
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 766

Copyright ⓒ 2012 KSII

This work was supported by the IT R&D program of MKE/KEIT [KI002113, Development of Security Technology

for Car-Healthcare].

DOI: 10.3837/tiis.2012.02.019

JsSandbox: A Framework for Analyzing the
Behavior of Malicious JavaScript Code

using Internal Function Hooking

Hyoung Chun Kim
1
, Young Han Choi

1
 and Dong Hoon Lee

2
*

1 The Attached Institute of Electronics and Telecommunications Research Institute (ETRI),

PO Box 1, Yuseong Post Office, Daejeon, Republic of Korea 305-600

[email: khche, yhch@ensec.re.kr]
2 The Graduate School of Information Security, Korea University,

Anam-dong, Sungbuk-ku, Seoul, Republic of Korea 136-701

[email: donghlee@korea.ac.kr]

*Corresponding author: Dong Hoon Lee

Received October 5, 201X; revised November 10, 201X; accepted November 20, 201X;

published December 25, 201X

Abstract

Recently, many malicious users have attacked web browsers using JavaScript code that can

execute dynamic actions within the browsers. By forcing the browser to execute malicious

JavaScript code, the attackers can steal personal information stored in the system, allow

malware program downloads in the client’s system, and so on. In order to reduce damage,

malicious web pages must be located prior to general users accessing the infected pages. In

this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of

malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as

the hooking of all functions in the modules using the debug information and extracting the

parameter values. The use of IFH enables the monitoring of functions that API hooking cannot.

JsSandbox was implemented based on a debugger engine, and some features were applied to

detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the

obfuscated string, detection of URLs related to redirection, and detection of exploit codes.

Then, the proposed framework was analyzed for specific features, and the results demonstrate

that JsSandbox can be applied to the analysis of the behavior of malicious web pages.

Keywords: Malicious JavaScript code, Sandboxing

mailto:t.m.chen@swansea.ac.uk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 767

1. Introduction

The JavaScript language is a powerful tool that can execute dynamic actions such as reading

a cookie file, providing dynamic content, and generating another code in a web browser. As a

result of these abilities, a remote attacker can compromise a client's system by inserting

malicious JavaScript code into an HTML page, allowing web browsers to read it [1][2]. Using

malicious JavaScript code, an attacker can steal personal information in the system and

download other malicious software into the victim’s system without the consent or knowledge

of the user [3].

To defend against such threats, malicious JavaScript code must be detected before the

code's activity affects the system. Research to help analyze and detect malicious JavaScript

code is ongoing and widespread. Normally, static or dynamic JavaScript code analysis

approaches are used, but static analyses are limited, because they cannot completely

encompass the various behaviors of JavaScript. For example, static methods have difficulty

analyzing and detecting obfuscated JavaScript. Another drawback is that they cannot cover

JavaScript's self generating feature during run time.

Dynamic analyses can analyze the various behaviors of malicious JavaScript code. These

dynamic analyses perform monitoring functions and arguments of the JavaScript engine.

Many research projects use SpiderMonkey, the JavaScript engine for Mozilla, to monitor the

behavior of JavaScript. Since SpiderMonkey is open source software, it is possible to

implement a logger at the source code level to analyze the behavior of JavaScript.

In this paper, JsSandbox is presented, a system that dynamically analyzes malicious

JavaScript code using a debugging technique. Because Microsoft Internet Explorer (IE) uses

jscript.dll as its JavaScript engine and is not open source, JsSandbox traces all functions and

arguments using the debug information which is named as a symbol file in Windows systems.

The method of accessing functions using the symbol files is defined as internal function

hooking (IFH).

To evaluate JsSandbox, some features for detecting malicious JavaScript code are

proposed and implemented in JsSandbox.

The contributions of this paper are as follows:

 A tool, JsSandbox, is proposed that can analyze and detect malicious JavaScript code

using internal function hooking. Internal function hooking supplies more sophisticated

analysis results than API hooking.

 Because JsSandbox is a general framework, it can be extended to analyze other

malicious codes such as VBScript and Perl.

 Most research has used the JavaScript engine of Mozilla, SpiderMonkey, because it is

open source. However, JsSandbox can detect threats in IE that have been propagated

from malicious JavaScript code. JsSandbox was implemented in Microsoft Internet

Explorer after reverse engineering the IE modules.

 Some features for detecting malicious JavaScript code are proposed and applied to

JsSandbox. The evaluation demonstrates that JsSandbox can analyze and detect several

malicious JavaScript codes using the proposed features.

This paper is organized as follows. In Section 2, research related to the detection and

analysis of malicious JavaScript code is introduced. Next, in Section 3, internal function

768 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

hooking is described. The method to detect malicious JavaScript code is proposed in Section 4.

Then, the designed and implemented JsSandbox is discussed in Section 5, and Section 6

presents the evaluation of the JsSandbox with reference to some cases. Last, the research is

concluded and the future work is explained in Section 7.

2. Related Work

JsSandbox is a framework for tracing and analyzing the behavior of malicious JavaScript code

in a web browser by hooking the internal functions in the JavaScript engine and HTML parser.

In this section, current research that analyzes malware using sandboxes, and detects malicious

JavaScript code, is described.

Sandboxing: The representative sandbox program for the analysis of malicious code is

CWSandbox [4]. This program traces and analyzes the behavior of malware using API

hooking such as process creation, file creation, and network communication in Windows

systems, by targeting the external functions in kernel32.dll, ws2_32.dll, and so on. After

hooking these APIs, CWSandbox generates an analysis report about the malicious software

behaviors. TTAnalyze [5] also uses API hooking to analyze the behavior of a malware.

Norman sandbox [6] analyzes the execution of malware in simulated computer system and

network environments.

These sandboxes run malware in a virtualized or emulated environment, such as VMWare

[7] and QEMU [8], in order to execute the malware in an isolated system. Wang et al. [9]

developed a tool, HoneyMonkey, that can detect malicious web pages using a virtual machine

based on the system behavior. Because it targets drive-by-downloads, it monitors the behavior

of a web browser, including the process creation, file creation, and so on; this method also uses

API hooking.

However, the API hooking approach is limited because it can only access the exported

functions in the DLL files. Thus, API hooking is not suitable for analyzing malicious

JavaScript codes in IE because many IE modules, such as jscript.dll, mshtml.dll, and ActiveX

Controls, are implemented as component object model (COM) files [10].

The export functions in the COM object avoid the analysis of sophisticated malicious

JavaScript code. In order to overcome this drawback, NEPTUNE [11] uses an arbitrary

hooking method that can hook internal functions in the COM object. However, the arbitrary

hooking requires prior tedious and labor intensive processes to determine the target address in

the memory. Arbitrary hooking methods access the functions using the hard-coded absolute

address of the functions in the memory. When the target module or runtime state version is

changed, the tedious and labor intensive process must be performed again.

In contrast, JsSandbox can access the internal functions in the COM object, using the

relative address of the functions in the memory, by applying a debugging approach with the

symbol files.

JsSandbox is a system for tracing and analyzing the behavior of malicious JavaScript code

in a web browser by hooking the internal functions in the JavaScript engine and HTML parser.

Chenette proposed a method that hooks the internal functions in a DLL file and performed it

using DLL hooking [12]. This approach is similar to the proposed system because it focuses on

internal functions for analyzing the JavaScript engine. However, because this approach must

know the memory address of target functions in advance when the file is loaded in the memory,

it is difficult to hook the internal functions. Alternatively, because the debug information is

used here, the internal functions can be accessed in a stable manner.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 769

Malicious JavaScript Code Detection: There has been much research on the detection

and analysis of malicious JavaScript code. In reference [13], the authors studied various

JavaScript redirections in spam pages and found that obfuscation techniques were prevalent

among the redirections. In reference [14], the author introduced various malicious JavaScript

attacks and obfuscation methods. He found that the eval and document.write functions were

the most used functions in malicious web pages. This research has focused on the malicious

JavaScript codes themselves.

Provos et al. [15] declared that web pages were malicious if the web pages caused the

automatic installation of software without the user's knowledge or consent. They found

malicious web pages by dynamically monitoring the behavior of Internet Explorer in a virtual

machine. In their research, the authors observed that a number of web pages in reputable sites

were obfuscated, and found that the obfuscated JavaScript is not in itself a good indicator of

malice.

Ikinci et al. implemented a low interaction honeyclient system, MonkeySpider, for

detecting malicious web pages [16]. Feinstein et al. analyzed JavaScript obfuscation cases and

implemented an obfuscation detection tool [17]. They hooked the eval function and string

concatenation method, based on Mozilla's SpiderMonkey. Hallaraker et al. proposed a method

that monitors the JavaScript code execution, to detect malicous code behavior, and evaluated a

mechanism that audits the execution of JavaScript codes [18].

These methods modified the open source JavaScript engine; nonetheless they cannot be

applied to Internet Explorer (IE), which is the Internet browser with the largest market share in

the world. ADSandbox [19] is a tool that analyzes JavaScript code using a sandbox

implemented by the Mozilla JavaScript engine, SpiderMokey, in a Microsoft Windows and IE

environment. However, the tool cannot completely analyze the threat of IE functions

propagated from malicious JavaScript code, because of the imperfect emulation of IE in the

SpiderMonkey-based environment. Cova et al. [20] proposed various features for detecting

malicious JavaScript code in an emulated environment using the HtmlUnit and demonstrated

their validation.

Another approach for detecting malicious JavaScript code is to use emulators of JavaScript

engines such as DecryptJS [21], Rhino [22], NJS [23], and so on. DecryptJS is a tool that

allows obfuscated JavaScript code to be readable in FireFox. Rhino is an open source

implementation of JavaScript written entirely in Java, and NJS is a JavaScript interpreter.

These emulators are limited because they are not real JavaScript engines, whereas JsSandbox

traces the real JavaScript engine of Microsoft IE.

3. Internal Function Hooking

API hooking is mostly used for analyzing the behavior of a program in a Windows system. In

a Windows system, the API is a function exported in a DLL file: API hooking changes the

execution flow of the program into an arbitrary flow and extracts the values of the API

parameters. Most sandboxes use API hooking approaches such as the CWSandbox [4].

However, API hooking can only access exported functions in a DLL file, except for various

internal functions.

For example, when monitoring a JavaScript engine, API hooking cannot trace the flow in it,

because the JavaScript engine is implemented by a COM process and does not have APIs for

JavaScript. For this reason, a method that can monitor various internal functions in the

modules of the web browser using debugging information is proposed.

770 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

Generally, debugging information includes the function information, global or local

variable information, and so on. In a Windows system, debugging information is named as a

private symbol or public symbol. Microsoft provides public symbols for the Windows OS,

including Internet Explorer (IE). The public symbols include only the name and starting

address of the functions and global variables. For example, the JavaScript engine (jscript.dll)

of IE in Windows Vista includes 3,623 symbols, and the symbols represent all functions

implemented in the JavaScript engine.

Using the public symbol allows the JavaScript engine of Internet Explorer to be monitored

and analyzed. A symbol's function is defined as an internal function (IF), and accessing the IF

using a debugging mechanism is defined as internal function hooking (IFH). That is, IFH sets

the breakpoint at the starting address of the target function and catches the exception for the

breakpoint using the debugger engine. The WinDBG debugger (dbgeng.dll) is used in this

method because public symbols are being used.

695441b9 8bff mov edi,edi

695441bb 55 push ebp

695441bc 8bec mov ebp,esp

695441be 8b4508 mov eax,dword ptr [ebp+8]

695441c1 83ec54 sub esp,54h

...

jscript!JsEvalDebugBaseEventCallbacks::Breakpoint

 access Registers

 access Call Stack Frames

 …

1

2

Debugger Process Debuggee Process

Fig. 1. Internal function hooking monitors the eval function of JavaScript

Fig. 1 shows an example where the IFH monitors the eval function of the JavaScript code.

The debuggee is the target program, and the debugger is the analyzer. In the JavaScript engine

(jscript.dll), eval is implemented as JsEval. In order to set the breakpoint at the JsEval

function, the IFH accesses the symbol using the Jscript!jsEval string. This means that the

JsEval function is in the jscript.dll module.

If the breakpoint is set at the function, the debugger engine substitutes the first one byte of

the start address of the JsEval to be 0xCC. If the flow of the program execution meets the 0xCC

byte, the program generates the exception for the breakpoint.

(1) When the execution flow of the JavaScript code reaches JsEval, the debugger engine

catches the breakpoint event. 0x695441b9 is a starting address of a JsEval function. Because

the IFH uses symbols, it does not need to know the memory address of the function in advance.

The IFH simply accesses the location using the starting address information of the function in

the symbol.

An advantage of the IFH is the use of the debugging information. As a result, the debugger

engine has control of the web browser. In that case, the debugger calls the

DebugBaseEventCallbacks::Breakpoint function, permitting a user to add their own code.

The malicious JavaScript code is monitored and analyzed by extracting the values of the

parameters of JsEval, the information for the call stack frames, and so on. For example,

[esp+0x4] is the first parameter of the hooked function and [esp+0x4*n] is the n-th

parameter of the function.

(2) After obtaining the information for the function, the IFH gives the execution control to

IE. By doing this, the IFH performs monitoring for the JsEval function.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 771

4. Detection Model for Malicious JavaScript Code

In this section, the execution flow of JavaScript code in a web browser is analyzed first to

make a model for detection. Then, based on the analysis, some threats of malicious JavaScript

code are modeled.

4.1 Execution Flow of JavaScript Code

A web browser parses and executes a HTML document after downloading it into the local

computer system. In order to parse dynamic HTML (DHTML), the browser makes a

document object model (DOM) tree, and then executes each node related to the HTML tags. In

the web page, client script languages such as JavaScript and VBScript can access and control

all nodes of the DOM tree.

To model the behavior of malicious JavaScript code, the execution flow of JavaScript code

is analyzed and defined, as shown in Fig. 2.

Firstly, the web browser requests a web page from a web server (A0), downloads the web

page (A1), and parses the HTML document file. Using the HTML document, the web browser

creates a DOM tree composed of the various HTML tags (A2). In the DOM tree, each node is

related to tags, such as HTML, BODY, SCRIPT, and so on. The web browser displays and

executes each node.

In this paper, the focus is on the SCRIPT tag, because JavaScript codes are embedded

within this tag. When a browser executes the script codes (such as JavaScript or VBScript) in

the SCRIPT tag, the execution flow reaches the S0 state and the browser parses codes from the

<SCRIPT> tag until the </SCRIPT> tag.

DOWNLOAD

(A1)

DOM

PARSING(A2)

SCRIPT

TAG(S0)

REDIRECTION

(R) EVENT

(E)

OBJECT

TAG(A3)

OBJECT

FUNCTION(S4)

EXECUTION

FUNCTION(S3)

GENERAL

FUNCTION(S1)

BROWSER

(B)

ACCESS WEB

PAGE(A0)

Download HTML

Download HTML

Register event

Register event

Fire event

Parse HTML page

Parse Object Tag

return

Parse script tag

Call function in object

return

Execute general operations

Execute execution function

Access browser

return

Request other web page

Request other web page

Request other web page

Access other tags

STRING

FUNCTION(S2) return

return

returnreturn Execute function

related to string

Processing in SCRIPT Tag

Fig. 2. Execution flow of JavaScript code

772 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

In the GENERAL FUNCTION (S1) state, the JavaScript engine only executes general

JavaScript functions such as Sqrt, Max, and so on. Most malicious JavaScript code targets

functions that are related to string. Therefore, in this paper, the string functions are the primary

focus. In the STRING FUNCTION (S2) state, the JavaScript engine performs various string

operations. In this state, malicious JavaScript code changes shape of its own accord,

deobfuscates the obfuscated string, and executes the exploit code.

Recently, because many malicious JavaScript codes use obfuscation, another state was set

for obfuscation, the EXECUTION FUNCTION (S3). The execution function state includes

the eval, document.write, and similar functions. If a real malicious code is at another web

server, the web browser is redirected to the server (REDIRECTION). Then, the browser

reaches the DOWNLOAD (A1) state again.

There are many cases where the malicious JavaScript code attacks the vulnerabilities of

web browsers or web applications. For example, if a malicious JavaScript code exploits the

vulnerability of an ActiveX control, the browser goes to the OBJECT FUNCTION (S4) state.

In this state, the internal functions implemented in the ActiveX Control are called. Because

this execution flow focuses on the execution of the JavaScript code, the focus is on the string

related to the exploit code, rather than the execution of exploit code in the memory.

4.2 Model for Detecting the Behavior of Malicious JavaScript Code

In this section, a model that detects malicious JavaScript is created based on the execution

flow that was analyzed in the previous section. Using the proposed model, we make a model

for detecting malicious JavaScript (Obfuscation, Exploit code, and Redirection) as shown in

Fig. 3.

0S 1S

2S

8S

6S

3S

7S
9S

5S4S

Parsing start

Normal parsing

Parsing

document.write()

and eval()

Parsing unescape()

ParameterSize > Threshold

ParameterSize > Threshold

Disassemble

parameter

PUSH instruction

CALL instruction

Parsing End

Calculate URL

ranking

Call GetLocationW()

return

OBFUSCATION

EXPLOIT CODE

REDIRECTION

Fig. 3. Model for detecting the behavior of malicious JavaScript code

In this paper, we focus on three behaviors of malicious JavaScript code: obfuscation (),

exploit code (), and redirection (). means the initial state of JavaScript tag.

represents the normal state that parses JavaScript code, and is the state that parses a URL in

a HTML file. Thus, most of script codes are handled in and states.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 773

(i) For OBFUSCATION (), the model () is   and   . is

related to some functions: eval, document.write, and unescape. After extracting the

parameter value in the functions, checks size of the value to determine whether it is

obfuscated or not.

(ii) For EXPLOIT CODE (), the model () is    . disassembles the

parameter value of unescape and finds the pattern of executable code

(pushpush...call) in the value.

(iii) For REDIRECTION (), the model () is    . collects all URLs

in a HTML file () and calculates ranking of them. Based on the ranking, finds malicious

redirection among URLs. These three components of the model are described in detail below.

Model for Detecting Obfuscated JavaScript:

For model, the processing flow of the JavaScript string in the target function is the

primary focus. The target functions eval, document.write, and unescape were selected for

this process. The parameters of each function are related to the obfuscated and deobfuscated

strings. The detection of the obfuscated string is performed through static analyses, and

extraction of the deobfuscated string is undertaken through the execution of a web page. For

eval and document.write, when an obfuscated string is entered into the function code, the

function attempts to process the readable string; that is, the deobfuscated string. Therefore, the

IFH must access the start address of the function when the target functions are called. However,

the deobfuscated string of the unescape function can be gained when the target function is

returned. For the parameters of the unescape function, analyses were performed to detect

exploit codes.

Based on the process flow of the JavaScript string, an algorithm that analyzes the

malicious JavaScript code is proposed. Algorithm 1 verifies whether a web page includes an

obfuscated string based on the word size, and it deobfuscates the obfuscated string. For the

unescape function, the algorithm can locate an exploit code.

Algorithm 1. Analyzing obfuscated string

INPUT : HTML document

OUTPUT : Obfuscated check, Deobfuscated string, Exploit code check

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Extract code between <SCRIPT> and </SCRIPT> tags

Calculate WordSizes[1…n] in the code // WordSizes includes all word size in the code

if (Max(WordSizes) > threshold) {

 Monitor target functions // eval, document.write, unescape

 if (function == eval) || (function == document.write) {

 Extract Val // value of parameter of function)

 Notify that Val is deobfuscated string

 }

 else if (function == unescape) {

Extract Val // value of parameter of function)

 Notify that Val is deobfuscated string

 Disassemble Val as assem

 if (assem includes push instruction) || (Next assem is call instruction) {

 Notify that Val is exploit code

 }

 }

}

The input of this algorithm is a HTML document that can include many script codes. The

algorithm is applied to each SCRIPT tag. For example, if a page includes three SCRIPT tags,

the proposed algorithm is called three times. First, all codes between the <SCRIPT> and

774 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

</SCRIPT> tags (LINE1) are extracted; because it is difficult to only extract the value of a

parameter at the source code level, all codes in the SCRIPT tag are targetted. Statically, all

word sizes of the codes (LINE 2) are calculated, and then the obfuscated string is detected

based on the word size. Many obfuscated strings include unusually long word sizes. A word is

defined as the character set between two spaces; for example, in the statement of "if(a >= b)",

words are "if(", "a", ">=", "b" and ")". Maximum word sizes are used in order to decide

whether a page includes an obfuscated string (LINE 3).

If the maximum size is longer than the threshold, the proposed algorithm begins to monitor

the target functions in order to extract a deobfuscated string and detect an exploit code (LINE

4). The parameters of the target functions are extracted, and because the functions require a

readable value as a parameter, the deobfuscated string is always transmitted into their

parameter.

In the cases of the eval and document.write strings, the proposed algorithm extracts the

input value of the function parameter and notifies the users of the value (LINE 5-7). For the

unescape string, the proposed algorithm extracts the output value of the function parameter

and verifies whether the string is an exploit code (LINE 9-14). The proposed pattern for

detecting an exploit code is described in the following section.

Model for Detecting Exploit Code:

Some malicious JavaScript code includes an exploit code in order to execute the arbitrary code.

The exploit code is an assembly code that uses the vulnerability of the web browser or web

applications, such as buffer overflow. By allowing a user to execute the exploit code

unconsciously, the attacker can control the user's system.

A pattern related to the call instruction is used to decide whether the string is executable

code or not. A call instruction is used in an exploit code, because the code must call other APIs

to undertake various jobs. A pattern was found: push → … → push → call: that is, the push

instruction was executed at least once before the call instruction. This indicates that the exploit

code calls an API or a function with parameter(s). Because a normal string can only include a

call instruction when it is dissembled, the push instruction is considered to be related to the

function parameter. If the string includes this pattern, it was decided that the string was an

exploit code.

unescape("%u9090%u9090%u9090%u9090%ufce9%u0000%u5f00%ua164%u0030%u0000%u0c78%u408b%u8b0c

%u1c70%u8bad%u0868%u09eb%u408b%u8d34%u7c40%u688b%u8b3c%u6af7%u5904%u8fe8%u0000%ue200%u68f9

%u6e6f%u0000%u7568%u6c72%u546d%u16ff%ue88b ...");

90 nop

90 nop

90 nop

90 nop

90 nop

90 nop

90 nop

90 nop

e9fc000000 jmp 0032ee3d

5f pop edi

64a130000000 mov eax,dword ptr fs:[00000030h]

780c js 0032ed56

8b400c mov eax,dword ptr [eax+0Ch]

8b701c mov esi,dword ptr [eax+1Ch]

ad lods dword ptr [esi]

8b6808 mov ebp,dword ptr [eax+8]

eb09 jmp 0032ed5f

8b4034 mov eax,dword ptr [eax+34h]

8d407c lea eax,[eax+7Ch]

8b683c mov ebp,dword ptr [eax+3Ch]

8bf7 mov esi,edi

6a04 push 4

59 pop ecx

e88f000000 call 0032edf8

e2f9 loop 0032ed64

686f6e0000 push 6E6Fh

6875726c6d push 6D6C7275h

54 push esp

ff16 call dword ptr [esi]

8be8 mov ebp,eax

...

disassemble

Pattern

Not Pattern

Fig. 4. Pattern for detecting exploit code in malicious JavaScript

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 775

Fig. 4 shows an example of the exploit code being disassembled. "push 6E6Fh, push

6D6C7275h, push esp, call dword ptr [esi]" is the pattern that the exploit code uses to call

the APIs with three parameters. Although "e88f000000" is parsed into a call instruction, it

does not match the proposed pattern because the instruction does not have parameter(s).

Model for Detecting Redirection:

To force a web browser to access a malicious server, an attacker inserts malicious code for

redirection into a web page. Without the user realizing it, a user's web browser accesses the

malicious server, through the web pages with the embedded redirection code.

In this paper, only the execution of the web browser itself is a focus, and black list

matching using a malicious URL list is not considered. Therefore, suspicious URLs are

detected based on the URL's information included in the web page.

Suspicious URLs have the possibility of accessing a malicious server. A method for

locating suspicious URLs is proposed based on the domain name that the web browser

accesses. Suspicious URLs are verified based on two metrics:

 Ranking is the number of URLs which have same domain name. For example, if a

web page includes a URL such as www.yahoo.com five times, the ranking of the URL

is 5. Thus, the more related a URL is to the domain that a web browser accesses, the

higher the ranking is.

 Meaningful Word is a word used several times in URLs. Generally, URLs that

include meaningful words have a high ranking. For example, in www.yahoo.com, the

meaningful word is yahoo. General words related to classifications such as com, org,

www are excluded. For mail.yahoo.com, although the URL's ranking is one, it is not a

suspicious URL because it includes a meaningful word.

Algorithm 2. Detecting redirection

INPUT : HTML document

OUTPUT : Suspicious URLs

1

2

3

4

5

6

7

8

9

10

11

Extract URLs[1…n] in HTML document

Calculate Ranking of URLs // Ranking is number of URLs in the document

Extract meaningful words in URLs

for (i = 1 to n) {

 if (URLs[i].ranking == 1) || (URLs[i] doesn’t include meaningful words) {

 Analyze stack frame of URLs[i]

 if (URLs[i] is related to IFRAME) {

 Notify that URLs[i] is suspicious

 }

 }

}

Algorithm 2 is proposed for the detection of redirection to malicious servers. Firstly, all

URLs in a HTML document file (LINE 1) are extracted. Next, the rank of all URLs in the

HTML document (LINE 2) are calculated. The more URLs in the web page, the higher the

URL ranking. It was decided that URLs with a high rank are safe, because attackers generally

do not insert multiple URL redirection codes into HTML documents. Among the URLs that

have high ranking, the meaningful words (LINE 3) were extracted. The URL relationship to

the redirection for all URLs (LINE 4) was verified. The URL was examined if the URL's

ranking was one and did not include meaningful words (LINE 5). Next, the stack frame related

to URL (LINE 6) was analyzed. In the stack frame, there is a function for the tag to which the

URL is related: for IFRAME, the stack frame includes the

mshtml!CHtmIframeParseCtx::Execute function (LINE 7). If the IFRAME tag includes the

URL, it was decided that the URL is suspicious.

776 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

5. Implementation of JsSandbox

JsSanbox was implemented as a practical tool to detect and analyze malicious JavaScript code

based on the detection models described in this section. JsSandbox is a debugger that monitors

and extracts information related to various internal functions in the JavaScript engine and

HTML parser of a web browser.

JsSandbox can access the internal functions in DLL files, as well as the exported functions,

because it uses a debugging method with the public symbol files provided by Microsoft. The

symbol file includes information about the functions and data structures for debugging

programs in Windows systems. JsSandbox uses the WinDbg debugger engine [24], which is

the representative debugger for the Windows environment. In this paper, Internet Explorer 7

(IE7) and Windows Vista are the target platforms.

Before implementing JsSandbox, the HTML parser (mshtml.dll), JavaScript engine

(jscript.dll), and URL library (shlwapi.dll) in IE7 were analyzed through reverse engineering

in order to extract the information from the functions and parameters. In IE's HTML parser, a

tag is implemented as a class that includes codes related to the attributes and functions. For

example, the SCRIPT tag is implemented as CScriptElement in mshtml.dll. In order to

execute the script code, CScriptElement calls COleScript::ParseScriptText in jscript.dll.

That is, the HTML parser calls the JavaScript engine because the HTML parser cannot process

the JavaScript code. The JavaScript functions are defined as functions using prefix Js; for

example, eval is JsEval, unescape is JsUnescape, and so on. If the JavaScript code wants to

access the document object model (DOM), it recursively accesses the classes in mshtml.dll,

because the DOM is related to the HTML parser. For example, if the code is

eval(document.write()), the JavaScript engine calls CDocument::write in mshtml.dll

again.

JsSandbox monitors the HTML parser (mshtml.dll) and JavaScript engine (jscript.dll). The

HTML parser processes the DOM, which represents a tag as an object. In mshtml.dll, an object

is implemented as a class. For example, the SCRIPT tag is written as a CScriptElement class.

If the SCRIPT tag executes a JavaScript code, the HTML parser calls the COleScript class in

jscript.dll. This class processes the JavaScript code after the JavaScript engine parses the code.

Based on the analysis of the IE modules, the JsSandbox system was implemented for

sandboxing malicious JavaScript code in IE 7. Fig. 5 shows the architecture of the JsSandbox

system.

JsSandbox.exe mshtml.dll

jscript.dll

Other DLL files

Web Browser(iexplore.exe)

Symbol files

Execute

Monitor &

Control
Get information

of DLL files shlwapi.dll

dbgeng.dll

XML Analysis File

Write

Analysis Module

kernel32.dll

Fig. 5. Overall architecture of JsSandbox

JsSandbox traces iexplore.exe and sets a breakpoint for all functions related to the

proposed detection model through the debugger engine (dbgeng.dll). A symbol file helps

JsSandbox access the internal functions of IE. JsSandbox monitors some modules, such as

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 777

mshtml.dll, jscript.dll, shlwapi.dll, and kernel32.dll. After collecting data about the behavior

of the JavaScript code, JsSandbox analyzes the data and prepares an XML analysis report for

the analyst.

Detecting Obfuscation and Extracting Deobfuscated String

JsSandbox can detect whether the JavaScript is obfuscated or not, using the word size.

Because most obfuscated strings are very long, the maximum word size of the parameter in the

target function can be calculated. However, it is difficult to extract all values of the parameter

of target functions, because there are various descriptions for the variables related to the

parameter of target functions.

Therefore, the focus in this paper is on all statements that are in JavaScript code.

JsSandbox selects the longest word in the statements and decides whether the code is

obfuscated or not based on the word size. The code in the SCRIPT tag is related to

COleScript::ParseScriptText in jscript.dll. Therefore, after JsSandbox accesses the

second parameter of the function, it can extract all codes in the SCRIPT tag. The function is

called once per SCRIPT tag. If the word size is beyond a specified threshold, JsSandbox

determines that the JavaScript includes an obfuscated string.

JsSandbox monitors three functions: eval, document::write, and unescape, and obtains

the value of the parameter in order to extract the deobfuscated string. These functions assist in

executing the obfuscated string. The eval and unescape functions are implemented as

JsEval and JsUnescape in jscript.dll, and document.write is implemented as

CDocument::write in mshtml.dll.

In JsEval, the fifth parameter is directly related to the eval parameter. When JsEval is

called, a deobfuscated string exists at [[[esp+0x14]+0x8]+0x8]. Because all variable types in

JavaScript are VARIANT, its memory address is complex. The size value of the deobfuscated

string exists in the memory address four bytes ahead of the deobfuscated string.

CDocument::write receives it as a deobfuscated string through the second parameter and the

type of parameter is SAFEARRAY. The address of the string is [[[esp+0x8]+0xc]+0x8].

Therefore, JsSandbox obtains the deobfuscated string by extracting the value of parameter of

eval and document::write.

Detecting Redirection

JsSandbox extracts all URLs linked in a HTML document file using GetLocationW in

shlwapi.dll. This function is always called when a URL in a tag is parsed. When the function is

called, JsSandbox also examines the call stack frame by calling

IDebugControl->GetStackTrace. Through the call stack frame, JsSandbox can know which

tag is related to the URL.

For example, the IFRAME tag calls mshtml!CHtmIframeParseCtx::Execute and this

function calls GetLocationW. Therefore, JsSandbox targets operations related to redirection,

such as iframe, document.location, document.URL, window.location,

window.location.href, and so on. These JavaScript codes can redirect to another site

without the user's action. Therefore, JsSandbox monitors the value of parameter of

GetLocationW and the call stack frame.

Detecting Malicious Behavior

JsSandbox finds malicious behavior based on the assembly code. The focus of JsSanbox is on

an exploit code operated in a stack frame or a heap using a buffer overflow. In order to write

the byte codes of a string directly into the memory, the exploit code in JavaScript uses the

778 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

unescape function. Therefore, JsSandbox monitors JsUnescape in jscript.dll.

Its third parameter is related to the return value of the function, and the input value is

transferred into its fifth parameter. When JsUnescape is called, JsSandbox remembers the

address of [[esp+0xC]+0x8]+0x8. After the function is returned, JsSandbox reads the string at

the address. To disassemble the string, JsSandbox calls IDebugControl::Disassemble in the

WinDBG engine. Using the disassembly code, JsSandbox checks for the existence of the

pattern, push → … → push → call, as described in Section 4.2, and decides whether the

JavaScript code includes an exploit code.

6. Evaluation

JsSandbox was evaluated using the proposed detecting model for malicious JavaScript:

detecting obfuscation, extracting deobfuscated strings, detecting redirection, and detecting

exploit codes. Undoubtedly, JsSandbox can detect malicious code using other detection

models that have been presented in other research and have been developed continuously by

the current authors.

In an experiment, JsSandbox and a target program were operated in virtual environment

(e.g. VMWare) and controlled using a Virtualization Controller. JsSandbox executed IE and

IE accessed web pages periodically based on a URL list that was collected. In this experiment,

JsSandbox monitored the IE JavaScript engine for 60 seconds for each page. This time was

sufficient for JsSandbox to trace and analyze the behavior of IE.

6.1 Evaluation of the Internal Function Hooking

The number of functions that the API hooking and IFH can access were compared. In this

experiment, the IFH could access more functions than the API hooking because the IFH uses

the public symbol file.

In particular, for the COM, IE consisted of several COMs, but the API hooking could not

access the internal functions in the COM. Table 1 shows the number of functions that the API

hooking and IFH can access. Among IE's modules, mshtml.dll, jscript.dll, vbscript.dll,

urlmon.dll, and mlang.dll were COM.

Table 1. Number of functions that API hooking and IFH can access

Name API hooking IFH COM

mshtml 13 26,154 O

jscript 4 3,539 O

vbscript 4 4,066 O

wininet 247 4,049

urlmon 219 5,457 O

mlang 14 1,056 O

shlwapi 858 3,573

For example, in order to access the functions in jscript.dll, API hooking can access only

four functions: DllCanUnloadNow, DllGetClassObject, DllRegisterServer, and

DllUnregisterServer, because it cannot access the internal functions of COM. However, the

IFH can access 3,539 internal functions, such as JsEval and JsUnescape. Furthermore,

JsSandbox targeted the functions of the JavaScript engine and HTML parser such as JsEval,

JsUnescape, COleScript::ParseScriptText, and CDocument::write. These functions can

only be accessed by the IFH.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 779

The IFH can monitor not only the functions that can be monitored by API hooking but also

internal functions, because the public symbol includes information for exported functions and

internal functions. In wininet.dll, the number of symbols is 4,049 and the number of exported

functions is 247.

JsSandbox was applied to Internet Explorer 6, 7, and 8 on Windows XP, Vista, and 7.

Without additional modification, after the analysis for each Windows and IE version,

JsSandbox was used for all versions to analyze malicious JavaScript code.

For the Ultimate Deobfuscator [12], if some modules were changed, these modules in all

versions needed to be analyzed in order to set the start memory address of the functions in the

COM object. The memory address of JsEval symbol is as follows: Windows XP SP 3 & IE 7

(0x75ba4bba), Windows Vista & IE 7(0x6e6f81d9), and Windows 7 & IE 8 (0x6bb1912a).

6.2 Evaluation of the Malicious JavaScript Code Detection

Malicious JavaScript code was analyzed with JsSandbox using the proposed detection model.

Firstly, the inclusion of an obfuscated string in a JavaScript code was analyzed. Obfuscation is

the changing of the shape of a string in order to avoid a signature-based detection system.

Recently, many JavaScript attacks have used obfuscation methods, and there are various

methods for obfuscation [12][25].

Using Google, 452,892 web pages were collected, including 123,404 JavaScript files. In

order to analyze the JavaScript code, the js files were collected separately. Among the web

pages, it was found that the eval function was used 91,741 times, the document.write

function was used 172,121 times, and the unescape function was used 38,657 times. Because

these functions are related to obfuscation, the maximum word size of the parameter value of

the functions was calculated.

Table 2 shows the distribution of the maximum word size in three functions: eval,

document.write, and unescape. 55 bytes indicates that 90% of the parameters of the eval

function were shorter than 55 bytes. The word size was selected to be 95% as the threshold for

deciding obfuscation. Therefore, if the maximum word size of the strings in JavaScript was

longer than the word size threshold, it was considered to be potentailly obfuscated and it was

then analyzed.

Table 2. Average word size of parameters of target function

 eval document.write unescape

90% 55 bytes 82 bytes 35 bytes

95% 126 bytes 82 bytes 41 bytes

Next, all word sizes in the script codes were verified statically without considering the

parameters of the target functions. Fig. 6 shows the distribution of the word size of the string in

JavaScript codes. Most sizes were concentrated within 100 bytes.

The previous two experiments demonstrated that the parameter values of the target

functions and codes in script tags have similar distributions in word sizes. Most word sizes are

concentrated in approximately 100 bytes: 99% of string word sizes were shorter than 120 bytes.

Therefore, the threshold for deciding obfuscation was the word size longer than 120 bytes. In

order to reduce false positives, the threshold was set at 500 bytes, and JsSandbox analyzed the

top 500 sites in Alexa [26]. The web sites did not include JavaScript strings longer than 500

bytes.

780 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

Fig. 6. Distribution of word sizes in JavaScript code strings.

Because attackers use smaller web sites more often than popular portal sites, 142,117

small web sites were collected. In these web pages, 19 obfuscated strings were found based on

word size: the maximum word size varied from 536 bytes to 11,079 bytes.

For the obfuscated string, JsSandbox can extract a deobfuscated string. Fig. 7 shows an

example of a real malicious JavaScript code that JsSandbox found, and the word size of the

sting, which was 758 bytes. After deobfuscating the obfuscated string, a web browser accessed

2.htm, 3.htm, and 4.htm automatically because it included the IFRAME tag. JsSanbox

deobfuscated all 19 obfuscated strings that were found. JsSandbox extracted the deobfuscated

strings from the parameters of the eval, document.write, and unescape functions.

One feature of malicious JavaScript code is redirection, which changes the connection of

the web site to an arbitrary URL. By doing this, the attacker can force a web browser to

download malware or force a user view an unexpected advertisement. JsSandbox extracts the

URL from parameter of the GetLocationW function in shlwapi.dll and the information from

call stack related to that URL. JsSandbox can know the tag name related to the redirection

using the information from the call stack. For example, IFRAME tag calls functions in

CHtmIframeParseCtx class.

document.writeln("<iframe src=4.htm width=1 height=1 ><\/iframe>");
document.writeln("<iframe src=2.htm width=1 height=1 ><\/iframe>");
document.writeln("<iframe src=3.htm width=1 height=1 ><\/iframe>");

Eval("\144\157\143\165\155\145\156\164\56\167\162\151\164\145\154\156\50\42\74\151\146\162\141\155\145\40\
163\162\143\75\64\56\150\164\155\40\167\151\144\164\150\75\61\40\150\145\151\147\150\164\75\61\40\76\74\
134\57\151\146\162\141\155\145\76\42\51\73\15\12\144\157\143\165\155\145\156\164\56\167\162\151\164\145\
154\156\50\42\74\151\146\162\141\155\145\40\163\162\143\75\62\56\150\164\155\40\167\151\144\164\150\75\61\
40\150\145\151\147\150\164\75\61\40\76\74\134\57\151\146\162\141\155\145\76\42\51\73\15\12\144\157\143\
165\155\145\156\164\56\167\162\151\164\145\154\156\50\42\74\151\146\162\141\155\145\40\163\162\143\75\63\
56\150\164\155\40\167\151\144\164\150\75\61\40\150\145\151\147\150\164\75\61\40\76\74\134\57\151\146\162\
141\155\145\76\42\51\73")

BEFORE Deobfuscation

AFTER Deobfuscation

Fig. 7. Deofuscation of obfuscated malicious JavaScript code

Among the 142,117 web pages, JsSandbox found 8 URLs related to redirection among the

suspicious URLs. Two features were used to find the redirection to a malicious web page:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 781

ranking and IFRAME tag. JsSandbox decided that a web site included redirection codes when

the ranking of some URLs were one, and the redirection was related to the IFRAME tag.

JsSandbox detected 8 web pages that redirected the web browser to suspicious sites. The focus

was on the IFRAME tag because most web pages including redirection use this tag.

Finally, JsSandbox was evaluated for its detection of exploit code. Exploit codes were

collected from real world examples and the Milw0rm site [27]. In Milw0rm, all

JavaScript-related exploit codes are gathered that were published in 2009. After disassembling

the parameter values of JsUnescape using JsSandbox, some exploit codes were detected from

the disassembled code. Three malicious codes were found based on the proposed detection

model.

Table 3. Patterns of exploit code in real world detected by JsSandbox

#1 exploit code
53 push ebx

FF D0 call eax

#2 exploit code
68 00 20 00 00 push 2000h

6A 00 push 0

FF D0 call eax

#3 exploit code
52 push edx

FF D0 call eax

Table 3 shows the patterns that JsSandbox detected in the real world. The call eax

instruction indicates that the exploit code calls a function and the previous push instruction

indicates that the code inserts a parameter of the function into the memory. Next, the exploit

codes from the Milw0rm site were used in experiments. JsSandbox found three exploit codes

from the 11 codes. Eight exploit codes did not include the proposed pattern. Table 4 shows the

proposed pattern in the three exploit codes that were found by JsSandbox.

Table 4. Patterns of exploit code from the Milw0rm site detected by JsSandbox

#1 exploit code
66 53 push bx

66 68 33 32 push 3233h

68 77 73 32 5F

 push 5F327377h

54 push esp

FF D0 call eax

#2 exploit code
FF 37 push dword ptr [edi]

56 push esi

E8 33 00 00 00

call 001fe7ec

#3 exploit code
53 push ebx

FF 57 F8

call dword ptr [edi-8]

7. Conclusion

A tool was proposed for analyzing malicious JavaScript code, JsSandbox, that can analyze and

detect malicious JavaScript code using internal function hooking. Since JsSandbox uses the

engine of the WinDBG debugger and the public symbols provided by Microsoft, it can access

various internal functions in the JavaScript engine.

After attaching JsSanbox to IE, JsSandbox traced the JavaScript engine (jscript.dll),

HTML parsing engine (mshtml.dll), and so on. It was found that the internal function hooking

supplied more sophisticated analysis results than API hooking. Since JsSandbox is a general

framework, it can be extended to analyze another malicious code such as VBScript and Perl.

Most research has used the JavaScript engine of Mozilla, SpiderMonkey, because it is

open source. However, in this paper, JsSandbox was implemented in Microsoft Internet

Explorer after reverse engineering of the IE modules. Therefore, JsSandbox can detect threats

propagated by IE from malicious JavaScript code. Also, the functions of JsSanbox were

extended in order to analyze other malicious codes such as VBScript.

Some features for detecting malicious JavaScript code were proposed and were

subsequently applied to JsSandbox. Evaluation of these features demonstrated that JsSandbox

782 Kim et al.: JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code

can analyze and detect several malicious JavaScript codes using the proposed features.

In order to detect malicious JavaScript more accurately, more patterns of malicious

behavior in JavaScript are required. Thus, the behavior of various malicious javascript have

been modeled. Using the new malicious model, JsSanbox can detect malicious JavaScript

code with low false positive and false negative results.

References

[1] J. Gregoire, “JavaScript and Visual Basic Script Threats: Different scripting language for different malicious

purposes,” in Proc. of 18th EICAR Annual Conference, 2009. Article (CrossRef Link)

[2] S. Shah, “Browser Exploits: Attacks and Defense”, EUSecWest, 2008. Article (CrossRef Link)

[3] M. Egele, E. Kirda and C. Kruegel, “Mitigating drive-by download attacks: Challenges and open problems,” in

Proc. of iNetSec 2009 - Open Research Problems in Network Security Workshop, pp.52-62, 2009. Article

(CrossRef Link)

[4] C. Willems, T. Holz and F. Freiling, “Toward automated dynamic malware analysis using CWSandbox,” IEEE

Security & Privacy, vol.5, pp.32-39, Mar.2007. Article (CrossRef Link)

[5] U. Bayer, C. Kruegel and E. Kirda, “TTanalyze: A Tool for Analyzing Malware,” in Proc. of 15th EICAR

Annual Conference, 2006. Article (CrossRef Link)

[6] Norman Sandbox, http://www.norman.com.

[7] VMWare, http://www.vmware.com.

[8] F. Bellard, “QEMU, A fast and portable dynamic translator,” in Proc. of USENIX Annual Technical Conference,

pp.41-46, 2005. Article (CrossRef Link)

[9] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen and S. King, “Automated web patrol with

strider HoneyMonkeys,” in Proc. of Network and Distributed System Security Symposium, pp.35-49, 2006.

Article (CrossRef Link)

[10] COM: Component Object Model Technologies, http://www.microsoft.com/com/default.mspx

[11] R. Kawach, “NEPTUNE: Detecting Web-Based Malware via Browser and OS Instrumentation,” Black Hat

USA, 2010. Article (CrossRef Link)

[12] S. Chenette, “The Ultimate Deobfuscator”, ToorCon, 2008. Article (CrossRef Link)

[13] K. Chellapilla and A. Maykov, “A Taxonomy of JavaScript redirection Spam,” in Proc. of 3rd International

Workshop on Adversarial Information Retrieval on Web, pp.81-88, 2007. Article (CrossRef Link)

[14] J. Nazario, “Reverse engineering malicious JavaScript,” CanSecWest, 2007. Article (CrossRef Link)

[15] N. Provos, D. McNamee, P. Mavrommatis, K. Wang and N. Modadugu, “The Ghost in the browser analysis of

web based malware,” in Proc. of USENIX First Workshop on Hot Topics in Understanding Botnets, 2007.

Article (CrossRef Link)

[16] A. Ikinci, T. Holz and F. Freiling, “Monkey-Spider: Detecting malicious WebSites with low interaction

Honeyclients,” in Proc. of Sicherheit, Schutz und Zuverlässigkeit, 2008. Article (CrossRef Link)

[17] B. Feinstein and D. Peck, “Caffeine Monkey: Automated collection, detection and analysis of malicious

JavaScript,” Black Hat USA, 2007. Article (CrossRef Link)

[18] O. Hallaraker and G. Vigna, “Detecting malicious JavaScript code in Mozilla,” in Proc. of 10th IEEE Int.

Conference on Engineering of Complex Computer Systems, pp.85-94, 2005. Article (CrossRef Link)

[19] A. Dewald, T. Holz, and F.C. Freiling, “ADSandbox: Sandboxing JavaScript to fight Malicious Websites”, in

Proc. of 25th Symposium on Applied Computing, pp. 1859-1864, 2010. Article (CrossRef Link)

[20] M. Cova, C. Kruegel and G. Vigna, “Detection and analysis of drive-by-download attacks and malicious

JavaScript vode,” in Proc. of 19th International World Wide Web Conference, pp.281-290,2010. Article

(CrossRef Link)

[21] Decrypt JS, http://www.ukhoneynet.org/tools/decrypt-js/.

[22] Rhino: JavaScript for Java, http://www.mozilla.org/rhino/.

[23] NJS JavaScript Interpreter, http://sourceforget.net/projects/njs/.

[24] Debugging Tools for Windows, http://www.microsoft.com/whdc/devtools/debugging/default.mspx.

[25] Kolisar, “WhiteSpace: A Different approach to JavaScript obfuscation,” DEFCON 16, 2008. Article

(CrossRef Link)

[26] Alexa Top 500 Sites, http://www.alexa.com/.

[27] Milw0rm, http://www.milw0rm.com/.

http://www.eicar.org/files/tutorial_js_vbs_threats.pdf
http://eusecwest.com/esw08/esw08-shah.pdf
http://dx.doi.org/10.1007/978-3-642-05437-2_5
http://dx.doi.org/10.1007/978-3-642-05437-2_5
http://dx.doi.org/10.1109/MSP.2007.45
http://www.iseclab.org/papers/ttanalyze.pdf
http://www.usenix.org/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/papers/honeymonkeys.pdf
https://community.qualys.com/servlet/JiveServlet/downloadBody/1434-102-4-1675/Black_Hat_US_2010_Neptune.pdf
http://securitylabs.websense.com/content/Blogs/3198.aspx
http://dx.doi.org/10.1145/1244408.1244423
http://cansecwest.com/csw07/csw07-nazario.pdf
http://www.usenix.org/event/hotbots07/tech/full_papers/provos/provos.pdf
http://pi1.informatik.uni-mannheim.de/filepool/publications/monkey-spider.pdf
https://www.blackhat.com/presentations/bh-usa-07/Feinstein_and_Peck/Whitepaper/bh-usa-07-feinstein_and_peck-WP.pdf
http://dx.doi.org/10.1109/ICECCS.2005.35
http://dx.doi.org/10.1145/1774088.1774482
http://dx.doi.org/10.1145/1772690.1772720
http://dx.doi.org/10.1145/1772690.1772720
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-kolisar.pdf
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-kolisar.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012 783

Hyoung Chun Kim is currently a senior member of engineering staff and the team leader in the Attached Institute

of Electronics and Telecommunications Research Institute. His research interests include software security,

intrusion detection systems, and network security. He received his B.Sc. and M.Sc. degrees in Computer Science

from Korea University, Korea, in 1999 and 2001, respectively. He got his Ph.D. degree from the Graduate School

of Information Security of Korea University, Korea, in 2011.

Young Han Choi is currently a senior member of engineering staff in the Attached Institute of Electronics and

Telecommunications Research Institute. His research interests include software security, intrusion detection

systems, and operating system. He received his B.S. and M.S. degrees in electronic engineering from Hanyang

University and Korea Advanced Institute of Science and Technology, Korea, in 2002 and 2004, respectively.

Dong Hoon Lee is a professor of Graduate School of Information Security of the Korea

University in Korea. He received his B.S (1985) of Economics from the Korea University,

M.Sc. (1988) from the University of Oklahoma, and Ph.D. (1992) from the University of

Oklahoma. He was a faculty member at the University of Dankook of Korea from 1992 to

1993 before he joined the Korea University in 1993. He was an Editor-in-Chief at Korea

Institute of Information Security and Cryptology (KIISC, 2002), Program Co-Chair of

ICISC (International Conference on Information Security and Cryptology) Program

Committee. He has been a chairman at Electronics Election Research (EER) and Mobile

Payment Standard Association (MPSA). He is the leading researcher on Information

Security, Cryptology, and Ubiquitous Security Study.

