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Abstract 
 

Most game-theoretic works of Aloha have emphasized investigating Nash equilibria 
according to the system state represented by the number of network users and their decisions. 
In contrast, we focus on the possible change of nodes’ utility state represented by delay 
constraint and decreasing utility over time. These foregone changes of nodes’ state are more 
likely to instigate selfish behaviors in networking environments. For such environment, in this 
paper, we propose a repeated Bayesian slotted Aloha game model to analyze the selfish 
behavior of impatient users. We prove the existence of Nash equilibrium mathematically and 
empirically. The proposed model enables any type of transmission probability sequence to 
achieve Nash equilibrium without degrading its optimal throughput. Those Nash equilibria 
can be used as a solution concept to thwart the selfish behaviors of nodes and ensure the 
system stability. 
 
 
Keywords: Slotted Aloha, stability, game theory, Bayesian game, Nash equilibrium, delay 
constraint 
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1. Introduction 

Aloha protocol has attracted remarkable attention in random access communications due to 
its simplicity and robustness. In slotted Aloha, time is discretized into slots and nodes 
synchronized to the timeslot transmit a packet over it. Successful transmission is achieved 
only when one packet is transmitted in a given slot. Otherwise, collision occurs, causing 
unsuccessful reception. Packets backlogged due to collision are probabilistically retransmitted 
in the next timeslot. 

Since the advent of Aloha in [1], most of works on Aloha and slotted Aloha have been 
done on the implicit assumption that all nodes in the network undoubtedly obey the standard 
specified by the system designer. However, the stability and performance of systems designed 
on this assumption could be easily compromised by “selfish nodes” capable of deviating from 
the standard [2]. In this paper, "selfish" nodes refer to the ones that are free to manipulate 
transmission probabilities for unilaterally augmenting their own gains without considering 
others’ loss over timeslots of slotted Aloha networks.  For example, a selfish node possibly 
increases its transmission probability higher than specified by the standard in order to improve 
the individual performance, which provokes others’ deviating. This vicious cycle leads to 
consistent packet collision and then, finally system failure. 

The presence and discretion of “selfish nodes” make network environment intractable with 
conventional analytical methods which require complete control over all the determinants of 
systems. In a recent decade, there have been some pioneering attempts to address this 
difficulty with game theory [2][3][4]. Game theory is a collection of mathematical tools useful 
in analyzing the interaction among multiple decision makers competing for conflicting 
interests. As a critical solution concept to competition, Nash equilibrium represents a 
combination of all players’ decisions in which no player unilaterally augments its interest by 
changing its own decision specified in the combination. 

There are two major reasons for modeling slotted Aloha as a game. Firstly, slotted Aloha is 
distributed in nature. Each network node makes its own access decision. Furthermore, these 
decisions are interactive and one’s decision affects the others’. Each node has a similar role to 
a player in a game. Secondly, as nodes become more and more flexible and intelligent [5], it 
becomes more appropriate to analyze the system behavior of slotted Aloha on the assumption 
that nodes are rational and selfish. Game theory is a suitable tool to model such selfish 
behaviors and conjecture the outcomes of their decisions. 

Among the aforementioned pioneering attempts to apply game theory to analyzing system 
behavior in presence of selfish users, MacKenzie and Wicker [2] established a Aloha game 
model for the first time and provided Nash equilibrium transmission probabilities for different 
numbers of users in the system. In [3], they extended this work to a multipacket slotted Aloha 
game. Relaxing the perfect information assumption of [2] and [3] about the number of users, 
[4] established a Markov chain based slotted Aloha game of partial information.  

In contrast that past works [2][3][4][7][8][9][10] focused on selecting Nash equilibrium 
transmission probabilities according to the system state represented by the number of users 
and their decisions, we investigate the selfish behavior of users experiencing the change of 
their individual state represented by delay constraint and decreasing utility. These foregone 
changes of individual state are more likely to instigate selfish behaviors in network 
environments.  
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This paper is mainly intended to analyze the system behavior of Aloha-based random 
access networks with selfish users and design a game-theoretic framework facilitating 
convergence to Nash equilibria. The proposed framework enables any type of transmission 
probability sequence to achieve Nash equilibrium without degrading its throughput. Those 
Nash equilibria can be used as a solution concept to thwart the selfish behaviors of nodes and 
ensure the system stability. To the best of our knowledge, this paper is the first to formulate a 
repeated Bayesian slotted Aloha game focusing on the change of user’s individual states. Our 
main contributions can be summarized as follows. In Section 3, we formulate a repeated 
Bayesian slotted Aloha game with partial information, in which each user may determine its 
transmission probability every timeslot over the limited lifetime and has a decreasing utility of 
successful transmission. We reveal the mathematical existence of the Bayesian Nash 
equilibrium for the game and also explain it empirically with Monte Carlo simulations. In 
Section 4, we show that the proposed Bayesian game model enables any type of transmission 
probability sequence strategy (TPSS) to be a Nash equilibrium without degrading its 
throughput. Also, we compare the performance of the time-invariant TPSS of traditional 
Aloha system and a time-variant TPSS in terms of throughput and packet loss rate. 
Interestingly, time-variant TPSSs proposed in this paper outperform time-invariant TPSSs. 
We provide a lemma and theorems about the characteristics of the proposed game model. 

2. Related Work 
There has been a rich literature using game theory to study medium access. In addition to early 
works of slotted Aloha [1][2][3], the work in [11] provides another model, in which users 
announce their transmission probabilities to the others while their desired throughput are kept 
secret. By knowing other users' actions, a user adjusts its transmission probability in an 
attempt to attain the desired throughput and then make known its new action. It is proved that 
the dynamic game with such behavior of users converges to a stable equilibrium point. In [12], 
a one-shot random access game for wireless networks is presented to study the behavior of the 
selfish nodes. Necessary and sufficient conditions on selfish nodes are given for the purpose of 
thoroughly characterizing the Nash equilibria of the game. Furthermore, the authors also 
provide the asymptotic analysis of the game as the number of selfish transmitters goes to 
infinity. In [13], an interference-aware MAC protocol is proposed via a game-theoretic 
approach.  A channel access game in this work considers nodes concurrently transmitting in 
nearby areas. Under such  interference-present environment, the authors derive a decentralized 
transmission strategy, which achieves a Bayesian Nash equilibrium (BNE). 

Some previous works [6][14][15] propose game-theoretic approaches for backoff 
schemes. In [16], the backoff attacks in ad hoc networks with anonymous stations are analyzed 
in two different non-cooperative game models: one-shot and repeated CSMA/CA games. 
Furthermore, the authors developed a strategy for stations, which provides a fair Pareto 
efficient and sub-game perfect Nash equilibrium of repeated CSMA/CA games. A 
reverse-engineering of backoff-based random access MAC protocols using a game-theoretic 
approach is presented in [17]. As shown in this paper, the exponential backoff protocol is 
reversed-engineered through a non-cooperative game in which the objective of each link is 
maximizing a selfish local utility function. Additionally, the authors prove the existence of the 
Nash equilibrium and provide sufficient conditions for its uniqueness and stability for the 
game. In [18], the authors investigate the stability of CSMA/CA based wireless networks with 
selfish users engaging in a non-cooperative CSMA/CA game. In this game, each user’s price is 
different and is dynamically determined by the network’s congestion and power consumption 
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status, not by a network. In addition, a proposed iterative method guarantees convergence to 
the unique Nash equilibrium. In [6][19], a novel concept of incompletely cooperative game 
theory and its implementation are proposed to improve the performance of CSMA/CA in 
mobile ad hoc networks. In this game model, nodes’ equilibrium strategies are tuned based on 
the estimated game state to achieve the optimal performance. The extension of this work is 
shown in [20]. In this work, the authors present a method for estimating the conditional 
collision probability based on the Virtual-CSMA technique and propose a simplified 
game-theoretic MAC protocol that can be implemented in wireless mesh networks.  

Nash equilibria of threshold transmission policy are discussed [5][21]. [21] formulates the 
problem of finding a channel state information (CSI) based transmission policy for each node 
in slotted Aloha as a non-cooperative game, in which each node attempts to maximize its 
individual utility. The condition for the existence of a Nash equilibrium threshold transmission 
policy is given and a stochastic gradient based algorithm is employed to handle the best 
response dynamic adjustment process for the transmission game. The authors in [5] present a 
game theoretic approach to design robust random access control protocols for wireless 
networks with fading channels. Specifically, the opportunistic transmissions in slotted Aloha 
and CSMA adapted to channel information states are modeled as Bayesian games in which 
each transmission threshold is a Bayesian Nash equilibrium of the game.  

The focus of [7][8][9] is on applying game theory to generalized General cases or models. 
In [7], the authors consider a generalized case for transmission strategy in Aloha networks. In 
this model, the user can change transmission probabilities of both fresh and backlogged 
packets. Their concerns are throughput and throughput fairness among users. They study the 
users' behavior in cooperative, competitive and adversarial environments. In [8], the authors 
generalize the game access control for the case where each node can observe multiple 
contention signals to guide them to the Nash equilibrium and provide the conditions for the 
unique existence of this equilibrium. In [9], the authors present a general game-theoretic 
model to study the interactions among the nodes contending for the common wireless channel. 
Additionally, they investigate the Nash equilibrium of this game and present a method for 
achieving it in a distributed manner.  

3. Slotted Aloha Game 

3.1 The Model 

A game is basically composed of a set of players { }1, , n= K , an action space kA  for each 

player k∈K , the space    of probability distributions over kA , and utility functions 
:kg Ω→ R , where k kA∈Ω = × K . In a competitive situation referred to as a game, players 

rationally choose one of their available actions to maximize their individual utilities which are 
determined by the other players’ actions as well as their own. The utilities from all possible 
combinations of chosen actions, called as action profile, are mathematically expressed by 
utility function such that ( )kg a  representing player k ’s von Neumann- Morgenstern utility 
for an action profile a A∈ [23].  

We consider a slotted Aloha protocol with N  homogenous nodes transmtting their own 
packets competitively. In this protocol, collision occurs when two or more nodes transmit 
packets simultaneously in a given slot, and the backlogged packets are retransmitted with a 
specified probability in the next timeslot. That is, the transmission of only one packet over all 
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nodes in a given slot leads to successful reception. The homogeneous network nodes behave 
selfishly as they are contending for successful reception which is a conflicting goal. This can 
be viewed as a typical game-theoretic situation, where a stage game 

( ) ( ){ }, ,k kk k
G A g

∈ ∈
=

K K
K  is repeated every timeslot. The homogeneous nodes can be 

regarded as the players of game. Thus, the player set coincides with the set of nodes, denoted 
by { }1,..., N=K . The actions available to each node at every timeslot are Transmit (T) and 

Wait (W): { },kA T W= . Without the loss of generality, we can omit subscript k  from kA  

and ( )kg a  in case all players are homogeneous like our model.   
We assume that a backlogged packet is expired when a specified amount of time has elapsed 

since its arrival, and its gross utility gradually deceases in every timeslot in which the packet is 
backlogged. These assumptions correspond to the growing tendency of real-time delay 
sensitive services such as a car navigation, stock trading, video conference, and voice over IP 
(VoIP) for mobile devices. Those services convey importance to timely reception as well as 
successful reception. The time-point of a packet’s successful reception determines its utility 
and also influences the following transmissions. In order to reflect this, we add the 
aforementioned two time-related conditions (packet expiration and decreasing utility) to 
conventional slotted Aloha protocols.  

The gross utility given to a node by the successful transmission of its packet depends on the 
number of times the packet has been backlogged. The gross utility is greatest when a packet is 
successfully transmitted in the first timeslot following its arrival and subsequently decreases 
every time the packet is backlogged. A backlogged packet loses its worth for transmission 
after a certain time-point, and expires. These time-related conditions motivate nodes’ 
deviating from the standard. Unlike conventional slotted Aloha, thus, we assume that each 
node may choose different transition probabilities according to the number of backlogged 
timeslots. 

To describe time-dependent strategies and utility functions, we define the age of a packet, 
denoted by τ , as the number of elapsed timeslots since its arrival. A packet at the first timeslot 
following its arrival has an age of one.  

We also assume that all nodes have the same delay constraint, such that that a backlogged 
packet is discarded at the age of 1L + . Thus, L  is the packet lifetime limit. Let uτ  denote a 
gross utility assigned to a node when its packet is successfully transmitted at the age of τ . The 
net utility of successful transmission is u cτ − , where c  is a transmission cost. The decreasing 
gross utility over lifetime is calculated by: 

1

1 ii
u U dτ
τ

−

=
= −∑ , 

where U  is the gross utility assigned to the node when its packet is successfully received at 
the age of one and dτ  is the loss of utility per timeslot as packet age increases from τ  to 

1τ + . Thus,
  1 1u u dτ τ τ− −= − . 

For each competitive timeslot, as shown in Fig. 1, a node takes action T or W with 
transmission probability            at the age of τ , where       is the space of probability 
distributions over A  at the age of  τ . This is referred to as a mixed strategy, while taking an 
action deterministically is referred to as a pure strategy. Note that 0 1rτ≤ ≤  for 1 Lτ≤ ≤  
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and otherwise, 0rτ = . We refer to ( )1 2, ,...,k Lr r r=r  as transmission probability sequence 
strategy (TPSS) for node k . We assume that each node is free to determine its transmission 
probability at the age of τ  in order to maximize the expectation of the discounted payoff over 
the remnant lifetime. We define the remnant lifetime of a packet as the time from the current 
timeslot to the timeslot at which the packet is successfully transmitted. All nodes are assumed 
to possess a packet for transmission at all times. All systems under analysis in this paper are 
assumed to be in a steady state. 

In order to achieve an equilibrium TPSS, we add the concept of compensation to the slotted 
Aloha game model. Compensation is assigned to a node when it takes action W. This concept 
of compensation can be understood with pricing, as in [4][15], in terms of the relationship 
between cost and performance. Let L ταr, ,  denote the compensation assigned to a node of age 
τ  when its packet is determined to wait, all nodes select a TPSS r , and their packet lifetime 
limit is L . 

The utility function of the aforementioned stage game, kg , is defined for each timeslot at 

age of τ  as follows: a successful transmission accruing net utility of u cτ − , a collision net 
utility of c− , and a compensation of L ταr, ,  for waiting. 

 
 
 
 
 

 
 
 
 

 
 

Fig. 1. Description of notations along the age of packet. 

In this paper, we assume that no information about the age of one node is given to the others. 
The packet age τ  is considered as the type element of Bayesian game model. Hence, the 
slotted Aloha protocol considered in this paper can be modeled as a repeated Bayesian game 
that the aforementioned stage game is repeated every timeslot. TPSS ( )1 2, ,..., Lr r r=r can be 
regared as a strategy taken by a player over packet lifetime L and the strategy space is 

rτ τ∈ΨΗ = × , where { }1,2,...., LΨ = is the type space.  
The packet age τ  is a regular Markov chain. When all nodes select TPSS r  with delay 
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steady-state and can be calculated with using the steady-state probability distribution π  by: 

( )( )( ) 1

, 1
1

NL
LS rτ ττ

π
−

=
= −∑r                                                       (1) 

The steady state throughput can be calculated using 

,1

L
Lthpt N r Sτ ττ

π
=

=∑ r                                                                (2) 

See [24] for details in calculating LSr,  and τπ . 
When all nodes play TPSS r , each node’s expected discounted payoff over the remnant 

packet lifetime from taking action A  at the age of τ  is denoted by ( )v Aτ  
and is expressed as 

follows, depending on which action, T or W, is taken : 

( ) ( ) ( )( ), , , 11L Lv T S u S E v A cτ τ τδ += + − −  r r r                                       (3) 

( ) ( ), 1 , ,Lv W E v Aτ τ τδ α+= +  r r                                                   (4) 

where δ  is a per-slot discount factor and is mostly close to 1 for wireless network applications, 
and ( ) 0v Aτ =  for Lτ > . 

With the above utility functions, we formally define the Bayesian game model for this paper 
as follows. 

Definition 1: The repeated Bayesian game for slotted Aloha protocol with N  homogenous 
nodes is defined as { }: , , , , ,G = A vΨ Η ΒK , where { }1,2,...NK =  is the set of players, 

{ },A T W=  is the action space for all players, { }1,2,..., LΨ =  is the type space, rτ  is the 

probability that a player of type τ  takes action T  and rτ τ∈ΨΗ = ×  is a strategy space, 

{ }1 2, ,..., Lπ π πΒ =  is the belief space, and ,v τr  is the utility function when all players select 
TPSS ∈Ηr  and the player’s own type is τ ∈Ψ .  

3.2 Nash Equilibrium 
Individual manipulations of system configuration have been facilitated more and more by 
easier accessibility to relevant information and tools over internet. Users’ attempting to attain 
privileged controls within smartphone operating systems is one of typical examples. It allows 
users to customize products according to their preferences, beyond the restrictions of 
manufacturers. These attempts are overlooked or even encouraged by manufacturers due to 
rapidly growing diversity in user preferences. However, selfish manipulations neglecting 
others’ loss in strategic situations with conflicting interests should be restrained to ensure 
stability and functionality of the system. 

The Nash equilibrium concept of game theory is applicable to dealing with the fears 
associated with the slotted Aloha system in terms of performance deterioration attributed to 
the selfish behaviors of nodes. In game theory, a mixed strategy Nash equilibrium is defined as 
a combination of all players’ mixed strategies where no player unilaterally augments its utility 
by changing its own strategy specified in the combination [25]. For slotted Aloha protocols 
susceptible to users’ selfish manipulations of transmission probabilities, a mixed strategy 
Nash equilibrium TPSS ∗r  can be used to thwart such manipulations by hindering selfish 
users from achieving their intention. In other words, slotted Aloha protocols based on a mixed 
strategy Nash equilibrium TPSS ∗r do not allow each node to unilaterally increase its utility 
by taking another sequence strategy rather than that specified at the Nash equilibrium. Hence, 
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no player has an incentive to deviate from the standard. For more information of 
game-theoretic applications in communications and networking, see [26].  

Let 2-tuple ( ),k k
∗
−r r  represent that node k  and the other nodes select r  and ∗r  as their 

mixed sequence strategies over packet lifetime, respectively. Node k ’s expected discounted 
payoff for sequence strategy profile ( ),k k

∗
−r r  at the age of τ  is denoted by 

function ( ),k kvτ
∗
−r r . ∗r  is a Nash equilibrium if ( ) ( ), ,k k k kv vτ τ

∗ ∗ ∗
− −≥r r r r for k∀ ∈K  and 

k∀ ∈Ηr . ∗r  is a best response to the other nodes and no node improves its payoff by 

unilaterally deviating from Nash equilibrium ∗r . 
 In the repeated Bayesian game model proposed in this paper, TPSS r  achieves a Nash 

equilibrium at ( ) ( )v T v Wτ τ= , { }1,2,...Lτ ∈ , which yields the following equations: 
from (4),  

( ) ( ) { }1 , ,  1, 2,..., 1LE v A E v A Lτ τ τδ α τ+= + ∈ −       r,         
             

 (5) 
from (3) and (5), 

( ) { }, ,
1

,

1 ,  2,3,..., 1L

L

c
E v A u L

S
τ

τ τ

α
τ

δ+

 +
= − ∈ −      

 

r

r

                       (6) 

from (5) and (6),  
 ( )( ) ( )( ) { }, , 1 , , , , 1 , 11 1 , 2,3,..., L L L L LS S d S u c Lτ τ τ τα δ α δ τ− − −= − + + − − ∈r r r r r    (7) 

   , , ,L L L LS u cα = −r r                                                       (8) 

Note that ( ) ( )L Lv T v W=  makes nodes at the age of L  compensated in a manner set to be 

equal to the payoff from taking action T, as shown in (8). , ,L ταr  can be recursively calculated 

backward in time via (7) for { }2,3,..., 1Lτ = − . The expectation of aggregate compensation 
given to a packet over packet lifetime, Q , and the packet loss rate (PLR) can be respectively 
computed by: 

( ) ( )1
, , , 1 , , , ,1 1 1

[ ] 1 1LL
L i L L L L i Li i

E Q r S r S r Sτ
τ ττ

α α−

+= = =
= − + −∑ ∏ ∏r r r r r                     (9) 

1 ,(1 )L
LPLR r Sτ τ== Π − r                                                            (10) 

4. Numerical Analysis 

4.1 Time-invariant Transmission Probability Sequence Strategy  
In this section, we consider a slotted Aloha system with a time-invariant TPSS in contrast to 
the time-variant TPSS considered in Section 4.2. Just as in traditional slotted Aloha systems, a 
time-invariant TPSS is r  of tr r=  for t∀  as shown in Fig. 2-(a). The transmission 
probability r  is determined to maximize the throughput for this system and its optimal value 
is 1/ N , which is easily derived based on the fact that the number of successful receptions has 
a binomial distribution. In the slotted Aloha system, the number of nodes is 5N = , the 
discount factor is 0.999δ = , and the transmission cost is 0.2c = . 
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The slotted Aloha system considered in this section has a packet expiration and decreasing 
gross utility over the packet lifetime. We assume that the packet lifetime limit is 50L = , the 
maximum gross utility of successful transmission is normalized to 1 (i.e., 1U = ) [2][3], the 
decreasing gross utility is 1u U τ

τ γ −= , and 0.995γ = . As shown in Fig. 2-(b), the gross 
utility exponentially decreases over the packet lifetime. The loss of utility per timeslot is 
computed by ( )1 1d U τ

τ γ γ−= −  for Lτ <  and  1L
L Ld u Uγ −= = . Compensation , ,L ταr  is 

determined by (7) and (8) so that TPSS r is a Nash equilibrium.  
Fig. 2 shows the graphs of rτ , uτ , dτ , and , ,L ταr  for the slotted Aloha protocol. dτ  

linearly decreases up to ( )1Lτ = −  and  then abruptly shifts to a large value at Lτ = , due to 
the loss of the whole potential utility caused by packet expiration. The compensation is large at 
age L , because it is set to be equal to the utility from action T at the age of L  in order to 
achieve Nash equilibrium, as shown in (8).  
 

                         
 
 

 

                        
 
 

Fig. 2. Graphs of slotted Aloha transmission with a time-invariant TPSS. 

We conducted Monte Carlo simulations using 100 replicates to empirically verify the 
existence of the Nash equilibrium for the aforementioned slotted Aloha game model. The 
length of each replicate was 65 10×  timeslots and all metrics were computed with numerical 
values from the steady state. We considered two scenarios. In the first scenario, all nodes used 
the same Nash Equilibrium transmission probability of 1/ 5r =  over the entire packet 
lifetime. In the second scenario, only selfish Node 1 increased its Nash equilibrium 
transmission probability of r∗ up to 2r r∗=  in order to improve its utility, while the others 
behave as in the first scenario.  

The simulation results in Table 1 show that selfish Node 1 cannot benefit from deviation. 

rτ  uτ  

τ  
(a) Transmission probability 

τ  
(b)  Gross utility 

dτ  

τ  
(c) Loss of utility per timeslot 

, ,L ταr  

τ  
(d) Compensation 
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The same is true for any other value of [ ]0,1r∈ , consistent with the Nash equilibrium 
concept that no node is able to improve the expectation of the aggregate discount payoff over 
the remnant lifetime through unilateral deviating. Hence, the rational behavior of all nodes is 
to stay at 1/ 5r = , the Nash Equilibrium transmission probability for this game model. Note 
that the values of all metrics in Table 1 are consistent with the values obtained through (1), (2), 
(7), and (8), validating the game modeling approach based on the steady-state probability 
distribution of packet age.  

Table 1. Numerical results of Monte Carlo simulations. 

 Scenario 1 Scenario 2 
 Transmission 

probability 
Expectation of 
discounted payoff over 
the entire lifetime at 

1τ =  

Transmission 
probability 

Expectation of 
discounted payoff over 
the entire lifetime at 

1τ =  
Node 1 0.2 0.5038 (7.0ⅹ10-4) 0.4 0.5038 (4.5ⅹ10-4) 
Node 2 0.2 0.5039 (6.4ⅹ10-4) 0.2 0.3454 (1.0ⅹ10-3) 
Node 3 0.2 0.5039 (6.6ⅹ10-4) 0.2 0.3453 (1.0ⅹ10-3) 
Node 4 0.2 0.5038 (6.6ⅹ10-4) 0.2 0.3455 (1.1ⅹ10-3) 
Node 5 0.2 0.5039 (6.3ⅹ10-4) 0.2 0.3453 (1.3ⅹ10-3) 
 Aggregate throughput: 

0.4096 (3.3ⅹ10-4)   
Aggregate throughput: 

0.4096 (3.4ⅹ10-4) 
                * The standard errors are shown in parentheses. 

4.2 Time-variant Transmission Probability Sequence Strategy  
In slotted Aloha systems with limited packet lifetimes, the packet loss possibility increases as 
the packet age approaches the expiration time. Thus, the concern about packet loss possibly 
instigate nodes to gradually increase their retransmission probabilities, as the packet age 
increases. We introduce an interesting Nash equilibrium TPSS in which such concern and 
desire are reflected. It is graphically shown in Fig. 3-(a). Approximately up to the first half of 
the maximum packet lifetime of 50, the transmission probability constantly stays at a certain 
level just as in the time-invariant TPSS of Section 4.1. Over the remnant packet lifetime, the 
transmission probability exponentially increases and finally reaches 1 at 50τ = . We refer to 
this type of time-variant TPSSs as a hill-shaped TPSS [24]. We assume that all other 
parameters are as same as those for the slotted Aloha system based on the time-invariant TPSS 
in the previous section.  

Fig. 3-(b) shows the compensation , ,L ταr  for the Nash equilibrium. The hill-shaped TPSS 
and the time-invariant TPSS have the almost same value of successful reception probability 
S , which leads to nearly the same compensation policy, as expected in (7) and (8). The 
hill-shaped TPSS yields a substantially better PLR of 4.1ⅹ10-2% than 1.4% of the 
time-invariant TPSS in the previous section, while both systems have the same throughput of 
0.4096. Thus, hill-shaped TPSSs are worth considering in the light of providing equal 
throughput and lower PLR and reflecting the desires of impatient nodes.  

The lower PLR of the hill-shaped TPSS can be attributed to its characteristic in favor of later 
transmission. The hill-shaped TPSS transmits with a much higher probability after the age of 
25. It substantially reduces the loss probability of backlogged packets. Instead, the hill-shaped 
TPSS has a larger expected delay for backlogged packets [24], resulting in receipt of a smaller 
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number of newly arrived packets compared to that of the time-invariant TPSS. Despite the 
lower PLR, hence, the hill-shaped TPSS has the same throughput as the time-variant TPSS. 
 

                                        
 
 

 
Fig. 3. Graphs of the slotted Aloha protocol with a time-variant transmission probability sequence.  

4.3 Comparison of Two Transmission Probability Sequence Strategies: 
Time-invariant TPSS versus Hill-shaped TPSS 
The number of nodes and the packet lifetime limit are major factors associated with the 
performance of the slotted Aloha system under delay constraints. In order to analyze how 
these factors influence the system performance, we compare time-invariant TPSSs to 
hill-shaped TPSSs for ten combinations of the packet lifetime limit L and the number of nodes 
N. The first comparison considers the change of N∈{5,6,7,8,9,10} with L=50 and the second 
considers the change of L∈{50,60,70,80,90,100} with N=10. All slotted Aloha systems in 
this analysis are assumed to have the same decreasing utility function, where 1,U =  

1u U τ
τ γ −= , 0.995γ = , 0.2c = , and 0.999δ = .  For each combination of N  and L , both 

TPSSs are determined to maximize the throughput while maintaining the typical shape, using 
the iterative search method proposed in [24].   

In the first comparison scenario, as shown in Fig. 4, the r  value of the optimal 
time-invariant TPSSs is determined to be 1/ N  and the optimal hill-shaped TPSSs are shown 
to have different initial transmission probabilities according to the number of nodes. The 
initial transmission probability is lower with a larger number of nodes, which helps to mitigate 
collision during the first half. The compensation policy for each combination is determined by 
(7) and (8), enabling the optimal TPSS to be a Nash equilibrium.  

Fig. 4 also shows the graphs of the throughput, probability of successful reception, 
expected aggregate compensation over lifetime, and PLR for the first comparison scenario. 
For each combination, the two TPSSs have the same throughput and show a negligible 
difference with regard to the probability of successful reception. Hill-shaped TPSSs require 
the smaller expected aggregate compensations to achieve a Nash equilibrium compared to 
those of its corresponding time-invariant TPSS, and the deviation increases as N  increases. 
The time-invariant TPSS’s PLR rapidly increases as N  increases, while the hill-shaped 
TPSS’s remains satisfactorily low. These trends in the expected compensation and the PRL are 
consistent for N , for which both TPSSs have the same throughput. The preference of one 
TPSS over the other depends on which metric is more critical. 
 

rτ  
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τ  
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Fig. 4. Comparison of node number changes from 5 to 10 with a fixed packet lifetime limit of L=50. 

In the second comparison scenario, shown in Fig. 5, the r  value of the optimal 
time-invariant TPSSs is 1/10  regardless of the packet lifetime limit. Hill-shaped TPSSs have 
different initial transmission probabilities and different increasing rates in order to maximize 
throughput according to the packet lifetime limit. The initial transmission probability is higher 
at the larger packet lifetime limit, implying that the larger packet lifetime limit allows for more 
aggressive transmission during the first half. Both TPSSs for each combination have the same 
throughput and nearly the same probability of successful reception. These two metrics are both 
constant over all of the packet lifetime limits. Fig. 5 also shows that hill-shaped TPSSs 
requires the smaller expected aggregate compensations over the lifetime in order to achieve 
Nash equilibrium compared to those of their corresponding time-invariant TPSSs, while 
time-variant TPSSs have substantially lower PLRs. The deviations decrease as N  increases. 
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In short, both perform more compatible as L increases. 
 

                                             
 
 

 
 

                                      
 
 
 
 

                                 
 
 
Fig. 5. Comparison when the packet lifetime changes from 50 to 100 with a fixed number of node N=5. 

Based on the numerical examples, we observe convergence in the expected aggregate 
compensation and the expected discounted payoff over the remnant packet lifetime. The 
theoretical bases for these convergences are given in Theorems 2 and 3, respectively. 

Lemma 1. Consider a slotted Aloha system in which all nodes are homogenous, transmit 
with a Nash equilibrium time-invariant transmission probability, have a payoff function of 
decreasing utility, and are compensated according to (7) and (8) for taking action W. The 
compensation at the age of τ , denoted by , ,L ταr , converges as L  increases and becomes 

sufficiently close to its converged value for ( )*L τ ω≥ +  where *ω  is a positive integer large 
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enough to have ( )( )
*

1 0S
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Theorem 1. Consider a slotted Aloha system in which all nodes are homogenous, transmit 

with a Nash equilibrium time-invariant transmission probability, have a payoff function of 
decreasing utility, and are compensated according to (7) and (8) for taking action W. The 
expectation of aggregate compensation Q converges as L  increases and becomes sufficiently 
close to its converged value for
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Theorem 2. Consider a slotted Aloha system in which all nodes are homogenous, transmit 

with a Nash equilibrium time-invariant transmission probability, have a payoff function of 
decreasing utility, and are compensated according to (7) and (8) for taking action W. The 
expectation of discounted payoff over the entire lifetime at a Nash equilibrium, represented as 
the present value at 1τ = , converges as L  increases and becomes sufficiently close to its 
converged value for ( )*1L ω≥ +  where *ω  is an positive integer large enough to have 

( )( )
*

1 0S
ω

δ − ≈r  .  

proof: ( )  r rττ∀ = . Since all nodes are homogenous, ,LS S=r r . Let *ω  be a positive integer 

large enough to have ( )( )
*

1 0S
ω

δ − ≈r . From (5) and (6), the expectation of discounted 
payoff over the whole lifetime at a Nash equilibrium, represented as the present value at 1τ = , 
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. The proof reduces to show that , ,1Lαr  converges as 

L  increases and becomes sufficiently close to its converged value for ( )*1L ω≥ + , which 
follows directly from Lemma 1.                                                                                                             ■ 

4.4 Overall Remark on Numerical Results 
The throughput, the probability of successful reception and the expectation of the discounted 
payoff decrease as the number of nodes increases in the Nash equilibrium slotted Aloha 
systems aforementioned. In contrast, the expectation of aggregate compensation and the PRL 
both increase. The additional extension of the packet lifetime limit does not improve the 
probability of successful reception and the expectation of discounted payoff, if the original 
limit is sufficiently large enough to yield the optimal throughput. However, it consistently 
reduces the expectation of aggregate compensation and the PRL.  

In comparing time-invariant TPSSs and hill-shaped TPSSs with the same optimal 
throughput, hill-shaped TPSSs are superior to time-invariant TPSSs in the PRL, which 
becomes more prominent as the number of nodes increases. Hill-shaped TPSSs require a 
smaller expectation of aggregate compensation in order to achieve Nash equilibrium. The 
difference in the expectation of aggregate compensation increases as the number of nodes 
increases. Conversely, it decreases as the packet lifetime limit increases. 
   For slotted Aloha protocols with delay constraints, a time-variant TPSS in favor of later 
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retransmission is more desirable with respect to performance as long as its aggregate 
compensation is affordable. The larger packet lifetime limit is also more favorable for 
performance; however, it is not controllable and is determined by the packet’s inherent 
properties. The type of TPSS has less effect on performance as the packet lifetime limit 
increases. With respect to Nash equilibrium and performance, it is obviously advisable to limit 
the number of nodes simultaneously accessing a shared medium (e.g., by improving the 
capture capability such as multiple packet reception (MPR)). 

5. Conclusions 
We analyzed the system behavior of Aloha-based random access networks formed by selfish 
nodes. Our proposed framework enables any type of transmission probability sequence to 
achieve Nash equilibrium without degrading its throughput. It was verfied that no node can 
unilaterally augment its payoff by deviating from the Nash equilibrium and each node 
rationally decides to stay at the equilibrium even in network environments which instigate 
selfish behaviors. Hence, those Nash equilibria can be used as a solution concept to thwart the 
selfish behaviors of nodes and ensure the system stability. We anticipate that such findings can 
be used immediately and provide insight to the behavior of random access networks in which 
absolutely distributed nature of random access networks allows any node to change system 
parameters, including transmission probability, in an adaptive and autonomous way.  

In the slotted Aloha protocol considered in this paper, nodes experience packet expiration 
and decreasing utility. Each node is assumed to be free to determine its transmission 
probability at every timeslot in order to maximize the utility over its remnant lifetime. For the 
slotted Aloha protocol, we proposed a repeated Bayesian game model and investigated the 
Nash equilibria for the various combinations of node number and packet lifetime limit. We 
demonstrated the existence of the Nash equilibrium mathematically and empirically. 
Additionally, we added the concept of compensation to the game model in order to achieve 
Nash equilibrium without degrading the optimal throughput. A larger expected aggregate 
compensation is required to achieve the Nash equilibrium as the number of nodes increases. 
We showed that it converges as the packet lifetime limit increases.  

With respect to performance, we revealed that hill-shaped TPSSs outperformed 
time-invariant TPSSs with the same throughput and lower PLRs. The two types of TPSSs 
perform more similarly as the packet lifetime limit increases. We demonstrated that the 
throughput and the probability of successful reception are constants regardless of the packet 
lifetime limit 
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