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Abstract 

 
Rapid growth of internet applications has increased the importance of intrusion detection 
system (IDS) performance. String matching is the most computation-consuming task in IDS. 
In this paper, a new algorithm for multiple string matching is proposed. This proposed 
algorithm is based on the canonical Aho-Corasick algorithm and it utilizes a bidirectional and 
parallel processing structure to accelerate the matching speed. The proposed string matching 
algorithm was implemented and patched into Snort for experimental evaluation. Comparing 
with the canonical Aho-Corasick algorithm, the proposed algorithm has gained much 
improvement on the matching speed, especially in detecting multiple keywords within a long 
input text string. 
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1. Introduction 

String matching plays a very important role in bibliographic search [1], spell checking [2], 
network-based intrusion detection systems [3][4], and DNA sequence matching [5]. There are 
several well-known string matching algorithms such as Knuth-Morris-Pratt [6], Boyer-Moore 
(BM) [7], Wu and Manber (WM) [8] and Aho-Corasick (AC) [1]. Among these string 
matching algorithms, the AC algorithm performs better than the other string matching 
algorithms and guarantees that the worst-case matching time is linear in the length of the input 
text [9]. Consequently, many string matching methods are based on the original Aho-Corasick 
algorithm [9][10][11][12]. For instance, the bitmap AC algorithm [9] uses bitmap 
compression to reduce the memory usage of the AC algorithm. The bit-split AC algorithm [10] 
divides the length of the input text into smaller bit lengths so as to decrease the amount of 
memory and the number of comparisons. Coit et al. [11] combine the AC and Boyer Moore 
algorithm to improve the canonical AC from O(n) to the sublinear time complexity with BM 
algorithm. However, the main disadvantage for AC_BM is that the worst complexity is O(nm). 
Mishina and Kojima [12] implement AC in a vector processor and perform the string matching 
in parallel. However, this algorithm requires preprocessing the text, and thus is not suitable for 
real time matching. Hardware technologies for string matching are proposed to reduce string 
matching time, such as systolic array hardware [13], reconfigurable hardware [14], bloom 
filter [15], and content filtering coprocessor [16] and divided data parallel [17]. 

However, in next-generation intrusion detection applications, string matching tends to 
become a bottleneck as the network speed increases to tens of gigabits per second [3][4]. This 
is the reason why the string matching algorithm should be more efficient and must be 
improved for identifying packets at the line rate even if the performance and capacity of the 
memory of computers increase regularly.  

In this study, we propose a bidirectional and parallel processing structure to enhance the 
performance of the original Aho-Corasick string matching algorithm. The proposed string 
matching algorithm was implemented and patched into Snort version 2.6.0.2 in order to 
extensively compare its effectiveness with that of the original AC algorithm that had been 
realized in Snort. 

2. Methods 

2.1 Aho-Corasick Algorithm 

The Aho-Corasick algorithm consists of two parts. The first part involves the construction of a 
finite state pattern matching machine from a given set of keywords. In the first phase of the 
state machine construction, each keyword that has to be matched adds a state to the machine, 
beginning with the initial state, which is the default non-matching state, and proceeding up to 
the end of the keyword. Each state is represented by a number. State number 0 represents the 
initial state and has links to the other states. The links generated in this first part represents the 
goto function g(state, ‘ci’), which returns the next state when a character ‘ci’ is matched. The 
second part discovers if any of the keywords is present in the text string using the previously 
built string matching machine. In the second part, failure and output functions are found. The 
failure function f(state) is used when the character does not match and the matching continues 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010                958 

from the failure link state by executing the function g(f(state), ‘ci’). The output function 
returns the found keywords for each reached state. 

Fig. 1 illustrates the state machine, output function, and failure function for the set of 
keywords {he, she, his, hers, there}. Here, {‘h’, ‘s’, ‘t’} denotes all input characters other 
than ‘h’, ‘s’, and ‘t’. The solid arrows represent the forward links (function g(state, ‘ci’)). For 
example, the transition labelled ‘h’ from state 0 to state 1 in Fig. 1-(a) indicates that g(0, ‘h’) = 
1. The dotted arrows represent the failure links (function f(state)). For example, if at state 
number 13, the goto function g(13, ‘ci’) will return “fail” when the input character ‘ci’ is not ‘e’, 
then the state will change from state 13 to state 8. The operation of the Aho-Corasick 
algorithm is summarized in Algorithm 1. 

In addition, the goto function and failure function can be further merged as the next move 
function N(state, ‘ci’) in order to reduce the number of state transition and to accelerate the 
matching speed [1]. 

 

 
Fig. 1. The Aho-Corasick state machine for the set of keywords {he, she, his, hers, there}. 

 
Algorithm 1: (Aho-Corasick string matching algorithm) 
Input: Given an input text string T=c1,c2, …, cn where each ci for 1in is an input character, 

The AC machine consists of three kinds of functions: goto function g(state, ‘ci’), failure 
function f(state), and output function Out(state). 

Output: Locations at which the keywords occur in T. 
begin 
s0; 
g(0, ‘’)  fail for all input characters  
for i = 1 to n do  

while (g(s, ‘ci’) = fail) do 
 sf(s); 

   end of while-loop 
s g(s, ‘ci’); 
if Out(s)   then 

  return (i and Out(s)); 
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endif 
end of for-loop 
end 

2.2. Bidirectional and Parallel Processing String Matching Algorithm 

In the AC algorithm described above, the characters of the input text string are scanned by the 
AC finite state machine from left to right. The direction from left to right is referred to as the 
positive direction. Similarly, the characters in the text string can also be scanned from right to 
left by using a reverse-directional finite state machine. Therefore, if the text string can be 
matched by concurrently exploiting both directional (positive- and reverse- directional) finite 
state machines and operating these finite state machines in parallel, the performance of the 
string matching will be expected to improve further.  

Fig. 2-(a) shows the general structure of bidirectional string matching, which consists of 
positive- and reverse-directional string matching. This figure also demonstrates the starting 
search points (‘A’ and ‘B’) of bidirectional string matching. The starting search points are 
obtained on the basis of length of the input text string and the maximum length of keywords. 
Firstly, we determine the centre point (‘O’) of the text string. Consider that the longest 
keyword occurs exactly at centre of the text string. We then shift the centre point of text string 
to the right and left directions by half of the longest keyword length. The overlaying region 
represents the longest keyword length. 

 

 
Fig. 2 The structure of the bidirectional string matching. (a) illustrates the general form and (b) shows 

an example structure for the input text string ‘esrushersu’ 
 

The construction of the reverse-directional finite state machine is similar to the 
positive-directional finite state machine; however, the former is generated by using reverse 
keywords. Fig. 3 shows an example of goto, output, and failure functions of the 
reverse-directional finite state machine for the set of keywords {he, she, his, hers, there}. 

Table 1 shows the merged next move functions for the bidirectional finite state machine. 
The operation of the bidirectional finite state pattern matching machine is stated briefly in 
Algorithm 2. 
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Fig. 3 Reverse-directional state machine for the set of keywords {he, she, his, hers, there} 

 

Algorithm 2: (Bidirectional string matching algorithm) 
Input: Given an input text string T=c1,c2, …, cn where each ci for 1in is an input character, 

the bidirectional string matching machine consists of four kinds of functions: 
positive-directional next move function Np(state, ‘ci’) reverse-directional next move 
function Nr(state, ‘ci’), positive-directional output function Outp(state), and 
reverse-directional output function Ourr(state). 

Output: Locations at which the keywords occur in T. 
begin 
Sp0;        initial state of positive-directional state machine 
Sr0;        initial state of reverse-directional state machine 
in/2 – m/2;  starting point of positive-directional state machine 
jn/2+m/2;   starting point of reverse-directional state machine 
while (i  n or j  1) do 

Sp Np(Sp, ‘ci’); 
if Outp(Sp)   then 

  return (i and Outp(Sp)); 
endif 
Sr Nr(Sr, ‘ci’); 
if Outr(Sr)   then 

  return (j and Outr(Sr)); 
endif 
if i  n do 

i = i + 1; 
endif 
if  j  1  do 

j = j - 1; 
   endif 
endof while-loop 
end 
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Table 1. Next move functions of the bidirectional string matching algorithm 
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3. Evaluation 

3.1 Theoretical Evaluation 

The time complexity of the AC algorithm is O(n) [1], where n is the length of the input string. 
The proposed bidirectional string matching algorithm is based on the AC algorithm. It splits 
the input string into two equal segments. The string length to be processed by the positive- and 
reverse-directional state machine is equal to n/2 + m/2, where m is the maximal length of the 
keywords. Therefore, the time complexity of the bidirectional string matching algorithm 
running at a two-core system is O(n/2 + m/2). The proposed algorithm can improve the 
performance by n/(n/2 + m/2) times while comparing with the AC algorithm. If the 
bidirectional string matching algorithm is used to deal with a large input text string, then n will 
be a large number that is much larger than m. In this case, the bidirectional string matching 
algorithm is nearly two times better than the AC string matching algorithm. 

The bidirectional string matching algorithm increases the amount of memory required by 
two times because it uses positive- and reverse-directional state machines. However, it is 
worth consuming such memory volumes since the concept of bidirectional string matching 
algorithm can be extensively employed to develop the multi-directional string matching 
algorithm by using the same finite state machines. In other words, the memory usage of the 
multi-directional string matching algorithm is identical to the bidirectional string matching 
algorithm; however, the former algorithm will be capable of exhibiting a better performance 
than the latter. The structure of two bidirectional string matching algorithms as an example is 
illustrated in Fig. 4. The k bidirectional string matching algorithm running at a k-core system 
will promote the performance by n/(n/2k + m/2) times. 

 

 
 

Fig. 4. The structure of four-directional string matching 

3.2 Experimental Evaluation 
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The performances of the original AC string matching algorithm and the proposed bidirectional 
string matching algorithm were experimentally evaluated according to Algorithm 1 and 
Algorithm 2. These two algorithms were used to process the input text string ‘esrushersu’ 
when the set of keywords is {he, she, his, hers, there}. The original AC string matching 
algorithm was first assessed. Because g(0, ‘e’) = 0, the machine remains in state 0. After going 
through the following processing steps—g(0, ‘s’) = 3, g(3, ‘r’) = 0, g(0, ‘u’) = 0, g(0, ‘s’) = 3, 
g(3, ‘h’) = 4, and g(4, ‘e’) = 5, the AC string matching algorithm enters state 5 and outputs 
Out(5), indicating that it has found the keywords ‘she’ and ‘he’ at the end of position seven in 
the input text string. Therefore in the original AC string matching algorithm, it takes seven 
steps to find the first keyword. 

Next, the bidirectional string matching machine is evaluated by using Algorithm 2. Fig. 
2-(b) shows the starting points of the bidirectional string matching machine for the input text 
string ‘esrushersu’. In the first step, the character ‘r’ enters the positive-directional state 
machine and the character ‘r’ enters the reverse-directional state machine. Since Np(0, ‘r’)=0 
and Nr(0, ‘r’) = 0, the positive- and reverse-directional state machines remain at state 0. No 
output is generated in this operating step. In the second step, the character ‘u’ enters the 
positive-directional state machine and the character ‘e’ enters the reverse-directional state 
machine. Since Np(0, ‘u’) = 0 and Nr(0, ‘e’) = 1, the positive-directional state machine still 
remains at state 0 and the reverse-directional state machine enters state 1. No output is 
generated in the second operating step. In the third step, the character ‘s’ enters the 
positive-directional state machine and the character ‘h’ enters the reverse-directional state 
machine. Since Np(0, ‘s’) = 3 and Nr(1, ‘h’) = 2, the positive-directional state machine enters 
state 3 and the reverse-directional state machine enters state 2 and generates Outr(2). At this 
point, the bidirectional string matching algorithm has found the keyword ‘he’. Therefore, in 
the bidirectional AC string matching algorithm, it takes only three steps to find the first 
keyword. According to the result of this example, the bidirectional string matching algorithm 
is 2.33 times more efficient than the AC string matching algorithm for the first occurrence of 
keywords. 

Subsequently, the bidirectional string matching algorithm was implemented by modifying 
the Build Non-Deterministic Finite Automata (Build_NFA) function, the Build Deterministic 
Finite Automata from Non-Deterministic Finite Automata (Convert_NFA_DFA) function, the 
Add Pattern to State Machine (acsmAddPattern) function, the Compile State Machine 
(acsmCompile) function, and the Search Text or Binary Data for Pattern matches (acsmSearch) 
function in the multi-pattern search engine of Snort. The modifications of the Build_NFA, the 
Convert_NFA_DFA, the acsmAddPattern, and the acsmCompile functions were used to 
construct a reverse-directional state machine. In the acsmSearch function, the positive- and 
reverse-directional string searchings were alternatively executed to simulate parallel 
processing. Then, the proposed algorithm was patched into Snort version 2.6.0.2 to 
extensively compare its effectiveness with the original AC algorithm, the set-wise 
multi-pattern BM algorithm [18], and the WM algorithm that have already implemented in 
Snort. The set of keywords used in the present experiment originated from the well-known 
Snort rule set v2.6, which contained a total of 6718 keywords. The experiments used a host 
with AMD K8 Athlon64 3000 processor running Snort on the Fedora 7 Linux operating 
system. Another PC with Pentium IV processor was used to replay the test packet traces to 
host via a crossover cable. The packet traces from DEFCON10 [19] were exploited to produce 
the test traffic more realistically. 
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The results of performance evaluation for the set-wise multi-pattern BM algorithm, the WM 
algorithm, the original AC algorithm, and the bidirectional string matching algorithm are 
presented in Fig. 5. The throughputs are plotted against the keyword set sizes ranging from 
1000 to 6718. As shown in Fig. 5, the performance of the bidirectional string matching 
algorithm is superior to those of other algorithms for different keyword set sizes. The 
performance of the AC algorithm and the bidirectional string matching algorithm does not 
vary significantly even when the keyword set sizes are changed. But, the performance of the 
WM algorithm deteriorates when the keyword set sizes increase from 1000 to 3000. This 
coincides with previous observations that the AC algorithm is theoretically independent of the 
keyword set size [18]. The bidirectional string matching algorithm also inherits the attributes 
of the AC algorithm because it is also independent of the keyword set size. The average 
throughput for the bidirectional string matching algorithm and the original AC algorithm is 
139.4 Mbps and 89.7 Mbps, respectively. The bidirectional string matching algorithm 
improves the performance of the original AC algorithm by 1.55 times in this primitive 
experiment. 

 
Fig. 5 The throughput of the four string matching algorithm with different keyword set sizes. 

 

The memory comparisons for the set-wise multi-pattern BM algorithm, the WM algorithm, 
the AC algorithm, and the bidirectional string matching algorithm are shown in Fig. 6. We can 
observe that the amounts of memory for the AC algorithm and the bidirectional string 
matching algorithm linearly increase with a larger slope as the keyword set size increases. 
However, the changes of memory usage with the increase of the keyword set sizes for the 
set-wise multi-pattern Boyer-Moore algorithm and Wu-Manber algorithm are not evident. We 
also find that the memory usage of the bidirectional string matching algorithm is about 1.9 
times that of the AC algorithm. This result fits in with our previous analysis that the 
bidirectional string matching algorithm consumes more memory volumes. This is an extra cost 
that the proposed algorithm needs to pay for enhancing the performance. Therefore, the 
bidirectional string matching algorithm is more suitable for sufficient memory resource 
available devices. 
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Fig. 6 The memory usage for the four string matching algorithm with different keyword set sizes. 

4. Conclusions 

In this study, we proposed a bidirectional and parallel processing structure to further improve 
the performance of the AC string matching algorithm. The proposed string matching algorithm 
was implemented and patched into Snort for experimental evaluation. Our results show that 
bidirectional and parallel string matching algorithm is more efficient than the canonical AC 
algorithms, especially in detecting network packets with a large data payload. In addition, a 
multi-directional parallel structure can be developed based on the concept of this bidirectional 
parallel structure, and then, it can be applied to the next-generation intrusion detection system. 
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