of the in repair
nodes j, k, and l because too many nodes already were attached to them. As a result, the
repair node i will receive REJECT messages from all of its candidate repair nodes. In this
case, the repair node i will re-send a RPQuery message. If the sender node’s response
includes repair node m and (d) the repair node i bind to the repair node m, (e) this makes a
loop relationship between repair node i and m.

In order to deal with this problem, we require each repair node to report their status
information to their repair node distributor with a STATUS message when they are attached

91 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

to the tree. The repair node distributor will thus maintain two separate repair node lists. The
first list contains all repair nodes that are attached to the tree. Let us call this the ON_TREE
list. The other list will contain all repair nodes that are not attached to the tree yet. Let us call
this the NON_TREE list. When the repair node distributor receives an InfoRP message from
a repair node, it initially stores the repair node’s information in the NON_TREE list. The
information will be moved to the ON_TREE list when the repair node distributor receives a
STATUS message from the repair node.

When a RPQuery message arrives, the repair node distributor selects some candidate
repair nodes only from ON_TREE repair node list. This candidate list is sent to each repair
node by RPList message. Hence, the RPList message lists current ON_TREE repair nodes
within its domain. As a result, each NON_TREE repair node can only be attached to an
ON_TREE repair node. This feature prevents a loop-relationship between repair nodes,
because there is no loop relationship between the ON_TREE repair nodes.

3.3 Selecting a New Repair Node
All previous schemes have focused on constructing repair trees that mimic the physical
topology of the network. In order to achieve this goal, they require each receiver node to
select its repair node, having a shortest TTL distance among the given candidate repair nodes.
Each receiver node will maintain connection to the repair node until the multicast session
ends.

Unfortunately, transmission errors might sometimes prevent repair nodes to perform their
tasks. In the context of multicast applications, these transmission errors will normally result
from either data link layer errors or router buffer overflows. Since most of today’s networks
have fairly reliable links, packet losses are much more likely to be occasioned by router
buffer overflows. As a result, packet losses will often be strongly correlated. One possible
scenario is that the router intentionally discards some packets when it experiences buffer
overflow than by any other cause. The discarded packets then will not be delivered to the
receiver nodes. Hence, the receiver nodes attached to the router will experience continuous
packet losses.

Unfortunately, these packets will not be available at its repair node’s buffer whenever the
repair node is under same router. This situation frequently occurs in real networks. Therefore,
we have to apply a different repair node selection algorithm to deal with this problem.

Let us assume the receiver nodes and their repair node are connected to the same router.
Since most packet errors will be caused by router buffer overflow, the repair node will rarely
be able to answer retransmissions requests from its receiver nodes. It will have to forward
these requests to its upstream repair node or to the sender node. Hence, receiver nodes will
experience sudden delays. We propose to let each receiver node to change its repair node
whenever it experiences very long packet loss recovery delays. In particular, receiver nodes
that experience sudden long recovery delay should select another repair node for error
recovery.

A straightforward method is to let each receiver node select its new repair node that has
the shortest TTL distance among all its candidate repair nodes. This method is not
satisfactory because the TTL values do not contain location information about repair nodes.
Hence, the receiver node is likely to select a new repair node that is attached to an even
lower level router than its current repair node. A second solution would to let each receiver
node consult the closest router, because this router knows the network topology. However, it
seems not feasible, since it requires all routers to support this functionality for multicast
services.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 92

We decided instead to add this functionality to the repair node distributors. We assume
each InfoRP message contains a TTL distance between the repair node distributor and the
repair node. Each receiver node will send a Switch_Repair message to the repair node
distributor when it experiences a long error recovery delay. The repair node distributor will
then find one or more repair nodes having the shortest TTL distance by referencing the
InfoRP message.

These new repair nodes will be attached to an upper-level router than the current repair
node of the receiver node. This process will be repeated until the receiver nodes show a
reasonable recovery delay, having found an alternative repair node whose packet loss is
independent of the spatial locality of the current repair node’s packet loss. The summary of
the processing step for our new scheme is as follows.

1. The sender node multicasts a BEACON message to indicate tree creation. The
BEACON message contains all necessary information for tree creation such as the
multicast group address, the address of the sender node and a list of repair node
distributors.

2. When the BEACON message arrives, all repair nodes enroll themselves to the repair
node distributor located in their respective domains by sending an InfoRP message.
This InfoRP message contains the repair node’s information, such as its IP address,
and its node ID. The repair node distributor collects that information and adds these
repair nodes to its NON_TREE list of candidate repair nodes.

3. After that, the repair node and the receiver nodes located close to the sender node
reply with a BIND message to the sender node to indicate they want to join the tree. If
the receiver nodes fill up the available capacity of the sender node, the sender node
cannot accept any repair node. As this situation would affect the performance of tree
construction, the sender node needs to restrict the number of receiver nodes it will
accept by defining a receiver node quota. This will set aside a given space only for
repair nodes.

4. If the repair nodes receive a ACCEPT message from the sender node, they will
transmit a STATUS message to their repair node distributor. The repair node
distributor then moves these repair nodes from its NON_TREE to its ON_TREE
candidate repair node list. These candidate repair nodes are now said to be active.

5. Other repair nodes send a RPQuery message to the repair node distributor. Then, the
repair node distributor selects several active candidate repair nodes for each repair
node by consulting its ON_TREE repair nodes list.

6. Other receiver nodes also ask the repair node distributor which repair nodes are active
in the domain when the BEACON message has arrived. Then, the repair node
distributor will respond to the receiver node with a list of active candidate repair nodes.

7. Each tree node now sends a QUERY message to these candidate repair nodes.
8. Then, the candidate repair nodes will respond with an ADVERTISE message. This

message exchange is analogous to the ping mechanism. Each node selects the best
repair node, based on the TTL values from the arrived ADVERTISE messages. If there
are some repair nodes having the same TTL distance, round-trip time is used as a
second metric.

9. After that, they send a BIND message to the best repair node. Finally, the selected
repair node accepts or rejects the node after considering its capacity. These procedures
are repeated until all nodes are attached to the logical tree.

93 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

10. Receiver nodes that suffer from long error recovery delays will send a Switch_Repair
message to their repair node distributor. The repair node distributor will then select a
new repair node for these nodes.

Sender node Repair node 1 Repair node 2 Receiver node

1. BEACON

8. ADVERTISE

9. BIND

10. ACCEPT or
REJECT

2. InfoRP

6. RPList

Repair node
distributor

7. QUERY

3. BIND

4.(a) ACCEPT or
REJECT 4.(b) STATUS

5. RPQuery

1. BEACON 1. BEACON

2. InfoRP

5. RPQuery

6. RPList

7. QUERY

8. ADVERTISE

9. BIND

10. ACCEPT or
REJECT

Fig. 5. New hybrid scheme

This mechanism achieves scalability by distributing the repair node selection task among

the repair node distributors. Note that the processes for step 5 and 6 are performed
simultaneously. The message sequence diagram of our scheme is shown in Fig. 5.

A receiver node will switch repair nodes if the error recovery delay exceeds the predefined
threshold. This threshold value depends on the packet-sending rate of the sender node, the
router’s loss probability due to buffer overflow, and repair node’s packet loss probability due
to the link error. The rule for setting the threshold value depends on the implementation. One
example would be for each repair node to suggest the expected average and maximum error
recovery delay to its receiver nodes based on previous experience on the router. Each
receiver node sets its threshold based on this suggestion. If the error recovery delay exceeds
the threshold, it switches to a different repair node using our dynamic repair node reselection
scheme.

4. Performance

4.1 Message and Time Overhead
In this section, we show the performance of the proposed tree construction scheme in terms
of message and time overhead. We developed a discrete events simulator to test the proposed
scheme. In our simulation, the location of each node is randomly generated in a plane of 35
by 35 elements, where each element of the plane represents the location of one node. This
allowed us to perform all our simulation experiments for up to 1000 nodes. The link distance
between any pair of nodes is given by calculating the TTL link distance between those two
nodes on the plane. We allocate 10% of all the nodes as the repair nodes and each repair

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 94

node allows 25 nodes as its receiver nodes. We set the favorable TTL distance to 5, meaning
that a node is considered located close to the sender node if its TTL distance from the sender
node is less or equal to 5. Additionally, we assigned 5% of all the nodes as the repair node
distributors.

In order to evaluate the message overhead, we counted all generated control messages for
top-down, bottom-up, hybrid and new hybrid schemes. In the bottom-up scheme, the authors
did not define the time for selecting the best repair node. Instead, each receiver node sends a
QUERY message with a TTL value up to the defined maximum. In our simulation, each
receiver node sends a QUERY message with a TTL value equal to 1 and increases it by 1
until it reaches 10. We allow them to select the best repair node from the given repair nodes
list.

We adapt the same simulation environments performed in [12] and replay the simulation.
All of the simulation experiments are performed with SMPL libraries [17]. In order to
evaluate the tree construction time, on running our program, we observed the elapsed time
when all the nodes are attached to the tree.

Fig. 6 illustrates our measurements of the message overhead in the tree construction
procedure for various numbers of nodes in the network. It shows that all hybrid schemes
significantly reduce the number of the control messages for a logical tree construction,
compared with top-down and bottom-up schemes. Fig. 7 shows the simulation result for
different numbers of repair nodes in the network with fixed number of tree nodes. The
performance of the bottom-up scheme becomes better as the number of repair nodes
increases because each receiver node can find its repair node with less QUERY messages. In
contrast, the performance of the top-down scheme shows the opposite result. All hybrid
schemes exhibit performances that are relatively independent of the number of repair nodes
as the message overhead increases very slowly when the number of repair node decreases.

We also evaluated the total tree construction time for all four schemes. These times are
shown in Fig. 8. Note that the performance of the bottom-up and all hybrid schemes is
almost the same, because they all use parallel tree construction mechanisms. This result also
implies that the top-down scheme is not suitable for large-scale networks, whereas our
hybrid schemes perform well regardless of network size.

0

10000

20000

30000

40000

50000

60000

100 500 1000

N RP + N

N
um

be
r o

f c
on

tro
l m

es
sa

ge
s Bottom-Up Scheme

Top-Down Scheme
Hy brid Scheme
New Hy brid Scheme

Fig. 6. Number of control messages for different number of tree nodes

95 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

0

10000

20000

30000

40000

50000

60000

100 200 300

N RP

N
um

be
r o

f c
on

tro
l m

es
sa

ge
s

Bottop-Up Scheme
Top-Down Scheme
Hy brid Scheme
New Hy brid Scheme

Fig. 7. Number of control messages for different number of repair nodes

0

5

10

15

20

25

30

100 500 1000

N RP + N

Tr
ee

 c
on

st
ru

ct
io

n
tim

e

Top-Down Scheme
Hybrid Scheme
New Hybrid Scheme
Bottom-Up Scheme

Fig. 8. Total tree construction time

The new hybrid scheme shows about an 83% reduction of message overhead compared
with the bottom-up scheme, when the number of tree nodes is 1000. Under the same
circumstances, it shows about a 70% reduction compared with the top-down scheme. In
addition, all hybrid schemes construct the logical tree in almost the same time as the bottom-
up scheme. The proposed hybrid scheme carries slightly more messages than the old hybrid
scheme because it introduces new message types including STATUS and Switch_Repair
message. However, this penalty is sufficiently compensated by the loop-free tree that
decentralizes sender workload. It also allows receiver nodes to switch repair nodes for
optimal performance. Fig. 9 shows the effect of repair node distributors on control messages
processed by the sender node by assigning 5% of the nodes as the repair node distributors.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 96

As we can see in Fig. 9, our scheme can significantly reduce the sender workload because
processing of the InfoRP messages and RPQuery messages can be done by some repair node
distributors rather than the sender node.

0

200

400

600

800

1000

1200

0 500 1000

N RP + N

N
um

be
r o

f C
on

tro
l M

es
sa

ge
s

Pr
oc

ce
ss

ed
by

 S
en

de
r N

od
e

Hy brid Scheme

New Hy brid Scheme

Fig. 9. The number of control messages processed by sender node

4.2 Additional Retransmissions
In this section, we focus on how a receiver node does not get affected by an error burst if it
can reselect repair nodes. In our analysis, we show how additional retransmissions can be
reduced when a receiver node can switch repair nodes whenever it experiences a temporal
packet loss.

Since we focus on the behavior of each receiver node, we use a simple network model.
Fig. 10 shows a network topology we use for our analysis. Each topology has a route tree for
packet transmission and a logical tree for packet error recovery. Fig. 10 (a) represents the
logical tree constructed by other schemes. In this topology, repair node B has a shortest TTL
distance (in this example, it is equal to 0). Hence, the receiver node 4, 5, and 6 binds the
repair node B and remains the connection until the multicast session ends. Let us assume that
router B experiences buffer overflow. The router will drop some packets due to overfill until
there is space available after some packets are discarded. As a result, until this time, any new
packets arrivals are subject to overflow. As such any repair node or receiver nodes under this
router will experience continuous packet loss for the series of packets. Consequently, the
requested packets will not be available in the repair node’s buffer, because it also has not
successfully received the packets.

Recall that our new scheme requires the receiver nodes to reselect their repair node when
they experience a sudden recovery delay as shown in Fig. 10 (b). In this example, receiver
node 4, 5, and 6 will switch to repair node A whenever router B losses too many packets.
Since the new repair node A is attached to a different router, it will not be affected by the
behavior of router B. We also assume that underlying reliable multicast protocol uses a
NAK-based buffer management scheme [6][7][8][9][10][11][12][13][14][15], where each
receiver node sends a NAK to its repair node whenever it detects a packet loss. The repair
node will retransmit the packet and discard some packets from its buffer after a time interval.

97 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

Fig. 10. Simple network topology

In addition, we make the following assumptions:

 There are N receiver nodes for each repair node. Hence, each repair node is
responsible for resending the packets requested with NAKs from N receiver nodes.

 Each router node rX has a packet loss probability equal to 1 – rX.
 The probability pi that a node i receives a packet that has gone through routers r1, r2,

…, rM is given by:

 iMi SRp = ,

 where ∏
=

=
M

i
jM rR

1

and 1 – Si is the probability of a packet loss outside a router.

 Each receiver node has an independent NAK timer NAK_TIMERi.
 The repair node has an independent NAK timer as well as a PACKET_DISCARD

timer it uses to decide when to discard packets from its buffer.

Packet losses outside a router include a corrupted packet or lost packet caused by a link
error. In our analysis, we assume a receiver node will not try to fix the error. Instead, it
requests retransmission of the corrupted packet to the repair node.

Let us first consider the scheme placing a repair node B and its N receiver nodes on the
same router and consider the probability that the repair node will not able to retransmit a
requested packet. Let be MB

 the probability that the repair node B does not have the
requested packet in its buffer.

There are two cases to consider. First, the requested packet can be missing because the
repair node B never received it. Hence, additional retransmissions will be required until the
packet arrives at the repair node B. We call this case MB1. The probability P(MB1) will be
given by

P(MB1) = P(the repair node B did not receive the packet)

S

RPA

RPB

RC4

RC6

RC2

RC1

RC3

RC5

RouterA

RouterB

S

RPA

RPB

RC4

RC6

RC2

RC1

RC3

RC5

RouterA

RouterB

(a) Fixed logical tree (b) Dynamic logical tree

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 98

 × P(some receiver nodes did not receive the packet)

= ∏
=

−−
N

i
MBM SiRSR

1
)1)(1((1)

Second, the packet will not be available if the receiver nodes request it after the repair
node B has already discarded it. We call this case MB2. Even then, some packets could still
be available if other NAKs for the same packet arrive before the timer expired. We must also
consider the impact of lost NAKs. If the NAKs of all the receiver nodes that did not receive
the packet fail to reach the repair node B, then the repair node B will discard the packet
before it receives a second request for that packet from one of the receiver nodes. If bi
represents the probability that a NAK sent by receiver node i and received by repair node B
has reached B before the timer expired, this probability P(MB2) will be given by

P(MB2) = P(the repair node B correctly received the packet)
 × P(some receiver nodes did not receive the packet and none of the NAKs sent by
 these receiver nodes reached the repair node on time)

 = ∏
=

−−
N

i
iiMiMBM bSrSRSR

1
))1(1([(])

1
∏
=

−
N

i
iM SR (2)

since the NAK sent by a receiver node i will have to go through router rM.

Hence, a realistic estimate of the packet missing probability P(MB) is given by

P(MB) = P(MB1) + P(MB2) (3)

Observe that in the first case MB1, the repair node B has not received the packet that is
requested by one or more of its receiver nodes. In that case, the repair node B will send a
single NAK to its original sender node and hold on the NAKs for its receiver nodes as it
knows it will be able to service them soon enough. This single NAK from the repair node B
will not be counted as an additional retransmission, because the sender node makes no
distinction between repair node and receiver nodes.

Let us consider now our new scheme, which places the repair node in one router upstream
from its N receiver nodes. This means that the packets sent by the sender node to the repair
node will only have to go through routers r1, r2,…, rM-1. Conversely, the NAKs sent by the
receiver nodes will now have to go through routers rM and rM-1. Hence all receiver nodes will
have a feedback loss probability equal to

(1 – rMrM-1)(1 – Si).

The probability P(MA1) is now given by

 P(MA1) = P(the repair node A did not receive the packet)
 × P(some receiver nodes did not receive the packet)

 = ∏
=

− −−
N

i
iMAM SRSR

1
1)1)(1((4)

Similarly, the probability P(MA2) will be given by

 P(MA2) = P(the repair node A correctly received the packet)
 × P(some receiver nodes did not receive the packet and none of the NAKs sent

99 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

 by these receiver nodes reached the repair node on time)

 = ∏
=

−− −−
N

i
iiMMiMAM bSrrSRSR

1
11))1(1([(])

1
∏
=

−
N

i
iM SR (5)

As before, the packet missing probability P(MA) will be given by

P(MA) = P(MA1) + P(MA2) (6)

Fig. 11 compares the two schemes and shows how the number of receiver nodes per repair
node affects the probability of not finding a requested packet in the repair node buffer.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50 60 70 80 90 100

The number of receiver nodes

Pa
ck

et
 m

is
si

ng
 p

ro
ba

bi
lit

y

P(MB1) P(MB2) P(MB) P(MA1) P(MA2) P(MA)

Fig. 11. Missing packet probability

The following parameters are used for our analysis. First, we set the probability bi for each

receiver node i to 0.8, meaning that each repair node keeps in its buffer recently received
packets for a time sufficient to handle 80 percent of the retransmission requests. If we apply
our heuristic buffer management scheme [5], we can increase the probability, because some
unreliable nodes will send delayed ACKs. In this simulation, we are assuming the
conventional NAK-based scheme and the NAK transmission delays are roughly distributed
according to a normal law. Therefore, the repair node keeping packets in its buffer for the
average NAK transmission delay of its receiver node plus one standard deviation should be
able to answer more than 80 percent of all packet retransmission requests.

Second, there are up to 100 receiver nodes. Each receiver node i has a packet loss
probability 1– RM Si between 0.05 and 0.2. And the repair node A and repair node B have
packet loss probabilities, 1– RM-1 SA, and 1– RM SB, (0.025 and 0.05) respectively assuming
repair node A is under a more reliable router experiencing less loss and also that router A is
independent of router B’s spatial locality packet losses.

We also estimated that repair node B experiences a common packet loss, either due to
buffer overflow or link error as all of its receiver nodes in its local group as long as the loss
is universal in the group. This is a rather conservative estimate given that repair node B and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 100

all its receiver nodes are affected to same router B and are thus equally affected by any
failure of router B to forward a packet.

The results show that the repair node B will require a lot of additional retransmissions
either from its upstream repair nodes or sender node, because it will not have in its buffer
many packets that can be requested by any of its receiver nodes. Even though the P(MB2)
decreases with the group size N, the P(MB1) tends to increase when the same group size N
increases. As a result, the comprehensive performance of the previous schemes is always
significantly worse than our scheme.

On the other hand, repair node A does not require many additional retransmissions, since it
has an independent spatial locality of packet losses to its receiver nodes. These results
indicate that our scheme provides a faster error recovery for receiver nodes and reduces
unnecessary network traffics between the repair nodes. As shown in Fig. 6 and Fig. 8, our
scheme constructs this logical tree with almost the same message overhead as the scheme
requiring the smallest number of messages while being as fast as the fastest scheme.

4.3 Error Recovery Delay
Additional retransmissions directly affect error recovery delay for the receiver nodes. They
increase the error recovery delay since the repair node cannot retransmit the requested packet
immediately from its buffer. In order to show that the dynamic repair node reselection allows
receiver nodes to alleviate the problem, we evaluate the average recovery delay for each
receiver node and compare the results with those of the old schemes that did not have a
dynamic repair node reselection. To evaluate the minimum delay difference, we assume that
the additional retransmission from repair node B is always correctly transmitted from the
repair node A. Otherwise, the difference would be more prominent. We also assume that the
round trip time between each network entity is 30ms and the sender node transmits 10,000
multicast packets, which roughly represents a transfer of 10 megabytes with a packet size
equal to 1 kilobyte. Fig. 12 shows the difference in terms of error recovery delay when the
receiver nodes are attached under repair node A and B.

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

The number of receiver nodes

D
iff

er
en

ce
 o

f e
rro

r r
ec

ov
er

y
de

la
y

(m
s)

Fig. 12. Difference of error recovery delay

101 Baek et al.: A Scalable Recovery Tree Construction Scheme Considering Spatial Locality of Packet Loss

5. Conclusion

We have described how the error recovery tree is constructed. There were three approaches
for a logical tree construction: top-down, bottom-up, and hybrid scheme. We have suggested
an improved hybrid approach eliminating many limitations of previous schemes.

However, we need to consider packet losses that tend to occur in bursts separated by long
periods of relatively error-free transmission. There is also a significant spatial correlation in
loss among the receiver nodes in a multicast session. In order to consider these properties,
we have proposed a scalable recovery tree construction scheme. Our scheme achieved this
goal (1) by distributing some of the workload of the sender node sender’s workloads to
nodes acting as repair node distributors and (2) by requiring receiver nodes to select a new
repair node when they experience unacceptable error recovery delays. We defined some
conditions for a well-organized tree. Simulations results indicate that the tree, constructed by
our new scheme, satisfy these conditions. First, our new hybrid scheme constructs a loop-
free logical tree within a reasonable time. Second, our scheme performs the same regardless
of the network size and its message overhead is reasonable. Finally, our tree is adaptive to
correlated packet losses. As a result, our new scheme can combine the advantages of
previous schemes. We believe that this process makes the logical tree stable and widely
suitable when it is applied to the multicast services.

Acknowledgement

This work was supported in part by the National Science Foundation under grant CCR-
9988390.

References
[1] H. Cho, S-H Lee, Y Choi, F. Yu and S-H Kim, “Efficient Overlay Multicast Protocol in Mobile

Ad hoc Networks,” In Proc of the 65th IEEE Vehicular Technology Conference, pp. 51-55, Apr.
2007.

[2] L. Lao, J-H. Cui, M. Gerla and S. Chen, “A Scalable Overlay Multicast Architecture for Large-
Scale Applications,” IEEE Transactions on Parallel and Distributed Systems, 18(4), pp. 449-459,
Apr. 2007.

[3] D-N. Yang and W. Liao, “On Bandwidth-Efficient Overlay Multicast,” IEEE Transactions on
Parallel and Distributed Systems, 18(11), pp. 1503-1515, Nov. 2007.

[4] J. S. Baek and J. F. Pâris, “A Buffer Management Scheme for Tree-Based Reliable Multicast
Using Infrequent Acknowledgments,” In Proc. of the 23rd IEEE International Performance
Computing and Communications Conference, pp. 13-20, Apr. 2004.

[5] J. S. Baek and J. F. Pâris, “A Heuristic Buffer Management and Retransmission Control Scheme
for Tree-Based Reliable Multicast,” ETRI Journal, 27(1):1-12, Feb. 2005.

[6] S. Floyd et al., “A Reliable Multicast Framework for Lightweight Sessions and Application-
Level Framing,” IEEE/ACM Trans. on Networking, 5(6):784-803, Dec. 1997.

[7] T. Gemmel et al., “The use of Forward Error Correction in Reliable Multicast,” IETF draft-ietf-
rmt-info-fec-02.txt, Oct. 2002.

[8] M. Kadansky et al., “Reliable Multicast Transport Building Block: Tree Auto-Configuration,”
IETF Internet Draft, draft-ietf-rmt-bb-tree-config-01.txt, Nov. 2000.

[9] J. C. Lin, S. Paul, “RMPT: A Reliable Multicast Transport Protocol,” In Proc. of the 15th IEEE
Conference on Computer Communications, pp. 1414-1424, Mar. 1996.

[10] B. Whetten and G. Taskale, “The Overview of Reliable Multicast Transport Protocol II,” IEEE
Networks, 14(1):37-47, Jan.-Feb. 2000.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 102

[11] Z. Xiao, K. P. Birman and R. Renesse, “Optimizing Buffer Management for Reliable Multicast,”
In Proc. of the 2002 International Conference on Dependable Systems and Networks, pp. 187-
202, June 2002.

[12] S. J. Koh et al., “Configuration of ACK Trees for Multicast Transport Protocols,” ETRI Journal,
23(3):111-120, Sep. 2001.

[13] R. Yavatkar, J.Griffioen and M. Sndan, “A reliable dissemination protocol for interactive
collaborative applications,” In Proc. of the ACM 1995 Multimedia Conference, pp. 333-344, Nov.
1995.

[14] J. S. Baek and E. J. Lee, “An Improved Logical Tree Construction Scheme for Tree-Based
Reliable Multicast,” In Proc. of the 2003 International Conference on Telecommunication
Systems, pp. 110-121, Oct. 2003.

[15] S. K. Kasera, J. Kurose and D. Towsley, “Buffer Requirements and Replacement Polices for
Multicast Repair Service,” In Proc. of the 2nd Network Group Communication Workshop, pp. 5-
14, Nov. 2000.

[16] M. Yajnik, J. Kurose and D. Towsley, “Packet Loss Correlation in the Mbone Multicast
Network,” In Proc. of the IEEE Global Internet Conference, pp. 94-99, Nov. 1996.

[17] M. MacDouall, “Simulation Computer Systems, Technologies and Tools,” MIT Press, 1987.

Jinsuk Baek is Assistant Professor of Computer Science at the Winston-Salem State
University (WSSU), Winston-Salem, NC. He is the director of Network Protocols
Group at the WSSU. He received his B.S. and M.S. degrees in Computer Science and
Engineering from Hankuk University of Foreign Studies (HUFS), Korea, in 1996 and
1998, respectively and his Ph.D. in Computer Science from the University of Houston
(UH) in 2004. Dr. Baek was a post doctorate research associate of the Distributed
Multimedia Research Group at the UH. He acted as a consulting expert on behalf of
Apple Computer, Inc in connection with Rong and Gabello Law Firm which serves as
legal counsel to Apple computer. His research interests include scalable reliable
multicast protocols, mobile computing, network security protocols, proxy caching
systems, and formal verification of communication protocols. He is a member of the
IEEE.

Jehan-François Pâris is Professor of Computer Science at the University of
Houston. He was formerly faculty at Purdue University and the University of
California, San Diego. Dr. Pâris received his Ingénieur Civil degree from the
Université Libre de Bruxelles, Belgium, his Diplôme d'Etudes Approfondies from the
Université de Paris VI, France, his Licence et Maîtrise en Informatique from the
Facultés Universitaires de Namur, Belgium and his Ph. D. in EECS from the
University of California, Berkeley. His research interests include memory hierarchies,
scalable reliable multicast protocols, distribution protocols for video-on-demand, and
distributed systems security. He is a member of the ACM and a senior member of the
IEEE.

