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Abstract 
 

In Web Service Composition (WSC) area, services selection aims at selecting an appropriate 

candidate from a set of functionally-equivalent services to execute the function of each task in 

an abstract WSC according to their different QoS values. In despite of many related works, 

few of previous studies consider transactional constraints in QoS-aware WSC, which 

guarantee reliable execution of Composite Web Service (CWS) that is composed by a number 

of unpredictable web services. In this paper, we propose a novel global selection-optimal 

approach in WSC by considering both transactional constraints and end-to-end QoS 

constraints. With this approach, we firstly identify building rules and the reduction method to 

build layer-based Directed Acyclic Graph (DAG) model which can model transactional 

relationships among candidate services. As such, the problem of solving global optimal QoS 

utility with transactional constraints in WSC can be regarded as a problem of solving 

single-source shortest path in DAG.  After that, we present Graph-building algorithms and an 

optimal selection algorithm to explain the specific execution procedures. Finally, 

comprehensive experiments are conducted based on a real-world web service QoS dataset. 

The experimental results show that our approach has better performance over other competing 

selection approaches on success ratio and efficiency.  
 

 

Keywords: Web service composition, QoS-aware selection, end-to-end constraints, 

transaction, DAG 
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1. Introduction 

With the development of Internet and distributed computing technology, Service Oriented 

Architecture (SOA) becomes more and more prevalent.  SOA integrates software components 

in Internet provided by different organizations. Web service is a key technical for building 

SOA applications [1][2]. With the increasing number of web services in the Internet, Web 

Service Composition (WSC) is becoming an important research problem, attracting attentions 

from both academia and industrial areas.  

In the process of WSC, there are two key steps, i.e., abstract WSC and concrete WSC. 

Abstract WSC, also named functional WSC, solves problem of functional aspect for WSC. 

Concrete WSC, also called QoS-aware WSC, addresses the problem of optimal utility under 

non-functional properties. In this paper, we focus on addressing the transactional issues in 

concrete WSC which comprises the second indispensable step in WSC. Up to now, A lot of 

research work considering concrete WSC has been conducted basing on different QoS 

properties such as response time, execution cost, reliability, availability [3][4][5][6][7]. The 

key idea of the previous work is to select proper candidate for each activity in the composite 

web service to obtain the best QoS utility and satisfy end-to-end user QoS constraints [8]. In 

reality, the web service selection problem can be mapped into Multidimensional 

Multiple-choice Knapsack Problem (MMKP), which has been proved as a NP hard problem 

[9]. Hence, the time complexity of this kind of problem is exponential. To solve the problem 

within polynomial time, several approximation algorithms have been proposed [3][4][5][6][7] 

[9][10][11]. 

Although many methods have been proposed for QoS-aware WSC, few consider the 

transactional constraints. Transactional characteristics ensure consistent and reliable 

execution of WSC. In particular, considering both transactional characteristics as well as 

optimal QoS utility for QoS-aware WSC is an extremely challenging research problem [12]. 

Due to the inherent peculiarities of web services (e.g., loosely coupled, autonomy, 

heterogeneous, etc.), transactional properties of the candidate web services may differ from 

each other. Thus, QoS-aware WSC regarding transactional properties becomes very 

complicated, since all transactional combinations of constituted web services are hard to 

satisfy the global transactional constraints. Authors in [12][13] proposed a transactional and 

QoS-aware services selection algorithm, which employed automation to model transactional 

constraints. In this selection algorithm, they firstly considered the globally transactional 

constraints, and then embedded a local QoS-optimal selection approach to solve the aspect of 

QoS. Although this algorithm considered transactional constraints, the final result on the 

global QoS utility may be influenced due to the local approach used in QoS aspect. How to 

improve the comprehensive QoS utility for QoS-aware WSC subject to globally transactional 

constraints is still an unsolved problem. 

To address the aforementioned problem, we use a layer-based DAG model, called actual 

Service Candidates Graph (SCG), to define a solution for QoS-aware WSC with transactional 

constraints. In our model, we firstly propose building rules and the reduction method based on 

transactional theory of atomicity and consistency. Meanwhile, the correctness satisfying 

transactional constraints with these rules are proved. After that, we present a building 

algorithm for actual SCG. By our approach, solving optimal QoS utility with global 

constraints (include both end-to-end QoS constraints and transactional constraints) is 

translated to the problem of solving single-source shortest paths from the first activity to the 
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last activity. For this, we propose a selection algorithm based on the MCOP algorithm [6]. 

Differing from the traditional MCOP algorithm, our method (1) concentrates addressing 

constraints not only on end-to-end QoS criteria but also on globally transactional aspect for a 

CWS, and (2) proposes a new cost function as a filtering standard applied to our relaxing 

function. Extensive experiments are conducted basing on a real-world web service dataset. 

The experimental results show that our approach achieves better performance on global QoS 

utility over other typical approaches. Meanwhile, our approach has well extensibility.  

The remainder of this paper is organized as follows. Section 2 discusses the related work. 

Section 3 introduces the composite patterns, the method of computing global QoS and utility. 

Section 4 proposes building rules and a reduction method for building graph models, and 

proves their correctness. Section 5 presents building algorithms and the optimal selection 

algorithm. Section 6 gives comprehensive experiments to demonstrate benefits of our 

approach. Finally, Section 7 concludes the paper and presents future work.  

2. Related Work 

2.1 QoS-aware Web Services Composition  

Many research efforts have been carried out in QoS-aware web services composition . Authors 

in [7] proposed a method of computing QoS utility for a CWS. Liangzhao Zeng et al. [3][10] 

proposed several classic selection algorithms using integer programming, which are based on  

global allocation to services. These methods can select the best candidate services for each 

task in an abstract CWS according to the global QoS utility. However, the intrinsic time 

complexity of the integer programming algorithms are exponential. Florien Rosenberg et al. 

[5] proposed an global QoS optimization approach based on a constraint planning method, 

considering both feature constraints and end-to end QoS constraints. The Constraint 

Satisfaction Problem (CSP) was used to define local QoS constraints for each feature and 

global QoS constraints. However, this way only considered QoS constraints with quantitative 

features. While those qualitative constraints such as transaction of a CWS were ignored. 

Authors in [14] presented the way of  QoS-aware WSC respecting incomplete user preferences. 

They made use of historical user information to amend user incomplete preferences, and then 

improved QoS-aware web services selection. Mohammad Alrifai et al. in [4][15] proposed 

two QoS-aware services selection approaches. In [4], in order to solve the problem of  QoS 

optimal utility under each QoS dimension constraint, authors firstly translated global QoS 

constraints of CWS into local QoS constraints with integer programming. Afterwards, a 

distributed local selecting method had been applied to select the best web services satisfying 

these local constraints. The approach in [15] improved the approach in [4] by using skyline to 

effectively and efficiently select services for composition,  reducing the number of candidate 

service to be considered. Tao Yu et al. [6][11] proposed two near-optimal services selection 

methods (i.e., the combinatorial model and the graph model) with end-to-end QoS constraints. 

The combinatorial model defines the problem as a Multiple choices Multiple dimensions 0-1 

Knapsacks Problem (MMKP). The graph model defines the problem as a Multiple Constraints 

Optimal Path (MCOP) problem. Efficient heuristics algorithms for service processes of 

different composition structures are presented. Though these two methods could obtain a well 

result within polynomial time, transactional properties were not considered. Our approach 

extends the MCOP graph model to consider both QoS and qualitative properties of 

transactional nature for a CWS.   

2.2 Transactional aspect of Web Service 
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In order to ensure reliability and consistency of CWS, transactional properties of CWS  have 

attracted great attention. Due to the particular characteristics of web service transaction (e.g., 

long-running, heterogeneous, distributed and autonomic nature, etc.), traditional ACID 

transaction model can hardly be adapted for the web service environment. With development 

of service oriented computing, several transactional specifications for web services have been 

proposed, including the Business Transaction Protocol (BTP) [16], the Web Services 

Coordination (WS-C) [17], Web Services Transaction (WS-Tx) specifications [18][19], and 

Web Services Composite Application Framework (WS-CAF) [20]. Although these 

specifications are comprehensive, very little attention has been paid to consider the problem of 

transaction-based and QoS-aware WSC. In recent years, lots of work dedicate to studying 

transactional consistency of the whole process based on transactional properties of its 

components. In [21], authors proposed a unified model of consistency and atomicity theories 

for concurrency control of transactional processes, which consists of process-serializability, 

process-recoverability, process-reducibility, process correct termination. Authors in [22] 

proposed a web service selection framework to ensure failure atomicity of a CWS by 

considering transactional properties of candidate web services. In the framework, Accepted 

Termination States (ATS) were introduced to express the required failure atomicity for a CWS. 

Although transactional WSC had been implemented by this framework, global QoS 

optimization for CWS had not been considered. Authors in [23], evaluated the global  QoS 

value of a  CWS with transactional operators. However, they only analyzed the transactional 

effects on QoS for a CWS, without ensuring the optimal QoS requirement. Works [12][13] 

proposed a selection algorithm that satisfied users’ preferences. The users’ preferences are 

expressed as weights over QoS criteria and expressed as two risk levels to define semantically 

the transactional requirements. In this selection algorithm, QoS-aware selection process is 

embedded within the process of transactional service selection. Thus, the set of potential web 

services for each workflow activity is restricted by the transactional constraints for those 

selected previously. Although work [12][13] considers both transactional and QoS-aware 

WSC, it uses a local QoS optimization selection algorithm for solving the problem. Different 

from work  [12][13], our approach  employs a graph model to address the transactional aspect, 

and then uses a globally optimal selection approach for the QoS aspect. 

3. The QoS Computation 

As discussed in [7][24][25], in a CWS, atomic web services could be connected by composite 

patterns including sequence pattern, parallel pattern, conditional pattern and loop pattern.  

Since a loop pattern can be converted into a sequence pattern by unfolding loop [26], we will 

not discuss it in this paper.  In order to compute the global QoS for a concrete CWS, we firstly 

employ two concepts, namely sequence path and route path which appeared in  [6][10]. A 

sequence path denotes a path from the start task to the end task including only one branch in no 

matter conditional or parallel patterns. In comparison, a route path illustrates a path from the 

start task to the end task in an abstract CWS involving only one branch in conditional patterns 

but all branches in parallel patterns. According to these definitions, we use 
1 2( , ,..., )i nrpl s s s  

to denote one route plan for the route path rpt  where 
ks denotes the web service assigned to 

the task 
kt in

irpt . Obviously, rpt  may include multi-sequence plans if parallel patterns exist 

in rpt . Similar to work [12], we firstly consider four QoS criteria for each candidate web 

service: (1) Execution Cost (
1

kq ); (2) Response Time (
2

kq ); (3) Availability (
3

kq ); (4) 
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Reliability (
4

kq ). Then, for any candidate ks of task kt  in an abstract CWS cs , we can 

associate ks to a QoS vector q(s )k = 
1 2 3 4[ ( ), ( ), ( ), ( )]k k k kq s q s q s q s . For the reason that 

different QoS criteria have different quantitative metric, we use Eq. (1) to normalize QoS 

criterion   with positive nature where max( ( ))kq t and min( ( ))kq t  respectively denote the 

maximum  and minimum values for all candidates of it . Analogously, Eq. (2)  is used to 

normalize QoS criterion  with negative nature [27]. 

( ) min( ( ))
, (max( ( )) min( ( )) 0)
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By this way, the value of ks  on each QoS criterion in q(s )k  is ranged as [0, 1]. Additionally, 

the Simple Additive Weighting (SAW) [28] is introduced to support the computation of QoS 

utility for each candidate shown in equation group (3) where ( )kScore s  represents the QoS 

utility value of web service ks  and 
m

 is the assigned weight for m

k
q s( ) . 
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According to above definitions, several global QoS aggregation functions for 

1 2( , ,..., )i nrpl s s s are given in Table 1, where )( k

m sq  is the value of the selected service 
ks  for 

task
kt on the thm  QoS criterion, }4,3,2,1{m . More details about other QoS criteria such as 

Table 1. QoS aggregation functions                       Table 2. Transaction combinations for parallel pattern 
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reputation, data quality, compensation rate and etc. have been proposed in [3][6][25][29].  In 

order to check whether user’s QoS constraints are satisfied for
jrpl , Eq. (4) is provided  where 

the vector ],,,[q 4321

useruseruseruseruser qqqq  represents user’s QoS constraints. 





jk rpls

kj sScorerplF )()(                                                             (5) 


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












)(
max

)(

))((

))(()(
max

csRPTsetrpt
i

rptPLsetrpl

i

rptpMaxrpt

rplFMaxcsF
                                                          (6) 

Our QoS utility function ( )iF rpl  for irpl  can be computed by Eq. (5). Especially, we use 

Eq. (6) to express HP (Highest Probability) objective function for any cs based on the concept 

in [6] if not considering the transactional constraints.  

4. Building Rules and Reduction Method 

4.1 Transactional Properties of Web Services 

Since web services are provided by different providers, their transactional properties may 

differ with each other. The main transactional properties of a web service include: retriable 

( r ), compensatable ( c ), pivot ( p ), and the combination of retriable and compensatable ( rc ) 

[22][30].  One service  is r if it is guaranteed to complete after finite execution; one service is 

c if it has a compensation operation that can undo its execution effect once it encounters a 

failure; one service is p if it has conducted successfully, its effect will be kept forever; one 

service is rc  if it has functions of both r and c . We useTP to denote the set of all possibly 

transactional properties for a web service, then },,,{ rcpcrTP  . Because of the transactional 

consistency and atomicity requirements for global CWS, there are some constraints on 

transactional properties of individual candidates as defined in [12]. In the following sections, 

we discuss firstly possible combinations of transactional properties between two successive 

web services in a concrete CWS with sequence pattern. Then parallel pattern will be taken into 

account. However, we will not consider the conditional pattern since only one of the branches 

will be selected during the execution. Finally, we propose several building rules to address 

transactional constraint problems and present several related proofs. In the following, we use 

concept of route plan instead of concrete CWS since we do not consider the conditional pattern. 

Before discussing on transactional constraints, several functions are defined in Table 3.  

 
Table 3. Function definitions 

Function Definitions 

( )itp s  Transactional property of is . 

( )AC rpl  Whether rpl  fulfills transactional atomicity and consistency. 

Pr ( , )ieSub s rpl  
1 2 1

{ , , ..., }
i

s s s


 , 1i  , which denotes the set of web services before is in rpl . 

( )tp rpl  

1 2( ( ), ( ),..., ( ))ntp s tp s tp s , rpl  1 2( , ,..., )ns s s  . It denotes one combination sequence 

of transactional properties for rpl , which consists of transactional properties of its constituted web 

services. 
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4.2 Building Rules for Sequence Pattern 

We first introduce the definition of transactional atomicity and consistency [21][22]: 

Def. 1 (Transactional Atomicity and Consistency): a route plan satisfies atomicity and 

consistency of transaction if and only if the following requirement can be fulfilled: 

In an execution process of one route plan, once any web service within this route plan 

encounters execution failure and cannot be executed successfully, then all completed web 

services ahead of the failed web service must be compensatable. 

Let 
1 2( , ,..., )nrpt t t t   including only sequence pattern be the route path of cs with the 

maximum probability, 
1 2( , ,..., )i nrpl s s s  is one of route plans for rpt . For any two sequent 

web services 
ks and 

1ks 
 in

irpl  , if ( )iAC rpl true , then we have following propositions: 

Prop. 1: if ( ) { , }ktp s r p  and ( )iAC rpl true , then 
1( ) { , }ktp s r rc  . 

Prop. 2: if ( )ktp s c  and ( )iAC rpl true ,then 1( ) { , , , }ktp s r p c rc  .  

Prop. 3: if ( )ktp s rc  and ( )iAC rpl true ,  then 
1( ) { , , , }ktp s r p c rc  .  

The details on proofs for Prop.1, Prop. 2 and Prop. 3 have been presented in our previous 

work [31]. Due to space limitation, we don’t expand them in this paper. 

Def.  2 (Combinations Set built on Prop. 1, Prop. 2 and Prop. 3 ( ( )RCTP rpt )):  

The set ( ) { ( ) |iRCTP rpt tp rpl ( )itp rpl  built based on Prop. 1, Prop. 2 and Prop.3, }i N  , 

denotes the set including all possible combination paths on transactional properties for rpt . 

Meanwhile, the building rules are based on Prop .1, Prop. 2 and Prop. 3.   

Def. 3 (Combinations Set built on Def. 1 ( ( )ACS rpt ) ):  

The set ( ) { ( ) | ( )i iACS rpt tp rpl AC rpl  true , }i N  , denotes the set including all 

transactional combination paths for rpt . Besides, each combination path in this set fulfilles 

the requirement defined in Def. 1.  

Corollary 1: given any route path 
1 2( , ,..., )nrpt t t t , then ( )ACS rpt    ( )RCTP rpt .  

Proof: for each ( ) ( )itp rpl ACS rpt , i N  , we have ( )iAC rpl true based on Def. 3. 

Obviously, basing on Def. 2, we have ( )itp rpl   ( )RCTP rpt , since ( )iAC rpl true can prove 

Prop.1, Prop. 2 and Prop. 3. It also means ( )ACS rpt  ( )RCTP rpt .  

Prop. 4 (The proposed building rules): since the transactional property rc is the 

combination of transactional properties r and c , we divide transactional property rc into two 

different identifiers: 
1rc and 

2rc . The two identifiers in the building rules have the same 

semantics as transactional property rc , but formally represent transactional property c  and 

transaction property r , respectively. To this end, we have the following building rules for 

transactional combinations of route plans: 

(1) Let ( )ktp s rc , then 
1( )ktp s rc  and 2( )ktp s rc ; 

(2) Let ( ) { , }ktp s r p , then
1( )ktp s 

 { ,r
2}rc ; 

(3) Let ( )ktp s c , then 1( )ktp s   1{ , , , }r c p rc ; 

(4) In the situation that 1( )ktp s rc , then 
1( )ktp s 
  { , ,r p  1, }rc c ; 
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(5) In the situation that 2( )ktp s rc , then 
1( )ktp s  { ,r  2}rc . 

Def. 4 (Reduction Set ( ( )RRCTP rpt ) ):  

We define the set ( )RRCTP rpt  { ( ) |itp rpl ( )itp rpl  built based on rules of Prop. 4, 

irpl represents any possibly route plan of rpt , }i N  .  

Corollary 2: ( ) ( ) ( )ACS rpt RRCTP rpt RCTP rpt  . 

Proof: to prove the corollary, we firstly prove ( ) ( )RRCTP rpt RCTP rpt . If we extend the 

rule (2) by transforming 2{ , }r rc  into 1 2{ , , }r rc rc ,  then due to the equivalent relationship on 

semantics among 
1rc , 

2rc and rc , the building  rules (2), (3) and (4) in Prop. 4  are equivalent 

to Prop. 1, Prop. 2 and Prop. 3, respectively. For this situation, the rule (5) is actually included 

in the rule (4). Therefore, by extending the rule (2) in Prop. 4, rules of Prop. 4 equals rules of  

combination among Prop. 1, Prop. 2 and Prop. 3. Thus, we can get ( )RRCTP rpt   ( )RCTP rpt  

based on definitions of the two sets and the uniqueness theory of elements in a set.  

Further, ( ) ( )ACS rpt RRCTP rpt  will be proved. As demonstrated above, if the extended 

rule ( let ( )ktp s  { , }r p , then 
1( )ktp s 

1rc ) is added to Prop. 4, then ( )RRCTP rpt  ( )RCTP rpt . 

According to the rules (2), (4) and (5) in Prop. 4 and the same semantics between 
1rc and

2rc , 

we define the set ( )NCTP rpt  denoting the increased paths in ( )RCTP rpt  to ( )RRCTP rpt . 

Formally, ( )NCTP rpt  = { ( ) |itp rpl ( ( ))itp rpl RCTP rpt   ( ks , 1ks  , 2ks  in irpl , ( ( )ktp s  { ,r  

}p ) 
1( ( )ktp s 

1rc )  (
2( ) { , }ktp s p c  )}. Then, ( )RCTP rpt   ( )RRCTP rpt  ( )NCTP rpt . Thus, 

for each ( )itp rpl  in ( )NCTP rpt , there are at least such successive web services ks , 1ks  , 2ks   in 

irpl , which obey the rule that ( )ktp s { , }r p  1( )ktp s  
1rc   

2( )ktp s  { , }p c . Obviously, if 

2ks   encounters execution failure, then irpl can’t be compensated due to ( ) { , }ktp s r p . 

Therefore, ( ) ( )itp rpl ACS rpt , which also means that ( )ACS rpt   ( )NCTP rpt  . Due to 

the corollary 1 that ( )ACS rpt  ( )RCTP rpt , we have ( )ACS rpt ( )RCTP rpt ( )NCTP rpt . 

Therefore, ( )ACS rpt  ( )RRCTP rpt . 

Corollary 3: ( ) ( )RRCTP rpt ACS rpt  

It can be proved by the method of mathematical induction, whose details are ignored due to 

lack of space.   

Corollary 4: ( ) ( )RRCTP rpt ACS rpt . 

Proof: it could be achieved directly by corollary 2 and corollary 3. 

Evidently, corollary 4 demonstrates the correctness including both completeness and 

reliability for our proposed building rules to address transactional constraints.  Basing on the 

proposed building rules, we presented a DAG model called virtual SCG (vSCG), which lays a 

basis for our actual SCG later. The difference is that the nodes in vSCG and actual SCG denote 

transactional properties and  actual candidates, respectively. The details on how to build the 

two graph will be illustrated in our building algorithm later. Fig. 1 gives an example of vSCG 

corresponding to route path 
1 2 3 4 5( , , , , )rpt t t t t t . For each task, there are five nodes 

(corresponding to r , c , p ,
1rc ,

2rc ). Additionally, a edge exists in two nodes if and only if 

the two nodes satisfy one of requirements in the proposed building rules. 
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Fig. 1. The vSCG built based on the proposed rules 

4.3 The Reduction Method 

The building rules aforementioned only resolve transactional constraints for sequence pattern. 

To address the problem for parallel pattern, we present a reduction method to model all 

transactional combinations of its components into five reduction nodes. Then, we can treat 

each parallel pattern as a common task so as to reduce any route plan into the situation of a 

route plan with only sequence pattern. For any parallel pattern, the reduction method includes 

two-folds: 1) reduction process for each sequence branch: after building the corresponding 

vSCG based on the proposed building rules, we make reduction rules transform all paths in the 

vSCG into four reduction nodes; and 2) combination process for the parallel pattern: querying 

combination rules with the number of sequence branches from a database (introduced later), 

we can construct several mapping relationships between reduction nodes of sequence branches 

and reduction nodes of the parallel pattern. Besides, these mappings will enable the later 

selection algorithm. Definitions of the reduction nodes for any ( )itp rpl are  explained: 

 Reduction node r : all its constituted web services on semantics are equivalent to r . 

 Reduction node c : all its constituted web services on semantics are equivalent to c . 

 Reduction node rc : all its constituted web services on semantics are equivalent to rc . 

 Reduction node p : 1) ( )iAC rpl true ; 2) it doesn’t satisfy the definitions of reduction 

node r , reduction node c and reduction node rc . 

 Then the reduction process for each sequence branch is presented after its vSCG built:  

 For the path whose component nodes are only r or
2rc , and at least include one with r , 

we reduce it into the reduction node r . 

 For the path whose component nodes are only c or
1rc , and at least include one with c , 

we reduce it into the reduction node c . 

 For the path involving only component nodes 1rc or 2rc , we reduce it into the reduction 

node rc . 

 Finally, we reduce other paths in vSCG into the reduction node p . 

After conducting reduction process for each sequence branch, we can get the correlative 

relationships between the reduction nodes and transactional combination paths in its 

corresponding vSCG. Hence, we can use the  reduction nodes instead of their correlative paths 

when considering the result of transactional combinations among these sequence branches 

within the same parallel pattern. Subsequently, the combination process is used to build 

correlative relationships from reduction nodes representing sequence branches to the 

reduction nodes of current parallel pattern. Fortunately,  the combintaion rules can be searched 

from a rule database, which can be constructed in advance for the reason that the rules only 

depend on the number of sequence branches in a parallel pattern. The constructed method is 

based on recursively using transactional combination rules on two concurrent components in 
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[12][13],  as demonstrated in Table 3. Finally, for any parallel pattern, we can get mapping 

relationships from the set including its reduction nodes to the set including all transactional 

combination paths of its sequence branches. Based on the mapping relationships, the later 

selection algorithm can address transactional constraints for parallel pattern. 

5. The Graph-building and Selection Algorithms  

In this section, based on the proposed building rules and the reduction method, we firstly 

present a graph-building algorithm to formulate the actual SCG for any route path. Further, a 

selection algorithm depending on results of the graph-building algorithm is proposed. 

 
Fig. 2.  The actual SCGBuilding algorithm 

5.1 The Graph-building Algorithm 

The main Graph-building algorithm called actual SCGBuilding is presented in Algorithm 1 of 

Algorithm  1 actual SCGBuilding Algorithm 

Input: abstract CWS cs, Set S /* S denotes all available candidate Web Services for the whole tasks of cs */ 

Output: SCG(V, E, Q)  /* actual SCG model with QoS vectors weight Q */ 

1           GraphStruture vSCG(Vv,Ev) = vSCGBuiliding (cs );  /* Formulating Transactional-based virtual SCG for cs */ 

2           E  ; /* Initializing edges for actual SCG */ 

3           V = {s, d}+S+Vv.RN;  /* Initializing vertexes set for actual SCG */ 

4           preNodeTask = s; /* Scanning vertexes from Vv */ 

5          while (preNodeTask != d) do 
6                  if  (preNodeTask == s) then 

7                      S’ = {s}; /* Initializing candidate vertexes for the preNode */ 

8                  End if 
9                  postNodeTask=findNextTask (preNodeTask, vSCG) ;  /* Solving the next task of preNode based on vSGP */ 

10                if  (postNodeTask == d)  then 

11                     for each candS∈S’ do  

12                          E=E+<candS,d>; /*Add edges from all services of  S’ to d */ 

13                          Q(<candS,d>)=0; 
14                     End for 

15                else     /*In case not the last task node d*/ 

16                      if  (isRnNodes(postNodeTask) == false) then 
17                           S’’=search(S, postNodeTask); /* Get candidates for the task */ 

18                           Divide S’’ into  S’’(r), S’’(c), S’’(p), S’’(rc1), S’’(rc2); 

19                           if  (S’ == {s})  /* it denotes the first task is source node */ 

20                               for each candS∈S’’ do 

21                                     E=E+<s,candS>; 
22                                     Q(<s,candS>)=<candS.q1, candS.q2,…, candS.qm>; 

23                               End for 

24                          else /* Process normal tasks in vSCG.*/ 
25                                vE=getOutEdgesByTask (preNodeTask, Ev); /* Find outcome edges of  preNodeTask from vSCG */ 

26                                for each ve∈vE do 

27                                      for each candS1∈S’(ve.startNode.tp) do 

28                                            for each candS2∈S’’ (ve.endNode.tp) do  

29                                                  E = E+<candS1,candS2>; 

30                                                  Q(<candS1,candS2>)=<candS2.q
1,…, candS2.q

m>; 

31                                 End for  
32                          End if  

33                     else   

34                          S’’ = processRnNodes (V,E, S’,preNodeTask,Vv , Ev); 
35                          processPPbyRnNodes(V, E, postNodeTask, Vv ,Ev); 

36                     End if  

37                End if 
38                preNodeTask = postNodeTask; 

39               S’ = S’’; /* The pointers of task and its candidates to move forward */ 

40        End while 
41        return SCG(V, E, Q); 
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Fig. 2. Step 1 invokes a sub-algorithm called vSCGBuilding to generate a vSCG  based on 

transactional properties, which is a layered DAG model to represent constraint relationships 

on transactional properties of tasks for the input parameter cs . After that, steps 2-3 conduct 

the initial process of the actual SCG, which adds all candidates and reduction nodes of the 

vSCG to the set S  representing all nodes in the actual SCG. Then, the algorithm begins to add 

edges for the actual SCG by scanning vSCG step by step (steps 5-39). Steps 6-8 firstly assign 

source node s to the candidate set 's  of the task pointed by preNodeTask  if current task is 

source node s . Then, the function of findNextTask (preNodeTask, vSCG) is invoked to obtain  

the next task to preNodeTask within vSCG (step 9), meanwhile the abtained task is assigned to 

postNodeTask (that stores the succeeding task of preNodeTask). Further, steps 10-15 add 

edges and assign values of corresponding QoS weights to 0 when postNodeTask is the target 

node d . On the other hand, the algorithm processes the situation that postNodeTask is a 

normal task (steps 16-35). In steps 17, the algorithm invokes the function of search(S, 

postNodeTask) to get the set ''s of all candidates for postNodeTask  from set S . Then, step 18 

divides ''s into five classes based on transactional properties where the classes 
1rc  and 

2rc  

are equivalent for the same semantics of them. In steps 20-23, the algorithm adds all edges 

from s   to all candidates in ''s  and assigns the QoS value of corresponding candidate to the 

weight value of each edge when 's equals to the set {s}. Steps 24-31 add edges and their 

weight values based on the vSCG model to the actual SCG model when preNodeTask and 

postNodeTask are normal tasks. In this case, all edges from the candidates in 's  to the 

candidates are added to the actual SCG model (Steps 29-30). Subsequently,  If postNodeTask 

is a reduction node in vSCG, the algorithm firstly adds edges from candidates in 's to the 

reduction nodes of postNodeTask, meanwhile assigns the reduction nodes to ''s  for the 

purpose of next round processing (step 34). Afterwards, the function of processPPbyRnNodes 

is invoked to process each sequence branches by running recursive the actual SCGBuilding 

algorithm (step 35). Due to space limitation, the details on the function  aren’t expanded. 

Finally, The algorithm moves forward by assigning the value of postNodeTask to 

postNodeTask  (steps 38-39) . Additionally, a new loop will be carried out.  Step 41 returns our 

actual SCG model if the loop is ended. 

Based on our proposed building rules and the reduction method, the vSCGBuilding 

algorithm to build a vSCG model is illustrated in Algorithm 2 of Fig. 4. In step 1, the algorithm 

creates a sequence structure to store tasks with sequence relationship. Steps 2-13 create virtual 

nodes for all tasks by scanning cs (or route plan). Specifically, steps 4-9 create virtual nodes 

and reduction nodes for current element e  in cs  when e is a AND split operation. In step 4, 

the function of createReductionTask() is invoked to create a reduction task representing 

current parallel pattern. Then, steps 5-8 store all the elements in current parallel pattern as a 

variable pb (a structure storing multi-sequence branches). Additionally, step 9 invokes a 

sub-algorithm called vSCGBuildingforPP (illustrated in Algorithm 4 of Fig. 4) to build a  

sub-vSCG model for the input parameter pb . For each sequence branch stored in pb , the 

main steps of vSCGBuildingforPP algorithm include three-folds: 1) the algorithm firstly 

creates a reduction task representing current sequence branch and builds a mapping 

relationship between the generated reduction task and the reduction task representing AND 

structure (parallel pattern) so as to enable our selection algorithm later (steps 3-4);  then 2) it 

creates four reduction nodes for the generated reduction task (step 5); 3) finally, the step 7 

invokes recursively the vSCGBuilding to build sub-vSCG model for current branch. 

Comparing to reduction task of a parallel pattern, reduction task of a sequence branch includes 
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only four reduction nodes because the former will be as a common task in our selection 

algorithm, while the latter is just as an intermediate task used for reduction rules of parallel 

patterns. After executing the vSCGBuildingforPP algorithm, we have created a sub-vSCG for 

current parallel pattern. As such, we can use reduction task of current parallel pattern as a 

common task.  Step 11, in vSCGBuilding algorithm, adds current reduction task rn or task e  

to main sequence structure sb . Subsequently, the algorithm creates five virtual nodes or 

reduction nodes depending on the type of the scanning element e  (e.g. virtual nodes if e is a 

task, or reduction nodes if e is an AND join operation) (step 12). After all nodes created, the 

algorithm invokes a sub-algorithm called vSCGEdgesforSP (illustrated in Algorithm 3 of Fig. 

3) to create edges for sb according to the proposed building rules. Finally, the algorithm 

returns vSCG model vSCG(V, E) (step 15). 

Our complete graph model called vSCG can be generated. Fig. 3 shows the corresponding 

vSCG for 
1 2 3 4 5 6 7( , , ( , ) | , , )cs t t t t t t t  (where the circle denotes virtual nodes, the rectangle 

denotes task node, and dashed rectangle denotes reduction task.). Three reduction tasks (e.g. 

Reduction tasks 1rn , 2rn and 3rn  represent the parallel pattern (( 3, 4) || 5)t t t , the sequence 

branches ( 3, 4)t t  and ( 5)t  respectively.) and their reduction nodes are created. For other 

common tasks, corresponding virtual nodes and edges are created based on building rules.  
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Fig. 3. The generated vSCG to our example 

5.2 The Global Selection Algorithm 

After constructing our actual SCG model, we have addressed transactional constraints. In this 

subsection, we present a selection algorithm based on the actual SCG. The purpose of the 

algorithm aims at achieving the near optimal value of QoS utility with end-to-end QoS 

constraints, which actually becomes one variant problem to solve the single-source shortest 

paths. Unfortunately, this is a well-known multi-constraints optimal-path problem in the graph 

theory, which is a NP-Hard problem. Our selection algorithm is based on the algorithms of 

MCSP and MCSP_RELAX in [6]. The difference is that our selection algorithm is built on top 

of our actual SCG model satisfying transactional constraints for the whole CWS, while their 

algorithm is based on a full connection graph model. Particularly, our algorithm presents a 

new cost function for the relaxing algorithm regarding both QoS constraint margin and 

generated global QoS utility to improve the performance on global QoS utility further. 
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Demonstrated in Fig. 5, Algorithm 5 called QoS-optSltforTCWS presents the selection 

procedure, which relaxes the best optimization problem to resolve a near optimization problem. 

At the beginning, the algorithm defines several initial variables (steps 1-2). Step 3 begins to 

search all possible intermediate paths by scanning candidate nodes, which are sorted 

topologically on the basis of their corresponding virtual nodes of vSCG in advance. Then, it 

conducts two parts. On the one hand, the situation of sequence pattern is processed (steps 

4-16). In step 4, the algorithm checks whether the next of current task is a common task (step 

4). In case of true, two loops are used to visit the all adjacent to nodes in firstNodes, and then 

update the utility values and the global QoS values for their corresponding paths (steps 8-9 for 

the situation of firstNodes={s}; steps 12-13 for the other.). Besides, functions F(v), F(p) and 

q(u,v) are based on Eq. (3), Eq. (5) and the combinations of Eq. (1) and Eq. (2), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The vSCGBuilding, vSCGEdgesforSP and vSCGBuildingforPP algorithms  

Algorithm  2 vSCGBuilding Algorithm 

Input: abstract CWS cs, Set V, E, Boolean mainBranch 
Output: GraphStructure vSCG(V, E)  /* Virtual SCG model*/ 

Global variable: Set V, E /* Their initial values are both null.*/  

1           SBStructure sb = createSBStructure(); 
2           while (nextElement(cs, e ) != null)/*nextElement(cs, e) returns the next element of e and assigns the return value to e.*/ 

3                    if  (isAndSplit(e) == true) then 

4                            ReductionTask rn = createReductionTaskNode ();  /* Create a reduction task node for current parallel pattern.*/ 
5                         PBStructure pb = createPBStructure(rn); 

6                         while (isAndJoin (nextElement(cs, e )) != true) /* Check if current element is the end for the parallel pattern.*/ 

7                                  pb.addParallelBranch (e);  

8                         End while  

9                         vSCGBuildingforPP (pb,V,E); 

10                  End if  
11                  sb.addSB (rn/e);  /* rn/e = rn,  if (isAndJoin(e) == true); otherwise,  rn/e = e.  */ 

12                  V.addToTask ((C(r),  C(c),  C(p),  C(rc1),  C(rc2)),  rn.id /e); /* According to transactional properties{r,c,p,rc}*/ 

13         End while  
14         vSCGEdgesForSP(sb, V, E);  /* Create edges for the sequence pattern */ 

15        return vSCG(V, E); 

 

Algorithm  3 vSCGEdgesforSP Algorithm 

Input: SBStructure sb, Set V, E 

Output: vSCG(V, E) /* Get virtual SCG model */ 
1          for i = 1 to sb.size-1 do 

2                for each vnode in classes of Ci  do /*Create outcome edges for virtual nodes in{Ci(r),Ci(c),Ci(p),Ci(rc1), Ci(rc2)}*/ 

3                      switch (vnode) do 
4                             case Ci(r): E = E+{< Ci(r), Ci+1(r)>, < Ci(r), Ci+1(rc

2)>} 

5                             case Ci(c): E = E+{< Ci(c), Ci+1(r)>, < Ci(c), Ci+1(c)>, <Ci(c), Ci+1(p)>, < Ci(c), Ci+1(rc
1)>} 

6                             case Ci(p): E = E+{< Ci(p), Ci+1(r)>, < Ci(p), Ci+1(rc
2)>} 

7                             case Ci(rc
1): E = E+{<Ci(rc1), Ci+1(r)>, < Ci(rc

1), Ci+1(c)>, <Ci(rc
1), Ci+1(p)>,  < Ci(rc

1), Ci+1(rc
1)>} 

8                             case Ci(rc
2): E = E+{<Ci(rc

2), Ci+1(rc
2)>,<Ci(rc

2), Ci+1(r)>} 

9                End for  
10        End for  

11        return vSCG(V,E); 

 

Algorithm  4 vSCGBuildingforPP Algorithm 

Input: PBStructure pb, Set V, E  

Output: vSCG(V, E)  /* vSCG model */ 
1           SBStructure sb = pb.nextSB (); 

2           while(sb != null) 
3                   ReductionTask rn = createReductionTaskNode (); /* Create the reduction task node for the sequence branch sb. */ 

4                   E.addRNLink (pb.getReductionTask, rn);  

/* Create the link between reductionTask of parallel branch and reducedTask of its sub-sequence. */  
5                   V.addRNToTask ((C(r), C(c), C(p),C(rc)), rn.id); /* Creating  reduction nodes for current reduction task   */ 

6                   sb.addSBReductionTask (rn); /* Add the corresponding reduced node to this sequence branch.*/ 

7                   vSCGBuilding (sb,V, E, false); /* Build vSCG for current sequence branch sb.*/ 

8           End while 

9           return; 
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Particularly, in order to limit the computing scale for execution of our algorithm, Algorithm 

6 called relax_basedTP is invoked to keep just only k-optimal intermediate paths in each set of 

nodes with the same virtual node (or transactional property) (steps 10 and 14). The 

relax_basedTP algorithm, demonstrated in Fig. 5, includes following four-folds: 

 Firstly, it checks whether each QoS criterion value of current path satisfies the global 

end-to-end constraint, where all the checking criteria are based on Eq. (4) (step 1); 

 Then the function searchByTP_Task is invoked to assign current all generated paths 

corresponding last nodes with the same virtual node v.vnode to the variable paths_tp 

(step 2). Subsequently, if any path p, with superiority to the path of [u,Q,F] on the 

values of both global QoS criteria and utility, exists in Paths_tp, then we remove it (step 

4); 

 Otherwise, the path of [u,Q,F] will be added to the paths set Paths (steps 5- 6); 

 Additionally, we add directly this path of [u,Q,F] to Paths if the number of current 

generated paths is less than the valve k (step 7).  Otherwise, we instead the path of 

[u,Q,F] with the worst value of cost function in paths_tp (step 8). 

 

In relax_basedTP algorithm, our criterion on selecting k-optimal paths, illustrated in Eq. (7),  

is improved on the cost function concept combining multiple constraints into one [6][33]. In 

Eq. (7), function ( )iq p denotes value of the 
thi  aggregated QoS criterion for path p , two 

variables  and   represent weight factors on the value of global QoS utility.  

1 2
3 3 3 1

1 2

( ) ( ) ( )
( ) [( ) ( ) ... ( ) ] [ ( ( )) ]

m

m

user user user

q p q p q p
g p Score p

q q q

      

                        

(7) 

On the other hand, Algorithm 5 conducts the selection process with the situation of parallel 

pattern (steps 17-29). In step 18, it invokes function getRNsByLinks to obtain all reduction 

tasks representing sub-sequence branches corresponding to the parallel pattern of reduction 

task nextTask(firstNodes). Next, in terms of the reduction process in section 4.3, the algorithm 

marks each edge with color in set {r, c, rc, rc
1
, rc

2
} (corresponding to the set of reduction 

nodes) for each sequence branch by invoking the function mark_color_edgesByRdRls, whose 

input parameter rnTask_SB denotes corresponding reduction task of a sequence branch (step 

20).  Therefore, for each sequence branch, we can find all paths for each reduction node in a 

sequence branch with the help of color edges. Take Fig. 3 as an example, we can easily find all 

corresponding paths for reduction node r  in reduction task 2rn if the function 

mark_color_edgesByRdRls is conducted. After that, step 21 gets all combination rules among 

reduction nodes (in the parallel pattern and its sequence branches) by invoking the function 

searchRNTPRules, which is used to search combination rules from a database by input 

parameter of the number of sub-sequence branches in current parallel pattern. Besides, the 

database is as mentioned in section 4.3 and can be implemented in advance. Subsequently, 

steps 22-29 conduct a loop, which aims to select k-optimal paths for each reduction node tp in 

the reduction task of current parallel pattern. Specifically, the key folds of the loop are as 

follows: 1) Firstly, the algorithm keeps initial k paths for tp by invoking the function optSelect, 

which selects k-optimal paths from the set pre[tp] denoting all selected paths previous to the 

node tp (step 22); 2) then steps 24-28 try to find k-optimal paths for tp. The process involves 

two sub-processes. Firstly, in terms of the type of tp and the obtained combination rules 

rnTPRules, step 24 invokes the function getTPfromRules to get a set sbTPset, which is 

obtained by transforming the set of combination rules relative to tp within rnTPRules into a set 

of reduction nodes in all sequence branches.  
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Fig. 5. The QoS-optSltforTCWS and Relax_basedTP algorithms 

 

For expressing clearly, we still take Fig. 3 as an example. If tp in 1rn is r, then the 

combination rules relative tp is the set {<r, r>, <r, rc>, <rc, r> where each rule denotes the 

combination between two reduction nodes in 2rn and 3rn  respectively. Thus, we get 

sbTPset= {r, rc}. Further, for each reduction node sbtp in sbTPset, based on edges colored by 

reduction rules above, function optPtsbyClr is invoked to recursively compute k-optimal paths 

from all paths corresponding to sbtp for each sequence branch (steps 25-26). On the other hand, 

according to each combination rule relative tp, the function merge_paths is invoked to obtain 

Algorithm  5 QoS-optSltforTCWS Algorithm 

Input: SCG (V, E, Q), int k  /* k denotes the relaxed variable .The SCG(V, E, Q) is the actual SCG model */ 

Output: Path p   /* Return the path with near optimal QoS utitlity. */ 

1           Set firstNodes = {s};  /* Initialize the variable storing all nodes of current task. */ 
2           Node u, v; /* u denotes the current scanning node, while v denotes the adjacent node to u */ 

3          while (nextTask (firstNodes) != d) 

4                   if  (isRNTask (nextTask (firstNodes)) == false) then /*nextTask(firstNodes) returns next task to firstNodes.*/ 
5                       for each u in firstNodes do 

6                            for each v in adj[u] do 

7                                  if  (u == s) then /* If the first task of current scanning edge is source node .*/ 
8                                       Q = q(u,v); /*Update QoS Vector for each path. */ 

9                                       F = F(v); /*The utility of current path is utility of  v. */ 

10                                     Paths = relax_basedTP (Q,F, u,v, k); 
11                               else for each p in Paths[u]  

12                                     Q = p.Q+ q(u,v);  

13                                     F = p.F+F(v);  
14                                    Paths = relax_basedTP(Q, F, u, v, k); /*Relax k-optimal paths in current selected paths. */ 

15                               End if  

16                     End for  
17                else  /* In case of  parallel pattern*/ 

18                       rnTask_SBs = getRNsByLinks (nextTask (firstNodes)); /* Get reduction tasks of the sequence branches. */ 

19                       for each rnTask_SB in rnTask_SBs do 
20                              mark_color_edgesByRdRls(rnTask_SB, SCG); /*Mark edges with colors based on reduction process. */ 

21                       rnTPRules = searchRNTPRules(nextTask(firstNodes));/*Get combination rules by current parallel pattern. */ 

22                       for each tp in {p,r,c,rc1,rc2}do /* Loop by five reduction nodes of current parallel pattern. */ 
23                             paths_tmp[tp] = optSelect(pre[tp], k); /* Select k-optimal paths previous to the reduction node tp. */ 

24                             sbTPset = getTPfromRules(rnTPRules, tp); /* */ 

25                             for each sbtp in sbTPset do 

26                                   sb_p[sbtp] = optPtsbyColor(paths_tmp[tp], sbtp, SCG, k); 

/*Find recursively k-optimal paths from each sequence branch*/ 

27                             subRls = getRNTPRulesByTP(rnTPRules, tp); 
28                             paths[tp] = merge_paths(sb_p, subRls, k); 

 /*Merge k-optimal combination paths including all sequence branches in current parallel pattern.*/ 

29                       End for  
30                End if 

31                firstNodes = getNodes(nextTask(firstNodes)); /* Get all nodes of  nextTask(firstNodes).*/ 

32        End while 
33        Find the optimal utility p in Paths[t] s.t. adj[t] = d; /* Return a near optimal result. */ 

34        return p; 

 

Algorithm  6 Relax_basedTP Algorithm 

Input: Vector Q, Real  F, Node u, v,  Int k 

Output: Paths  /* Keep paths limited less than k in each vnode. */ 
1           if(isSatisfyQoSConstraits(Q, Qc) == false)  return Paths; 

2           paths_tp = searchByTP_Task (Paths, v.vnode); 

3           if  (exist p in Paths_tp that (p.F >  F ) and (p.Q  <=  Q)) ;  
4                return Paths; 

5           if  (exist p in Paths_tp that (p.F <  F) and (p.Q  >=  Q )) 

6                repace(p, [u,Q,F], Paths[v]); return Paths; 
7           if   (paths_tp.size < k)  addPath ([u,Q,F], Paths[v]); 

8          else replace_or_remove (getMax_func (paths_tp), [u,Q,F]); 

9                 return Paths;    
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finally k-optimal paths (from source node s to the reduction node tp) (steps 27-28). The main 

idea of the function merge_paths is, based on the combination rules of tp and the process of 

merging parallel pattern in [6] to merge the k-optimal paths from each sequence branch into 

the final k-optimal paths for tp. After that, a new loop considering another value of tp begins to 

run. 

After the loop ended, step 30 moves forward firstnodes to store nodes of the succeeding task 

(step 31) so as to carry out a new while loop again. The while loop will be ended when 

nextTask(firstnodes) is the target node d . In the final, the algorithm returns one of the most 

optimal utility path p  as a near-optimal solution (steps 33-34). 

For calculating the upper bound of the worst-case computation complexity  of the proposed 

method, we assume that there are n  tasks ,  m candidates for each task and the relaxing 

variable is equivalent to k .  In algorithm 2,  it takes at most O( 5*n ) times to create virtual 

nodes in steps of 2-13, meanwhile O( 25*( 1)n ) iterations of adding edges to the vSCG 

model (algorithm 3) is required. Therefore, the total computation complexity of algorithm 2 

for building the vSCG model is O( 1C n ), 1C  denotes a constant. In algorithm 1, it’s based on 

the vSCG model (as shown in step 1). Obviously,  the main calculation of algorithm 1 focuses 

on steps 5-40 to add all actual nodes for the aSCG model, whose computation complexity is 

O(
2

2 * *C n m ).  Here, 2C is a constant. Therefore, the total computation complexity of 

algorithm 1 (building the vSCG model) is O(
2

2 * *C n m ).  In algorithm 5, the selection 

algorithm has n  iteration in steps 3-32 to scan the whole tasks in the considering route path.  

For each iteration, two layer iterations are invoked in steps 5-16, where the procedure  

relax_basedTP in algorithm 6 is invoked. The procedure relax_basedTP aims to keep k  

optimal paths for each classes in each task (Here, the class is also virtual node or transactional 

property), whose main calculation is O( 3C ). 3C is a constant if we implement it with the 

adjacent link data structure. Thus the complexity of relax_basedTP is O( 3C ) . Since we  only 

keep k optimal paths for each classes, there are at most 5*k  nodes in the iteration of step 5 of 

algorithm 5. Moreover, there are at most  m  edges adjacent to each currently selected path. 

Therefore, the total complexity of steps 5-16 is O( 3 * *C k m ) . On the other hand, steps 18-30 

in algorithm 5 are used to process the case with parallel pattern, which invoke recursively the 

processing code of steps 5-16 to process each sequence branch in current parallel pattern. The 

additional operation is the function of merge_path, which only depends on the number of 

sequence branches in current parallel pattern.  Therefore,  the computation complexity of steps 

18-30 can be regarded nearly as  the complexity of steps 5-16. Thus, the combined complexity 

of algorithm 5 is O( 3 * * *C k m n ) . Finally, based on the analysis above, we can get the total 

calculation complexity of the proposed method: O( 3 * * *C k m n+
2

2 * *C n m ), which can 

also be represented as  O( 3 2* *( * * )m n C k C m ). 

6. Experiments and Evaluation  

In order to show the efficiency and feasibility of our approach, several groups of experiments 

have been conducted. In our experiments, we implemented our selection approach as well as  

the selection approach proposed by EL Haddad et al. [12][13].  For our selection approach, 

implementations were conducted by setting different values for the relaxing variable K. The 
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running platform under Windows XP and Java 1.6 is a Lenovo machine with Intel Core i3 3.2 

GHz processors and 2GB RAM.  The main QoS data on criteria of response time, reliability 

and availability are based on  publically accessible QWS Dataset including QoS values of 

2507 real web  services collected by Dr. Eyhab Al-Masri in 2008 [34]. Especially, we 

randomly generated QoS values ranged from 50 to 1000 for cost criterion for each candidate 

web service since the public QWS dataset does not include the cost QoS criteria. Moreover, 

the transactional property values of {r, c, rc, p} were randomly associated with each candidate 

web service.   

6.1 Performance Study with the Number of Tasks Varying 

We first present two groups of experiments by dynamically increasing number of tasks. The 

first group of experiments  includes  two different experiments. Since the approximate ratio on 

the global QoS utility needs to abtain the best optimal QoS utility value which will take 

exponential time by exhaustive searching [10], we have made a limitation on the involved 

candidates by using a relatively smaller number so that exhaustive searching under 

exponential time in our experiments becomes posssible. Additionally, four criterion 

constraints were considered. Fig. 6 (a) plots approximation ratio of global QoS utility obtained 

by our selection approach and the selection approach in [12][13]  to best optimal QoS utility 

obtained by exhaustive searching. As shown in Fig. 6 (a), our approach performs better than 

the approach in [12][13]  no matter what value of the relaxing variable K is assigned, since our 

approach is based on a global selection process while they used a local approach considering 

QoS aspect in order to reduce transactional constraints.  Note that with the increasing task 

number of the route path, the approximation ratios of all approaches decrease slightly. 

Meanwhile, the approximation ratios are much better with larger value of variable K. Fig. 6 

(b) shows the time consuming trend when task number is increased from 3 to 9.  From the 

Fig.6 (b), we can further see that our approach is slightly inferior to the approach in [12][13]. 

Yet, the time consuming of our approach increases linearly with the number of tasks 

increasing, since the  complexity of our proposed method is O( 3 2* *( * * )m n C k C m ).  

The second group of experiments was also conducted by varying the number of tasks in a 

route path as well as significantly increasing the number of candidates (more than 150) of each 

task. It aims at checking how our extensible capability will be affected by larger number of 

candidates and tasks.  Fig. 6 (c) shows that, within the preconditions of  larger candidate 

number and four criteria constraints, our approach is extensible well due to linear augment on 

time consuming when tasks numbers are from 2 to 16. Fig. 6 (c) also demonstrates that there is 

a little increase on computation time when value of variable K is changed from 5 to 100, since 

the complexity impacted by factor of larger candidates is dominant to the value of K . 

6.2 Performance Study with the Number of Candidates Varying 

Comparing to the first group of experiments, the third group of experiments based on fixed 

number of tasks, contains also two  experiments.  This group of experiments  aims to  validate 

two facts, which are  of our advantage on global QoS utility and of extensible capability with 

numbers of candidates increasing  from 15 to 300.  Fig. 6 (d) demonstrates that our approach 

owns an outstanding extensibility, sincely, within four of our approach-based implementations 

whose relaxing variables  are  K=5, K=20, K=50, K=100 respectively, their running times all 

increase near linearly with numbers of candidate web services enlarging for the reason that the 

calculation complexity of our proposed method is O( 3 2* *( * * )m n C k C m ). From the Fig. 

6 (e), we can see that the global QoS utilities obtained by our approach are better than selection 
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approach proposed by Joyce E.H. in [12][13] when candiate numbers are increased from 15 to 

300.  Besides, with the increasing value of variable K, the values of global QoS utilities 

obtained by our approach are increased correspondingly, this is because more possible 

intermediate paths can be kept so as to enable the later selection process.  

Fig. 6. The Performance comparison 

 

The last experiment is conducted to test the success ratio between our approach and the 

related work. We set the task number to be 8 and the criterion number to be 4. Fig. 6 (f) plots 

  

(a)  Approximation  ratio comparison (b) Running time comparison 

  

(c) Running time analysis with larger candidate web services. (d) Running time analysis with increasing candidates number. 

  

(e)  Global QoS utility comparison (f)  Success ratio comparison. 
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success ratios for all our approach-based implementations and the approach with the situation 

of risk 1[12]13] proposed by Joyce E.H with numbers of candidate web services varying from 

15 to 300.  We execute each test case 10 times. During different excutions, QoS values of the 

cost criterion are regenerated. Fig. 6 (f) demonstrates that our approach-based 

implementations are able to find the solutions, especially for the situation with larger 

candidates numbers. As shown in Fig. 6 (f), when candiate numbers are greater than 50,  the 

success ratios of our approaches are almost near to 1.0. The reason is that our proposed method 

searches the solution satisfying end-to-end constraints with a global way and employes  a 

better criterion filtering function (as defined in Eq. 7) considering the factor of end-to-end QoS 

constraints, which can almost obtain a feasible solution obeying end-to-end QoS constraints. 

7. Conclusion and the Future Work 

Most of traditional QoS-aware WSC approaches ignore the aspect of transactional constraints 

to guarantee consistency and atomicity of CWS. To address this issue, in this paper, we have 

proposed a new QoS-aware service selection approach for transactional CWS. Firstly, we have 

presented two building algorithms to formulate a graph model called actual SCG, which can 

address the problem of transactional atomicity consistency for CWS. Secondly, several proofs 

on transactional theories have been presented to show the correctness of our graph model to 

resolve transactional constraints. After that, we transformed the problem of  QoS 

optimal-utility selection with transactional constraints into the problem of solving 

single-source shortest paths, and proposed an improved near-optimal service selection 

algorithm to search the path with optimal QoS utility. Finally, extensive experiments have 

been conducted to validate efficiency and feasibility of our approach. The experimental results 

have demonstrated the advantages of our approach.  

In our future work, a more complex situation such as the nested transaction in WSC will be 

considered. Besides, based the proposed approach in this paper, a new selection approach 

combining risk factor will be studied. Particularly, we will apply the proposed approach to 

solve a practice problem on ensemble prediction application in scientific computing arena.  
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