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Abstract 
 

In this paper, we propose an expanded patching technique in order to reduce the server 
network bandwidth requirements to support true VoD services in VoD Systems. Double 
Patching, which is a typical multicast technique, ensures that a long patching stream delivers 
not only essential video data for the current client but also extra video data for future clients. 
Since the extra data may include useless data, it results in server network bandwidth wastage. 
In order to prevent a server from transmitting useless data, the proposed patching technique 
uses a new kind of stream called a linking stream. A linking stream is transmitted to clients 
that have received short patching streams, and it plays a linking role between a patching stream 
and a regular stream. The linking stream enables a server to avoid transmitting unnecessary 
data delivered by a long patching stream in Double Patching, so the server never wastes its 
network bandwidth. Mathematical analysis shows that the proposed technique requires less 
server network bandwidth to support true VoD services than Double Patching. Moreover, 
simulation results show that it has better average service latency and client defection rate 
compared with Double Patching. 
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1. Introduction 

Video-on-Demand (VoD) services, which transmit multimedia contents according to client 
requests, have become some of the most popular real-time multimedia applications available 
via the Internet. In a traditional client/server VoD system, if a client requests a video from a 
VoD server, the server accesses the video data in storage and transmits it to the client using its 
network bandwidth. Since the network bandwidth of a VoD server is limited, it is difficult to 
serve all clients immediately if many clients request videos asynchronously. In order to 
increase the number of clients for which a server provides true VoD (TVoD) services with 
limited server network bandwidth, multicast techniques such as Patching [1] and Double 
Patching [2] have been proposed. In unicast techniques, a server transmits a dedicated video 
stream for each client. Multicast techniques, however, offer efficient one-to-many data 
transmission by making multiple clients share the same video stream. 

Patching is a multicast technique that enables a server to transmit only the beginning of the 
entire video data to clients and ensures that clients download the rest data of the video from an 
ongoing stream. By making multiple clients share an ongoing stream, Patching can reduce 
server network bandwidth requirements for TVoD services. Double Patching [2] ensures that a 
long patching stream delivers not only essential data for the current client but also extra data 
for future clients, so it significantly reduces the total amount of video data delivered by all 
streams. 

In this paper, we propose an expanded patching technique using four types of streams 
(XP4S) to reduce server bandwidth requirements for TVoD services. In the proposed XP4S, 
when a server completes transmitting a patching stream, it initiates a linking stream for the 
clients that have received their respective short patching streams and shared the same patching 
stream. Since the server can compute the exact amount of data that the linking stream has to 
deliver by using the arrival time of the previous client request, the linking stream never 
delivers useless video data, unlike a long patching stream in Double Patching. Mathematical 
analysis using the performance model for Double Patching shows that the proposed technique 
requires less server network bandwidth to support true VoD services than Double Patching. 
We conduct a simulation study to compare the performance of our technique with that of 
Double Patching. The simulation results show that the proposed XP4S always improves the 
average service latency and client defection rate. 

The remainder of this paper is organized as follows. We describe related multicast 
techniques for VoD services in section 2, and propose the XP4S in section 3. In section 4, we 
evaluate the performance of the proposed XP4S via mathematical equations derived to 
estimate server bandwidth requirements for TVoD services. In section 5, we compare the 
performance of the proposed XP4S with that of Double Patching by a simulation study and 
then conclude the paper in section 6. 

2. Related Works 
Recently, various techniques that make multiple clients share a stream have been proposed. 
Pyramid broadcasting [3], Skyscraper broadcasting [4], and Pagoda broadcasting [5] are 
techniques that repeatedly broadcast videos for large-scale VoD services. These techniques 
divide server network bandwidth into n logical channels, divide a single video file into n 
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different frame sizes, and repeatedly broadcast each frame on each assigned channel. By 
ensuring that the first frame has the smallest size and then ensuring that the next frame has a 
bigger size, they confine the worst client service latency to the size of the first frame regardless 
of the number of video requests. These broadcasting techniques, however, can only be used for 
very popular videos. In order to ensure that service latency is short or zero for all videos 
regardless of their popularity, video requests must be scheduled immediately [2]. 

Unicast techniques that transmit a new stream whenever a client requests a video are very 
simple and have no service latency. However, if the number of client requests increases 
rapidly, a server will suffer from the network bandwidth bottleneck. In order to alleviate the 
problems of unicast techniques, various multicast techniques such as Batching [6], 
Piggybacking [7], Patching [1], Optimal Patching [8], Scaling Patching [9], and 
Channel-Reservation Patching [10] have been proposed. Batching [6] gathers client requests 
for the same video during a period called a batching period, and then multicasts a single stream 
to the gathered clients. Batching enables a server to efficiently use limited server network 
bandwidth, but it cannot support TVoD services because it makes requests wait until a 
batching period ends. 

2.1 Patching 
Patching [1] enables clients to be served with no service latency by making them share an 
ongoing stream, so it can reduce server network bandwidth requirements for TVoD services. 
Multicast techniques [1][2][8][9][10] such as Patching assume that a client can download up 
to two streams simultaneously; it has two loaders that download data from streams and store it 
in its local buffer, and it has a video player that plays back the buffered data sequentially. 

When a server receives the first client request for a video, it schedules a regular stream 
(R-stream) to deliver the entire data for the video. And then, if the server receives a new client 
request for the same video, it investigates the skew [1], which is the interval between the 
starting time of the latest R-stream and the current time, in order to schedule a new stream for 
the client request. If the skew exceeds a predefined time threshold, called a patching window, 
it schedules another R-stream to deliver the entire video data. Otherwise, it makes the client 
share the latest R-stream, so it schedules a new patching stream to deliver only the beginning 
of the entire video data that will be played back during the subsequent skew period. That is, the 
patching stream delivers the data that the new client has not received when the client starts 
receiving the R-stream. In this case, while the video player plays back the data, loader L1 
downloads from the patching stream and loader L2 downloads the R-stream and stores the data 
in its local buffer. After the video player finishes playing back the patching stream, it 
continues to play back the buffered data and loader L2 continues to download the R-stream 
simultaneously. By this means, the client can continuously play back the entire video data. 

Since a server transmits an R-stream or a patching stream as soon as a request arrives, 
Patching can support TVoD services; since it enables multiple clients to share an R-stream by 
multicasting, it can significantly reduce server network bandwidth requirements for TVoD 
services. Optimal Patching [8] shows that the size of a patching window influences average 
server bandwidth requirements for TVoD services, and develops a performance model to 
derive the optimal patching window size. 

2.2 Double Patching 
We assume that the length of a stream means its playback time. As the skew between the latest 
R-stream and a new request becomes longer, the length of a patching stream also becomes 
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longer. In order to shorten the length of a patching stream, Double Patching introduces a long 
patching stream (L-stream). A client receiving an L-stream has to share the latest R-stream; 
the L-stream can be shared with future clients. It uses two time thresholds: a multicast window 
and a patching window. The multicast window is the minimum interval between two 
sequential R-streams; the patching window is the minimum interval between two sequential 
L-streams. We will use wm to denote the size of the multicast window and wp to denote the size 
of the patching window. The patching stream in Optimal Patching is called a short patching 
stream (S-stream) in Double Patching. The algorithm that a server uses to schedule a new 
stream for the current client is as follows: 
• If the skew between the current client and the latest R-stream is greater than wm, it 

schedules a new R-stream. 
• Otherwise, it schedules a new L-stream /S-stream as follows: 

- If the skew between the current client and the latest R-stream/L-stream is less than or 
equal to wp, it schedules a new S-stream to deliver the beginning of the entire video 
data that the client has not received from the latest R-stream/L-stream. In this case, to 
play back the entire video data, the client plays back data in the following order: 
S-stream, L-stream if the client has to share it, and R-stream. 

- Otherwise, it schedules a new L-stream to deliver the beginning of the video that the 
client has not received from the R-stream and the following data of the video that will 
be continuously played back during 2⋅wp time units after playback of the beginning. In 
this case, the client first plays back the data from the L-stream and then the data from 
the R-stream. 

Fig. 1 shows how to schedule streams for client requests in Optimal Patching and Double 
Patching. As shown in Fig. 1, the length of an L-stream is (2⋅wp) longer than that of a 
corresponding patching stream in Optimal Patching. However, because wp is much smaller 
than that in Optimal Patching, S-streams that are scheduled for clients sharing the same 
L-stream become very short. As a result, Double Patching can decrease the total amount of 
transmitted video data by 50% compared with Optimal Patching, and significantly reduce the 
server network bandwidth requirements [2].  

3. Expanded Patching Technique using Four Types of Streams  
We will use D[t1, t2] to denote the video data played back from time t1 to t2 assuming that the 
video is played back from time 0. We assume that the amount of data delivered by a stream 
means the playback time of the data. We will use wm and wp to denote the size of a multicast 
and patching window respectively. Multicast techniques such as Patching are applied to the 
requests of the same video. The server network bandwidth requirement for a server having 
many videos is the total bandwidth requirements for all videos. Therefore, we assume that the 
VoD servers discussed in this paper have only one video in order to simplify the problem, as in 
many patching techniques including Double Patching.  

3.1 Motivation and Contribution 
An L-stream plays an important role in shortening the length of an S-stream. An L-stream 
includes the beginning of the entire video data in order to cover the skew between the latest 
R-stream and the current client, and we will call this part essential data. In addition to essential 
data, an L-stream includes the following data that will be played back during 2⋅wp time units 
after completion of the essential data, and we will call this extra data. The essential data of an 
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L-stream is for the current client; the extra data is for the future clients that have to share the 
L-stream.  
 

 

(a) Streams in Optimal Patching 
 

 

(b) Streams in Double Patching and continuous playback at the client station of request r4 

Fig. 1. Optimal Patching vs. Double Patching 
 

The reason why an L-stream has to deliver extra data is as follows. Let's consider clients that 
receive their respective S-streams and have to share the same L-stream and the same R-stream 
initiated at tL and tR respectively. The last possible client c is the client whose request arrives at 
the end of the patching window of the L-stream tL+wp such as request r4 in Fig. 1(b). Playing 
back the S-stream, client c downloads the L-stream. Client c cannot download the R-stream 
during the time it is downloading the S-stream and the L-stream, since it can download only 
two streams simultaneously, as described in section 2.1. As a result, it cannot download the 
R-stream during wp. Moreover, since the request of client c arrives at the server wp time units 
later after the L-stream is initiated, it has already missed the data delivered by the R-stream 
from time tL to tL+wp. In order to ensure that client  downloads the missing data, Double 
Patching makes the L-stream deliver the extra data D[(tL-tR), (tL-tR)+2⋅wp] as well as the 
essential data D[0, (tL-tp)]. D[7, 13] of the L-stream in Fig. 1(b) corresponds to extra data. 

The extra data of the L-streams, however, has following problems. Unless the last request 
within the patching window of an L-stream arrives exactly at the end of the window, the extra 
data always includes useless data. Every L-stream always delivers extra data, which are 2⋅wp 
units long, for any possible future request arriving at the end of the patching window of the 
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L-stream. However, the exact data that a client requesting a video at t0 (tL<tc≤tL+wp) cannot 
download from the latest R-stream is D[(tL-tR), (tL-tR)+2⋅(tc-tL)]. Therefore, if the arrival time 
of the last request within the patching window of the L-stream is tc, the end of the extra data 
D[(tL-tR)+2⋅(tc-tL), (tL-tR)+2⋅wp] results in server network bandwidth wastage. In the worst case, 
the entire extra data becomes useless if there is no request within the patching window of the 
L-stream. 

Therefore, we propose a multicast technique that completely prevents a server from 
transmitting unnecessary video data and uses four types of streams: regular stream (R-stream), 
patching stream (P-stream), short patching stream (S-stream) and linking stream (LK-stream). 
The proposed patching technique is based on the following: at the end of the patching window 
of an L-stream, a server can identify the request arrival times of all clients sharing the 
L-stream; the transmission starting time of the L-stream’s extra data is always after the end of 
the patching window of the L-stream. This means that the server can determine the exact 
amount of extra data for clients sharing the same L-stream, based on their request arrival times 
when transmission of the essential data is completed.  

Based on the above, the proposed technique ensures that an L-stream delivers only essential 
data, so we will call this stream a patching stream instead of a long patching stream. Later, 
when the patching stream (P-stream) is completed, it schedules a new stream, called a linking 
stream, in order to deliver the necessary data for all the clients sharing the P-stream. Since an 
LK-stream never delivers unnecessary data, our technique completely prevents server network 
bandwidth wastage caused by the extra data of an L-stream. As a result, server network 
bandwidth requirements for TVoD services can be reduced. Using the same server network 
bandwidth, our technique always has better average service latency and client defection rate 
compared with Double Patching. 

3.2 Proposed XP4S 
An R-stream, an S-stream, wm, and wp in the proposed XP4S, have the same meanings as in 
Double Patching. A P-stream is scheduled in the same manner that Double Patching schedules 
an L-stream, except that it does not deliver extra data. In other words, a P-stream delivers the 
beginning of the entire video data that the current client has not received from the latest 
R-stream and it does not deliver extra data for possible future clients. If a client request is 
within the patching window of the latest R-stream/P-stream, an S-stream is scheduled to make 
it share the R-stream/P-stream. Let's consider a client c for which a new S-stream is scheduled 
and which has to share the latest P-stream and the latest R-stream. As described in section 3.1, 
since client c has to download the P-stream while playing back the S-stream, it cannot 
download the R-stream until it finishes downloading the S-stream. As a result, it misses the 
intermediate part of the R-stream delivered from the starting time of the P-stream to the ending 
time of the S-stream. It is an LK-stream that delivers such missing data and plays a linking role 
between the P-stream and the R-stream in order to enable client c to play back the entire video 
data continuously. Clients that have to download four types of streams such as client c play 
back the entire video in the following order:S-stream, P-stream, LK-stream and R-stream.  

In XP4S, a VoD server can multicast a single LK-stream to all clients that have received 
their respective S-streams and shared the same P-stream. The reason is as follows. The shortest 
length of a P-stream is wp+1 as with the length of the P-stream for request r2 shown in Fig. 4. 
The largest skew between a P-stream and the last client that can share it is wp. Therefore, when 
a server completes transmitting a P-stream, it already knows the arrival time of the last client 
sharing the P-stream. All clients sharing a P-stream have to receive their own LK-streams 
when the P-stream is completed. The beginning data of the LK-streams for the clients is the 
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same; the ending data is different. Therefore, the data delivered by the LK-stream for the last 
client includes all the data. Thus, it is certain that a server can schedule an LK-stream by using 
the request arrival time of the last client within the patching window of a P-stream after the 
P-stream is completed, and it can multicast the LK-steam to all the clients within the patching 
window of the P-stream. In order to guarantee that a client can play back an entire video 
continuously, a server must initiate an LK-stream as soon as it completes the related P-stream. 
It can be guaranteed by allocating only the channel used to transmit the related P-stream to the 
LK-stream immediately after completion of the P-stream. 

Fig. 2 shows the stream-scheduling algorithm used by a server in XP4S. The server uses this 
algorithm to schedule an R-stream, P-stream, S-stream, or LK-stream in the following cases: it 
completes a P-stream; it has a free channel when a new request arrives; it has at least one video 
request in its waiting queue when a channel becomes free. 

 

• t: current time the server schedules a new stream for clients that have requested video V 
• l: length of video V 
• Client: list of clients for which the server has to schedule a new stream at time t 
• tR and tP: starting times of the latest R-stream and the latest P-stream respectively 
• tR(Pt): starting time of the latest R-stream when a P-stream is initiated at time T 
• tS(Pt): starting time of the S-stream for the last client sharing the P-stream initiated at time T 
• CR, CP and CS: channels transmitting an R-stream, a P-stream and an S-stream respectively 
• Cfree: free channel to be used to transmit a new stream 
• RT-list, PT-list and ST-list: lists of clients to which the server has to multicast the R-stream, the 

P-stream, and the S-stream initiated at time T respectively 
• LKT-list: list of clients to which the server has to multicast an LK-stream as soon as it completes 

transmitting the P-stream initiated at time T 
• service(CR, CP, CS, lLK): service token that the server sends to Client, where CR, CP and CS are 

channels transmitting an R-stream, a P-stream, and an S-stream, respectively, and lLK is the length 
of an LK-stream to be transmitted on channel CP 

 
if (P-stream, initiated at T, on channel C is completed and LKT–list ≠ null) { 

Schedule a new LK-stream to deliver D[(T-tR(PT)), (T-tR(PT))+2⋅(tS(PT)-T)]; 
Multicast the LK-stream to LKT-list on channel C; 

} 
else if (there is no R-stream or (t-tR) > wm) { 

Schedule a new R-stream to deliver D[0, l]; 
Set Rt-list=Client, CR=Cfree and tR=t; 
Send service(CR, null, null, null) to Client; 
Multicast the R-stream to Rt-list on channel Cfree; 

} 
else if ((t-tR) ≤ wp) { 

Schedule a new S-stream to deliver D[0, t-tR]; 
Set CS = Cfree and St-list = Client; 
Append Client to listR

Rt
− ; 

Send service(CR, null, CS, null) to Client; 
Multicast the S-stream to St-list on channel Cfree; 

} 
else if ((t-tP) ≤ wp) { 

Schedule a new S-stream to deliver D[0, t-tp]; 
Append Client to listR

Rt
− , listP

Rt − and listLK
Rt − ; 

Set CS = Cfree and tPt
PtS =)( ; 
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Set St-list = Client; 
Send service(CR, CP, CS, 2⋅(t-tP)) to Client; 
Multicast the S-stream to St-list on channel Cfree; 

} 
else { // (t-tP) > wp 

Schedule a new P-stream to deliver D[0, t-tR]; 
Set Pt-list = Client; 
Set CP = Cfree, tP = t and tR(Pt) = tR; 
Append Client to listR

Rt − ; 
Send service(CR, CP, null, null) to Client; 
Multicast the P-stream to Pt-list on channel Cfree; 

} 

Fig. 2. Server's stream-scheduling algorithm in XP4S 
 
When a client receives a service token service(CR, CP, CS, lLK) from a server, it plays back a 

video using the algorithm shown in Fig. 3. We assume that each client has two loaders and a 
video player having responsibility for downloading video streams and sequentially playing 
back buffered video data, respectively, as described in section 2.1. 

 
if (CP = CS = lLK = null ) { 

While loader L1 downloads data from the R-stream on channel CR, the video-player plays it 
back simultaneously; 

} 
else if (CP ≠ null and CS = null) { 

While loader L1 downloads data from the P-stream on CP and the video-player plays it back 
simultaneously, loader L2 downloads data from the R-stream on CR and stores it in its local 
buffer; 
After the video-player finishes playing back the P-stream, it plays back the buffered data 
sequentially; 

} 
else if (CS ≠ null and CP = null) { 

While loader L1 downloads data from the S-stream on CS and the video-player plays back the 
data simultaneously, loader L2 downloads data from the R-stream on CR and stores it in its local 
buffer; 
After the video-player finishes playing back the S-stream, it plays back the rest data of the video 
in the buffer sequentially; 

} 
else if (CS ≠ null and CP ≠ null) { 

While loader L1 downloads data from the S-stream on CS and the video-player plays it back 
simultaneously, loader L2 downloads data from a P-stream on CP and stores it in its local buffer;
When loader L1 completes downloading the S-stream, it switches to the R-stream on CR and 
stores the data in its local buffer; 
When loader L2 completes downloading the P-stream, it continues to download the LK-stream 
on CP and stores it in its local buffer; 
When the video-player finishes playing back the S-stream, it plays back the rest data of the 
video in the buffer sequentially; 

} 

Fig. 3. Client's video playback algorithm in XP4S 
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Fig. 4 shows four different streams for requests r1, r2, r3 and r4 in XP4S. Since wp=6, the 
server schedules a P-stream to deliver D[0, 7] for r2. Since r4 arrives within the patching 
window of the P-stream, it schedules an S-stream to deliver D[0, 2]. When it completes 
transmitting the P-stream at time 14, it knows that the last request within the patching window 
of the P-stream is r4. Therefore, it multicasts an LK-stream that delivers D[7, 11] to the clients 
of r3 and r4. The client of r3 plays back D[0, 1] from the S-stream, then D[1, 7] from the 
P-stream, then D[7, 0] from the LK-stream, and finally D[9, l] from the R-stream. 

 

 

Fig. 4. Streams scheduled in XP4S and continuous playback of a video at client stations 

4. Performance Evaluation 
In this section, we evaluate the performance of the proposed XP4S based on the analytical 
performance model developed by Cai et al. in [2]. This model estimates the average server 
bandwidth required to support TVoD services when a server has a single video and client 
request arrivals are generated according to a Poisson process. In [2], an R-stream and the 
following L-streams and S-streams initiated before the next R-stream form a multicast group. 
Since an LK-stream, if necessary, is initiated as soon as the related P-stream is completed, we 
include the LK-streams initiated immediately after the P-streams in a multicast group in the 
same group. The S-streams initiated within the patching window of the same stream form a 
patching group, as shown in Fig. 5. 
 

 

Fig. 5. Multicast and patching groups 
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Let DR denote the amount of data delivered by an R-stream in a multicast group. Let DP, 
DLK and DS denote the average total amount of data delivered by all P-streams, LK-streams and 
S-streams in the same multicast group, respectively. If v is the video playback rate, λ is the 
arrival rate of client requests, l is the length of the video (total playback time) and the time unit 
is the second, DR, DP, DLK and DS can be calculated as follows. Since one multicast group has 
only one R-stream,  

DR = v⋅l. 

The average request arrival interval is I=1/λ and the average P-stream interval is IP=wp+1. 

The average number of P-streams in one multicast group is ⎥
⎦

⎥
⎢
⎣

⎢
=

P

m
P I

wC . Since the amount of 

data delivered by a P-stream is equal to the skew between the latest R-stream and the P-stream, 

∑
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⋅⋅=
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n
PP InvD

1
)( . 

The data delivered by an LK-stream is determined by the arrival time of the last request 
within the patching window of a P-stream. Since the average number of requests arriving 
within the patching window of a P-stream initiated at tP is ⎥
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⎥
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Since the average number of LK-streams in one multicast group is equal to the number of 
P-streams in the group, it follows that  

)2( I
I

w
CvD p

PLK ⋅⎥
⎦

⎥
⎢
⎣

⎢
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On average, a multicast group has CP+1 patching groups. Since the average total amount of 
data delivered by all S-streams in a patching group is the same, we consider the S-streams 
initiated from time 0 to wp assuming that an R-stream is initiated at time 0. The length of data 
delivered by one of the S-streams is equal to the skew between the R-stream and the S-stream. 
If k S-streams are initiated from time t to t+Δt and we assume that Δt is negligible, we can say 
that the average total amount of data delivered by k S-streams is approximately v⋅t⋅k. If we let 
P(k, T) denote the probability that k S-streams are initiated during interval T, the average total 
amount of data delivered by the S-streams initiated from time t to t+Δt is ∑

∞

=

Δ⋅⋅⋅
1

),(
k

tkPktv . If 

we divide the patching window into 
⎥
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⎥
⎢
⎣
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patching group in a multicast group includes the S-streams initiated during wm-CP⋅IP before the 
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multicast window ends. The average total amount of data delivered by the S-streams in the last 

patching group is ∑ ∑
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),( . Therefore, the average total amount of data 

delivered by all S-streams in a multicast group is 
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Since we assume that client request arrivals are generated according to a Poisson process, 

!
)(),(
k

eTTkP
Tk λλ −

= . The average number of requests arriving during T is 

∑
∞

=

⋅=⋅
1

),(
t

TTkPk λ . If we set Δt equal to 1 second, it follows that 

∑∑
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The average R-stream interval, or the average multicast group interval, is wm+I. Therefore, 
we can estimate the average server bandwidth required to support TVoD services in the 
proposed XP4S as follows:  

Iw
DDDD

B
m

SLKPR
SXP +

+++
=4 .                                           (1) 

L-streams are scheduled in the same manner as P-streams, but they always deliver extra data as 
well as essential data. If DL is the average total amount of data delivered by all L-streams in a 
multicast group, then 

∑
=

⋅+⋅⋅=
PC

n
pPL wInvD

1
)2( . 

Therefore, we can estimate the average server bandwidth required to support TVoD services in 
Double Patching as follows: 

Iw
DDD

B
m

SLR
DP +

++
= .                                                (2) 

From equation (1) and (2), we can find the optimal wm and wp for deriving the minimum 
network bandwidth B, and then use this value as the server network bandwidth. In order to 
compare the performance of the proposed XP4S with that of Double Patching, we use B as a 
performance metric. In order to find the performance gain of our XP4S compared to Double 
Patching, we first obtain the values of wm and wp for deriving B for Double Patching by 
equation (2). Then, we use the obtained values as the values of wm and wp for the XP4S. Table 
1 shows the parameters we used in our performance evaluation. 
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Table 1. Parameters used in the performance evaluation 
Parameter Range 

Video length (l) 10~90 minutes 

Client buffer size (b) 5~25 minutes 

Average request arrival interval (I) 5~80 minutes 

Video playback rate (v) 1.5 Mbps 

 
Fig. 6 shows the effect of the average request arrival interval on B when l=90 and b=10 or 

20. The proposed XP4S reduces B by 8.2% and 11.4% on average when b=10 and b=20, 
respectively. 

 

 

Fig. 6. Average request arrival interval vs. server network bandwidth requirement (B) for TVoD 
services 

 
Fig. 7 shows the effect of the video length on B when b=10 and I=20 or 60. The longer the 

video length is, the larger the number of streams delivering data simultaneously at a given 
point of time. Thus, as the video length becomes longer, B becomes larger. As shown in Fig. 7, 
XP4S reduces B by 12.9% and 13.7% on average when I=20 and I=60, respectively. 

Finally, Fig. 8 shows the effect of the client buffer size on B when I=90, I=20 or 40. As 
shown in Fig. 8, XP4S reduces B by 10% on average. 

5. Simulation Study 
In this section, we compare the performance of the two patching techniques in terms of the 
client defection rate and average service latency, based on a simulation study. The client 
defection rate is the ratio of the number of client requests canceled by the clients to the number 
of total requests, and it represents the server throughput. The average service latency is the 
average period of time that a client request is held in the waiting queue of a server until the 
client gets served, and it represents the quality of service. We make the following assumptions. 
The video length l is 90 minutes, a client is watching a video sequentially from beginning to 
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end and the waiting time until it cancels its request varies over the range 10 to 90 seconds. 
Other parameters used in the simulation study are given in Table 1, and the total number of 
client requests is 100,000. As in section 4, we first decide the values of wm and wp for Double 
Patching and then apply the values to XP4S. 
 

 
Fig. 7. Video length vs. server network bandwidth requirement (B) for TVoD services 

 

 

Fig. 8. Client buffer size vs. server network bandwidth requirement (B) for TVoD services 
 

Fig. 9 and Fig. 10 show the effect of the number of server channels, ⎡ ⎤vB / , on the service 
latency and the defection rate when l=90, b=15 and I=10. 

As shown in Fig. 9 and Fig. 10, XP4S is always better than Double Patching. As the number 
of server channels decreases, the performance gain of our XP4S increases. This means that 
XP4S works better when the server load is higher. When the server has 16 channels, where 16 
is equal to ⎡ ⎤vBDP /  that is determined from equation (2), our XP4S immediately serves 58,361 
clients with no service latency, while Double Patching immediately serves 52,822 clients. In 
this case, XP4S improves the average service latency by 10.5% for all served clients. 
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Fig. 9. Effect of the number of server channels on 
the average service latency 

Fig. 10. Effect of the number of server channels 
on the client defection rate 

 
Fig. 11 and Fig. 12 show the effect of the number of server channels on the service latency 

and client defection rate when l=90, b=15 and I=30. As shown in Fig. 11 and Fig. 12, XP4S is 
always better than Double Patching. When the server has 12 channels, where 12 is equal to 
⎡ ⎤vBDP /  that is determined from equation (2), our XP4S immediately serves 72,275 clients, 
while Double Patching immediately serves 63,390 clients. In this case, XP4S improves the 
average service latency by 12.3% for all served clients.  

 

Fig. 11. Effect of the number of server channels 
on the average service latency 

Fig. 12. Effect of the number of server 
channels on the client defection rate 

 
We include Fig. 13 and Fig. 14 in order to show the other simulation results. Fig. 13 shows 

the results when b=10 and the number of server channels is 15; Fig. 14 shows the results when 
b=30 and the number of server channels is 11. As shown in the figures, the proposed XP4S is 
always better than Double Patching. We omit the results about the client defection rate, 
because the improvement is less than 1%. 
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Fig. 13. Effect of the average request arrival 
interval on the average service latency 

Fig. 14. Effect of the average request arrival 
interval on the average service latency 

 
From the simulation study, we discovered the following. Although the average server 

bandwidth determined from equation (2) is not enough to support TVoD services to all clients, 
the proposed XP4S always improves not only the client defection rate and the average service 
latency but also the number of clients having TVoD services under the same conditions. 

6. Conclusion 
In this paper, we have proposed an expanded patching technique using four types of streams: 
R-stream, P-stream, S-stream and LK-stream. Although Double Patching improves on 
Optimal Patching by introducing an L-stream that delivers extra data so possible future clients 
can share it, the L-stream has a chance of delivering useless data. Using LK-streams, the 
proposed XP4S completely prevents the server network bandwidth wastage that can be 
generated by the extra data of Double Patching. Unlike an L-stream, a P-stream in XP4S 
delivers essential data with no extra data. Instead of the extra data, when the P-stream is 
completed, XP4S schedules an LK-stream to deliver the necessary data for clients whose 
requests have arrived within the patching window of the P-stream. A server can know what 
requests have arrived within the patching window of a P-steam when it completes transmitting 
it. Therefore, it can decide the exact amount of data that an LK-stream has to deliver by using 
the arrival time, so the LK-stream never delivers useless data. We have verified that XP4S 
requires less server network bandwidth to support TVoD services than Double Patching, by 
the performance model in section 4. Via the simulation study, we have verified that XP4S not 
only has a better average service latency and client defection rate but also a larger number of 
clients having TVoD Services compared with Double Patching. Our future works will 
improve the performance model so as to estimate the exact server network bandwidth 
requirements to support TVoD services, and expand XP4S so as to support interactive VCR 
functions. 
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