
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1252

Copyright ⓒ 2011 KSII

This research was supported by the Chinese 863 project under Grant No. 2006AA01A123, No. 863-

2010AA012404 and the Foundation supported by National Nature Science Foundation of China under Grant No.

60903042, No. 60736013. We express our thanks to Dr. Joyce EL Haddad for comments on our manuscript.

DOI: 10.3837/tiis.2011.07.003

A Global Graph-based Approach for
Transaction and QoS-aware Service

Composition

Hai Liu
1
, Zibin Zheng

2
, Weimin Zhang

1
 and Kaijun Ren

1

1 School of Computer, National University of Defense Technology

Chang Sha, 410073 - China

[e-mail: {hailiu, renkaijun}@nudt.edu.cn, wmzhang104@163.com]
2 Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Hong Kong, - China

[e-mail: zbzheng@cse.cuhk.edu.hk]
*Corresponding author: Hai Liu

Received March 7, 2011; revised May 7, 2011; accepted June 30, 2011;

published July 28, 2011

Abstract

In Web Service Composition (WSC) area, services selection aims at selecting an appropriate

candidate from a set of functionally-equivalent services to execute the function of each task in

an abstract WSC according to their different QoS values. In despite of many related works,

few of previous studies consider transactional constraints in QoS-aware WSC, which

guarantee reliable execution of Composite Web Service (CWS) that is composed by a number

of unpredictable web services. In this paper, we propose a novel global selection-optimal

approach in WSC by considering both transactional constraints and end-to-end QoS

constraints. With this approach, we firstly identify building rules and the reduction method to

build layer-based Directed Acyclic Graph (DAG) model which can model transactional

relationships among candidate services. As such, the problem of solving global optimal QoS

utility with transactional constraints in WSC can be regarded as a problem of solving

single-source shortest path in DAG. After that, we present Graph-building algorithms and an

optimal selection algorithm to explain the specific execution procedures. Finally,

comprehensive experiments are conducted based on a real-world web service QoS dataset.

The experimental results show that our approach has better performance over other competing

selection approaches on success ratio and efficiency.

Keywords: Web service composition, QoS-aware selection, end-to-end constraints,

transaction, DAG

mailto:zbzheng@cse.cuhk.edu.hk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1253

1. Introduction

With the development of Internet and distributed computing technology, Service Oriented

Architecture (SOA) becomes more and more prevalent. SOA integrates software components

in Internet provided by different organizations. Web service is a key technical for building

SOA applications [1][2]. With the increasing number of web services in the Internet, Web

Service Composition (WSC) is becoming an important research problem, attracting attentions

from both academia and industrial areas.

In the process of WSC, there are two key steps, i.e., abstract WSC and concrete WSC.

Abstract WSC, also named functional WSC, solves problem of functional aspect for WSC.

Concrete WSC, also called QoS-aware WSC, addresses the problem of optimal utility under

non-functional properties. In this paper, we focus on addressing the transactional issues in

concrete WSC which comprises the second indispensable step in WSC. Up to now, A lot of

research work considering concrete WSC has been conducted basing on different QoS

properties such as response time, execution cost, reliability, availability [3][4][5][6][7]. The

key idea of the previous work is to select proper candidate for each activity in the composite

web service to obtain the best QoS utility and satisfy end-to-end user QoS constraints [8]. In

reality, the web service selection problem can be mapped into Multidimensional

Multiple-choice Knapsack Problem (MMKP), which has been proved as a NP hard problem

[9]. Hence, the time complexity of this kind of problem is exponential. To solve the problem

within polynomial time, several approximation algorithms have been proposed [3][4][5][6][7]

[9][10][11].

Although many methods have been proposed for QoS-aware WSC, few consider the

transactional constraints. Transactional characteristics ensure consistent and reliable

execution of WSC. In particular, considering both transactional characteristics as well as

optimal QoS utility for QoS-aware WSC is an extremely challenging research problem [12].

Due to the inherent peculiarities of web services (e.g., loosely coupled, autonomy,

heterogeneous, etc.), transactional properties of the candidate web services may differ from

each other. Thus, QoS-aware WSC regarding transactional properties becomes very

complicated, since all transactional combinations of constituted web services are hard to

satisfy the global transactional constraints. Authors in [12][13] proposed a transactional and

QoS-aware services selection algorithm, which employed automation to model transactional

constraints. In this selection algorithm, they firstly considered the globally transactional

constraints, and then embedded a local QoS-optimal selection approach to solve the aspect of

QoS. Although this algorithm considered transactional constraints, the final result on the

global QoS utility may be influenced due to the local approach used in QoS aspect. How to

improve the comprehensive QoS utility for QoS-aware WSC subject to globally transactional

constraints is still an unsolved problem.

To address the aforementioned problem, we use a layer-based DAG model, called actual

Service Candidates Graph (SCG), to define a solution for QoS-aware WSC with transactional

constraints. In our model, we firstly propose building rules and the reduction method based on

transactional theory of atomicity and consistency. Meanwhile, the correctness satisfying

transactional constraints with these rules are proved. After that, we present a building

algorithm for actual SCG. By our approach, solving optimal QoS utility with global

constraints (include both end-to-end QoS constraints and transactional constraints) is

translated to the problem of solving single-source shortest paths from the first activity to the

1254 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

last activity. For this, we propose a selection algorithm based on the MCOP algorithm [6].

Differing from the traditional MCOP algorithm, our method (1) concentrates addressing

constraints not only on end-to-end QoS criteria but also on globally transactional aspect for a

CWS, and (2) proposes a new cost function as a filtering standard applied to our relaxing

function. Extensive experiments are conducted basing on a real-world web service dataset.

The experimental results show that our approach achieves better performance on global QoS

utility over other typical approaches. Meanwhile, our approach has well extensibility.

The remainder of this paper is organized as follows. Section 2 discusses the related work.

Section 3 introduces the composite patterns, the method of computing global QoS and utility.

Section 4 proposes building rules and a reduction method for building graph models, and

proves their correctness. Section 5 presents building algorithms and the optimal selection

algorithm. Section 6 gives comprehensive experiments to demonstrate benefits of our

approach. Finally, Section 7 concludes the paper and presents future work.

2. Related Work

2.1 QoS-aware Web Services Composition

Many research efforts have been carried out in QoS-aware web services composition . Authors

in [7] proposed a method of computing QoS utility for a CWS. Liangzhao Zeng et al. [3][10]

proposed several classic selection algorithms using integer programming, which are based on

global allocation to services. These methods can select the best candidate services for each

task in an abstract CWS according to the global QoS utility. However, the intrinsic time

complexity of the integer programming algorithms are exponential. Florien Rosenberg et al.

[5] proposed an global QoS optimization approach based on a constraint planning method,

considering both feature constraints and end-to end QoS constraints. The Constraint

Satisfaction Problem (CSP) was used to define local QoS constraints for each feature and

global QoS constraints. However, this way only considered QoS constraints with quantitative

features. While those qualitative constraints such as transaction of a CWS were ignored.

Authors in [14] presented the way of QoS-aware WSC respecting incomplete user preferences.

They made use of historical user information to amend user incomplete preferences, and then

improved QoS-aware web services selection. Mohammad Alrifai et al. in [4][15] proposed

two QoS-aware services selection approaches. In [4], in order to solve the problem of QoS

optimal utility under each QoS dimension constraint, authors firstly translated global QoS

constraints of CWS into local QoS constraints with integer programming. Afterwards, a

distributed local selecting method had been applied to select the best web services satisfying

these local constraints. The approach in [15] improved the approach in [4] by using skyline to

effectively and efficiently select services for composition, reducing the number of candidate

service to be considered. Tao Yu et al. [6][11] proposed two near-optimal services selection

methods (i.e., the combinatorial model and the graph model) with end-to-end QoS constraints.

The combinatorial model defines the problem as a Multiple choices Multiple dimensions 0-1

Knapsacks Problem (MMKP). The graph model defines the problem as a Multiple Constraints

Optimal Path (MCOP) problem. Efficient heuristics algorithms for service processes of

different composition structures are presented. Though these two methods could obtain a well

result within polynomial time, transactional properties were not considered. Our approach

extends the MCOP graph model to consider both QoS and qualitative properties of

transactional nature for a CWS.

2.2 Transactional aspect of Web Service

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1255

In order to ensure reliability and consistency of CWS, transactional properties of CWS have

attracted great attention. Due to the particular characteristics of web service transaction (e.g.,

long-running, heterogeneous, distributed and autonomic nature, etc.), traditional ACID

transaction model can hardly be adapted for the web service environment. With development

of service oriented computing, several transactional specifications for web services have been

proposed, including the Business Transaction Protocol (BTP) [16], the Web Services

Coordination (WS-C) [17], Web Services Transaction (WS-Tx) specifications [18][19], and

Web Services Composite Application Framework (WS-CAF) [20]. Although these

specifications are comprehensive, very little attention has been paid to consider the problem of

transaction-based and QoS-aware WSC. In recent years, lots of work dedicate to studying

transactional consistency of the whole process based on transactional properties of its

components. In [21], authors proposed a unified model of consistency and atomicity theories

for concurrency control of transactional processes, which consists of process-serializability,

process-recoverability, process-reducibility, process correct termination. Authors in [22]

proposed a web service selection framework to ensure failure atomicity of a CWS by

considering transactional properties of candidate web services. In the framework, Accepted

Termination States (ATS) were introduced to express the required failure atomicity for a CWS.

Although transactional WSC had been implemented by this framework, global QoS

optimization for CWS had not been considered. Authors in [23], evaluated the global QoS

value of a CWS with transactional operators. However, they only analyzed the transactional

effects on QoS for a CWS, without ensuring the optimal QoS requirement. Works [12][13]

proposed a selection algorithm that satisfied users’ preferences. The users’ preferences are

expressed as weights over QoS criteria and expressed as two risk levels to define semantically

the transactional requirements. In this selection algorithm, QoS-aware selection process is

embedded within the process of transactional service selection. Thus, the set of potential web

services for each workflow activity is restricted by the transactional constraints for those

selected previously. Although work [12][13] considers both transactional and QoS-aware

WSC, it uses a local QoS optimization selection algorithm for solving the problem. Different

from work [12][13], our approach employs a graph model to address the transactional aspect,

and then uses a globally optimal selection approach for the QoS aspect.

3. The QoS Computation

As discussed in [7][24][25], in a CWS, atomic web services could be connected by composite

patterns including sequence pattern, parallel pattern, conditional pattern and loop pattern.

Since a loop pattern can be converted into a sequence pattern by unfolding loop [26], we will

not discuss it in this paper. In order to compute the global QoS for a concrete CWS, we firstly

employ two concepts, namely sequence path and route path which appeared in [6][10]. A

sequence path denotes a path from the start task to the end task including only one branch in no

matter conditional or parallel patterns. In comparison, a route path illustrates a path from the

start task to the end task in an abstract CWS involving only one branch in conditional patterns

but all branches in parallel patterns. According to these definitions, we use
1 2(, ,...,)i nrpl s s s

to denote one route plan for the route path rpt where
ks denotes the web service assigned to

the task
kt in

irpt . Obviously, rpt may include multi-sequence plans if parallel patterns exist

in rpt . Similar to work [12], we firstly consider four QoS criteria for each candidate web

service: (1) Execution Cost (
1

kq); (2) Response Time (
2

kq); (3) Availability (
3

kq); (4)

1256 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

Reliability (
4

kq). Then, for any candidate ks of task kt in an abstract CWS cs , we can

associate ks to a QoS vector q(s)k =
1 2 3 4[(), (), (), ()]k k k kq s q s q s q s . For the reason that

different QoS criteria have different quantitative metric, we use Eq. (1) to normalize QoS

criterion  with positive nature where max(())kq t and min(())kq t respectively denote the

maximum and minimum values for all candidates of it . Analogously, Eq. (2) is used to

normalize QoS criterion  with negative nature [27].

() min(())
, (max(()) min(()) 0)

max(()) min(())()

1, (max(()) min(()) 0)

k k
k k

k kk

k k

q s q t
if q t q t

q t q tq s

if q t q t

 
 

 

 

 
 

 


 

 (1)

max(()) ()
, (max(()) min(()) 0)

max(()) min(())()

1, (max(()) min(()) 0)

k k
k k

k kk

k k

q t q s
if q t q t

q t q tq s

if q t q t

 
 

 

 

 
 

 


 

 (2)

By this way, the value of ks on each QoS criterion in q(s)k is ranged as [0, 1]. Additionally,

the Simple Additive Weighting (SAW) [28] is introduced to support the computation of QoS

utility for each candidate shown in equation group (3) where ()kScore s represents the QoS

utility value of web service ks and
m

 is the assigned weight for m

k
q s() .

4

1

4

1

() (())

1

m

k m k

m

m

m

Score s q s








 



 






 (3)

1 1

2 2

3 3

4 4

()

()

()

()

i user

i user

i user

i user

q rpl q

q rpl q

q rpl q

q rpl q

 






 

 (4)

According to above definitions, several global QoS aggregation functions for

1 2(, ,...,)i nrpl s s s are given in Table 1, where)(k

m sq is the value of the selected service
ks for

task
kt on the thm QoS criterion, }4,3,2,1{m . More details about other QoS criteria such as

Table 1. QoS aggregation functions Table 2. Transaction combinations for parallel pattern

QoS

Aggregation function

1 1/s rpl

2 2/s rpl
1 1 2 2(/) || (/)s rpl s rpl

1q

1 1() ()
k i

n

i k

s rpl

q rpl q s


 
p rc p

r r r

2q
2 2() (())

j i
k j

i k
spl rpl

s spl

q rpl Max q s




  r rc r

c c c

3q
3 3() ()

k i

i k

s rpl

q rpl q s


  c rc c

rc rc rc

4q
4 4() ()

k i

i k

s rpl

q rpl q s


  rc p p

rc r r

rc c c

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1257

reputation, data quality, compensation rate and etc. have been proposed in [3][6][25][29]. In

order to check whether user’s QoS constraints are satisfied for
jrpl , Eq. (4) is provided where

the vector],,,[q 4321

useruseruseruseruser qqqq represents user’s QoS constraints.





jk rpls

kj sScorerplF)()((5)

















)(
max

)(

))((

))(()(
max

csRPTsetrpt
i

rptPLsetrpl

i

rptpMaxrpt

rplFMaxcsF
 (6)

Our QoS utility function ()iF rpl for irpl can be computed by Eq. (5). Especially, we use

Eq. (6) to express HP (Highest Probability) objective function for any cs based on the concept

in [6] if not considering the transactional constraints.

4. Building Rules and Reduction Method

4.1 Transactional Properties of Web Services

Since web services are provided by different providers, their transactional properties may

differ with each other. The main transactional properties of a web service include: retriable

(r), compensatable (c), pivot (p), and the combination of retriable and compensatable (rc)

[22][30]. One service is r if it is guaranteed to complete after finite execution; one service is

c if it has a compensation operation that can undo its execution effect once it encounters a

failure; one service is p if it has conducted successfully, its effect will be kept forever; one

service is rc if it has functions of both r and c . We useTP to denote the set of all possibly

transactional properties for a web service, then },,,{ rcpcrTP  . Because of the transactional

consistency and atomicity requirements for global CWS, there are some constraints on

transactional properties of individual candidates as defined in [12]. In the following sections,

we discuss firstly possible combinations of transactional properties between two successive

web services in a concrete CWS with sequence pattern. Then parallel pattern will be taken into

account. However, we will not consider the conditional pattern since only one of the branches

will be selected during the execution. Finally, we propose several building rules to address

transactional constraint problems and present several related proofs. In the following, we use

concept of route plan instead of concrete CWS since we do not consider the conditional pattern.

Before discussing on transactional constraints, several functions are defined in Table 3.

Table 3. Function definitions

Function Definitions

()itp s Transactional property of is .

()AC rpl Whether rpl fulfills transactional atomicity and consistency.

Pr (,)ieSub s rpl
1 2 1

{ , , ..., }
i

s s s


 , 1i  , which denotes the set of web services before is in rpl .

()tp rpl

1 2((), (),..., ())ntp s tp s tp s , rpl  1 2(, ,...,)ns s s . It denotes one combination sequence

of transactional properties for rpl , which consists of transactional properties of its constituted web

services.

1258 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

4.2 Building Rules for Sequence Pattern

We first introduce the definition of transactional atomicity and consistency [21][22]:

Def. 1 (Transactional Atomicity and Consistency): a route plan satisfies atomicity and

consistency of transaction if and only if the following requirement can be fulfilled:

In an execution process of one route plan, once any web service within this route plan

encounters execution failure and cannot be executed successfully, then all completed web

services ahead of the failed web service must be compensatable.

Let
1 2(, ,...,)nrpt t t t including only sequence pattern be the route path of cs with the

maximum probability,
1 2(, ,...,)i nrpl s s s is one of route plans for rpt . For any two sequent

web services
ks and

1ks 
 in

irpl , if ()iAC rpl true , then we have following propositions:

Prop. 1: if () { , }ktp s r p and ()iAC rpl true , then
1() { , }ktp s r rc  .

Prop. 2: if ()ktp s c and ()iAC rpl true ,then 1() { , , , }ktp s r p c rc  .

Prop. 3: if ()ktp s rc and ()iAC rpl true , then
1() { , , , }ktp s r p c rc  .

The details on proofs for Prop.1, Prop. 2 and Prop. 3 have been presented in our previous

work [31]. Due to space limitation, we don’t expand them in this paper.

Def. 2 (Combinations Set built on Prop. 1, Prop. 2 and Prop. 3 (()RCTP rpt)):

The set () { () |iRCTP rpt tp rpl ()itp rpl built based on Prop. 1, Prop. 2 and Prop.3, }i N  ,

denotes the set including all possible combination paths on transactional properties for rpt .

Meanwhile, the building rules are based on Prop .1, Prop. 2 and Prop. 3.

Def. 3 (Combinations Set built on Def. 1 (()ACS rpt)):

The set () { () | ()i iACS rpt tp rpl AC rpl true , }i N  , denotes the set including all

transactional combination paths for rpt . Besides, each combination path in this set fulfilles

the requirement defined in Def. 1.

Corollary 1: given any route path
1 2(, ,...,)nrpt t t t , then ()ACS rpt  ()RCTP rpt .

Proof: for each () ()itp rpl ACS rpt , i N  , we have ()iAC rpl true based on Def. 3.

Obviously, basing on Def. 2, we have ()itp rpl  ()RCTP rpt , since ()iAC rpl true can prove

Prop.1, Prop. 2 and Prop. 3. It also means ()ACS rpt  ()RCTP rpt .

Prop. 4 (The proposed building rules): since the transactional property rc is the

combination of transactional properties r and c , we divide transactional property rc into two

different identifiers:
1rc and

2rc . The two identifiers in the building rules have the same

semantics as transactional property rc , but formally represent transactional property c and

transaction property r , respectively. To this end, we have the following building rules for

transactional combinations of route plans:

(1) Let ()ktp s rc , then
1()ktp s rc and 2()ktp s rc ;

(2) Let () { , }ktp s r p , then
1()ktp s 

 { ,r
2}rc ;

(3) Let ()ktp s c , then 1()ktp s  1{ , , , }r c p rc ;

(4) In the situation that 1()ktp s rc , then
1()ktp s 
 { , ,r p 1, }rc c ;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1259

(5) In the situation that 2()ktp s rc , then
1()ktp s  { ,r 2}rc .

Def. 4 (Reduction Set (()RRCTP rpt)):

We define the set ()RRCTP rpt  { () |itp rpl ()itp rpl built based on rules of Prop. 4,

irpl represents any possibly route plan of rpt , }i N  .

Corollary 2: () () ()ACS rpt RRCTP rpt RCTP rpt  .

Proof: to prove the corollary, we firstly prove () ()RRCTP rpt RCTP rpt . If we extend the

rule (2) by transforming 2{ , }r rc into 1 2{ , , }r rc rc , then due to the equivalent relationship on

semantics among
1rc ,

2rc and rc , the building rules (2), (3) and (4) in Prop. 4 are equivalent

to Prop. 1, Prop. 2 and Prop. 3, respectively. For this situation, the rule (5) is actually included

in the rule (4). Therefore, by extending the rule (2) in Prop. 4, rules of Prop. 4 equals rules of

combination among Prop. 1, Prop. 2 and Prop. 3. Thus, we can get ()RRCTP rpt  ()RCTP rpt

based on definitions of the two sets and the uniqueness theory of elements in a set.

Further, () ()ACS rpt RRCTP rpt will be proved. As demonstrated above, if the extended

rule (let ()ktp s { , }r p , then
1()ktp s 

1rc) is added to Prop. 4, then ()RRCTP rpt  ()RCTP rpt .

According to the rules (2), (4) and (5) in Prop. 4 and the same semantics between
1rc and

2rc ,

we define the set ()NCTP rpt denoting the increased paths in ()RCTP rpt to ()RRCTP rpt .

Formally, ()NCTP rpt = { () |itp rpl (())itp rpl RCTP rpt  ( ks , 1ks  , 2ks  in irpl , (()ktp s  { ,r

}p) 
1(()ktp s 

1rc) (
2() { , }ktp s p c )}. Then, ()RCTP rpt  ()RRCTP rpt  ()NCTP rpt . Thus,

for each ()itp rpl in ()NCTP rpt , there are at least such successive web services ks , 1ks  , 2ks  in

irpl , which obey the rule that ()ktp s { , }r p  1()ktp s  
1rc 

2()ktp s  { , }p c . Obviously, if

2ks  encounters execution failure, then irpl can’t be compensated due to () { , }ktp s r p .

Therefore, () ()itp rpl ACS rpt , which also means that ()ACS rpt  ()NCTP rpt  . Due to

the corollary 1 that ()ACS rpt  ()RCTP rpt , we have ()ACS rpt ()RCTP rpt ()NCTP rpt .

Therefore, ()ACS rpt  ()RRCTP rpt .

Corollary 3: () ()RRCTP rpt ACS rpt

It can be proved by the method of mathematical induction, whose details are ignored due to

lack of space.

Corollary 4: () ()RRCTP rpt ACS rpt .

Proof: it could be achieved directly by corollary 2 and corollary 3.

Evidently, corollary 4 demonstrates the correctness including both completeness and

reliability for our proposed building rules to address transactional constraints. Basing on the

proposed building rules, we presented a DAG model called virtual SCG (vSCG), which lays a

basis for our actual SCG later. The difference is that the nodes in vSCG and actual SCG denote

transactional properties and actual candidates, respectively. The details on how to build the

two graph will be illustrated in our building algorithm later. Fig. 1 gives an example of vSCG

corresponding to route path
1 2 3 4 5(, , , ,)rpt t t t t t . For each task, there are five nodes

(corresponding to r , c , p ,
1rc ,

2rc). Additionally, a edge exists in two nodes if and only if

the two nodes satisfy one of requirements in the proposed building rules.

1260 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

r

c

p

rc1

c

p

rc

r

c

p

rc1

r

c

p

rc1

r

c

p

rc1

r

t1 t2 t3 t4 t5

rc1

rc2 rc2 rc2 rc2 rc2

Fig. 1. The vSCG built based on the proposed rules

4.3 The Reduction Method

The building rules aforementioned only resolve transactional constraints for sequence pattern.

To address the problem for parallel pattern, we present a reduction method to model all

transactional combinations of its components into five reduction nodes. Then, we can treat

each parallel pattern as a common task so as to reduce any route plan into the situation of a

route plan with only sequence pattern. For any parallel pattern, the reduction method includes

two-folds: 1) reduction process for each sequence branch: after building the corresponding

vSCG based on the proposed building rules, we make reduction rules transform all paths in the

vSCG into four reduction nodes; and 2) combination process for the parallel pattern: querying

combination rules with the number of sequence branches from a database (introduced later),

we can construct several mapping relationships between reduction nodes of sequence branches

and reduction nodes of the parallel pattern. Besides, these mappings will enable the later

selection algorithm. Definitions of the reduction nodes for any ()itp rpl are explained:

 Reduction node r : all its constituted web services on semantics are equivalent to r .

 Reduction node c : all its constituted web services on semantics are equivalent to c .

 Reduction node rc : all its constituted web services on semantics are equivalent to rc .

 Reduction node p : 1) ()iAC rpl true ; 2) it doesn’t satisfy the definitions of reduction

node r , reduction node c and reduction node rc .

 Then the reduction process for each sequence branch is presented after its vSCG built:

 For the path whose component nodes are only r or
2rc , and at least include one with r ,

we reduce it into the reduction node r .

 For the path whose component nodes are only c or
1rc , and at least include one with c ,

we reduce it into the reduction node c .

 For the path involving only component nodes 1rc or 2rc , we reduce it into the reduction

node rc .

 Finally, we reduce other paths in vSCG into the reduction node p .

After conducting reduction process for each sequence branch, we can get the correlative

relationships between the reduction nodes and transactional combination paths in its

corresponding vSCG. Hence, we can use the reduction nodes instead of their correlative paths

when considering the result of transactional combinations among these sequence branches

within the same parallel pattern. Subsequently, the combination process is used to build

correlative relationships from reduction nodes representing sequence branches to the

reduction nodes of current parallel pattern. Fortunately, the combintaion rules can be searched

from a rule database, which can be constructed in advance for the reason that the rules only

depend on the number of sequence branches in a parallel pattern. The constructed method is

based on recursively using transactional combination rules on two concurrent components in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1261

[12][13], as demonstrated in Table 3. Finally, for any parallel pattern, we can get mapping

relationships from the set including its reduction nodes to the set including all transactional

combination paths of its sequence branches. Based on the mapping relationships, the later

selection algorithm can address transactional constraints for parallel pattern.

5. The Graph-building and Selection Algorithms

In this section, based on the proposed building rules and the reduction method, we firstly

present a graph-building algorithm to formulate the actual SCG for any route path. Further, a

selection algorithm depending on results of the graph-building algorithm is proposed.

Fig. 2. The actual SCGBuilding algorithm

5.1 The Graph-building Algorithm

The main Graph-building algorithm called actual SCGBuilding is presented in Algorithm 1 of

Algorithm 1 actual SCGBuilding Algorithm

Input: abstract CWS cs, Set S /* S denotes all available candidate Web Services for the whole tasks of cs */

Output: SCG(V, E, Q) /* actual SCG model with QoS vectors weight Q */

1 GraphStruture vSCG(Vv,Ev) = vSCGBuiliding (cs); /* Formulating Transactional-based virtual SCG for cs */

2 E  ; /* Initializing edges for actual SCG */

3 V = {s, d}+S+Vv.RN; /* Initializing vertexes set for actual SCG */

4 preNodeTask = s; /* Scanning vertexes from Vv */

5 while (preNodeTask != d) do
6 if (preNodeTask == s) then

7 S’ = {s}; /* Initializing candidate vertexes for the preNode */

8 End if
9 postNodeTask=findNextTask (preNodeTask, vSCG) ; /* Solving the next task of preNode based on vSGP */

10 if (postNodeTask == d) then

11 for each candS∈S’ do

12 E=E+<candS,d>; /*Add edges from all services of S’ to d */

13 Q(<candS,d>)=0;
14 End for

15 else /*In case not the last task node d*/

16 if (isRnNodes(postNodeTask) == false) then
17 S’’=search(S, postNodeTask); /* Get candidates for the task */

18 Divide S’’ into S’’(r), S’’(c), S’’(p), S’’(rc1), S’’(rc2);

19 if (S’ == {s}) /* it denotes the first task is source node */

20 for each candS∈S’’ do

21 E=E+<s,candS>;
22 Q(<s,candS>)=<candS.q1, candS.q2,…, candS.qm>;

23 End for

24 else /* Process normal tasks in vSCG.*/
25 vE=getOutEdgesByTask (preNodeTask, Ev); /* Find outcome edges of preNodeTask from vSCG */

26 for each ve∈vE do

27 for each candS1∈S’(ve.startNode.tp) do

28 for each candS2∈S’’ (ve.endNode.tp) do

29 E = E+<candS1,candS2>;

30 Q(<candS1,candS2>)=<candS2.q
1,…, candS2.q

m>;

31 End for
32 End if

33 else

34 S’’ = processRnNodes (V,E, S’,preNodeTask,Vv , Ev);
35 processPPbyRnNodes(V, E, postNodeTask, Vv ,Ev);

36 End if

37 End if
38 preNodeTask = postNodeTask;

39 S’ = S’’; /* The pointers of task and its candidates to move forward */

40 End while
41 return SCG(V, E, Q);

1262 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

Fig. 2. Step 1 invokes a sub-algorithm called vSCGBuilding to generate a vSCG based on

transactional properties, which is a layered DAG model to represent constraint relationships

on transactional properties of tasks for the input parameter cs . After that, steps 2-3 conduct

the initial process of the actual SCG, which adds all candidates and reduction nodes of the

vSCG to the set S representing all nodes in the actual SCG. Then, the algorithm begins to add

edges for the actual SCG by scanning vSCG step by step (steps 5-39). Steps 6-8 firstly assign

source node s to the candidate set 's of the task pointed by preNodeTask if current task is

source node s . Then, the function of findNextTask (preNodeTask, vSCG) is invoked to obtain

the next task to preNodeTask within vSCG (step 9), meanwhile the abtained task is assigned to

postNodeTask (that stores the succeeding task of preNodeTask). Further, steps 10-15 add

edges and assign values of corresponding QoS weights to 0 when postNodeTask is the target

node d . On the other hand, the algorithm processes the situation that postNodeTask is a

normal task (steps 16-35). In steps 17, the algorithm invokes the function of search(S,

postNodeTask) to get the set ''s of all candidates for postNodeTask from set S . Then, step 18

divides ''s into five classes based on transactional properties where the classes
1rc and

2rc

are equivalent for the same semantics of them. In steps 20-23, the algorithm adds all edges

from s to all candidates in ''s and assigns the QoS value of corresponding candidate to the

weight value of each edge when 's equals to the set {s}. Steps 24-31 add edges and their

weight values based on the vSCG model to the actual SCG model when preNodeTask and

postNodeTask are normal tasks. In this case, all edges from the candidates in 's to the

candidates are added to the actual SCG model (Steps 29-30). Subsequently, If postNodeTask

is a reduction node in vSCG, the algorithm firstly adds edges from candidates in 's to the

reduction nodes of postNodeTask, meanwhile assigns the reduction nodes to ''s for the

purpose of next round processing (step 34). Afterwards, the function of processPPbyRnNodes

is invoked to process each sequence branches by running recursive the actual SCGBuilding

algorithm (step 35). Due to space limitation, the details on the function aren’t expanded.

Finally, The algorithm moves forward by assigning the value of postNodeTask to

postNodeTask (steps 38-39) . Additionally, a new loop will be carried out. Step 41 returns our

actual SCG model if the loop is ended.

Based on our proposed building rules and the reduction method, the vSCGBuilding

algorithm to build a vSCG model is illustrated in Algorithm 2 of Fig. 4. In step 1, the algorithm

creates a sequence structure to store tasks with sequence relationship. Steps 2-13 create virtual

nodes for all tasks by scanning cs (or route plan). Specifically, steps 4-9 create virtual nodes

and reduction nodes for current element e in cs when e is a AND split operation. In step 4,

the function of createReductionTask() is invoked to create a reduction task representing

current parallel pattern. Then, steps 5-8 store all the elements in current parallel pattern as a

variable pb (a structure storing multi-sequence branches). Additionally, step 9 invokes a

sub-algorithm called vSCGBuildingforPP (illustrated in Algorithm 4 of Fig. 4) to build a

sub-vSCG model for the input parameter pb . For each sequence branch stored in pb , the

main steps of vSCGBuildingforPP algorithm include three-folds: 1) the algorithm firstly

creates a reduction task representing current sequence branch and builds a mapping

relationship between the generated reduction task and the reduction task representing AND

structure (parallel pattern) so as to enable our selection algorithm later (steps 3-4); then 2) it

creates four reduction nodes for the generated reduction task (step 5); 3) finally, the step 7

invokes recursively the vSCGBuilding to build sub-vSCG model for current branch.

Comparing to reduction task of a parallel pattern, reduction task of a sequence branch includes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1263

only four reduction nodes because the former will be as a common task in our selection

algorithm, while the latter is just as an intermediate task used for reduction rules of parallel

patterns. After executing the vSCGBuildingforPP algorithm, we have created a sub-vSCG for

current parallel pattern. As such, we can use reduction task of current parallel pattern as a

common task. Step 11, in vSCGBuilding algorithm, adds current reduction task rn or task e

to main sequence structure sb . Subsequently, the algorithm creates five virtual nodes or

reduction nodes depending on the type of the scanning element e (e.g. virtual nodes if e is a

task, or reduction nodes if e is an AND join operation) (step 12). After all nodes created, the

algorithm invokes a sub-algorithm called vSCGEdgesforSP (illustrated in Algorithm 3 of Fig.

3) to create edges for sb according to the proposed building rules. Finally, the algorithm

returns vSCG model vSCG(V, E) (step 15).

Our complete graph model called vSCG can be generated. Fig. 3 shows the corresponding

vSCG for
1 2 3 4 5 6 7(, , (,) | , ,)cs t t t t t t t (where the circle denotes virtual nodes, the rectangle

denotes task node, and dashed rectangle denotes reduction task.). Three reduction tasks (e.g.

Reduction tasks 1rn , 2rn and 3rn represent the parallel pattern ((3, 4) || 5)t t t , the sequence

branches (3, 4)t t and (5)t respectively.) and their reduction nodes are created. For other

common tasks, corresponding virtual nodes and edges are created based on building rules.

r

c

p

rc1

c

p

rc

r

c

p

rc1

r

c

p

rc1

r

c

p

rc1

r

t1 t2 rn1 t6 t7

rc1

rc2 rc2 rc2 rc2 rc2

c p rcrc p rcr

c p rc1r rc2

c p rc1r rc2

c p rc1r rc2
t3

t4

rn2 rn3

t5

s

d

Rules database

Reduction rules Reduction rules

Fig. 3. The generated vSCG to our example

5.2 The Global Selection Algorithm

After constructing our actual SCG model, we have addressed transactional constraints. In this

subsection, we present a selection algorithm based on the actual SCG. The purpose of the

algorithm aims at achieving the near optimal value of QoS utility with end-to-end QoS

constraints, which actually becomes one variant problem to solve the single-source shortest

paths. Unfortunately, this is a well-known multi-constraints optimal-path problem in the graph

theory, which is a NP-Hard problem. Our selection algorithm is based on the algorithms of

MCSP and MCSP_RELAX in [6]. The difference is that our selection algorithm is built on top

of our actual SCG model satisfying transactional constraints for the whole CWS, while their

algorithm is based on a full connection graph model. Particularly, our algorithm presents a

new cost function for the relaxing algorithm regarding both QoS constraint margin and

generated global QoS utility to improve the performance on global QoS utility further.

1264 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

Demonstrated in Fig. 5, Algorithm 5 called QoS-optSltforTCWS presents the selection

procedure, which relaxes the best optimization problem to resolve a near optimization problem.

At the beginning, the algorithm defines several initial variables (steps 1-2). Step 3 begins to

search all possible intermediate paths by scanning candidate nodes, which are sorted

topologically on the basis of their corresponding virtual nodes of vSCG in advance. Then, it

conducts two parts. On the one hand, the situation of sequence pattern is processed (steps

4-16). In step 4, the algorithm checks whether the next of current task is a common task (step

4). In case of true, two loops are used to visit the all adjacent to nodes in firstNodes, and then

update the utility values and the global QoS values for their corresponding paths (steps 8-9 for

the situation of firstNodes={s}; steps 12-13 for the other.). Besides, functions F(v), F(p) and

q(u,v) are based on Eq. (3), Eq. (5) and the combinations of Eq. (1) and Eq. (2), respectively.

Fig. 4. The vSCGBuilding, vSCGEdgesforSP and vSCGBuildingforPP algorithms

Algorithm 2 vSCGBuilding Algorithm

Input: abstract CWS cs, Set V, E, Boolean mainBranch
Output: GraphStructure vSCG(V, E) /* Virtual SCG model*/

Global variable: Set V, E /* Their initial values are both null.*/

1 SBStructure sb = createSBStructure();
2 while (nextElement(cs, e) != null)/*nextElement(cs, e) returns the next element of e and assigns the return value to e.*/

3 if (isAndSplit(e) == true) then

4 ReductionTask rn = createReductionTaskNode (); /* Create a reduction task node for current parallel pattern.*/
5 PBStructure pb = createPBStructure(rn);

6 while (isAndJoin (nextElement(cs, e)) != true) /* Check if current element is the end for the parallel pattern.*/

7 pb.addParallelBranch (e);

8 End while

9 vSCGBuildingforPP (pb,V,E);

10 End if
11 sb.addSB (rn/e); /* rn/e = rn, if (isAndJoin(e) == true); otherwise, rn/e = e. */

12 V.addToTask ((C(r), C(c), C(p), C(rc1), C(rc2)), rn.id /e); /* According to transactional properties{r,c,p,rc}*/

13 End while
14 vSCGEdgesForSP(sb, V, E); /* Create edges for the sequence pattern */

15 return vSCG(V, E);

Algorithm 3 vSCGEdgesforSP Algorithm

Input: SBStructure sb, Set V, E

Output: vSCG(V, E) /* Get virtual SCG model */
1 for i = 1 to sb.size-1 do

2 for each vnode in classes of Ci do /*Create outcome edges for virtual nodes in{Ci(r),Ci(c),Ci(p),Ci(rc1), Ci(rc2)}*/

3 switch (vnode) do
4 case Ci(r): E = E+{< Ci(r), Ci+1(r)>, < Ci(r), Ci+1(rc

2)>}

5 case Ci(c): E = E+{< Ci(c), Ci+1(r)>, < Ci(c), Ci+1(c)>, <Ci(c), Ci+1(p)>, < Ci(c), Ci+1(rc
1)>}

6 case Ci(p): E = E+{< Ci(p), Ci+1(r)>, < Ci(p), Ci+1(rc
2)>}

7 case Ci(rc
1): E = E+{<Ci(rc1), Ci+1(r)>, < Ci(rc

1), Ci+1(c)>, <Ci(rc
1), Ci+1(p)>, < Ci(rc

1), Ci+1(rc
1)>}

8 case Ci(rc
2): E = E+{<Ci(rc

2), Ci+1(rc
2)>,<Ci(rc

2), Ci+1(r)>}

9 End for
10 End for

11 return vSCG(V,E);

Algorithm 4 vSCGBuildingforPP Algorithm

Input: PBStructure pb, Set V, E

Output: vSCG(V, E) /* vSCG model */
1 SBStructure sb = pb.nextSB ();

2 while(sb != null)
3 ReductionTask rn = createReductionTaskNode (); /* Create the reduction task node for the sequence branch sb. */

4 E.addRNLink (pb.getReductionTask, rn);

/* Create the link between reductionTask of parallel branch and reducedTask of its sub-sequence. */
5 V.addRNToTask ((C(r), C(c), C(p),C(rc)), rn.id); /* Creating reduction nodes for current reduction task */

6 sb.addSBReductionTask (rn); /* Add the corresponding reduced node to this sequence branch.*/

7 vSCGBuilding (sb,V, E, false); /* Build vSCG for current sequence branch sb.*/

8 End while

9 return;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1265

Particularly, in order to limit the computing scale for execution of our algorithm, Algorithm

6 called relax_basedTP is invoked to keep just only k-optimal intermediate paths in each set of

nodes with the same virtual node (or transactional property) (steps 10 and 14). The

relax_basedTP algorithm, demonstrated in Fig. 5, includes following four-folds:

 Firstly, it checks whether each QoS criterion value of current path satisfies the global

end-to-end constraint, where all the checking criteria are based on Eq. (4) (step 1);

 Then the function searchByTP_Task is invoked to assign current all generated paths

corresponding last nodes with the same virtual node v.vnode to the variable paths_tp

(step 2). Subsequently, if any path p, with superiority to the path of [u,Q,F] on the

values of both global QoS criteria and utility, exists in Paths_tp, then we remove it (step

4);

 Otherwise, the path of [u,Q,F] will be added to the paths set Paths (steps 5- 6);

 Additionally, we add directly this path of [u,Q,F] to Paths if the number of current

generated paths is less than the valve k (step 7). Otherwise, we instead the path of

[u,Q,F] with the worst value of cost function in paths_tp (step 8).

In relax_basedTP algorithm, our criterion on selecting k-optimal paths, illustrated in Eq. (7),

is improved on the cost function concept combining multiple constraints into one [6][33]. In

Eq. (7), function ()iq p denotes value of the
thi aggregated QoS criterion for path p , two

variables  and  represent weight factors on the value of global QoS utility.

1 2
3 3 3 1

1 2

() () ()
() [() () ... ()] [(())]

m

m

user user user

q p q p q p
g p Score p

q q q

      

(7)

On the other hand, Algorithm 5 conducts the selection process with the situation of parallel

pattern (steps 17-29). In step 18, it invokes function getRNsByLinks to obtain all reduction

tasks representing sub-sequence branches corresponding to the parallel pattern of reduction

task nextTask(firstNodes). Next, in terms of the reduction process in section 4.3, the algorithm

marks each edge with color in set {r, c, rc, rc
1
, rc

2
} (corresponding to the set of reduction

nodes) for each sequence branch by invoking the function mark_color_edgesByRdRls, whose

input parameter rnTask_SB denotes corresponding reduction task of a sequence branch (step

20). Therefore, for each sequence branch, we can find all paths for each reduction node in a

sequence branch with the help of color edges. Take Fig. 3 as an example, we can easily find all

corresponding paths for reduction node r in reduction task 2rn if the function

mark_color_edgesByRdRls is conducted. After that, step 21 gets all combination rules among

reduction nodes (in the parallel pattern and its sequence branches) by invoking the function

searchRNTPRules, which is used to search combination rules from a database by input

parameter of the number of sub-sequence branches in current parallel pattern. Besides, the

database is as mentioned in section 4.3 and can be implemented in advance. Subsequently,

steps 22-29 conduct a loop, which aims to select k-optimal paths for each reduction node tp in

the reduction task of current parallel pattern. Specifically, the key folds of the loop are as

follows: 1) Firstly, the algorithm keeps initial k paths for tp by invoking the function optSelect,

which selects k-optimal paths from the set pre[tp] denoting all selected paths previous to the

node tp (step 22); 2) then steps 24-28 try to find k-optimal paths for tp. The process involves

two sub-processes. Firstly, in terms of the type of tp and the obtained combination rules

rnTPRules, step 24 invokes the function getTPfromRules to get a set sbTPset, which is

obtained by transforming the set of combination rules relative to tp within rnTPRules into a set

of reduction nodes in all sequence branches.

1266 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

Fig. 5. The QoS-optSltforTCWS and Relax_basedTP algorithms

For expressing clearly, we still take Fig. 3 as an example. If tp in 1rn is r, then the

combination rules relative tp is the set {<r, r>, <r, rc>, <rc, r> where each rule denotes the

combination between two reduction nodes in 2rn and 3rn respectively. Thus, we get

sbTPset= {r, rc}. Further, for each reduction node sbtp in sbTPset, based on edges colored by

reduction rules above, function optPtsbyClr is invoked to recursively compute k-optimal paths

from all paths corresponding to sbtp for each sequence branch (steps 25-26). On the other hand,

according to each combination rule relative tp, the function merge_paths is invoked to obtain

Algorithm 5 QoS-optSltforTCWS Algorithm

Input: SCG (V, E, Q), int k /* k denotes the relaxed variable .The SCG(V, E, Q) is the actual SCG model */

Output: Path p /* Return the path with near optimal QoS utitlity. */

1 Set firstNodes = {s}; /* Initialize the variable storing all nodes of current task. */
2 Node u, v; /* u denotes the current scanning node, while v denotes the adjacent node to u */

3 while (nextTask (firstNodes) != d)

4 if (isRNTask (nextTask (firstNodes)) == false) then /*nextTask(firstNodes) returns next task to firstNodes.*/
5 for each u in firstNodes do

6 for each v in adj[u] do

7 if (u == s) then /* If the first task of current scanning edge is source node .*/
8 Q = q(u,v); /*Update QoS Vector for each path. */

9 F = F(v); /*The utility of current path is utility of v. */

10 Paths = relax_basedTP (Q,F, u,v, k);
11 else for each p in Paths[u]

12 Q = p.Q+ q(u,v);

13 F = p.F+F(v);
14 Paths = relax_basedTP(Q, F, u, v, k); /*Relax k-optimal paths in current selected paths. */

15 End if

16 End for
17 else /* In case of parallel pattern*/

18 rnTask_SBs = getRNsByLinks (nextTask (firstNodes)); /* Get reduction tasks of the sequence branches. */

19 for each rnTask_SB in rnTask_SBs do
20 mark_color_edgesByRdRls(rnTask_SB, SCG); /*Mark edges with colors based on reduction process. */

21 rnTPRules = searchRNTPRules(nextTask(firstNodes));/*Get combination rules by current parallel pattern. */

22 for each tp in {p,r,c,rc1,rc2}do /* Loop by five reduction nodes of current parallel pattern. */
23 paths_tmp[tp] = optSelect(pre[tp], k); /* Select k-optimal paths previous to the reduction node tp. */

24 sbTPset = getTPfromRules(rnTPRules, tp); /* */

25 for each sbtp in sbTPset do

26 sb_p[sbtp] = optPtsbyColor(paths_tmp[tp], sbtp, SCG, k);

/*Find recursively k-optimal paths from each sequence branch*/

27 subRls = getRNTPRulesByTP(rnTPRules, tp);
28 paths[tp] = merge_paths(sb_p, subRls, k);

 /*Merge k-optimal combination paths including all sequence branches in current parallel pattern.*/

29 End for
30 End if

31 firstNodes = getNodes(nextTask(firstNodes)); /* Get all nodes of nextTask(firstNodes).*/

32 End while
33 Find the optimal utility p in Paths[t] s.t. adj[t] = d; /* Return a near optimal result. */

34 return p;

Algorithm 6 Relax_basedTP Algorithm

Input: Vector Q, Real F, Node u, v, Int k

Output: Paths /* Keep paths limited less than k in each vnode. */
1 if(isSatisfyQoSConstraits(Q, Qc) == false) return Paths;

2 paths_tp = searchByTP_Task (Paths, v.vnode);

3 if (exist p in Paths_tp that (p.F > F) and (p.Q <= Q)) ;
4 return Paths;

5 if (exist p in Paths_tp that (p.F < F) and (p.Q >= Q))

6 repace(p, [u,Q,F], Paths[v]); return Paths;
7 if (paths_tp.size < k) addPath ([u,Q,F], Paths[v]);

8 else replace_or_remove (getMax_func (paths_tp), [u,Q,F]);

9 return Paths;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1267

finally k-optimal paths (from source node s to the reduction node tp) (steps 27-28). The main

idea of the function merge_paths is, based on the combination rules of tp and the process of

merging parallel pattern in [6] to merge the k-optimal paths from each sequence branch into

the final k-optimal paths for tp. After that, a new loop considering another value of tp begins to

run.

After the loop ended, step 30 moves forward firstnodes to store nodes of the succeeding task

(step 31) so as to carry out a new while loop again. The while loop will be ended when

nextTask(firstnodes) is the target node d . In the final, the algorithm returns one of the most

optimal utility path p as a near-optimal solution (steps 33-34).

For calculating the upper bound of the worst-case computation complexity of the proposed

method, we assume that there are n tasks , m candidates for each task and the relaxing

variable is equivalent to k . In algorithm 2, it takes at most O(5*n) times to create virtual

nodes in steps of 2-13, meanwhile O(25*(1)n) iterations of adding edges to the vSCG

model (algorithm 3) is required. Therefore, the total computation complexity of algorithm 2

for building the vSCG model is O(1C n), 1C denotes a constant. In algorithm 1, it’s based on

the vSCG model (as shown in step 1). Obviously, the main calculation of algorithm 1 focuses

on steps 5-40 to add all actual nodes for the aSCG model, whose computation complexity is

O(
2

2 * *C n m). Here, 2C is a constant. Therefore, the total computation complexity of

algorithm 1 (building the vSCG model) is O(
2

2 * *C n m). In algorithm 5, the selection

algorithm has n iteration in steps 3-32 to scan the whole tasks in the considering route path.

For each iteration, two layer iterations are invoked in steps 5-16, where the procedure

relax_basedTP in algorithm 6 is invoked. The procedure relax_basedTP aims to keep k

optimal paths for each classes in each task (Here, the class is also virtual node or transactional

property), whose main calculation is O(3C). 3C is a constant if we implement it with the

adjacent link data structure. Thus the complexity of relax_basedTP is O(3C) . Since we only

keep k optimal paths for each classes, there are at most 5*k nodes in the iteration of step 5 of

algorithm 5. Moreover, there are at most m edges adjacent to each currently selected path.

Therefore, the total complexity of steps 5-16 is O(3 * *C k m) . On the other hand, steps 18-30

in algorithm 5 are used to process the case with parallel pattern, which invoke recursively the

processing code of steps 5-16 to process each sequence branch in current parallel pattern. The

additional operation is the function of merge_path, which only depends on the number of

sequence branches in current parallel pattern. Therefore, the computation complexity of steps

18-30 can be regarded nearly as the complexity of steps 5-16. Thus, the combined complexity

of algorithm 5 is O(3 * * *C k m n) . Finally, based on the analysis above, we can get the total

calculation complexity of the proposed method: O(3 * * *C k m n+
2

2 * *C n m), which can

also be represented as O(3 2* *(* *)m n C k C m).

6. Experiments and Evaluation

In order to show the efficiency and feasibility of our approach, several groups of experiments

have been conducted. In our experiments, we implemented our selection approach as well as

the selection approach proposed by EL Haddad et al. [12][13]. For our selection approach,

implementations were conducted by setting different values for the relaxing variable K. The

1268 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

running platform under Windows XP and Java 1.6 is a Lenovo machine with Intel Core i3 3.2

GHz processors and 2GB RAM. The main QoS data on criteria of response time, reliability

and availability are based on publically accessible QWS Dataset including QoS values of

2507 real web services collected by Dr. Eyhab Al-Masri in 2008 [34]. Especially, we

randomly generated QoS values ranged from 50 to 1000 for cost criterion for each candidate

web service since the public QWS dataset does not include the cost QoS criteria. Moreover,

the transactional property values of {r, c, rc, p} were randomly associated with each candidate

web service.

6.1 Performance Study with the Number of Tasks Varying

We first present two groups of experiments by dynamically increasing number of tasks. The

first group of experiments includes two different experiments. Since the approximate ratio on

the global QoS utility needs to abtain the best optimal QoS utility value which will take

exponential time by exhaustive searching [10], we have made a limitation on the involved

candidates by using a relatively smaller number so that exhaustive searching under

exponential time in our experiments becomes posssible. Additionally, four criterion

constraints were considered. Fig. 6 (a) plots approximation ratio of global QoS utility obtained

by our selection approach and the selection approach in [12][13] to best optimal QoS utility

obtained by exhaustive searching. As shown in Fig. 6 (a), our approach performs better than

the approach in [12][13] no matter what value of the relaxing variable K is assigned, since our

approach is based on a global selection process while they used a local approach considering

QoS aspect in order to reduce transactional constraints. Note that with the increasing task

number of the route path, the approximation ratios of all approaches decrease slightly.

Meanwhile, the approximation ratios are much better with larger value of variable K. Fig. 6

(b) shows the time consuming trend when task number is increased from 3 to 9. From the

Fig.6 (b), we can further see that our approach is slightly inferior to the approach in [12][13].

Yet, the time consuming of our approach increases linearly with the number of tasks

increasing, since the complexity of our proposed method is O(3 2* *(* *)m n C k C m).

The second group of experiments was also conducted by varying the number of tasks in a

route path as well as significantly increasing the number of candidates (more than 150) of each

task. It aims at checking how our extensible capability will be affected by larger number of

candidates and tasks. Fig. 6 (c) shows that, within the preconditions of larger candidate

number and four criteria constraints, our approach is extensible well due to linear augment on

time consuming when tasks numbers are from 2 to 16. Fig. 6 (c) also demonstrates that there is

a little increase on computation time when value of variable K is changed from 5 to 100, since

the complexity impacted by factor of larger candidates is dominant to the value of K .

6.2 Performance Study with the Number of Candidates Varying

Comparing to the first group of experiments, the third group of experiments based on fixed

number of tasks, contains also two experiments. This group of experiments aims to validate

two facts, which are of our advantage on global QoS utility and of extensible capability with

numbers of candidates increasing from 15 to 300. Fig. 6 (d) demonstrates that our approach

owns an outstanding extensibility, sincely, within four of our approach-based implementations

whose relaxing variables are K=5, K=20, K=50, K=100 respectively, their running times all

increase near linearly with numbers of candidate web services enlarging for the reason that the

calculation complexity of our proposed method is O(3 2* *(* *)m n C k C m). From the Fig.

6 (e), we can see that the global QoS utilities obtained by our approach are better than selection

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1269

approach proposed by Joyce E.H. in [12][13] when candiate numbers are increased from 15 to

300. Besides, with the increasing value of variable K, the values of global QoS utilities

obtained by our approach are increased correspondingly, this is because more possible

intermediate paths can be kept so as to enable the later selection process.

Fig. 6. The Performance comparison

The last experiment is conducted to test the success ratio between our approach and the

related work. We set the task number to be 8 and the criterion number to be 4. Fig. 6 (f) plots

(a) Approximation ratio comparison (b) Running time comparison

(c) Running time analysis with larger candidate web services. (d) Running time analysis with increasing candidates number.

(e) Global QoS utility comparison (f) Success ratio comparison.

1270 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

success ratios for all our approach-based implementations and the approach with the situation

of risk 1[12]13] proposed by Joyce E.H with numbers of candidate web services varying from

15 to 300. We execute each test case 10 times. During different excutions, QoS values of the

cost criterion are regenerated. Fig. 6 (f) demonstrates that our approach-based

implementations are able to find the solutions, especially for the situation with larger

candidates numbers. As shown in Fig. 6 (f), when candiate numbers are greater than 50, the

success ratios of our approaches are almost near to 1.0. The reason is that our proposed method

searches the solution satisfying end-to-end constraints with a global way and employes a

better criterion filtering function (as defined in Eq. 7) considering the factor of end-to-end QoS

constraints, which can almost obtain a feasible solution obeying end-to-end QoS constraints.

7. Conclusion and the Future Work

Most of traditional QoS-aware WSC approaches ignore the aspect of transactional constraints

to guarantee consistency and atomicity of CWS. To address this issue, in this paper, we have

proposed a new QoS-aware service selection approach for transactional CWS. Firstly, we have

presented two building algorithms to formulate a graph model called actual SCG, which can

address the problem of transactional atomicity consistency for CWS. Secondly, several proofs

on transactional theories have been presented to show the correctness of our graph model to

resolve transactional constraints. After that, we transformed the problem of QoS

optimal-utility selection with transactional constraints into the problem of solving

single-source shortest paths, and proposed an improved near-optimal service selection

algorithm to search the path with optimal QoS utility. Finally, extensive experiments have

been conducted to validate efficiency and feasibility of our approach. The experimental results

have demonstrated the advantages of our approach.

In our future work, a more complex situation such as the nested transaction in WSC will be

considered. Besides, based the proposed approach in this paper, a new selection approach

combining risk factor will be studied. Particularly, we will apply the proposed approach to

solve a practice problem on ensemble prediction application in scientific computing arena.

References

[1] Sangyoon Oh, Mehmet Aktas and Geoffrey C. Fox, "Mobile Web Service Architecture Using

Context-store," KSII Transactions on Internet and Information Systems, vol. 4, no. 5, pp. 836-858,

2010. Article (CrossRef Link).

[2] Kwanghoon Kim and Ilkyeun Ra, "e-Lollapalooza: A Process-Driven e-Business Service

Integration System for e-Logistics Services," KSII Transactions on Internet and Information

Systems, vol. 1, no. 1, pp. 33-51, 2007. Article (CrossRef Link).

[3] Liangzhao Zeng, Boualem Benatallah and Marlon Dumas, "Quality Driven Web Services

Composition," in Proc. of the Int. World Wide Web Conf. , pp.411-421, May 20-24, 2003. Article

(CrossRefLink).

[4] Mohammad Alrifai and Thomas Risse, "Combining Global Optimization with Local Selection for

Efficient QoS-aware Service Composition," in Proc. of the Int. World Wide Web Conf., pp.

881-890, April 20-24, 2009.Article (CrossRef Link).

[5] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner and Schahram Dustdar,

"An End-to-End Approach for QoS-Aware Service Composition," in Proc. of the IEEE Int.

Enterprise Distributed Object Computing Conference, pp. 151-160, October 11-14, 2009. Article

(CrossRefLink).

[6] Tao Yu, Yue Zhang and KWei-Jay Lin, "Efficient Algorithms for Web Services Selection with

http://dx.doi.org/10.3837/tiis.2010.10.008
http://dx.doi.org/10.3837/tiis.2007.01.003
http://portal.acm.org/citation.cfm?id=775211
http://portal.acm.org/citation.cfm?id=775211
http://portal.acm.org/citation.cfm?id=1526828
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5277608%2F5277609%2F05277690.pdf%3Farnumber%3D5277690&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5277608%2F5277609%2F05277690.pdf%3Farnumber%3D5277690&authDecision=-203

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1271

End-to-End QoS Constraints," ACM Transactions on Web, vol. 1, no.1, pp. 1-26, 2007. Article

(CrossRefLink).

[7] Daniel A.Menasce and George Mason, "Composing Web Services: A QoS View," IEEE Internet

Computing, vol. 8, no. 6 pp. 89-91, 2004. Article (CrossRefLink).

[8] Zibin Zheng and Michael R. Lyu, "A QoS-aware fault tolerant middleware for dependable service

composition," in Proc. of the IEEE/IFIP Int. Conf. on Dependable Systems & Networks, 2009, pp.

239-248. Article (CrossRefLink).

[9] Md Mostofa Akbar, M.Sohel Rahman, M. Kaykobad, E.G. Manning and G.C. Shoja, "Solving the

Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls," Computers

& Operations Research, vol. 33, no. 2006, pp. 1259-1273, 2006.

[10] Liangzhao Zeng, B. Benatallah and A.H.H. Ngu, "QoS-Aware Middleware for Web Services

Composition," IEEE Transactions on Software Engineering, vol. 30, no. 5, pp. 311-327, 2004.

Article (CrossRef Link).

[11] Y. Tao, "Service Selection Algorithms for Web Services with End-to-End QoS Constraints," in

Proc. of the IEEE International Conf. on E-Commerce Technology, pp. 129-136, July 6-9, 2004.

Article (CrossRefLink).

[12] Joyce EL Haddad, Maude Manouvrier and Marta Rukoz, "TQoS:Transactional and QoS-aware

selection algorithm for automatic Web service composition," IEEE Transactions on Service

Computing, vol. 99, no. (preprints), pp.73-85, 2010. Article (CrossRefLink).

[13] Joyce EL Haddad, Maude Manouvrier and Marta Rukoz, "

QoS-driven Selection of Web

Services for Transactional Composition," in Proc. of the Int. Conf. Web Services, pp. 653-660,

September 23-26, 2008. Article (CrossRefLink).

[14] Hongbing Wang, Shizhi Sha and Xuan Zhou, "Web Service Selection with Incomplete or

Inconsistent User Preferences," in Proc. of the 7th Int. Conf. on Service-Oriented Computing, pp.

83-89, November 24-27, 2009. Article (CrossRefLink).

[15] Mohammad Alrifai, D. Skoutas and T. Risse, "Selecting Skyline Services for QoS-based Web

Service Composition," in Proc. of 19th Int. Conf. World Wide Web, pp. 11-20, April 26-30, 2010.

Article (CrossRefLink).

[16] A. Ceponkus, et al. , "Business transaction protocol version 1.0," available: http://www.oasis-

open.org/committees/business-transactions, accessed on December 2010.

[17] E. Newcomer, et al. , "Web services coordination(WS-Coordination) version 1.1," available:

http://docs.osis-open/ws-tx/wstx-wscoor-1.1-spec-os.pdf, accessed on December 2010.

[18] E. Newcomer, et al. , "Web services business activity framework (WS-BusinessActivity) version

1.1," available: http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf, accessed on

December 2010.

[19] E. Newcomer, et al. , "Web services atomic transaction(WS-AtomicTransaction) Version 1.1," av-

ailable: http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf, accessed on December 2010.

[20] D. Bunting, et al. , "Web services composite application framework(WS-CAF)," available:

http://www.oasis-open.org/committees/ws-caf/, accessed on December 2010.

[21] Heiko Schuldt, Gustavo Alonso, C. Beeri and H. Schek, "atomicity and isolation for transactional

processes," ACM Transactions on database systems, vol. 27, no. 1, pp. 1-52, March, 2002. Article

(CrossRef Link).

[22] Sami Bhiri, Olivier Perrin and Claude Godart, "Ensuring Required Failure Atomicity of Composite

Web Services," in Proc. of the 14th Int. World Wide Web Conf., pp. 138-147, May 10-14, 2005.

Article (CrossRefLink).

[23] An Liu, Liusheng Huang and Qing Li, "QoS-Aware Web Services Composition Using

Transactional Composition Operator," in Proc. of Int. Conf. on Web-Age Information Management,

pp. 217-228, Jule 17-19, 2006.Article (CrossRef Link).

[24] J. Cardoso, et al., "Quality of Service for Workflows and Web Service Processes," Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 1, no. 2004, pp. 281-308, 2004. Article

(CrossRefLink).

[25] Michael C.Jaeger, Gregor Rojec-Goldmann and Gero Muehl, "QoS Aggregation for Web Service

Composition using Workflow Patterns," in Proc. of Enterprise Distributed Object computing

http://portal.acm.org/citation.cfm?id=1232728
http://portal.acm.org/citation.cfm?id=1232728
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4236%2F29773%2F01355927.pdf&authDecision=-203
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5270332
http://dx.doi.org/10.1109/TSE.2004.11
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1319726
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5432150
http://basepub.dauphine.fr/bitstream/handle/123456789/4160/20081107_JoyceElHaddad.pdf?sequence=2
http://basepub.dauphine.fr/bitstream/handle/123456789/4160/20081107_JoyceElHaddad.pdf?sequence=2
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4670233
http://portal.acm.org/citation.cfm?id=1696059
http://portal.acm.org/citation.cfm?id=1772693
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://www.oasis-open.org/committees/ws-caf/
http://dx.doi.org/10.1145/507234.507236
http://dx.doi.org/10.1145/507234.507236
http://portal.acm.org/citation.cfm?id=1060745.1060769&coll=DL&dl=GUIDE&CFID=32236654&CFTOKEN=72130020
http://dx.doi.org/10.1007/11775300_19
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.8606
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.8606

1272 Liu et al.: A Global Graph-based Approach for Transaction and QoS-aware Services Composition

Conf. , pp. 149-159, September 20-24, 2004.

[26] W. M. P. v. d. Aalst, et al., "Workflow patterns," Distributed and Parallel Databases, vol. 14, no.

1, pp. 5-51, July, 2003. Article (CrossRef Link).

[27] Kaijun Ren and Jinjun Chen, "Optimizing execution path of scientific workflow by gradual

removal of QoS constraint violations in Reverse Order," Concurr. Comput. : Pract. Exper., vol. 21,

no. 11, pp. 2033-2051, November, 2009. Article (CrossRefLink).

[28] C. L. Hwang and K. Yoon, "Multiple attribute decision making: methods and applications,"

Lecture notes in economics and mathematical systems, vol. 186, Springer-Verlag, March, 1981.

Article (CrossRefLink).

[29] Michael C.Jaeger, et al., "QoS Aggregation in Web Service Compositions," in Proc. of the 2005

IEEE Int. Conf. on e-Technology, e-Eommerce , e-Service, pp. 181-185, March 29-April 1, 2005.

Article (CrossRefLink).

[30] S. Mehrotra, et al., "A Transaction Model for Multidatabase Systems," Lecture Notes in Computer

Science, vol. 1124, no. 1996, pp. 862-865, 1996. Article (CrossRefLink).

[31] Hai Liu, Weimin Zhang, Kaijun Ren and Zhuxi Zhang, "A Novel Selection Approach for

Transactional Web Services Composition," in Proc. of theNinth International Conference on Grid

and Cloud Computing, pp. 450-456, November 1-5, 2010. Article (CrossRefLink).

[32] Hai Liu, Weimin Zhang, Kaijun Ren, Cancan Liu and Zhuxi Zhang, "A Risk-Driven Selection

Approach for Transactional Web Service Composition," in Proc. of the Eighth Int. Conf. on Grid

and Cooperative Computing, pp. 391-397, August 27-29, 2009. Article (CrossRefLink).

[33] T. Korkmaz and M. Krunz, "Multi-constrained optimal path selection," in Proc. of the 20th Joint

Conference of IEEE Computer and Communications Societies, pp. 834-843, April 22-26, 2001.

Article (CrossRefLink).

[34] E. Al-Masri and Q. H. Mahmoud, "Investigating web services on the World Wide Web," in Proc.

of the 17th Int. World Wide Web Conf. , pp. 795-804, April 21-25, 2008. Article (CrossRefLink).

Hai Liu received his M.S. degree (2006) in School of Computer from National

University of Defense Technology, Changsha, China, respectively. He is currently a

Ph.D Candidate in School of Computer from National University of Defense

Technology. His main research interests include transactional and QoS-aware Web

Services composition, concurrently transactional control in Web Service arena and Grid

and Cloud computing

Zibin Zheng received his B.Eng. degree and M.Phil. degree in Computer Science from

the Sun Yat-sen University, Guangzhou, China, in 2005 and 2007, respectively. He

received his Ph.D. degree from the department of Computer Science and Engineering,

The Chinese University of Hong Kong in 2010. He received ACM SIGSOFT

Distinguish Paper Award at ICSE'2010, Best Student Paper Award at ICWS'2010, and

IBM Ph.D. Fellowship Award 2010-2011. He served as program committee member of

IEEE CLOUD'2009, CLOUDCOMPUTING'2010, CLOUDCOMPU- TING‘2011,

CGC'2011, and MCCTA'2011. He also served as reviewer for international journals and

conferences, e.g., TSE,TPDS, TSC, IJCCBS, IJBPIM, IJWGS, JSS, JSW, WWW,

DSN, KDD, WSDM, CloudCom, ICEBE, SCC, ISAS, QSIC, etc. His research interests

include service computing, cloud computing, and software reliability engineering

http://dx.doi.org/10.1023/A:1022883727209
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1342512
http://www.citeulike.org/user/hanssperling/article/3500953
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1402291
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=235055
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5662708
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5279535
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=916274
http://portal.acm.org/citation.cfm?id=1367605

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 7, July 2011 1273

Weimin Zhang is a professor in School of Computer from National University of

Defense Technology, Changsha, China. He received the M.S degree and the PH.D

degree in School of Computer from National University of Defense Technology. He has

published more than thirty papers now. His research interests include Service Oriented

Computing, Grid Computing, Workflow, High performance computing and parallel

computing.

Kaijun Ren received the BS degree (1998) in Applied Mathematics, both MS degree

(2003) and Ph.D degree (2008) in Computer Science all from the National University of

Defense Technology, China. He is currently an associate professor in the School of

Computer of the National University of Defense Technology. His main research

interests include service oriented computing (service discovery, service composition,

QoS-based composition optimal execution), e-science/e-research, workflow

management, cloud and high performance computing . He is a member of the IEEE and

ACM.

