
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 452
Copyright ⓒ 2010 KSII

DOI: 10.3837/tiis.2010.08.001

Large-Scale Integrated Network System
Simulation with DEVS-Suite

Ahmet Zengin
Faculty of Technology, Sakarya University

Sakarya, 54187 - Turkey
[e-mail: azengin@sakarya.edu.tr]

Received March 9, 2010; revised May 20, 2010; accepted June 28, 2010;

published August 27, 2010

Abstract

Formidable growth of Internet technologies has revealed challenging issues about its scale and
performance evaluation. Modeling and simulation play a central role in the evaluation of the
behavior and performance of the large-scale network systems. Large numbers of nodes affect
simulation performance, simulation execution time and scalability in a weighty manner. Most
of the existing simulators have numerous problems such as size, lack of system theoretic
approach and complexity of modeled network. In this work, a scalable discrete-event
modeling approach is described for studying networks’ scalability and performance traits. Key
fundamental attributes of Internet and its protocols are incorporated into a set of simulation
models developed using the Discrete Event System Specification (DEVS) approach.
Large-scale network models are simulated and evaluated to show the benefits of the developed
network models and approaches.

Keywords: DEVS formalism, modeling and simulation of networks, routing, scalability

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 453

1. Introduction

The primary aim of this work is to design and implement an OSPF simulator for Internet
systems based on DEVS-Suite [1] using DEVS [2] concepts for high performance and
scalability. In order to evaluate the behavior and performance of the large-scale network
systems, modeling and simulation play central role. An important method for design and
analysis of such systems and their routing protocols is simulation modeling, especially when
analytical methods are known to be inapplicable [3][4]. Basically, network simulators try to
model real world network systems and they are often essential since experiments may not be
possible with actual computer networks. However, real network systems can be modeled by
means of abstraction mechanism which renders possible to model complex systems into the
limited resource computers. A network simulator should enable users to represent a network
topology, prepare different scenarios, specify the nodes and links, and analyze the results.
Graphical user interfaces allow the simulation users to visualize and track working of
simulated environment. Simulation tools such as ns-2 [5], ns-3 [6], OPNET [7], SSFNet [8],
GloMoSim [9] and OMNeT++ [10] have extensively been used for computer network
research. But these tools have some disadvantages such as managing complexity, performance,
scalability, visualization and lack of system theoretic design. For example, while ns-2 has a
weak visualization, OPNET has a poor scalability even if it has good visualization tools.
OMNeT++ is difficult to extend and highly need for specialization and lacks of system
theoretic underlying approaches.

In this work, a generic network model composed of nodes and links is first built, later Open
Shortest Path First (OSPF) and Border Gateway Protocol (BGP) routing protocols are
designed and implemented for sake of high performance, modular and hierarchical structured
network research tool. The beginning stage was to create a model and simulator software that
enables to make decisions on network design. All common components of a packet switched
network with atomic node and data link models of various capacity assignments are defined
using DEVS formalism [2] with selected level of abstraction. DEVS modeling approach
supports hierarchical modular model construction, distributed execution, and therefore offers
a basis to characterize complex, large-scale systems with atomic and coupled models [11].
Recently, DEVS formalism has found many application areas such as swarm routing [12] and
processor architectures [13].

On definition of basic components, a link state routing protocol OSPF and its behavior
were modeled. OSPF routing protocol was chosen due for its suitability for large-scale
applications. Currently, in particular for Internet, while distance vector protocols are used for
inter-gateway interactions, link state protocols are used for intranet case [14]. OSPF as one of
the famous link state routing protocol is an open standards routing protocol and a particularly
efficient interior gateway (IGP) routing protocol that is faster than routing information
protocol (RIP) which is one of the most known kinds of the distance vector protocols family. It
employs the Dijkstra algorithm when estimating the shortest paths [15]. BGP routing protocol
is also implemented to support routing between autonomous systems (AS).

To establish verification and validation of the designed tool, the network simulator ns-2 is
selected to compare with DEVS-Suite OSPF implementation. In order to show the accuracy of
model execution a set of experimental validation tests are performed and results are compared
with state of the art simulator ns-2. Scalability, flexibility, portability, design for learning,
affordability features of the designed simulator make itself an essential tool for network

454 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
protocol research.

DEVS-Suite is the discrete event general purpose simulation environment based on DEVS
formalism and also is a new version of the DEVSJAVA simulator [16][11] with more
visualization and tracking capabilities. DEVS-Suite has a graphic interface called simview
which eliminates the need to learn a simulation language while still maintaining a consistent,
high performance and user-friendly product. The OSPF models on DEVS-Suite was a result of
the application of both networking theory and software engineering principles with particular
attention being paid to reliability and maintainability by comparing with ns-2. With the
developed OSPF simulator, the student can create any network topology, experimenting on it,
tracking the things happened in network, in particular, related to routing and finally can master
the network concepts interactively. DEVS-Suite simulator can be run on a personal computer
as well as run on online via DEVS-Suite Web Start [17] application which enables e-learning
using Java Web Start technology.

The remainder of this paper is organized as follows: Section 2 provides a description of
DEVS formalism, DEVS-Suite simulator, OSPF fundamentals, comparison of the network
simulators and generators, and information about ns-2 simulator. Section 3 defines the
developed OSPF simulation framework giving details of each components and summarizes
the OSPF protocol implementation. Section 4 includes validation experiments with ns-2
comparison, covers performance results and evaluation of the large-scale experiments. Section
5 presents the conclusions from this research.

2. Background and Related Work

2.1 DEVS Formalism
To use modeling and simulation as a problem solving technique, there is need for a modeling
formalism. As a formal system definition, formalism renders possible to create virtual worlds
in our limited computation frameworks and tools. Limitations of the computational
environments demand new high performance modeling formalisms and approaches.
Large-scale network systems exhibit very high level complex, dynamic and parallel
characteristics. Therefore, complex and distributed behaviors of the large-scale systems make
network modeling effort difficult. However, discrete event modeling formalisms bringing
abstraction and simplification mechanisms to modeling and simulation discipline facilitate
modeling and simulation study of the systems such as computer networks demonstrating
complex, dynamic, distributed and unpredicted behavior. The dynamics of network systems
can be described using discrete event modeling. This is because the dynamics of network
systems can be characterized in terms of components that can process and generate events.
Among discrete event modeling approaches, the Discrete Event Systems Specification (DEVS)
[2] is well suited for formally describing concurrent processing and the event-driven nature of
arbitrary configuration of nodes and links forming network systems. This modeling approach
supports hierarchical modular model construction, distributed execution, and therefore
characterizing complex, large-scale systems with atomic and coupled models. Atomic models
represent the structure and behavior of individual components via inputs (X), outputs (Y),
states (S), and functions. Parallel DEVS, which extends the classical DEVS, is capable of
processing multiple input events and concurrent occurrences of internal and external transition
functions. Parallel DEVS atomic model supports local control on the handling of simultaneous
internal and external events. A parallel atomic model can be described with

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 455

Parallel atomic model= (X, S, Y, δext,δint, δconf, λ, ta). (1)

 The external (δext), internal (δint), confluent (δconf), output (λ), and time advance functions
(ta) define a component’s behavior over time. Internal and external transition functions
describe autonomous behavior and response to external stimuli, respectively. The time
advance function represents the passage of time. The output function is used to generate
outputs. The Parallel DEVS confluent transition function provides local control by handling
simultaneous internal and external transition functions.

Atomic models can be coupled together in a strict hierarchy to form more complex models.
A coupled model can be constructed by composing models into hierarchical tree structures. A
coupled model is defined in terms of its constituent atomic and/or coupled models. A DEVS
coupled model specifies the connection of systems coupled together and interaction with each
other. Given atomic models, DEVS coupled models are formed in a straightforward manner.
Two major activities involved in coupled models are specifying its component models, and
defining the coupling that represents desired interactions. A Parallel DEVS coupled model [18]
is formalized as:

Coupled model = < X,Y,D,Mi,Ii,Zi,j > (2)

In this symbolic representation, X is a set of input values and Y is a set of output values. D

is a set of the DEVS components and Mi is a DEVS component model. Ii is the set of
influencees for I and Zi,j is the i-to-j output translation function.

2.2 DEVS-Suite Simulation Environment
DEVS formalism can be executed using simulation engines such as DEVS-Suite [1] and
DEVSJAVA [16]. DEVS-Suite and DEVSJAVA are object oriented realization of Parallel
DEVS and its associated simulators. They support describing complex structures and
behaviors of network systems using object-oriented modeling techniques and advanced
features of the Java programming language. The formal foundation of DEVS, its efficient
execution, and the availability of sequential, parallel, or distributed simulation engines using
alternative computational environments such as CORBA, HLA, and Web-services are
important considerations. Furthermore, the DEVS models are extended with other kinds of
models such as fuzzy logic [19].

DEVS-Suite is an open source, discrete event, and general-purpose simulation
environment [1]. It is a new generation extended from the DEVSJAVA simulator and DEVS
Tracking Environment. The main modules of the DEVS-Suite are simview [16], DEVS
tracking Environment [20], and timeview [1]. DEVS-Suite can simulate models specified
using the DEVS formalism [2]. The architecture of the DEVS-Suite simulator environment is
Model Facade View Control (MFVC) [20] by which simulation data can be displayed with its
animation and viewing of time trajectories generated by the parallel DEVS abstract simulator.
Soft synchronization among timeviews and animation is supported based on the simulator’s
logical (or real-time) execution speed [21].

In DEVS-Suite, execution of the models can be animated in terms of the input/output
messages for coupled models and the state changes for the atomic models. Every atomic and
coupled model component can have its own time-based trajectories and log files for inputs and
outputs as well as the common phase and sigma state variables for atomic models. The

456 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
simulation experiments can be triggered with test inputs — predefined inputs for every model
can be selected from its dialogue box at the beginning of the simulation. At the end of the
simulation, user-defined statistical metrics for any of the model components can be obtained
with the so-called transducer models.

One of the main advantages of the simulator is an option window that provides selection
between visualization and other capabilities. When loading the model, modeler can be toggle
between simview and tracking options. Simview supports component views of DEVS source
code in the form of block components. Visualization decreases the performance of a software
system due to the heavy use of limited hardware resources [21]. Users can choose the
visualization and/or tracking capability and if needed, none of them, for large-scale
simulations. The DEVS-Suite and Ptolemy II [22] show similar performance when no
visualization is used [23]. In comparison, they outperform the simEvents simulator [24].

2.3 OSPF Fundamentals and Control Packets
In this study, the OSPF routing protocol is modeled due for large-scale characteristics of it.
Routing protocols in the network systems can be split into two main categories: link state
routing and distance vector routing. Currently, in particular for Internet, while distance vector
protocols are used for inter-gateway interactions, link state protocols are used for intranet case
[14]. Open Shortest Path First (OSPF) as one of the famous link state routing protocol is an
open standard routing protocol and a particularly efficient interior gateway (IGP) routing
protocol that is faster than routing information protocol (RIP) which is one of the most known
kinds of the distance vector protocols family. It employs the Dijkstra algorithm when
estimating the shortest paths [15].

The OSPF routing protocol was developed to provide an alternative to RIP, based on
Shortest Path First algorithms instead of the Bellman-Ford algorithm which is the basis for
RIP. It uses a tree that describes the network topology to define the shortest path from each
router to each destination address. In many places, RIP is still used in current Internet TCP/IP
networks that have not been upgraded to OSPF. It is also used on OSPF networks as an
end-station-to-router protocol. OSPF addresses all the deficiencies of RIP, without affecting
connectivity to RIP based networks. Fast growing and large-scale networks must be designed
properly if the capabilities of OSPF are to be fully exploited. Because of its ability to handle
variable networking masks, OSPF also helps to reduce waste of today’s precious IP addresses.
OSPF will enable networks to scale to very large topologies, while maintaining high levels of
availability and performance. The main difference between OSPF and RIP is that RIP only
keeps track of the closest router for each destination address, while OSPF keeps track of a
complete topological database of all connections in the local network.

The OSPF algorithm works on three phases. They are important for describing how the
algorithm behaves in discrete event fashion. In the startup phase, as soon as a router connects
to the network, it sends Hello packets to all of its neighbors, receives their Hello packets in
return, and establishes routing connections by synchronizing databases with neighbor routers
that agree to synchronize. In the update phase, each router sends an update message at regular
intervals. This message is called “link state” describing its routing database to all the other
routers, so that all routers have the same description for the local network topology. Finally, in
the shortest path tree phase, each router then estimates a mathematical data structure called
a ”shortest path tree” that describes the shortest path to every destination address indicating the
closest router for communication.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 457

2.4 Large-scale Network Simulation Tools and Topology Generators
The basic limitations of analytical approaches have led to a variety of modeling and simulation
approaches and tools. Tools such as ns-2 [5], ns-3 [6], OPNET [7], OMNeT++ [10],
GloMoSim [9] and SSFNet [8] are used to reveal the inner workings of computer networks in
virtual settings. A key emphasis has been on enabling design and testing of routing algorithms,
MAC layers, and end-to-end queuing. Although the capabilities of these simulation tools
support describing (wired and wireless) computer and device network protocols and
communications in great detail, their underlying foundation lacks support for developing
models in system theoretic manner. The conceptual models of these tools are derived from
computer network hardware and software abstractions. These models are mostly implemented
in object-oriented programming languages and simulated in virtual and/or emulated in
physical testbeds. But these tools have some disadvantages in terms of underlying
methodology, implementation and scalability [4]. These reasons are limited or lack
object-oriented concepts for designing and implementing simulators. They lack support for
casting real world entities to non-object simulation components. Furthermore, scalable and
efficient execution requires support for not only concurrent simulation execution methods but
also simple, yet sound modeling concepts. That is despite tools such as pdns [25] and SSFNet
[8] being implemented in object oriented programming languages, they lack formal modeling
theories. Furthermore, other tools such as OPNET is inherently not well suited for parallel and
distributed execution. Since ns-2 requires expertise in C++, Tcl and also software engineering
skills, the visual modeling support provided by OPNET is considered superior for educational
purposes [26]. Other concerns about these simulators are limited or weak support for
visualization as well as difficulties in tool installation and ease of use. Detailed comparisons of
the network simulators are presented in [27] and [28]. Summary of the network simulators
comparison is presented in Table 1.

Table 1. A comparison of network simulators.
Aspect Ns-2 pdns OPNET OMNeT++ J-Sim SSFNet GloMoSim DEVS-Suite

Object-orientation medium medium strong medium very
strong

very
strong medium very strong

Models Library strong strong strong strong medium weak medium weak

Analysis medium medium very
strong weak weak weak strong very strong

Extendibility medium medium strong very strong very
strong

very
strong very strong very strong

Expertise need very strong very
strong weak strong weak strong weak medium

Deployment weak weak strong medium very
strong strong strong very strong

Documentation medium medium very
strong strong weak weak medium medium

Availability very strong strong weak very strong very
strong

very
strong weak very strong

Visualization weak weak strong strong medium very
strong very strong very strong

User base very strong weak strong strong medium weak weak weak

Scalability weak very
strong medium medium strong very

strong very strong very strong

Performance strong very
strong medium medium strong very

strong medium very strong

Randomness very strong very
strong weak strong weak weak weak very strong

Failure modeling very strong very
strong

very
strong medium weak medium weak very strong

Web access no no no no strong no no very strong

2.5 BRITE Topology Generator
In order to study on large-scale network systems, its topologies and protocols, numerous

458 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
simulation tools are developed and implemented. In Table 1, several state of the art simulators
used in network research are listed and compared. Some of these tools have own automatic
software components by which network topology and traffic models are generated. Network
topology and traffic generators are employed in generation of realistic structured networks for
simulation purposes and performance characteristics [28]. In large-scale simulation
experiments, topology generation is important due for following reasons: (1) to build the
topology of the large real networks manually is impossible, (2) in order to develop algorithms
for Internet, there is need for Internet-scale models and (3) topology generation allows for
efficient planning and long-term network design [29].

There are great deals of researches on reviewing the topology generators. Most of these
tools are well summarized in [30]. From these models, The Boston University Representative
Internet Topology Generator (BRITE) is adopted. BRITE topology generator is developed
based on the AS power laws and incorporates with skewed network placement and locality in
network connections [31]. BRITE is Java based universal topology generator (i.e. it is possible
to generate topologies that can be processed by widely used simulators such as ns-2,
OMNeT++ and SSF) and supports many topology models such as Waxman and Barabasi. In
our implementation, BRITE interface is integrated with DEVS-Suite simulation package
together with its visualization tool [32].

2.6 The Network Simulator 2
The network simulator ns-2 [5] is developed based on REAL network simulator project. It is
designed for research for local and wide-area network simulations and network education.
Ns-2 is an object-oriented, open source, discrete event network simulator, which is written in
C++ and uses OTcl as a command and configuration interface [33]. It is based on a seven-layer
network synthesis and designed as packet-based, which means that all packet interactions are
in focus during simulation. It implements network transmission protocols such as TCP and
UPD, traffic source behavior such as FTP, Telnet, Web, CBR and VBR, router queue
management mechanism such as DropTail, RED and CBQ, routing algorithms such as
Dijkstra [15], and other algorithms [5]. Network simulator 2 provides an important support for
modeling and simulation of TCP, routing, and multicast protocols over wired and wireless
networks and is primarily useful for simulating local and wide area networks. Although ns-2 is
fairly easy to use once you get to know the simulator, it is quite difficult for a first-time user,
because there are few user-friendly manuals and it is difficult to install. Various extensions of
parallel and distributed variations are developed to achieve execution scalability (e.g., pdns
[25]).

Many researches including design, test and comparison of new network algorithms,
protocols, and technologies are done with ns-2. Some deficiencies of ns-2 include limited
support for visualization and complex simulator design [34]. Since ns-2 is dependent on
different technologies, it can be very difficult to make changes to the existing models.
Furthermore, from the modeling methodology vantage point, ns-2 can be considered as
domain-specific simulator which is intimately tied to the computer network concepts [35].

3. Framework for Large-Scale Network Simulation

3.1 DEVS Model Specifications
In this section, basic model components of the developed large-scale simulation framework
are elaborated by giving their DEVS specifications. Detailed information of the developed

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 459

simulator can be found in [36]. As already mentioned in background section, DEVS formalism
is selected for modeling such a distributed system since DEVS enables the modeler to specify
systems in system theoretic manner and yields hierarchical and modular developments. These
properties of DEVS facilitate to model distributed systems with smart components and
overcome the complexity. Since a typical networked system can only be characterized as
nodes and links, it is started to develop network model by specifying these basic components
using parallel DEVS atomic model.

The conceptual model of developed OSPF network system together with its experimental
frame is presented in Fig. 1. As shown in the Fig., a typical node running with DEVS kernel
has a routing table in its routing module and runs OSPF protocol. Since routing module
reflects whole intelligence in the network, main effort was given to develop it and it is also
most detailed part of the node model. In the routing module, OSPF version 2 and Border
Gateway Protocol (BGP) are implemented [37]. OSPF protocol supports intranet routing and
BGP protocol supports internet routing. Routing module has several protocol stacks such as
LSA history which stores versions of the link state advertisements and topology databases
which stores whole network information. These stacks support protocol management and
organization. Nodes also have network interface cards for every neighbor. A typical interface
has a queue for incoming and outgoing packets which is simply a drop-tail queue as detailed in
the next sections. Very simple MAC protocol is implemented, since main concern was to test
routing protocols on large-scale experimental conditions. Nodes can originate control packets
such as hello, LSA and acknowledgement packets. Nodes are modeled as parallel DEVS
atomic models and its model description can be seen in Fig. 2 and state diagrams of the nodes
and links are depicted in Fig. 3.

Fig. 1. Conceptual OSPF Network Model

460 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
Mospf_node = < X , Y , S, δext, δint, δcon, λ, ta >
where
// Input ports and values
X = inport × invalues

invalues : {packet, packet_DATA, packet_HELLO, packet_LSA },
inports : {NIC1_in, inEvent} // one network interface is assumed

// Output ports and values
Y = outport × outvalues

outvalues : {packet, packet_DATA, packet_HELLO, packet_LSA },
 outports : {NIC1_out, outEvent },
// State sets
S= phase × σ × Q
phase :{“idle”, “startup”, “queuing”, “congested”, “flooding”, “addingNbor”, “newLSAadded”,
“gettingRoute”, “subNetting”, “forwardingLSA”}
σ = ℜ+

0,∞
Q = Qqueue × Qneighbour_table × Qtopology_database
where
Qqueue is a queue for incoming and outgoing packets,
Qneighbour_table is a data structure to store neighbour’s name and link states and,
Qtopology_database is to store topology information obtained by LSA packets.
// External transition function

δext ((phase, σ , Q), e, X)) =

 , ,

 ,
 " ",σ′ ,

 " ",σ′ ,

// Internal transition function

δint phase, σ , Q =

 , " ",σ ,
 ,

 " ",σ ,
 , " ",σ ,

 ,
 " ",σ ,

 ,
 " ",σ ,

 " ",σ ,

// Confluent transition function
δcon ((phase, σ , Q), e, X)) = δext (δint (phase, σ , Q), 0, X))

// Output function

λ(phase, σ , Q) =

 " looding", _ ,
 "startup", _ ,

 " newLSAadded", ,
" ",σ ,

 "gettingRoute", ,
_ ,

 " ", ,

//time advance function
ta(s) = σ

Fig. 2. OSPF Node Model Specification

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 461

(a)

(b)

Fig. 3. Node and Link Models State Diagrams.

Fig. 3 (a) depicts a link’s state chart in which states are only chanced via internal and
external transitions. As seen in the Fig. 3 (b), an OSPF node’s behavior is abstracted to ten
states to mimic protocol behavior. For example, when a node is in “idle” state and if it receives
a packet and its queue is full, then state changes to “congested”.

462 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
Generic nodes can be connected via duplex links allowing the traffic to flow in both

directions (see Fig. 1). The link atomic models represent the communication channels and are
characterized with bandwidth (bits/sec) and transmission delay specified in milliseconds. Each
link has a corresponding buffer with finite capacity. The packets that arrive are placed in the
buffer and are transmitted to the next node using mixed version of first-in first-out (FIFO) and
priority queue management strategy, i.e. control packets have more precedence than data
packets. Links are able to carry traffic of a certain bandwidth up to the total capacity of the
link.

By connecting nodes and links, a coupled model of the network with OSPF routing
capability is developed in DEVS-Suite. Developed DEVS-Suite OSPF framework provides
visualization, advanced tracking capability, reusability and component-based model design.
Fig. 4 shows DEVS-Suite modeling framework and OSPF model. In the top left side of the
DEVS-Suite simulator, a model viewer lists all models with coupled models and bottom left
side has simulation controls. Bottom of the window is simulation console output to track
messages from code.

Due to a node designed as a generic, with little changes, it can be implemented to other
network elements/devices such as hub, switch, gate, a border node etc. To determine the
behavior of a node, two parameters are used: (1) process speed which directly influences
processing time of a node, and (2) queue in which incoming and outgoing packets are stored.
In Fig. 4, router models can be seen with its name, state and next event time visually.

Fig. 4. DEVS-Suite Simulation Viewer with Large-Scale Network Model

3.2 OSPF Implementation
After modeling basic components of the network system such as nodes and links, OSPF
behavior is implemented to give network routing capability and intelligence. As already
mentioned in Section 2, OSPF protocol is selected since current Internet systems work with it
due for its scalability properties. Routing protocols in the network systems can be split into

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 463

two main categories: link state routing and distance vector routing. Currently, in particular for
Internet, while distance vector protocols are used for inter-gateway interactions, link state
protocols are used for intranet case [14]. Open Shortest Path First (OSPF) as one of the famous
link state routing protocol is an open standards routing protocol and a particularly efficient
interior gateway (IGP) routing protocol that is faster than routing information protocol (RIP)
which is most known member of the distance vector protocols family. It employs the Dijkstra
algorithm when estimating the shortest paths [15]. In the next sections, DEVS OSPF modeling
phases are summarized.

1) Network discovery phase: The main idea behind discovering the set of routers in the
network domain is to repeatedly find the neighboring routers from the currently known routers,
until no new routers are discovered. OSPF forms adjacencies between neighboring routers
operating in the same Autonomous System (AS). OSPF neighboring routers use the Hello
protocol to discover each other. Hello protocol packets are sent periodically to establish and
maintain neighbor relationships between OSPF neighbors.

The Hello protocol is used by OSPF to verify the eligibility of potential OSPF neighbors,
and to confirm the correct area ID, timer values, and OSPF priority. The Hello protocol also
maintains adjacencies after neighbors are up by multicasting Hello packets every 10 seconds.

2) Flooding phase: On receiving Hello messages, a node updates its neighbor table and
sends link state advertisement packets to all neighbors. Routers have a mechanism for flooding
link state advertisements. If a topological change occurs in the network (due to changes in link
status or routes), an immediate update is sent from that neighbor, alerting other
OSPF-speaking routers to the change. Only the route prefix that is affected by the change is
modified, and only that LSA is sent with the updated change. In our model, DEVS entities are
used to carry link states. Flooding procedure starts when a link state update occurs (event
triggered) or it can start per 30 seconds. Since flooding adds significantly overhead to the
simulation, event triggered approach is selected instead of fixed time updates. Each router then
updates its database with the change, and network convergence occurs. If incoming link state
advertisement of a particular link is fewer versions from that in stored topology database, the
LSA packet should be dropped from the queue without further processing.

The database of the Autonomous System (AS) topology in developed OSPF framework is
represented both neighbor table and topology database. The routing table storing path
information for all possible destinations in the AS is calculated by supplying these databases to
Dijkstra class of the router model. Dijkstra class then generates topology matrix and shortest
path tree and therefore data is routed.

Topology database stores LSA packets from all other routers and neighbor table stores
neighbor id and associated interface names. Neighbor table and topology databases
implemented as Linked Lists while routing table stores route objects.

3) Shortest path calculation phase: Computation of shortest paths is important phase in
routing data packets. There are many approaches to calculate shortest paths depending on the
type of network and problem specification. Most known and implemented algorithm is
Dijkstra [15]. According to the Dijkstra logic, a router calculates the shortest-path tree
considering itself on top of the hierarchy.

In DEVS-Suite OSPF framework, a network coupled model’s link state database is
represented as a directed graph (see Fig. 4). The graphs’ vertices are routers or other networks.
Each link has an associated link state advertisement. The formation of the shortest path tree is
done using the Dijkstra algorithm, a tree is formed from this set of the link state database
called topology database.

464 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
4) Data message forwarding phase: As already mentioned, packets that are exchanged

among components in the form of DEVS messages can be distinguished as data and control
packets. Data packets are basic IP packets which carry information such as id and precedence.
Control packets allow the node to obtain whole network view and to measure the traffic.

OSPF protocol message exchange is depicted in Fig. 5. Communication is started with a
hello packet and completed with an acknowledgement packet which means that message is
received. The OSPF packet types are as follows:

 Hello packet: These packets are sent periodically or event triggered on all interfaces.
Neighborhood is formed by exchanging of Hello packets. Neighbor table is populated
with Hello packet information.

 Link State Advertisement (LSA): Every LSA packet contains description of routing
domain. In other words, LSA packets carry neighbor information about the originating
router. LSA packets have a version field to avoid duplication of the ones stored in
topology database. The implemented topology database is composed of every router’s
link state advertisements packets.

 Link State Request (LSR): LSR packet is used to request the neighbors’ database that is
new version.

 Link State Update (LSU): LSU packets implement the flooding of link state
advertisements. Every LSU carries a collection of link state advertisements one hop
further from its origin.

 Acknowledgement: A message is depicting receiving of the packet.
 Data: An IP packet contains information.

Fig. 5. OSPF Protocol Messaging

5) Autonomous systems (AS): It is important to model hierarchical layers of today’s

Internet. A network can be decomposed to domains and clusters. As already mentioned before,
network model is formed by coupling nodes via links and is coupled model. Coupled model
can be used in a higher level hierarchy as an atomic model. This is called closure under
coupling by which increasingly larger networks can be systematically developed and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 465

experimented with. OSPF protocol also allows collections of networks and hosts to be coupled
together. OSPF coupled model is called Autonomous System (AS) as a single SPF domain that
this approach reduces routing traffic and amount as compared to treating the entire network. In
this implementation, all routers in the AS have not an identical topological database. A router
named border router has a different topological database for every AS connecting to it.

6) Queuing model: Queue is modeled as a Linked List data structure which maintains the
FIFO (First In First Out) order of the objects inserted into it. Some new objects can be inserted
and others removed, but the orders of the objects in both states are maintained. Packets have
different priorities which means insertion order of newly incoming packets is determined by
priority value (0 lowest, 7 highest). The queue implements a very simple drop-tail queue with
the following behavior.

 If a packet’s priority value is highest value, it is inserted at the front of the queue.
 If a packet is to be enqueued and is bigger than the maximum queue size, it is rejected.
 If a packet to be enqueued is smaller than the maximum queue size, but there is not

enough space for it, the packets at the end of the queue are dropped until enough space
available.

 If there is enough space for a packet to be enqueued, it is inserted at the end of the queue.
Packets can be discarded upon arriving at a node because of lack of queue space or expired

time to live which limits hop count. In addition, when a packet traverses across a link, if there
is no available bandwidth on the link, the packet is lost or dropped.

7) Traffic model: In order to experiment with network model, it is necessary to model user
traffic and behavior. To make realizations of network traffic and examine specific scenarios,
the experimental frame concept and its DEVS-Suite realization are employed. An
experimental frame model is separate system from the network model and it is collection of
specifications of the conditions by which model is experiment with it [2]. In our
implementation, a typical experimental frame consists of an event generator and event
transducer. The generator can generate packets with fixed time intervals by randomly
choosing source and destination addresses. Uniformly random traffic generation is modeled
but exponential and constant bit rate traffic patterns can be implemented easily using Java
infrastructure. Generator also creates and schedules specific events in the network such as link
down and node congestions so that to program errors. The transducer observes and analyzes
the network outputs, and stores these results in trace files. Transducer simply converts data to
information which is meaningful for modeler. Together with DEVS-Suite tracking capability,
exact trace is applied on developed model.

3.3 DEVS-Suite Topology Generator
Large-scale models over tens to hundreds routers can only be created via tools named topology
generator. BRITE [30] topology generator is extended for supporting DEVS coupled models
(see Fig. 6). Open source and no longer supported BRITE topology generator is developed
using both C++ and Java object-oriented languages and allows modelers to import from and
export to specific topology files such as ns-2, OMNeT++, JavaSim and SSFNet. Added
extension includes an export capability from Brite format to Java source file which is formed
DEVS coupling model specifications. As can be seen in Fig. 6, BRITE provides to create
multiple generation models including flat AS, flat Router and hierarchical topologies. Models
can be conFig.d using GUI by changing links attributes such as bandwidth, delay and
topography for wireless models.

Though DEVS-Suite has a visualizing tool for its models (see Fig. 4), it is important to

466 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
demonstrate nodes as circles and links with lines. To do so, BRITE-visualizer [31] is
implemented as seen in the Fig. 7.

Fig. 6. BRITE Topology Generator Extended for DEVS-Suite

4. Large-scale Simulation Experiments and Simulation Results

4.1 Validation
Model validation constitutes a very important step in network simulator development. For
validation of the developed OSPF model, outcomes from ns-2 simulator are used instead of
real network data. To do this, first it is designed to experiment on a small scale topology as
seen in Fig. 8 (a). There are four routers numbered from 1 to 4 and four links. Ns-2 is a widely
used simulator by network community and it is validated. In the experiments, same models
with same configurations are employed to highlight the key structural differences between
modeling DEVS-Suite and ns-2. In Fig. 8 (b), a nam animator screenshot of the sample
network is shown. Simulation experiments were performed both in ns-2 version 2.32 and
DEVS-Suite version 2.0. All simulation configurations and parameters are uniformly selected
for comparison purposes. Of course, it is impossible to have the same exact conditions for
DEVS-Suite and ns-2 since they have different levels of detail. Selected parameters are listed

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 467

in Table 2. According to the configuration parameters listed in Table 2, simulation
experiments with both ns-2 and DEVS-Suite simulators are performed for ten seconds. The
throughput results as a function of time are shown in Fig. 9. As depicted in Fig. 9, throughput
curves converge to nearly the same average values, 822.4 KB/sec. for ns-2 and 821.9 KB/sec.
for DEVS-Suite after a stabilization phase time (2 seconds). Measured throughputs are almost
same and the difference comes from selected abstractions and assumptions. It is also observed
that the routing tables for the four router nodes are consistent – the creation of tables is
validated step by step. It is observed that routing tables are theoretically correct and no packet
is discarded due for lack of any route.

Fig. 7. BRITE Topology Visualizer Showing 100 Nodes of Created Topology

4.2 Performance evaluation
In this study, a series of simulation experiments are done using the developed model as
described in previous sections in order to investigate performance of the simulator in
large-scale models and Internet. Experiments are conducted in Core 2 Duo machine running at
2.1 GHz with 4 GB RAM and Ubuntu 9.10 64 bit operating system. Performed experiments
can be categorized into two phase: (1) simulator performance experiments and (2) large-scale
model experiments. In the first case, several simulator experiments are done to measure
DEVS-Suite simulator with developed OSPF model. Later, results are compared to
well-known network simulator such as ns-2 and JSim.

On the other hand, large-scale DEVS coupled models up to thousands nodes are generated
using BRITE topology generator, integrated to DEVS-Suite simulator environment and then
measured the simulator outcomes. In the following, these results are given in detail to show
developed model’s and simulator’s performance. Over ten thousands nodes, Java Virtual

468 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
machine is reported out of memory error, therefore experiments were done within that scale.

(a) (b)

Fig. 8. DEVS-Suite ad NAM Screenshot of The Simple Network Consisting of Router Nodes and
Duplex Links

Table 2. Simulation Model Parameters of Ns-2 and DEVS-Suite

Simulation Model Parameters
 DEVS-Suite ns-2
Packet sizes 552 bytes
Link bandwidth 2 Mbps
Link delay 1 msec.
Simulation time 10 sec.
Traffic type Uniformly random FTP over TCP
Queue Type FIFO-Priority Drop-Tail
Queue Limit 200 KB 20 Packets
Protocol OSPF Link State(LS)
Processing speed 1 msec./event N/A

In Table 3, lines of code needed by DEVS-Suite and ns-2 simulators are listed. Lines of

code are measured from validation experiments as detailed before. When modeling and
simulating four nodes network (see Fig. 8), ns-2 requires 84 lines of Tcl code and DEVS-Suite
requires relatively less pure Java codes in 68. When using automated tools in DEVS-Suite
such as BRITE topology generator, model development can be done without typing any code
in automatic manner. Model can be built up on only one class named Simulator in ns-2;
however DEVS-Suite models are in two class files: one for network model and other for
experimental frame. DEVS-Suite OSPF model and ns-2 generated almost same simulation
behavior (see Fig. 9). When modeling OSPF behavior, DEVS-Suite generated a thousand
events and ns-2 generated approximately thirty-times events more than DEVS. This is
important for performance due for every event allocates a significant space on memory and
event context changing is expensive. The difference between event resolutions results in
large-scale performance.

Table 3. Lines of code needed of ns-2 and DEVS-Suite

 Ns-2 DEVS-Suite DEVS-Suite + topology generator
Lines of code 84 68 -
Number of classes 1 2 2
Number of events (events/sec) 28388 1000 1000

DEVS-Suite OSPF memory footprint is also compared to the memory demands of several

simulators after building the model but before advancing simulation time. These extreme
points give us some sense of how much of the memory is being used to describe the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 469

architecture. By comparison, Nicol [38] reports that ns-2 demands 52.2 KB per connection,
and JavaSim demands 17.3 KB per connection. Table 4 summarizes the per-connection core
costs of all the simulators. While DEVS-Suite OSPF model with simview visualization
consumes 39.5 KB per connection, model without visualization consumes 31.5 KB memory
per connection. According to these values, Java implementation of DEVS shows better
memory management than ns-2 and consumes two times more memory cells than JavaSim.
Most of the memory demands come from routing table implementation and later visualization.
In our implementation, data structures such as Vector and Hashmap are exploited for storing
routing information. Together with more preferable routing table representations such as
Nlx-vector approach [39], it is possible to lessen memory demands. The difference between
results from with and without DEVS visualization is surprisingly low. The reason is that
DEVS-Suite creates most GUI elements even if visualization is not selected.

Table 4. Per-connection core memory demands of the simulators [38].
Tools Per connection Memory Footprint

JavaSim 17,3Kb
Ns-2 52,2Kb

DEVS-Suite(with simview) 39,5Kb
DEVS-Suite(without simview) 31,6Kb

Fig. 9. Simulated Performance Measurements of Ns-2 and DEVS-Suite for Throughput

As already mentioned above, primary goal of the DEVS-Suite OSPF simulator is to

achieve a high-speed simulation for large-scale network systems. Fig. 10 depicts the wall
clock execution times of the developed simulator across number of nodes. The Fig. clearly
shows the performance superiority of the DEVS-Suite. When network scales up to ten

0

100

200

300

400

500

600

700

800

900

1000

1100

0 1 2 3 4 5 6 7 8 9 10 11

Th
ro
ug
hp

ut
 (K

B/
se
c.
)

Time(sec.)

DEVS‐Suite and Ns‐2 Average Throughputs

Ns‐2

DEVS‐Suite

470 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
thousands nodes, execution time increases almost linearly (660 seconds for 10.000 nodes).

Fig. 10. Execution Times of The DEVS-Suite OSPF Simulator

4.3 Scalability evaluation
Table 5 shows the performance results for all synthetic topology scenarios across varying
topology parameters. Models composed of varying number of nodes and autonomous systems
are generated using BRITE topology generator. All networks are modeled as Waxman
topology model [40] and connectivity parameters (links per nodes - m) are set to 2 but selected
as 1 in some models as shown in the table.

First of all, convergence value of the models are measured and listed. Convergence time is
a simulation set up time that all routers install their routing databases. Low convergence means
speedy routing process and it is desired for large-scale approaches. For all models’
convergence time vary linearly with the number of nodes. It has also linear relation with
connectivity (m value). As shown in the Table 5, convergence is still acceptable even if scaled
up to ten thousands nodes.

Besides convergence value, efficiency is measured for all network models. Efficiency can
be formulated as a ratio of packets delivered successfully. For all configurations, it is obvious
that the developed simulator runs with an extremely high degree of efficiency, which is
estimated as packet delivery ratio and lowest efficiency is 99.547% that means 99.547 percent
of the total packets are delivered to their destinations safely.

Throughputs and turnaround times as main network performance criteria are also observed
from experiments. These values allow evaluating the network performance. The throughput is
usually measured in bits per second (bit/s or bps), and sometimes in data packets per second or
data packets per time slot. In the large-scale models, as average bandwidth consumption
increases, throughput inherently gives small value, for example 2.3 Kbps for largest network

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 471

size. Average delay was measured in seconds for large networks, for example, it exceeds to
minutes for large-scale networks while it is less than ten seconds for small-scale networks (see
Table 5). In the table, logical simulation time is also listed in simulation cycles or steps.

From the experiments, one important outcome is the effect of connectivity on network
performance (see Fig. 11). For example, in 1000 nodes scenarios, several different models are
built in terms of number of autonomous systems and number of nodes per autonomous system.
When the number of autonomous system increases, convergence is decreasing and
performance, efficiency and, turnaround time are also increasing (see Fig. 11). Not for the first
two, increasing of turnaround time is not desired. When connectivity is set to 1 (m=1), network
routing speed is increased approximately 4.5 times. This is because OSPF runs with links
states and less number of links means less amount of database but high delay.

Table 5. Performance Results of Synthetic Topology Networks

Number
of nodes

Number of
AS’s

Number
of

nodes
per AS

Topology Model Logical convergence
time(steps)

Efficienc
y

Average
throughput

(Kbps)

Average
turnaround

time (s)

Simulation
logical
time

10 1 10 Waxman(m=2) 46 100 4,40 5,076 1051

20 1 20 Waxman(m=2) 109 100 4,39 6,317 1116

30 1 30 Waxman(m=2) 191 100 4,39 6,818 1199

50 1 50 Waxman(m=2) 392 99,978 4,28 7,64 1401

50 5 10 Waxman(m=2) 104 100 4,36 10,231 1118

70 1 70 Waxman(m=2) 647 99,919 4,01 8,23 1599

100 1 100 Waxman(m=2) 747 99,924 4,05 8,62 1755

100 5 20 Waxman(m=2) 207 99,999 4,34 12,88 1225

100 10 10 Waxman(m=2) 132 100 4,36 12,347 1146

150 5 30 Waxman(m=2) 355 99,899 3,90 13,69 1374

200 10 20 Waxman(m=2) 259 99,995 4,30 15,17 1281

250 5 50 Waxman(m=2) 517 99,965 4,19 15,19 1535

300 10 30 Waxman(m=2) 450 99,947 4,05 18,2 1484

350 5 70 Waxman(m=2) 739 99,968 4,13 18,99 1774

500 5 100 Waxman(m=2) 1304 99,829 3,57 18,63 2330

500 10 50 Waxman(m=2) 706 99,85 3,65 21,9 1735

500 50 10 Waxman(m=2) 654 100 4,27 21,091 1688

700 10 70 Waxman(m=2) 1061 99,889 3,82 23,86 2103

1000 10 100 Waxman(m=2) 1385 99,855 3,65 24,11 2419

1000 50 20 Waxman(m=2) 935 99,968 4,13 26,17 1971

1000 100 10 Waxman(m=1) 246 100 4,11 45,243 1321

1000 100 10 Waxman(m=2) 1154 99,991 4,24 23,95 2186

1500 50 30 Waxman(m=2) 1092 99,879 3,71 31,78 2140

2000 100 20 Waxman(m=2) 1638 99,943 4,00 30,095 2680

2500 50 50 Waxman(m=2) 238 99,817 3,44 39,46 1289

3000 100 30 Waxman(m=2) 2184 99,86 3,63 34,807 3230

3500 50 70 Waxman(m=2) 245 99,869 3,67 35,24 2707

5000 50 100 Waxman(m=2) 2496 99,678 2,86 37,06 3544

5000 100 50 Waxman(m=2) 2445 100 3,74 95,431 1523

7000 100 70 Waxman(m=1) 407 99,9 3,51 90,47 1542

10000 100 100 Waxman(m=2) 3321 99,547 2,30 39,906 4372

472 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite

Fig. 11. Performance Effect of Connectivity

5. Conclusions and Discussions
This paper presented the design of a new simulation environment for research design
alternatives of the large-scale simulation of the computer networks. Despite the continuous
effort made to support high-fidelity models in network routings, it is in vain if scalability of the
models in not considered. DEVS system theoretic approach and automated tools have an
important impact on the performance of the simulated system as presented in Table 5.
DEVS-Suite OSPF simulator overcomes the limitations of ns-2 concerning the performance
and viewing and tracking the execution of routing protocols. The developed simulator can be
scaled up to large sizes since it has underlying high performance DEVS formalism. Also using
variable structure DEVS [41] may be better to mimic dynamic nature of the distributed
systems such as computer networks. Although models are scaled up to ten thousands nodes,
simulation experiments can be scaled up to hundred thousand with DEVS/HLA [42] interface.

Acknowledgment
This work has been funded by the Sakarya University Scientific Research Projects Agency
under contract 2007-05-02-001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Sakarya University.

References
[1] S. Kim, H. Sarjoughian, and V.Elamvazhuthi, “DEVS-Suite: A Simulator Supporting Visual

Experimentation Design and Behavior Monitoring,” in Proc. of the Spring Simulation Conf., San
Diego, CA, pp. 29–36, Mar. 2009.

[2] B. P. Zeigler, H. Praehofer, and T. G. Kim, “Theory of Modeling and Simulation.” New York:
Academic Press, 2000.

0
100
200
300
400
500
600
700
800

0 0.2 0.4 0.6 0.8 1 1.2

Co
nv
er
ge
nc
e
ti
m
e

Connectivity (number of ASs/number of nodes)

Connectivity vs. convergence (100
nodes)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 473

[3] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,” IEEE-ACM Transactions on
Networking, vol. 9, no. 4, pp. 392–403, Aug. 2001, http://www.icir.org/.oyd/papers.html.

[4] R. M. Fujimoto, W. Lunceford, E. H. Page, and A. Uhrmacher, “Grand Challenges for Modeling
and Simulation,” http://www.dagstuhl.de/Reports/02351.pdf, 2002.

[5] Network Simulator 2 (ns-2), http://www.isis.edu/nsnam/ns/, 2010.
[6] Network Simulator 3 (ns-3), http://www.nsnam.org/, 2010.
[7] OPNET Simulator, http://www.opnet.com/, 2010.
[8] J. Cowie, A. Ogielski, and D. Nicol, “The SSFNet Network Simulator,” http://www.ssfnet

/homePage.html, Renesys Corporation, 2002.
[9] X. Zeng, R. Bagrodia, and M. Gerla, “GLOMOSIM: A Library for the Parallel Simulation of

Large Scale Wireless Networks,” in Proc. of Parallel and Distributed Simulation Conf., pp. 154,
1998.

[10] A. Varga, “The OMNeT++ Discrete Event Simulation System,” http://www.omnetpp.org/, 2010.
[11] H. Sarjoughian and B. Zeigler, “DEVSJAVA: Basis for a DEVS-based Collaborative M&S

Environment,” in Proc. of SCS Western Multi-Conference, vol. 5, San Diego, CA, pp. 29–36,
1998.

[12] A. Zengin, H. S. Sarjoughian, and H. Ekiz, “Honeybee Inspired Discrete Event Network
Modeling,” in Proc. of 16th European Simulation Symposium, Budapest, Hungary, pp. 176–182,
2004.

[13] H. Sarjoughian, Y. Chen, and K. Burger, “A Component-based Visual Simulator for MIPS32
Processors,” in Proc. of Frontiers in Education, Saratoga Spring, New York, Oct. 2008.

[14] M. Steenstrup, Routing in Communications Network. Prentice-Hall, 1995.
[15] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische Mathematik, vol.

1, 1959.
[16] ACIMS, “DEVSJAVA Modeling and Simulation Tool,” http://www.acims.arizona.edu/

SOFTWARE, 2010.
[17] H. Sarjoughian, “DEVS-Suite WebStart,” http://acims1.eas.asu.edu/WebStarts/, 2010.
[18] A. Chow, “Parallel DEVS: A Parallel, Hierarchical, Modular Modeling Formalism and Its

Distributed Simulator,” International Transactions of the Society for Computer Simulation, vol.
13, no. 2, pp. 55–67, 1996.

[19] H. Sarjoughian and F. Cellier, “Discrete Event Modeling & Simulation Technologies: A Tapestry
of Systems and AI-based Theories and Methodologies for Modeling and Simulation,” Springer
Verlag, 2001.

[20] H. S. Sarjoughian and R. Singh, “Building Simulation Modeling Environments Using Systems
Theory and Software Architecture Principles,” in Proc. of the Advanced Simulation Technology
Conf., Washington DC, pp. 99–104, Apr 2004.

[21] E. Helser, “Design and Analysis of View Synchronization in DEVS-Suite,” Master’s Thesis,
Computer Science and Engineering Department, Arizona State University, 2009.

[22] The Ptolemy Project, http://ptolemy.eecs.berkeley.edu/ptolemyII/, 2010.
[23] H. S. Sarjoughian and V. Elamvazhuthi, “COSMOS: A Visual Environment for Component-based

Modeling, Experimental Design, and Simulation,” in Proc. of the 2nd International Conf. on
Simulation Tools and Techniques, pp. 1–9, 2009.

[24] Mathworks Simevents, http://www.mathworks.com/products/simevents/, 2010.
[25] G. F. Riley, R. M. Fujimoto, and M. H. Ammar, “A Generic Framework for Parallelization of

Network Simulations,” in MASCOTS, pp. 128–135, 1999.
[26] J. Guo, W. Xiang, and S. Wang, “Reinforce Networking Theory with OPNET Simulation,” JITE,

vol. 6, pp. 215–226, 2007.
[27] L. Begg, W. Liu, K. Pawlikowski, S. Perera, and H. Sirisena, “Survey of Simulators of Next

Generation Networks for Studying Service Availability and Resilience,” Department of Computer
Science and Software Engineering University of Canterbury, Christchurch, New Zealand, Tech.
Rep., Feb. 2006.

474 Zengin: Large-Scale Integrated Network System Simulation with DEVS-Suite
[28] J. Lessmann, P. Janacik, L. Lachev, and D. Orfanus, “Comparative Study of Wireless Network

Simulators,” in Proc. of the Seventh International Conf. on Networking, Washington, DC, USA:
IEEE Computer Society, pp. 517–523, 2008.

[29] S.-H. Yook, H. Jeong, and A.-L. Barabasi, “Modeling the Internet’s Large-scale Topology,”
doi:10.1073/pnas.172501399, 2001.

[30] M. A. Rahman, A. Pakstas, and F. Z. Wang, “Network Modelling and Simulation Tools,”
Simulation Modelling Practice and Theory, vol. 17, no. 6, pp. 1011–1031, 2009.

[31] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal Topology
Generation,” in Proc. of International Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, Cincinnati, Ohio, USA, 2001.

[32] S. D. Webb, W. Lau, and S. Soh, “NGS: An Application Layer Network Game Simulator,” in Proc.
of the third Australasian conf. on Interactive entertainment, pp. 15–22, 2006.

[33] S. McCanne and S. Floyd, “ns-LBL network simulator,” http://www-nrg.ee.lbnl.gov/ns/, 1997.
[34] F. Baumgartner, M. Scheidegger, and T. Braun, “Enhancing Discrete Event Network Simulators

with Analytical Network Cloud Models,” in Proc. of International Workshop Inter-domain
Performance and Simulation, pp. 2130, 2003.

[35] H. Sarjoughian and K. Shaukat, “A Comparative Study of DEVS and ns-2 Modeling Approaches,”
International Transactions of the Society for Modeling and Simulation, 2009.

[36] A. Zengin and H. Sarjoughian, “Teaching and Training of Network Protocols with DEVS-Suite,”
in Proc. of International Symposium on Performance Evaluation of Computer &
Telecommunication Systems, vol. 41, pp. 104–111, Jul. 2009.

[37] I. E. T. Force, “OSPF version 2 (rfc 2328) Internet Standards Track Protocol,”
http://www.ietf.org/rfc/rfc2328.txt, 2010.

[38] D. M. Nicol, “Scalability of Network Simulators Revisited,” in Proc. of the Communications
Networking and Distributed Systems Modeling and Simulation Conf., 2003.

[39] G. F. Riley, M. H. Ammar, and R. Fujimoto, “Stateless Routing in Network Simulations,” in Proc.
of the Eighth International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 524–531, 2000.

[40] B. M. Waxman, “Routing of Multipoint Connections,” “IEEE Journal on Selected Areas in
Communications,” vol. 6, no. 9, pp. 1617–1622. http://dx.doi.org/10.1109/49.12889, Aug. 2002.

[41] X. Hu, B. P. Zeigler, and S. Mittal, “Variable Structure in DEVS Component-based Modeling and
Simulation,” SIMULATION: International Transactions of The Society for Modeling and
Simulation, vol. 81, no. 2, pp. 91–102, 2005.

[42] H. S. Sarjoughian and B. P. Zeigler, “DEVS and HLA: Complementary Paradigms for Modeling
and Simulation,” International Transactions of the Society for Modeling and Simulation, vol. 17,
no. 2, pp. 187–197, 2000.

Ahmet Zengin is Assistant Professor at Sakarya University, Turkey. His experience with
modeling and simulation includes a one-year-stay in ACIMS Lab at the Arizona State
University. His research topics include DEVS theory, multi-formalism modeling, parallel
and distributed simulation, modeling and simulation of large-scale networks, distributed
systems management, biologically-inspired optimization schemes. His main research
interest lies in parallel and distributed simulation and the High Level Architecture.

