
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 956
Copyright ⓒ 2010 KSII

This research was supported by the MKE(Ministry of Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency)
(NIPA-2010-C1090-1001-0008)

DOI: 10.3837/tiis.2010.10.014

An Efficient String Matching Algorithm
Using Bidirectional and Parallel Processing
Structure for Intrusion Detection System

Gwo-Ching Chang1 and Yue-Der Lin2

1Department of Information Engineering, I-Shou University
Kaohsiung, Taiwan, ROC
[e-mail: cgc@isu.edu.tw]

2Department of Automatic Control Engineering & Master Program of Biomedical Informatics
and Biomedical Engineering, Feng-Chia University, Taichung, Taiwan, ROC

[e-mail: ydlin@fcu.edu.tw]
*Corresponding author: Gwo-Ching Chang

Received June 6, 2010; revised July 23, 2010; accepted August 13, 2010;

published October 30, 2010

Abstract

Rapid growth of internet applications has increased the importance of intrusion detection
system (IDS) performance. String matching is the most computation-consuming task in IDS.
In this paper, a new algorithm for multiple string matching is proposed. This proposed
algorithm is based on the canonical Aho-Corasick algorithm and it utilizes a bidirectional and
parallel processing structure to accelerate the matching speed. The proposed string matching
algorithm was implemented and patched into Snort for experimental evaluation. Comparing
with the canonical Aho-Corasick algorithm, the proposed algorithm has gained much
improvement on the matching speed, especially in detecting multiple keywords within a long
input text string.

Keywords: String matching, Aho-Corasick algorithm, parallel processing structure,
intrusion detection system, snort

957 Chang et al.: An Efficient String Matching Algorithm Using Bidirectional and parallel processing

1. Introduction

String matching plays a very important role in bibliographic search [1], spell checking [2],
network-based intrusion detection systems [3][4], and DNA sequence matching [5]. There are
several well-known string matching algorithms such as Knuth-Morris-Pratt [6], Boyer-Moore
(BM) [7], Wu and Manber (WM) [8] and Aho-Corasick (AC) [1]. Among these string
matching algorithms, the AC algorithm performs better than the other string matching
algorithms and guarantees that the worst-case matching time is linear in the length of the input
text [9]. Consequently, many string matching methods are based on the original Aho-Corasick
algorithm [9][10][11][12]. For instance, the bitmap AC algorithm [9] uses bitmap
compression to reduce the memory usage of the AC algorithm. The bit-split AC algorithm [10]
divides the length of the input text into smaller bit lengths so as to decrease the amount of
memory and the number of comparisons. Coit et al. [11] combine the AC and Boyer Moore
algorithm to improve the canonical AC from O(n) to the sublinear time complexity with BM
algorithm. However, the main disadvantage for AC_BM is that the worst complexity is O(nm).
Mishina and Kojima [12] implement AC in a vector processor and perform the string matching
in parallel. However, this algorithm requires preprocessing the text, and thus is not suitable for
real time matching. Hardware technologies for string matching are proposed to reduce string
matching time, such as systolic array hardware [13], reconfigurable hardware [14], bloom
filter [15], and content filtering coprocessor [16] and divided data parallel [17].

However, in next-generation intrusion detection applications, string matching tends to
become a bottleneck as the network speed increases to tens of gigabits per second [3][4]. This
is the reason why the string matching algorithm should be more efficient and must be
improved for identifying packets at the line rate even if the performance and capacity of the
memory of computers increase regularly.

In this study, we propose a bidirectional and parallel processing structure to enhance the
performance of the original Aho-Corasick string matching algorithm. The proposed string
matching algorithm was implemented and patched into Snort version 2.6.0.2 in order to
extensively compare its effectiveness with that of the original AC algorithm that had been
realized in Snort.

2. Methods

2.1 Aho-Corasick Algorithm

The Aho-Corasick algorithm consists of two parts. The first part involves the construction of a
finite state pattern matching machine from a given set of keywords. In the first phase of the
state machine construction, each keyword that has to be matched adds a state to the machine,
beginning with the initial state, which is the default non-matching state, and proceeding up to
the end of the keyword. Each state is represented by a number. State number 0 represents the
initial state and has links to the other states. The links generated in this first part represents the
goto function g(state, ‘ci’), which returns the next state when a character ‘ci’ is matched. The
second part discovers if any of the keywords is present in the text string using the previously
built string matching machine. In the second part, failure and output functions are found. The
failure function f(state) is used when the character does not match and the matching continues

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 958

from the failure link state by executing the function g(f(state), ‘ci’). The output function
returns the found keywords for each reached state.

Fig. 1 illustrates the state machine, output function, and failure function for the set of
keywords {he, she, his, hers, there}. Here, {‘h’, ‘s’, ‘t’} denotes all input characters other
than ‘h’, ‘s’, and ‘t’. The solid arrows represent the forward links (function g(state, ‘ci’)). For
example, the transition labelled ‘h’ from state 0 to state 1 in Fig. 1-(a) indicates that g(0, ‘h’) =
1. The dotted arrows represent the failure links (function f(state)). For example, if at state
number 13, the goto function g(13, ‘ci’) will return “fail” when the input character ‘ci’ is not ‘e’,
then the state will change from state 13 to state 8. The operation of the Aho-Corasick
algorithm is summarized in Algorithm 1.

In addition, the goto function and failure function can be further merged as the next move
function N(state, ‘ci’) in order to reduce the number of state transition and to accelerate the
matching speed [1].

Fig. 1. The Aho-Corasick state machine for the set of keywords {he, she, his, hers, there}.

Algorithm 1: (Aho-Corasick string matching algorithm)
Input: Given an input text string T=c1,c2, …, cn where each ci for 1in is an input character,

The AC machine consists of three kinds of functions: goto function g(state, ‘ci’), failure
function f(state), and output function Out(state).

Output: Locations at which the keywords occur in T.
begin
s0;
g(0, ‘’)  fail for all input characters 
for i = 1 to n do

while (g(s, ‘ci’) = fail) do
 sf(s);

 end of while-loop
s g(s, ‘ci’);
if Out(s)   then

 return (i and Out(s));

959 Chang et al.: An Efficient String Matching Algorithm Using Bidirectional and parallel processing

endif
end of for-loop
end

2.2. Bidirectional and Parallel Processing String Matching Algorithm

In the AC algorithm described above, the characters of the input text string are scanned by the
AC finite state machine from left to right. The direction from left to right is referred to as the
positive direction. Similarly, the characters in the text string can also be scanned from right to
left by using a reverse-directional finite state machine. Therefore, if the text string can be
matched by concurrently exploiting both directional (positive- and reverse- directional) finite
state machines and operating these finite state machines in parallel, the performance of the
string matching will be expected to improve further.

Fig. 2-(a) shows the general structure of bidirectional string matching, which consists of
positive- and reverse-directional string matching. This figure also demonstrates the starting
search points (‘A’ and ‘B’) of bidirectional string matching. The starting search points are
obtained on the basis of length of the input text string and the maximum length of keywords.
Firstly, we determine the centre point (‘O’) of the text string. Consider that the longest
keyword occurs exactly at centre of the text string. We then shift the centre point of text string
to the right and left directions by half of the longest keyword length. The overlaying region
represents the longest keyword length.

Fig. 2 The structure of the bidirectional string matching. (a) illustrates the general form and (b) shows

an example structure for the input text string ‘esrushersu’

The construction of the reverse-directional finite state machine is similar to the
positive-directional finite state machine; however, the former is generated by using reverse
keywords. Fig. 3 shows an example of goto, output, and failure functions of the
reverse-directional finite state machine for the set of keywords {he, she, his, hers, there}.

Table 1 shows the merged next move functions for the bidirectional finite state machine.
The operation of the bidirectional finite state pattern matching machine is stated briefly in
Algorithm 2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 960

Fig. 3 Reverse-directional state machine for the set of keywords {he, she, his, hers, there}

Algorithm 2: (Bidirectional string matching algorithm)
Input: Given an input text string T=c1,c2, …, cn where each ci for 1in is an input character,

the bidirectional string matching machine consists of four kinds of functions:
positive-directional next move function Np(state, ‘ci’) reverse-directional next move
function Nr(state, ‘ci’), positive-directional output function Outp(state), and
reverse-directional output function Ourr(state).

Output: Locations at which the keywords occur in T.
begin
Sp0; initial state of positive-directional state machine
Sr0; initial state of reverse-directional state machine
in/2 – m/2; starting point of positive-directional state machine
jn/2+m/2; starting point of reverse-directional state machine
while (i  n or j  1) do

Sp Np(Sp, ‘ci’);
if Outp(Sp)   then

 return (i and Outp(Sp));
endif
Sr Nr(Sr, ‘ci’);
if Outr(Sr)   then

 return (j and Outr(Sr));
endif
if i  n do

i = i + 1;
endif
if j  1 do

j = j - 1;
 endif
endof while-loop
end

961 Chang et al.: An Efficient String Matching Algorithm Using Bidirectional and parallel processing

Table 1. Next move functions of the bidirectional string matching algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 962

3. Evaluation

3.1 Theoretical Evaluation

The time complexity of the AC algorithm is O(n) [1], where n is the length of the input string.
The proposed bidirectional string matching algorithm is based on the AC algorithm. It splits
the input string into two equal segments. The string length to be processed by the positive- and
reverse-directional state machine is equal to n/2 + m/2, where m is the maximal length of the
keywords. Therefore, the time complexity of the bidirectional string matching algorithm
running at a two-core system is O(n/2 + m/2). The proposed algorithm can improve the
performance by n/(n/2 + m/2) times while comparing with the AC algorithm. If the
bidirectional string matching algorithm is used to deal with a large input text string, then n will
be a large number that is much larger than m. In this case, the bidirectional string matching
algorithm is nearly two times better than the AC string matching algorithm.

The bidirectional string matching algorithm increases the amount of memory required by
two times because it uses positive- and reverse-directional state machines. However, it is
worth consuming such memory volumes since the concept of bidirectional string matching
algorithm can be extensively employed to develop the multi-directional string matching
algorithm by using the same finite state machines. In other words, the memory usage of the
multi-directional string matching algorithm is identical to the bidirectional string matching
algorithm; however, the former algorithm will be capable of exhibiting a better performance
than the latter. The structure of two bidirectional string matching algorithms as an example is
illustrated in Fig. 4. The k bidirectional string matching algorithm running at a k-core system
will promote the performance by n/(n/2k + m/2) times.

Fig. 4. The structure of four-directional string matching

3.2 Experimental Evaluation

963 Chang et al.: An Efficient String Matching Algorithm Using Bidirectional and parallel processing

The performances of the original AC string matching algorithm and the proposed bidirectional
string matching algorithm were experimentally evaluated according to Algorithm 1 and
Algorithm 2. These two algorithms were used to process the input text string ‘esrushersu’
when the set of keywords is {he, she, his, hers, there}. The original AC string matching
algorithm was first assessed. Because g(0, ‘e’) = 0, the machine remains in state 0. After going
through the following processing steps—g(0, ‘s’) = 3, g(3, ‘r’) = 0, g(0, ‘u’) = 0, g(0, ‘s’) = 3,
g(3, ‘h’) = 4, and g(4, ‘e’) = 5, the AC string matching algorithm enters state 5 and outputs
Out(5), indicating that it has found the keywords ‘she’ and ‘he’ at the end of position seven in
the input text string. Therefore in the original AC string matching algorithm, it takes seven
steps to find the first keyword.

Next, the bidirectional string matching machine is evaluated by using Algorithm 2. Fig.
2-(b) shows the starting points of the bidirectional string matching machine for the input text
string ‘esrushersu’. In the first step, the character ‘r’ enters the positive-directional state
machine and the character ‘r’ enters the reverse-directional state machine. Since Np(0, ‘r’)=0
and Nr(0, ‘r’) = 0, the positive- and reverse-directional state machines remain at state 0. No
output is generated in this operating step. In the second step, the character ‘u’ enters the
positive-directional state machine and the character ‘e’ enters the reverse-directional state
machine. Since Np(0, ‘u’) = 0 and Nr(0, ‘e’) = 1, the positive-directional state machine still
remains at state 0 and the reverse-directional state machine enters state 1. No output is
generated in the second operating step. In the third step, the character ‘s’ enters the
positive-directional state machine and the character ‘h’ enters the reverse-directional state
machine. Since Np(0, ‘s’) = 3 and Nr(1, ‘h’) = 2, the positive-directional state machine enters
state 3 and the reverse-directional state machine enters state 2 and generates Outr(2). At this
point, the bidirectional string matching algorithm has found the keyword ‘he’. Therefore, in
the bidirectional AC string matching algorithm, it takes only three steps to find the first
keyword. According to the result of this example, the bidirectional string matching algorithm
is 2.33 times more efficient than the AC string matching algorithm for the first occurrence of
keywords.

Subsequently, the bidirectional string matching algorithm was implemented by modifying
the Build Non-Deterministic Finite Automata (Build_NFA) function, the Build Deterministic
Finite Automata from Non-Deterministic Finite Automata (Convert_NFA_DFA) function, the
Add Pattern to State Machine (acsmAddPattern) function, the Compile State Machine
(acsmCompile) function, and the Search Text or Binary Data for Pattern matches (acsmSearch)
function in the multi-pattern search engine of Snort. The modifications of the Build_NFA, the
Convert_NFA_DFA, the acsmAddPattern, and the acsmCompile functions were used to
construct a reverse-directional state machine. In the acsmSearch function, the positive- and
reverse-directional string searchings were alternatively executed to simulate parallel
processing. Then, the proposed algorithm was patched into Snort version 2.6.0.2 to
extensively compare its effectiveness with the original AC algorithm, the set-wise
multi-pattern BM algorithm [18], and the WM algorithm that have already implemented in
Snort. The set of keywords used in the present experiment originated from the well-known
Snort rule set v2.6, which contained a total of 6718 keywords. The experiments used a host
with AMD K8 Athlon64 3000 processor running Snort on the Fedora 7 Linux operating
system. Another PC with Pentium IV processor was used to replay the test packet traces to
host via a crossover cable. The packet traces from DEFCON10 [19] were exploited to produce
the test traffic more realistically.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 964

The results of performance evaluation for the set-wise multi-pattern BM algorithm, the WM
algorithm, the original AC algorithm, and the bidirectional string matching algorithm are
presented in Fig. 5. The throughputs are plotted against the keyword set sizes ranging from
1000 to 6718. As shown in Fig. 5, the performance of the bidirectional string matching
algorithm is superior to those of other algorithms for different keyword set sizes. The
performance of the AC algorithm and the bidirectional string matching algorithm does not
vary significantly even when the keyword set sizes are changed. But, the performance of the
WM algorithm deteriorates when the keyword set sizes increase from 1000 to 3000. This
coincides with previous observations that the AC algorithm is theoretically independent of the
keyword set size [18]. The bidirectional string matching algorithm also inherits the attributes
of the AC algorithm because it is also independent of the keyword set size. The average
throughput for the bidirectional string matching algorithm and the original AC algorithm is
139.4 Mbps and 89.7 Mbps, respectively. The bidirectional string matching algorithm
improves the performance of the original AC algorithm by 1.55 times in this primitive
experiment.

Fig. 5 The throughput of the four string matching algorithm with different keyword set sizes.

The memory comparisons for the set-wise multi-pattern BM algorithm, the WM algorithm,
the AC algorithm, and the bidirectional string matching algorithm are shown in Fig. 6. We can
observe that the amounts of memory for the AC algorithm and the bidirectional string
matching algorithm linearly increase with a larger slope as the keyword set size increases.
However, the changes of memory usage with the increase of the keyword set sizes for the
set-wise multi-pattern Boyer-Moore algorithm and Wu-Manber algorithm are not evident. We
also find that the memory usage of the bidirectional string matching algorithm is about 1.9
times that of the AC algorithm. This result fits in with our previous analysis that the
bidirectional string matching algorithm consumes more memory volumes. This is an extra cost
that the proposed algorithm needs to pay for enhancing the performance. Therefore, the
bidirectional string matching algorithm is more suitable for sufficient memory resource
available devices.

965 Chang et al.: An Efficient String Matching Algorithm Using Bidirectional and parallel processing

Fig. 6 The memory usage for the four string matching algorithm with different keyword set sizes.

4. Conclusions

In this study, we proposed a bidirectional and parallel processing structure to further improve
the performance of the AC string matching algorithm. The proposed string matching algorithm
was implemented and patched into Snort for experimental evaluation. Our results show that
bidirectional and parallel string matching algorithm is more efficient than the canonical AC
algorithms, especially in detecting network packets with a large data payload. In addition, a
multi-directional parallel structure can be developed based on the concept of this bidirectional
parallel structure, and then, it can be applied to the next-generation intrusion detection system.

References

[1] A.V. Aho and M.J. Corasick, “Efficient string matching,” Communications ACM , vol. 18, no. 6, pp.
333-340, 1975.

[2] K. Ando, T. Kinoshita, M. Shishibori, and J. Aoe, “An improvement of the Aho-Corasick machine,”
Information Science, vol. 111, pp. 139-151, 1998.

[3] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching hardware for speeding up
intrusion detection,” ACM SIGARCH Computer Architecture News, vol. 33, no. 1, pp. 99-107,
2005.

[4] R.T. Liu, N.F. Huang, C.H. Chen, and C.N. Kao, “A fast string matching algorithm for network
processor-based intrusion detection system,” ACM Trans. on Embedded Computing Systems, vol.
3, no. 3, pp. 614-633, 2004.

[5] S. S. Sheik, S. K. Aggarwal, A. Poddar, B. Sathiyabhama, N. Balakrishnan, and K. Sekar, “Analysis
of string searching algorithms on biological sequence databases,” Journal of CURR SCIENCE, vol.
89, no. 2, pp. 368-374, 2005.

[6] D.E. Knuth, J.H. Morris Jr., and V.R. Pratt, “Fast pattern matching in strings,” SIAM J. Comput. vol.
6, pp. 323-350, 1977.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 966

[7] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communication ACM, vol. 20, no.
10, pp. 762-772, 1977.

[8] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Technical Report TR-94-17,
University of Arizona, pp. 1-11, 1994.

[9] N. Tuck, T. Sherwood, B. Calder and G. Varghese, “Deterministic memory-efficient string
matching algorithms for intrusion detection,” in Proc. of the IEEE Infocom conf., pp. 333-340,
2004.

[10] L. Tan and T. Sherwood, “A high throughput string matching architecture for intrusion detection
and prevention,” in Proc. of 32nd International Symp. on Computer Architecture, pp. 112-122,
2005.

[11] C. Coit, S. Staniford, and J. McAlerney, “Towards faster string matching for intrusion detection,”
in Proc. of the DARPA Information Survivability Conf. and Exhibition, pp. 367-373, 2002.

[12] Y. Mishina and K. Kojima, “String matching on IDP: A string matching algorithm for vector
processors and its implementation,” in Proc. of IEEE International Conf. on Computer Design, pp.
394-401, 1993.

[13] H. M. Bluthgen, T. Noll, and R. Aachen, “A programmable processor for approximate string
matching with high throughput rate,” in Proc. of IEEE International Conf. on Application-Specific
Systems, Architectures, and Processors, pp. 309-316, 2000.

[14] R. Franklin, D. Carver, and B. L. Hutchings, “Assisting network intrusion detection with
reconfigurable hardware,” in Proc. of 10th IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 111-120, 2002.

[15] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood, “Deep packet inspection
using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp.52-61, 2004.

[16] K. K. Tseng, Y. D. Lin, T. H. Lee, and Y. C. Lai, “A parallel automaton string matching with
pre-hashing and root-indexing techniques for content filtering coprocessor,” in Proc. of the 16th
IEEE International Conf. on Application-Specific Systems, Architectures, and Processors, pp.
113-118, 2005.

[17] Christopher V. Kopek, Errin W. Fulp, and Patrick S. Wheeler, “Distributed data parallel techniques
for content-matching intrusion detection systems,” in Proc. of the IEEE Military Communications
Conference, pp. 1-7, 2007.

[18] M. Fisk and G. Varghese, “Applying fast string matching to intrusion detection,” Technical Report
CS2001-0670, UCSD, 2001.

[19] DEFCON® Hacking conference, http://www.defcon.org/

Gwo-Ching Chang received the Ph.D. degree of electrical engineering from National
Taiwan University in 1997. From 1997 to 2002, he worked at Chunghwa Telecom Labs for
electronic toll collection development in Taoyuan, Taiwan. Since 2002, he has joined the
faculty of Department of Information Engineering, I-Shou University in Kaohsiung, Taiwan.
He serves as an assistant professor now. Dr. Chang’s research interests include computer
network security, embedded system design, and biomedical signal processing.

967 Chang et al.: An Efficient String Matching Algorithm Using Bidirectional and parallel processing

Der Lin was born in Taichung, Taiwan, in 1963. He earned the Ph.D. degree of electrical
engineering from National Taiwan University in 1998. He has been a lecture of the Department
of Electrical Engineering, Wufeng Institute of Technology in 1991 and 1992, and a teaching
assistant in the Department of Electrical Engineering, National Taiwan University from 1996
to 1998. He joined Comtrend Corporation as a design engineer in 1998 and was responsible for
the design of embedded systems in telecommunication. He joined the faculty of the School of
Post Baccalaureate Chinese Medicine, China Medical College in 1999 as an assistant professor
where his research efforts were focused on medical device design and biomedical signal
processing. Since 2003, he became an associate professor at the Department of Automatic
Control Engineering, Feng Chia University, Taichung, Taiwan. Dr. Lin is a visiting scholar of
the University of Wisconsin- Madison in 2006, where he pursued the research in ECG signal
processing. He is the winner of the Rotary International Scholarship in 1994-1995 and
1996-1997, and has been listed in Marquis Who’s Who in the World in 2008 , 2009 and 2010
for his researches on physiological signal analysis and wearable technology. He has also been
listed in IBC Top 100 Educators, 2000 Outstanding Intellectuals of the 21st Century, Foremost
Educators of the World, Foremost Engineers of the World, 21st Century Award for
Achievement and Leading Engineers of the World in 2008. Dr. Lin’s research interests include
the medical instrumentation, biomedical signal processing and development of high-speed
algorithm. He is a senior member of IEEE EMB society.

