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Abstract 
 

In recent years, ubiquitous and pervasive scenarios have emerged as a complex ecosystem 

where differentiated software/hardware components interoperate wirelessly and seamlessly. 

The goal is to enable users to continuously access services and contents, and to always get the 

best out of their current environment and available resources. In such dynamic and flexible 

scenarios, the need emerges for flexible and general solutions for continuous runtime 

self-reconfiguration and self-optimization of ubiquitous support software systems. This paper 

proposes a fully reconfigurable middleware approach that aims at reconfiguring complex 

software systems made up of heterogeneous off-the-shelf components from both functional 

and non-functional perspectives. Our middleware can also extend already existing and 

non-reconfigurable middleware/applications in an easy and flexible way, with no need to 

re-design them. The proposed design principles have been practically applied to the 

implementation of a runtime self-reconfigurable middleware called Off-The-Shelf Ready To 

Go (OTS-RTG), implemented on top of iPOJO. The reported experimental results both exhibit 

a limited overhead and show the wide applicability of the proposed solution to many 

application scenarios, including complex, industrial, Enterprise Service Bus-based ones. 
 

 

Keywords: Middleware, self-reconfiguration, iPOJO, autonomic computing, enterprise 

service bus (ESB) 
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1. Introduction 

Requirements of Ubiquitous Computing (UC) scenarios have relevantly grown, and 

applications more and more frequently have to adapt themselves to user needs and 

characteristics (e.g., currently used access terminal) and to environmental conditions (e.g., 

network connectivity type, status, user location) at runtime [1]. Middleware-based approaches 

are the key to simplify the design of applications in these scenarios and to keep the support 

infrastructure flexible and adaptable. A set of low-layer support facilities can provide the basis 

to build, add, aggregate, and coordinate novel and more complex application components on 

top of them, hence promoting modularity, reuse, and dynamic extension/tailoring. 

Nevertheless, the ever increasing heterogeneity and the dynamic nature of UC scenarios make 

runtime system reconfiguration/adaptation play a crucial role in providing users with 

applications tailored to specific preferences and environment conditions. Reconfiguration is 

becoming of paramount importance to redesign end-user functional application logic (e.g., 

service and content aggregation/provisioning), as well as to adapt and optimize internal 

non-functional building blocks of the middleware itself.  

For instance, users increasingly exploit their mobile phones to access aggregated 

information, such as RSS feeds from their preferred social networks, mixed up with an 

up-to-date map of their online friends. Such a scenario intuitively stresses the application 

components in charge of aggregating RSS feeds and adapting/translating them to 

smartphone-enabled formats (e.g., dynamically resized to fit the terminal display). Under 

heavy load conditions, some adaptation components should be replaced by less accurate, but 

faster and more lightweight ones. In addition, application components may intensely use 

non-functional support features, such as, for instance, a persistence layer (backed by a 

relational database), an asynchronous messaging framework, or even an Enterprise Service 

Bus (ESB) infrastructure for the integration and orchestration of heterogeneous application 

components. These support modules, too, have a relevant impact on the overall UC scenario 

and may deeply influence the experienced Quality of Service (QoS) and responsiveness. This 

simple example clearly highlights that adapting and reconfiguring only some application-level 

components may become limiting in many practical industrial UC applications. In particular, 

we claim that real and wide-scale UC service provisioning scenarios call for a deep, coherent, 

and cohesive system reconfiguration strategy, which involves an integrated adaptation of both 

application-level components and non-functional support features. 

In addition, UC scenarios are biased toward spontaneous interactions of end-user mobile 

devices, differentiated forms of wireless connectivity, and opportunistic sharing of 

infrastructure resources (wireless multimedia hubs, shared printers, ...). Those rich forms of 

interactions ultimately call for UC middleware that can arrange already existing off-the-shelf 

software/hardware components and can make them cooperate into a larger and value-added 

scenario. There is someway an analogy with the situation of a chef who wanders through a 

supermarket looking for the exact ingredients for her next big recipe. But what if an ingredient 

is not currently available? Or, even worse, what if the chef runs out of an ingredient just while 

cooking? Only a really creative and experienced chef could be able to pick up and concoct 

different ingredients to replace the lacking one, or to massage the original recipe to make the 

most out of the available ingredients. In UC scenarios, software and hardware “ingredients” 

(devices, network connections, physical resources, …) continuously become available and 

disappear, forcing a “chef” middleware to continuously adapt its “recipes” to the available 

resources, environmental conditions, and user needs. 
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System reconfiguration is a long debated research field and has been investigated for a 

broad range of dynamic systems, including UC-related ones: some relevant conceptual models 

and significant architecture solutions have been proposed in the last years with the primary 

goal of UC middleware reconfiguration. However, on the one hand, existing proposals are 

usually limited to application-level reconfiguration and ignore non-functional feature 

adaptation. On the other hand, reconfiguration solutions usually require infrastructure 

components (both application and non-functional features) to be explicitly conceived to 

integrate reconfiguration opportunities from the beginning. That basically hinders integration 

of existing and non-reconfigurable components, thus becoming a relevant limitation in open 

landscapes of heterogeneous services. We claim that a truly comprehensive UC middleware 

should consider adaptation/reconfiguration as one of its central design principles. Therefore, 

this paper presents a reconfiguration middleware that i) provides reconfiguration facilities for 

both functional and non-functional middleware/application components, and ii) allows to 

extend already existing components with adaptation/reconfiguration features. In addition, we 

claim that the main issue in realizing such a flexible and dynamic middleware relies in the 

need of keeping a consistent and up-to-date view of system inner state and behavior, so as to 

decide how to effectively react to dynamic changes in the execution environment.  

In particular, our approach envisions an off-the-shelf paradigm where a self-reconfigurable 

middleware can continuously rearrange already available (functional and non-functional) 

components into value-added and tailored aggregations. Our Off-The-Shelf Ready To Go 

(OTS-RTG) middleware adopts the novel iPOJO [2] implementation of the Service-oriented 

Component (SoC) paradigm [3][4]. Our proposal puts together the formalization of service 

contract definition, typical of service-oriented architectures, and the inherent component 

lifecycle, dependency, and composition management, which are traditional in 

component-oriented approaches. In our idea, middleware components declare service 

interfaces (contracts) to describe their behavior and state: those features drive how 

components cooperate with each other and how to influence component behavior (for instance 

by tuning operational parameters). Thus, for instance, when a platform component becomes 

either unsuitable or unavailable, our middleware may exploit component features either to 

look up for other components declaring the same interface and replace them, or to reconfigure 

the inner status and behavior of appropriate components. This approach pushes usual 

reconfiguration middleware approaches one step further and allows to reconfigure functional 

elements (e.g., components carrying out business logic) as well as non-functional components 

(e.g., elements offering horizontal support features). Moreover, the proposed middleware has 

been implemented, validated, and experimentally evaluated over different deployment 

scenarios of practical industrial interest, including ESB-based integration solutions. The paper 

finally reports lessons learned from practical deployment experiences and quantitative 

performance evaluations in these real testbeds.  

2. Background and Related Work 

This section describes related work about reconfigurable models/architectures and presents 

some implementation solutions that partially enable the dynamic reconfiguration of 

large-scale complex systems, with specific focus on UC scenarios. 

2.1 Reconfiguration Model 

Reconfigurable systems strive for the capability to dynamically and automatically change their 

structure in terms of components and aggregations (i.e., compositions) of cooperating entities 
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that provide functional and non-functional features. The main aim of reconfigurable systems is 

to self-tune and automatically self-adapt to ever changing conditions, e.g., to offer 

differentiated and proper QoS levels in any different situation. Hence, a reconfigurable system 

should analyze its execution context and adapt itself to specific runtime context conditions, by 

changing its structure and by reconfiguring its internal components.  

In recent years, different architectural models have been proposed to address the 

reconfiguration issues of middleware for large-scale deployment environments. The 

Autonomic Computing (AC) initiative, initially proposed by IBM [5][6], has emerged as one 

of the key proposals. AC identifies some architecture design guidelines to realize systems that 

can react to context changes and reconfigure themselves almost as autonomously and 

automatically as the human nervous system can coordinate, regulate, and adjust all elements of 

the human body. AC architectures are typically inspired to closed-loop control theory, and are 

capable of reacting to events from their operating surrounding to introduce corrective 

adaptation actions. In the IBM proposal [7], the control loop got the name of MAPE-K (the 

loop consists of four main stages - Monitor, Analysis, Plan, and Execute): during the Monitor 

phase, sensors monitor different system parameters; the collected values are used in the 

Analysis phase to detect problems or any other specific system state; in the Plan phase, the 

autonomic system creates a complete executive plan for self-optimization via available 

effectors; the Executive plan is expected to be run at the execute stage and the effectors can 

modify system parameters at that time, e.g., by replacing a component without stopping 

service provisioning of the composition where it was included and by re-setting the properties 

of the other components. 

2.2 Implementing Reconfiguration 

By focusing on the implementation challenges of typical reconfigurable systems, two main 

directions of solution have emerged in the literature: reflective middleware approaches and 

SoC model ones. Reflective middleware solutions aim at providing the application layer with 

mechanisms and tools to introspect/modify middleware implementation details [8][9]. 

Reflective middleware achieves its goal by exposing and keeping a consistent middleware 

self-representation, in order to make the middleware internal state/behavior accessible and 

modifiable at runtime. Applications willing to modify middleware components/behavior can 

change the middleware self-representation via reflective APIs: changes are dynamically 

propagated to the current middleware implementation to reconfigure its state and behavior.  

Reflection techniques are support features that come at a non-negligible cost in terms of 

computing resources. Any reflective component should maintain an internal meta-level 

description available to external controllers: keeping such meta-level description consistent 

with component behavior is complex and imposes some runtime overhead. For instance, 

[8][10] propose a reflection-based approach to AC middleware: although the reflective 

approach can be powerful in terms of monitoring and reconfiguration capabilities by allowing 

a fine-grained control over system components, reflective middleware usually suffers from 

limited performance and induces an increased management complexity. For these reasons, its 

adoption is limited, especially in industry-relevant wide-scale applications. In addition, the 

reflective approach usually forces to redesign middleware from scratch to add AC capabilities, 

because it deeply affects the middleware internal structure (e.g., meta-level description 

generation and runtime maintenance). 

More recent proposals [11] overcome the design and implementation burden of reflective 

approaches via the SoC model [12][13]. In short, the main SoC model characteristics are: 

• the SoC architecture provides specifications in terms of service syntax, behavior, and 
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dependencies on other services via service interface descriptions; 

• components implement service interfaces and may leverage implementation-specific 

dependencies on other services; 

• service-oriented interaction pattern is used to resolve runtime service dependencies; 

• compositions are described in terms of service specifications and the service-oriented 

interaction pattern provides the basis for dynamic component replacement. 

The SoC model promotes a different approach to dynamically change the structure and 

behavior of software systems. Primarily it relies on service registry and service tracking to 

enable dynamic service discovery and replacement, as detailed below. 

The SoC model exploits service interfaces to expose the internal behavior and state of 

components, by relying on component-oriented lifecycle/dependency management features in 

order to monitor, plan, and enforce component reconfiguration. For instance, [14] proposes a 

SoC approach to create a middleware with AC facilities, by extending the iPOJO platform 

with self-management capabilities to support AC service provisioning. However, it only 

focuses on the support of application-level reconfiguration; no mechanisms are available to 

enable middleware self-reconfiguration, which is crucial in AC. [15] describes an AC 

framework built on top of the OSGi component model: its implementation forces to modify 

existing OSGi implementations and offers only a limited set of reconfiguration capabilities. 

[9] proposes an Adaptive Server Framework (ASF) to create adaptive applications for UC 

scenarios, by borrowing some solution guidelines from the AC research area. It focuses on 

introducing AC capabilities in the functional layer without modifying the application business 

logic. However, it cannot enforce any reconfiguration of the non-functional layer. In addition, 

it does not propose any layer for component dependency reconfiguration and does not adopt a 

flexible control loop, configurable with high-level rules. In short, to the best of our knowledge, 

there are no clear guidelines (and no concretely designed and implemented frameworks) to 

enable system self-reconfiguration, especially when self-adaptation of non-functional 

attributes is crucial. 

3. Reconfiguration Requirements 

To deal with the heterogeneity and dynamic nature of UC scenarios and to enable proper 

performance in differentiated execution contexts, UC middleware should be able to provide 

support facilities that adapt themselves to current context and offer dynamically differentiated 

QoS levels. In particular, our original middleware aims at tackling system reconfiguration in a 

twofold way. On the one hand, we propose a novel and fully reconfigurable AC-inspired 

middleware to serve as the basis for dynamically adaptable UC applications. On the other hand, 

the goal of our reconfiguration support is to apply to already existing and non-reconfigurable 

middleware/applications as well. 

We claim that, in UC scenarios, system reconfiguration and QoS adaptation should involve 

reconfiguration as a key-feature of both functional and non-functional layers [16]. Therefore, 

we have designed our UC middleware according to a two-layer architecture: the application 

logic layer and the non-functional support one. The former includes the high-level features 

that help in modeling and managing business logic, independently from the specific 

application domain. The latter includes components to model non-functional features: for 

instance, a non-functional middleware component may provide coordination facilities for 

asynchronous message-driven components, whereas another one may offer persistence 

capabilities.  
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By going on with the cooking analogy, strictly following a good recipe and combining the 

right ingredients off the shelf may help you cooking a good meal. However, sometimes you 

need to “invent” due to dynamic “context elements”: you may run out of a specific ingredient 

and need to replace it, or a guest may unexpectedly require you avoiding a given spice because 

of allergy. Replacing an ingredient may require adjusting doses and compositions of the other 

ones, so to re-balance the general taste of the dish. In other words, cooking requires adapting a 

good initial recipe to the “runtime environment”, so as to make the best out of the current 

conditions, sometimes by replacing ingredients (application logic), sometimes rearranging 

how to cook them (non-functional logic). 

The integration of off-the-shelf components into articulated and value-added “recipes” calls 

for coordination and support middleware able to continuously reconfigure compositions to 

runtime conditions. That typically involves: 

• automatic composition - middleware should dynamically discover components that offer 

requested services and react to service disappearing by automatically repairing broken 

dependencies; 

• lifecycle management - middleware should take care of enabling/disabling components. 

For instance, when some dependencies of a component could not be resolved, the 

component should be automatically deactivated; 

• component reconfiguration - middleware should be able to tune components in terms of 

both their inner state and their dependencies; 

• automatic synchronization during reconfiguration - the services offered by a component 

should not be accessed during its reconfiguration and, at the same time, no service 

requests should be lost; 

• capacity of introspection - at any time, the middleware should be able to inspect the state 

of AC applications. In particular, it should dynamically determine the application 

structure/organization, e.g., which components are implementing it, which dependencies 

are broken, and which services a component offers and requires. 

The solution proposed in this paper focuses on the need to introduce the AC vision without 

the need of necessarily redesigning or re-factoring the supporting middleware. This allows 

introducing new aspects in already existing functional and non-functional facilities. Our aim is 

to propose a general pattern to be used, if and when needed, to enhance any existing UC 

middleware, even when not designed from scratch for dealing with AC aspects. In addition, 

our pattern offers a general solution, which can also be applied to more traditional distributed 

component models.  

4. OTS-RTG: Architecture and Integration Pattern 

Our primary design guideline is to create a framework on top of iPOJO in order to flexibly 

implement all the features listed in Section 3. The goal is to realize the AC-inspired vision of 

transparent runtime reconfiguration of off-the-shelf software components, ideally with no 

additional burden on application developers. Our framework supports the lifecycle of the 

components by including a monitor layer, a control layer, and a reconfiguration layer, as 

depicted in Fig. 1.  

The monitor layer implements monitoring facilities designed to be transparently attached to 

any system component without modifying its business logic. The monitor layer keeps track of 

different system/components aspects via sensor elements. Sensors are pluggable, can be added 

to the system without the need of restarting applications, and can be used by the control layer 

to measure a variety of system parameters. The control layer manages high-level control rules 
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to recognize states and, based on that, to trigger system reconfiguration. The control layer uses 

the reconfiguration layer to act on the AC system, by exploiting the capabilities of our 

SoC-based framework to reconfigure component dependencies/properties and to control 

component lifecycle. The reconfiguration layer offers high-level APIs, called effectors in AC 

systems, for acting on application reconfiguration, for instance to create/destroy component 

instances, to change high-level requirements on component dependencies, and to reconfigure 

the properties of a given component instance.  

The implementation of our middleware components is based on iPOJO, thus facilitating the 

fact that the middleware components themselves are fully reconfigurable and replaceable 

without restarting the supported applications. For instance, that permits to replace one 

implementation of the active control layer with a new one with no need to suspend service 

provisioning. 

 

 

Fig. 1. The AC-inspired architecture of OTS-RTG. 

OTS-RTG Integration Pattern 

From the point of view of the integration pattern, the primary guideline of our original 

proposal is the creation of an AC integration framework for clients and service providers that 

do not support reconfiguration by themselves. The aim is to introduce the AC vision without 

redesigning existing middleware and/or application components. Fig. 2 illustrates the 

proposed pattern: the integration framework acts as a bridge between clients and service 

providers. The façade provides the same service interface as the one expected by clients; its 

role is to completely hide the client from the interposition of our integration solution. In 

addition, it is up to the integration pattern implementation to automatically and transparently 

inject the façade into the client itself. The wrapper is a general-purpose component that can 

bind any service provider and acts as an invocation mediator for all the methods offered by the 

provider. Each client façade depends on one or more wrappers. Again, it is up to our 

integration pattern implementation to automatically create, make available, and inject 

wrappers for each service provider, transparently from the client/provider perspective. 

Since façades and wrappers are fully-fledged OTS-RTG components, they can benefit from 

full reconfiguration facilities in their turn. For instance, dependency between a façade and a 

wrapper may be reconfigured at runtime, and façades/wrappers can be decorated with sensors 

to monitor their state. Or, just to mention another notable example, our OTS-RTG middleware 
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may be configured to include a simple load balancer that splits traffic among several instances 

of providers of the same service. The load balancer can in its turn be dynamically added and 

removed upon need, for instance when only one service provider is available at runtime due to 

the failure/unavailability of the others. 

 

 

Fig. 2. Our AC integration pattern. 

 

The integration pattern is inherently designed to flexibly provide reconfiguration/AC 

features to any kind of system. First experiences with OTS-RTG have considered 

component-oriented systems, in particular Enterprise Java Beans-based architectures. The 

results obtained clearly showed that our model can provide those architectures with the needed 

reconfiguration features in a seamless and effective way (the interested reader could refer to 

[17] for additional and more extensive details, including several quantitative experimental 

results about performance evaluation). More recent experiences with OTS-RTG have 

addressed even more challenging and articulated deployment scenarios, of relevant industrial 

interest, such as ESB architectures.  

ESBs are software architectures that serve as foundational layers for the integration and 

orchestration of complex ecosystems of heterogeneous components via an event-driven and 

standard-based messaging engine [18]. ESBs typically provide support for: 

 service invocation, i.e., synchronous/asynchronous invocation of services and software 

components via heterogeneous protocols; 

 message routing, i.e., addressing, static/deterministic routing, content/policy/rule-based 

routing of messages; 

 messaging and mediation, i.e., message/protocol processing, adaptation, transformation, 

and enhancement; 

 service orchestration, i.e., coordination of multiple service components/ implementations 

exposed as a single aggregate service; 

 complex event processing, i.e., interpretation, correlation, and pattern matching; 

 security and quality of service, i.e., support for different security mechanisms/solutions 

(e.g., message encryption and signing), reliable delivery, and transaction management; 

 management, i.e., monitoring, auditing, logging, metering, and administration. 

Notwithstanding recent standardization efforts, ESB platforms are extremely differentiated, 

with different implementations that tend to provide many proprietary heterogeneous features 

and service levels. In addition, AC reconfiguration is typically supported to a very little extent, 

if any. More recent implementations (e.g., Servicemix 4.X [19]) rely on a modular, 

OSGI-based architecture that allows to dynamically plug novel components into the target 

deployment environment, such as message transformers and protocol adapters. These plug-in 
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features, however, usually require explicit human intervention. Moreover, any 

middleware/application component (such as novel message routes) that plans to use plug-in 

features, again needs to be manually reshaped (at compile time) and redeployed. Hence, none 

of the available implementations offers the reconfiguration features that we consider crucial 

for AC scenarios, such as monitoring and autonomous reconfiguration of system components. 

As a general consideration, our OTS-RTG integration pattern allows to seamlessly 

introduce AC self-reconfiguration and self-adaptation capabilities in core ESB functionalities, 

independently from the ESB implementation. In particular, in the following, we specifically 

chose to focus on routing features because they are at the heart of every ESB-based integration 

scenario. Our aim is to show how it is possible to dynamically change routing configurations 

depending on runtime context, without redesigning existing middleware/application 

components.  

Fig. 3 shows how our integration pattern applies to a typical ESB architecture to provide 

dynamic AC reconfiguration of routes. The façade acts as a mediator between core ESB 

routing functionality and the supported components that implement the routing business logic; 

the latter are automatically wrapped for executing on our AC framework. 

 

 

Fig. 3. Our AC integration pattern in the specific case of application to an industrial ESB-based 

deployment scenario. 

5. Implementation Insights 

The integration pattern described above has been implemented in our OTS-RTG prototype 

by exploiting standard Java technologies. In the following, we detail the main implementation 

aspects of the integration pattern, from its low level facilities, up to high-level components and 

APIs. 

AC Support Framework 

First, we have worked on the implementation of the OTS-RTG support framework, whose 

architecture is depicted in Fig. 4, on top of which our integration components execute. Our 

implementation is based on OSGi, a well-known and largely adopted Java framework that 

provides the typical features of a SoC component model. On top of OSGi, we have exploited 

the iPOJO framework for our implementation of the AC MAPE-K control loop.  

iPOJO is a container-based framework that handles the lifecycle of simple Plain Old Java 
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Objects (POJOs) by supporting some management facilities like dynamic dependency 

handling, component reconfiguration, component factory, and introspection. Moreover, the 

iPOJO container is easily extensible and has the specific feature of allowing pluggable 

handlers, typically for the management of non-functional aspects. Even though the iPOJO 

container is a technically sound basis to start with and offers an interesting set of 

reconfiguration capabilities, we experienced that it is insufficient to support our envisioned 

AC reconfiguration scenarios and, for this reason, we decided to significantly extend and 

patch it, as detailed in the following.  

Fig. 4 details our iPOJO components and extensions that realize the monitor, control, and 

reconfiguration layer. The core of our proposal is the implementation of a handler capable of 

taking care of all monitoring/control aspects; the handler should operate in synergy with a 

container that supports instance component execution. In our prototype, the handler is called 

MonitorHandler. By exploiting Java annotations, MonitorHandler can be attached to any 

iPOJO component, as shown in Listing 1, and can be configured by selecting the proper 

control rules, control frequency, and the list of POJO methods to be monitored in relation to 

latency time and requests per second. 

Fig. 4. The modular architecture of the implementation of our iPOJO-based AC framework. 

 

By means of high-level control rules, developers can easily exploit the facilities of the 

reconfiguration layer to act on the autonomic system by reconfiguring it (in proper and given 

states). The interested reader could refer to [17] for more details on XML control rules. 

 
@Component 

@Monitor(ruleXMLFile="reconfigurator.xml", frequency = 10) 

public class AutonomicObject { 

@MonitorMethod 

 public void doSomething(String parameter) { } } 

Listing 1. Annotations for MonitorHandler configuration. 

 

Our MonitorHandler, as depicted in Fig. 4, has a dynamic dependency on the control layer 

for executing its XML control rules, i.e., a dependency on a support facility that implements 

the IControl interface. For instance, a control service could be a POJO managed by the iPOJO 

framework and able to execute XML control rules. The mechanism is highly general and could 

easily adapt to other binding needs in many relevant reconfiguration cases. In its turn, the 

control component has a pluggable dynamic dependency on components that offer the service 

described by the ISensor interface. The ISensor interface defines the general behavior of a 

component that can offer monitor capabilities to the AC system. In addition, the control 

component has dynamic dependency on the reconfiguration layer to execute the 
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reconfiguration action required. The reconfiguration layer consists of four main components 

that offer different reconfiguration capabilities, as depicted in Fig. 4. 

InstanceReconfigurator 

InstanceReconfigurator is the infrastructure component able to reconfigure any service 

running in the AC environment, offered either by iPOJO components or by other components 

that have registered their services through the OSGi APIs. It supports the reconfiguration of 

both components (e.g., modification of property values of a component field) and their 

dependencies. To achieve this goal, it acts as a mediator between already available 

iPOJO/OSGi reconfiguration features and our newly created reconfiguration-oriented 

components, as described in the following. 

InstanceFactory 

In order to add reconfiguration facilities to any object instance, the iPOJO framework wraps 

them with a “container”, namely a ComponentInstance iPOJO, which enriches the original 

object with reconfiguration capabilities. The act of wrapping an object instance into a 

ComponentInstance container is performed by Factory objects. Therefore, factories play a 

central role in adding reconfiguration features to any POJO because they basically create the 

connection between a simple POJO and its reconfiguration features. 

However, in the current iPOJO implementation, once the connection gets created, factories 

are no longer able to retrieve a ComponentInstance from the original object instance. This 

ends up in an extremely limiting issue since our AC framework, to realize the highly flexible 

and dynamic reconfiguration goals needed in UC scenarios, has the crucial necessity of 

explicitly acting on ComponentInstances at runtime. This is necessary to accomplish the 

required reconfiguration tasks (e.g., to reconfigure dependencies) at provisioning time in a 

very general way. This is one of the main reasons why we have decided to extend the current 

iPOJO implementation and to give the possibility to our Factory objects to retrieve 

ComponentInstances from the original object instance names. Now InstanceFactory is 

exploited by the InstanceReconfigurator every time an object reconfiguration container 

(ComponentInstance) needs to be modified or changed. 

BundleManager 

Bundles usually represent software aggregates that encapsulate code from one or more 

components. iPOJO exploits the underlying OSGi bundle management features to load/unload 

bundles (hence, adding/deleting available component code). OSGi offers articulated and 

complex APIs to deal with bundles. Since our scenario requires more basic and high-level 

features (primarily, load/unload a bundle), we decided to “wrap” those functionalities in a 

series of coarse-grained features, to ease software development and maintainability. In 

particular, our BundleManager offers simplified features to load, unload, start, and stop 

bundles on top of OSGi bundle-related features. 

ComponentBuilder 

ComponentBuilder coordinates with InstanceFactory to create run-time iPOJO components 

from simple Java classes, giving the information required by the framework to configure and 

manage non-functional aspects through the associated XML file, by skipping the bytecode 

manipulation phase required at compile time. 

In addition, in order to manage reconfigurable component creation, iPOJO basically offers 
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two distinct ways. On the one hand, the more traditional way exploits compile-time bytecode 

instrumentation. A developer is expected to annotate her components with suitable iPOJO 

annotations (e.g., to declare reconfigurable dependencies) and, at compile-time, the iPOJO 

framework translates those annotations into concrete reconfiguration code. This declarative 

approach based on annotations provides developers with the finest level of control on the 

specification of reconfigurable components. However, its compile-time approach makes it 

intrinsically limited in very dynamic scenarios. On the other hand, one can exploit a set of 

runtime APIs to dynamically “decorate” existing components. Even if more suitable for 

dynamic scenarios, this approach suffers from limited expressiveness. Runtime APIs only 

enable the specification and usage of a subset of the reconfiguration features available via 

annotations. Moreover, and most relevant, those APIs are intrinsically hard to use for 

application developers: being extremely low-level, they force developers to undergo a series 

of repetitive and error-prone tasks. 

In our opinion, our ComponentBuilder should take the best of both approaches (at the same 

time dynamic, highly flexible, and easily usable in a declarative way). Therefore, we designed 

and implemented the ComponentBuilder with a dynamic runtime feature to enable the creation 

of reconfigurable components: in OTS-RTG, developers are allowed to invoke the 

ComponentBuilder at runtime and to pass a suitable declarative description (e.g., an XML file) 

of components, of their dependencies, and of their reconfiguration characteristics. Then, our 

ComponentBuilder transparently exploits low-level iPOJO APIs to dynamically create the 

components and to instrument their code by enriching it with reconfiguration features. 

Integration Pattern 

On top of this AC kernel layer, we have designed and implemented our façade and wrapper, as 

components of our OTS-RTG integration system. 

Façade Implementation 

As already stated, the façade must implement the same component interface requested by 

associated service clients. Our OTS-RTG framework lets developers determine such 

implementation either at development time, by manually implementing the target interface, or 

dynamically, by automatically generating façade code at runtime via bytecode 

creation/manipulation facilities. On the one hand, the first approach allows the developer to 

keep a detailed and fine-grained level of control on the façade implementation (for instance, 

by introducing personalized load balancing strategies). On the other hand, the second 

approach permits to automatically integrate any component with very limited need of 

intervention by developers. An example of a development-time-defined façade is shown in the 

Listing 2 below:  
 

@Component 

@Provides 

@Monitor(ruleXMLFile="/Users/UserName/Desktop/reconfigurator.xml") 

 

public class PrinterFacade implements IPrinter { 

         @Requires(filter="(wrapper.type=IPrinter)",policy="dynamic-priority", nullable=false) 

        private IEJBWrapper printer; 

@MonitorMethod 

public void print(String s) { 

try { printer.invoke("print", new Object[]{s}); 

          } catch(Exception e) {...} } 

Listing 2. Example of façade definition at development time. 
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The façade for a printer service must implement the Printer interface, hence concretely 

implementing its methods (in our case, the print method). Invocation of the method on the 

actual component (i.e., the real EJB component) occurs via a generic EJB wrapper 

(EJBWrapper); EJBWrapper takes care of concretely looking up the printer service EJB and of 

invoking the method. The @Monitor and @MonitorMethod annotations declare how to 

monitor such an object activity to determine when it needs reconfiguration. In addition, we 

have also implemented a load-balancing façade that can split the invocation load among 

different implementations (e.g., different EJBs implementing the same printing service). 

Moreover, we have decided to enhance the ASM framework [20] to support the dynamic 

generation of the façade code. ASM offers APIs for inspecting class bytecode through the 

visitor pattern and for creating new visitors able to manipulate or generate new code starting 

from the visited class or interface. In particular, we have implemented a visitor that inspects 

the interface definition and automatically crafts the façade code: it creates the stub methods, 

which exploit the dynamic dependency of the façade on the wrapper in order to invoke the 

methods of server components. 

Wrapper Implementation 

Finally, we have implemented a wrapper that offers a dynamic invocation interface and, 

thus, a very general way of invoking methods for all components. Listing 3 shows an example 

of possible implementation of the generic invocation method for an EJB wrapper. 

Our wrapper can be reconfigured at runtime to bind to another service provider and, thanks 

to its dynamic invocation interface, can be used to invoke its methods. The rebinding phase 

requires performing component lookup. For EJB components, this usually means querying the 

Java Naming and Directory Interface (JNDI) and loading the corresponding component class 

definition. This part may generate limited but non-negligible implementation issues to 

application developers, since the lookup happens on the OSGi classloader, which 

unfortunately has no visibility of classes outside its bundle (e.g., EJB interfaces and JNDI 

lookup helper classes). For this reason, in the current OTS-RTG implementation, we have 

decided to embed JNDI lookup helper classes into the wrapper bundle and to temporarily 

replace the OSGi classloader with the standard JVM one (during the lookup phase). 

 
@Component(propagation=true, immediate=true) 

@Provides 

public class IPojoEJBWrapper implements IEJBWrapper{ 

public Object invoke(String method, Object[] args) throws Exception { 

        try{ Class parameterTypes [] = new Class [args.length]; 

               for (int i = 0; i < args.length; i++) { 

parameterTypes[i] = args[i].getClass(); } 

                Method m = ejb.getClass().getMethod(method, parameterTypes); 

                return m.invoke(ejb, args);       } 

         catch(InvocationTargetException e) {...} 

      }   } 

Listing 3. Example of EJB wrapper. 

ESB Integration Pattern 

The viability of the proposed integration pattern to a wide variety of deployment environments 

is clearly demonstrated by our experience with OTS-RTG for ESB-based service provisioning 

scenarios. On top of our AC layer, we have designed and implemented the components of our 

OTS-RTG for AC reconfiguration features in ESB scenarios. Our façade interacts with the 

core ESB routing functionality. In our practical deployment experience (described in the 
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following) we chose the widely diffused Apache Camel [21] integration framework for 

routing capabilities; Apache Camel is embedded in most industry-scale ESBs nowadays and 

has proven to be an effective solution to typical routing issues. In particular, we realized a 

façade that interacts with Apache Camel to support runtime deployment and reconfiguration 

of integration routes. Integration routes are pieces of business logic that enable the integration 

of heterogeneous systems, e.g., a Web Services system and a messaging one, for creating new 

business flows. Apache Camel supports the creation of such integration routes by minimizing 

the effort required to application developers. 

Façade Implementation 

Our façade acts as a container of an instance of Apache Camel and is designed as a 

fully-fledged iPOJO component. As shown in Listing 4, the Camel instance gets created when 

the start() method is invoked, just after the instantiation of our façade component. In addition, 

the façade has a dynamic dependency, managed according to a plug-in strategy, towards the 

components that wrap a Camel integration route. It can dynamically add routes to the 

integration framework when they become available, as well as to dispose routes when they are 

no more available. Listing 4 provides an excerpt of some crucial parts of our façade 

implementation, by highlighting the logic that gets invoked when dynamically adding or 

deleting integration routes to the ESB. 

 
@Component 

public class RouteManager{ 

 @Requires(policy="dynamic-priority", nullable=true, id="wrapper", optional=true) 

 private List<RoutesBuilder> camel_route = new ArrayList<RoutesBuilder>(); 

 private DefaultCamelContext camelContext; 

 @Requires(from="it.epocaricerca.servicemixipojo.routemanager.RouteManager") 

 private Factory factory; 

  private int num_routes = 0; 

 private HashMap<RoutesBuilder, String[]> route_cache = new HashMap<RoutesBuilder, String[]>(); 

 @Validate 

 public void start() throws Exception { 

   CamelContextFactory ccfb = new CamelContextFactory();  

   … 

   this.camelContext =  ccfb.createContext(); 

   this.camelContext.start();  } 

@Invalidate 

 public void stop() throws Exception { this.camelContext.stop(); } 

 @Bind(id="wrapper") 

 private synchronized void bind(RoutesBuilder route) throws Exception { 

  this.camelContext.addRoutes(route); 

  int actual_size = this.camelContext.getRoutes().size(); 

  …  } 

 @Unbind(id="wrapper") 

 private synchronized void unbind(RoutesBuilder route)  throws Exception { 

  String routes_id[] =  this.route_cache.remove(route); 

  … 
  this.num_routes -= routes_id.length; }  } 

Listing 4. A code excerpt of the implementation of our ESB routing façade. 

Wrapper Implementation 

As already shown, our wrappers can be easily implemented as bean components decorated 

with iPOJO annotations (see Listing 5 below). Dynamic route implementation in OTS-RTG 

poses very limited (almost negligible) burden on middleware/application developers: the route 
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is a traditional Apache Camel one, with no further requirements, except for the declaration of a 

few iPOJO-specific annotations. The façade declares a dependency towards components that 

implement the RoutesBuilder interface, i.e., the interface that classes have to implement in 

order to be capable to configure Apache Camel routes. As a consequence, we simply require 

decorating the target class with iPOJO annotations for managing the wrapper via our AC 

framework. Listing 5 reports a code excerpt that shows how easy it is to implement a generic 

wrapper that configures an Apache Camel route. 

 
@Component(immediate=true) 

@Provides(specifications=RoutesBuilder.class) 

public class FetchQueue extends RouteBuilder { 

 @Override 

 public void configure() throws Exception { 

  if(getContext().getComponent("activemq") == null) 

  getContext().addComponent("activemq", activeMQComponent("vm://localhost")); } } 

Listing 5. Code excerpt from our implementation of the Apache Camel route wrapper. 

 

The wrapper above creates a Camel route that fetches messages from a queue, passes them 

to a POJO, and sends them to an in-memory queue for further computation. The iPOJO 

component described above extends the RouteBuilder class and offers the RoutesBuilder 

interface as its exposed service. The components that offer the RoutesBuilder service are 

plugged into the façade and deployed in the considered Camel instance as integration routes. 

Being fully-fledged wrappers, routes can be dynamically created and disposed, thanks to this 

easy integration with our AC framework. This allows for extremely powerful, yet easy to 

implement, reconfigurable scenarios. For instance, it is particularly easy to design and 

implement a reconfigurable integration flow, i.e., a more complex integration solution 

resulting from the composition of different routes. The flow can also be dynamically 

reconfigured by replacing a route; this is obtained simply by deleting a wrapper instance and 

by creating another instance of it with different business logic. 

6. Experimental Results 

To quantitatively assess and validate the performance of our highly flexible OTS-RTG, we 

have deployed and tested it on servers with Core Duo 2CPUs operating at 2.2GHz and 2GB of 

RAM. In the tests we used MacOSX v10.6 with Java Virtual Machine v1.5; the extended 

application server is JonAS v5.1.1, running on Apache Felix v2.0.3 OSGi implementation; the 

extended ESB architecture is Apache Servicemix v4.2. 

OTS-RTG Prototype: Performance of AC Support  

As a first experimental evaluation, we have estimated the overhead of a reconfiguration action 

in a simple application scenario, where the provided service comes from the composition of 

two components (a client and a server) that are supported by our OTS-RTG middleware. Our 

performance results (extensively reported in [17]) show that, when reconfiguration takes place, 

invocation latency is comparable to usual component instantiation and invocation  

Secondly, we have evaluated the overhead given by the presence of our middleware if 

compared with pure OSGi. To this purpose we have deployed a complex application with a 

variable number of components that require services offered by other components and, of 

course, with component reconfigurations during test execution. OTS-RTG scales well while 

growing the number of reconfigured components, as shown by the extensive experimental 
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results reported in [17]. 

OTS-RTG Prototype in ESB scenario: Performance of Integration Pattern  

In order to assess and validate the implementation of our integration pattern, we have chosen 

to test it in a real usage scenario of practical industrial interest. In particular, we have deployed 

our prototyped solution in a case study where the ESB middleware, enhanced with the AC 

capabilities deriving from our integration pattern, can dynamically reconfigure an integration 

route. The goal is to adapt to dynamically changing traffic load levels, by trying to maintain 

the same QoS level, independently of traffic. Our integration business logic fetches messages 

from a source queue and stores them in two different destination queues, after having 

performed some management operations on the handled messages, as depicted in Fig. 5. 

Fig. 5. Message flow used during the evaluation of the performance of our OTS-RTG integration 

pattern when applied to an ESB-based architecture. 

 

The initial integration route has a non-functional requirement that forces to process 

messages transactionally. When the system is overloaded, however, the time that a message 

spends in the input queue grows, with negative effects on the perceived quality level. 

Therefore, in this simple example, the primary idea is to reconfigure the integration route, in 

response to dynamic load growth, to avoid the overhead due to the transactional requirement. 

Thus, the removal of the non-functional requirement (transactionality) should reduce the 

average enqueuing time. Of course, this is only a possible example, used for the sake of 

simplicity and briefness, which makes sense in real scenarios only if the targeted application 

can tradeoff its transactional requirements for better response times without infringing 

application-specific consistency requirements. 

To validate our middleware implementation, we have stressed it by generating a high traffic 

load of 1000 messages per second (with small payload) and by analyzing the average 

enqueuing time for every 1s interval. The rationale behind this performance experiment is to 

determine whether, on an average execution case, route reconfiguration imposes a relevant 

overhead for the AC middleware support. First, we collected some initial results to assess the 

basic route performance in static cases (i.e., with no reconfiguration). The corresponding 

experimental results are reported in Fig. 6. In particular, the figure compares the average 

message enqueuing time in a static configuration, when using either a transactional route or a 

non-transactional one. As expected, transactional queuing generates a higher overhead on the 

middleware; messages remain queued for longer time intervals, even though the difference 

between transactional and non-transactional behavior remains relatively small (a couple of ms 

in the worst case). The initial overhead associated with the transactional route (see the spike at 

about 2s in Fig. 6) depends on the initial setup of resources, needed by the transaction manager 

to deal with atomic operations. On the contrary, the initial setup overhead associated with the 

non-transactional route is negligible. 

As a second evaluation step, we introduced our middleware reconfiguration features and 
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forced the system to self-adapt by passing from a transactional queue to a non-transactional 

one when the average enqueuing time goes over a given threshold. Specifically, in our tests we 

configured our middleware with one of two possible reconfiguration options. In the first one, 

when enqueuing time exceeds the threshold, the middleware disposes the transactional route 

and creates a non-transactional one. In the second one, the self-reconfiguration consists in 

keeping the transactional route working and pairing it with the newly created 

non-transactional one; the rationale is to have two routes working concurrently in order to 

reduce the overall average enqueuing time. 

 

 
Fig. 6. Comparison of average enqueuing times for the transactional and non-transactional cases, 

under high traffic load (1000 messages per second). 

 

The collected experimental results are reported in Fig. 7. The figure compares the average 

enqueuing time of the messages with the two types of reconfiguration (reconfiguration 

triggered when average enqueuing time goes over the threshold of 3 ms). As expected, the first 

case, which has to perform the management operations of deleting an existing route and 

creating a new one, is characterized by an initial limited reconfiguration overhead. In fact, for 

a short time interval, the ESB switches off the first queue and then switches on the new one. 

The grey line shows how the average enqueuing time increases during these reconfiguration 

operations (the spike at about 4s): this is mainly due to the fact that, during reconfiguration, no 

messages are fetched from the input queue. Anyway, the message enqueuing time remains 

extremely well controlled (around 50ms) and is very confined in time. In fact, after 

reconfiguration, the system has exhibited to fetch messages faster: the reconfigured system no 

longer needs to deal with transactional behavior, with the performance advantages shown by 

the reported exponential decrease of the average enqueuing time.  

The second reconfiguration type, described by the black line, shows a more efficient 

reconfiguration strategy, where the transactional route works together with the 

non-transactional one. Our middleware creates a non-transactional route that helps the 

overloaded one by concurrently fetching messages from the input queue. That has 

demonstrated to reduce the average enqueuing time (around 1ms) if compared with the static 

configuration, by imposing very limited management overhead on the overall system. 
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Fig. 7. Automatic reconfiguration of employed route(s) depending on runtime traffic and experienced 

QoS: case 1 with reconfiguration from transactional to non-transactional queue; case 2 with 

reconfiguration from one transactional queue to one transactional plus one non-transactional queue. 

 

Let us finally notice that, as a second step of quantitative validation, we have tested our 

integration pattern in a real J2EE usage scenario, where an application needs to reconfigure 

itself to offer the suitable QoS levels in all executing conditions. The related results are 

reported in the experimental result section of [17]. 

7. Conclusions 

This paper has presented a novel iPOJO-based middleware for self-reconfiguration/ 

optimization of both functional and non-functional features. The proposed approach is 

oriented towards off-the-shelf component reconfiguration, with the primary goal of easily 

enabling the monitoring of runtime conditions and consequent adaptation operations based on 

dynamic dependency management. We also proposed an original integration pattern to extend 

traditional non-reconfigurable systems in an easy, flexible, and scalable way: our implemented 

integration pattern can supply AC features also in middleware solutions that were not designed 

to cope with self-reconfiguration/auto-optimization. We extensively benchmarked our 

platform and collected several experimental results to verify the practical feasibility of the 

proposal: in all the targeted deployment scenarios we experienced good scalability and very 

limited latency, thus quantitatively confirming the suitability of the proposed approach. 

The promising results already achieved are encouraging further research activities. In 

particular, we are currently working on a smarter control component to include in our 

middleware: that control component will be able not only to trigger reconfigurations based on 

fixed rules, but also to infer proper behavior from previous session history, e.g., previous 

component executions, environmental variations, and reconfiguration operations occurred in 

the past. 
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