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Abstract 
 

Recently, many malicious users have attacked web browsers using JavaScript code that can 

execute dynamic actions within the browsers. By forcing the browser to execute malicious 

JavaScript code, the attackers can steal personal information stored in the system, allow 

malware program downloads in the client’s system, and so on. In order to reduce damage, 

malicious web pages must be located prior to general users accessing the infected pages. In 

this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of 

malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as 

the hooking of all functions in the modules using the debug information and extracting the 

parameter values. The use of IFH enables the monitoring of functions that API hooking cannot. 

JsSandbox was implemented based on a debugger engine, and some features were applied to 

detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the 

obfuscated string, detection of URLs related to redirection, and detection of exploit codes. 

Then, the proposed framework was analyzed for specific features, and the results demonstrate 

that JsSandbox can be applied to the analysis of the behavior of malicious web pages. 
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1. Introduction 

The JavaScript language is a powerful tool that can execute dynamic actions such as reading 

a cookie file, providing dynamic content, and generating another code in a web browser. As a 

result of these abilities, a remote attacker can compromise a client's system by inserting 

malicious JavaScript code into an HTML page, allowing web browsers to read it [1][2]. Using 

malicious JavaScript code, an attacker can steal personal information in the system and 

download other malicious software into the victim’s system without the consent or knowledge 

of the user [3]. 

To defend against such threats, malicious JavaScript code must be detected before the 

code's activity affects the system. Research to help analyze and detect malicious JavaScript 

code is ongoing and widespread. Normally, static or dynamic JavaScript code analysis 

approaches are used, but static analyses are limited, because they cannot completely 

encompass the various behaviors of JavaScript. For example, static methods have difficulty 

analyzing and detecting obfuscated JavaScript. Another drawback is that they cannot cover 

JavaScript's self generating feature during run time. 

Dynamic analyses can analyze the various behaviors of malicious JavaScript code. These 

dynamic analyses perform monitoring functions and arguments of the JavaScript engine. 

Many research projects use SpiderMonkey, the JavaScript engine for Mozilla, to monitor the 

behavior of JavaScript. Since SpiderMonkey is open source software, it is possible to 

implement a logger at the source code level to analyze the behavior of JavaScript. 

In this paper, JsSandbox is presented, a system that dynamically analyzes malicious 

JavaScript code using a debugging technique. Because Microsoft Internet Explorer (IE) uses 

jscript.dll as its JavaScript engine and is not open source, JsSandbox traces all functions and 

arguments using the debug information which is named as a symbol file in Windows systems. 

The method of accessing functions using the symbol files is defined as internal function 

hooking (IFH).  

To evaluate JsSandbox, some features for detecting malicious JavaScript code are 

proposed and implemented in JsSandbox. 
 

The contributions of this paper are as follows: 

 A tool, JsSandbox, is proposed that can analyze and detect malicious JavaScript code 

using internal function hooking. Internal function hooking supplies more sophisticated 

analysis results than API hooking. 

 Because JsSandbox is a general framework, it can be extended to analyze other 

malicious codes such as VBScript and Perl. 

 Most research has used the JavaScript engine of Mozilla, SpiderMonkey, because it is 

open source. However, JsSandbox can detect threats in IE that have been propagated 

from malicious JavaScript code. JsSandbox was implemented in Microsoft Internet 

Explorer after reverse engineering the IE modules. 

 Some features for detecting malicious JavaScript code are proposed and applied to 

JsSandbox. The evaluation demonstrates that JsSandbox can analyze and detect several 

malicious JavaScript codes using the proposed features. 

 

This paper is organized as follows. In Section 2, research related to the detection and 

analysis of malicious JavaScript code is introduced. Next, in Section 3, internal function 
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hooking is described. The method to detect malicious JavaScript code is proposed in Section 4. 

Then, the designed and implemented JsSandbox is discussed in Section 5, and Section 6 

presents the evaluation of the JsSandbox with reference to some cases. Last, the research is 

concluded and the future work is explained in Section 7. 

2. Related Work 

JsSandbox is a framework for tracing and analyzing the behavior of malicious JavaScript code 

in a web browser by hooking the internal functions in the JavaScript engine and HTML parser. 

In this section, current research that analyzes malware using sandboxes, and detects malicious 

JavaScript code, is described. 

Sandboxing: The representative sandbox program for the analysis of malicious code is 

CWSandbox [4]. This program traces and analyzes the behavior of malware using API 

hooking such as process creation, file creation, and network communication in Windows 

systems, by targeting the external functions in kernel32.dll, ws2_32.dll, and so on. After 

hooking these APIs, CWSandbox generates an analysis report about the malicious software 

behaviors. TTAnalyze [5] also uses API hooking to analyze the behavior of a malware. 

Norman sandbox [6] analyzes the execution of malware in simulated computer system and 

network environments. 

These sandboxes run malware in a virtualized or emulated environment, such as VMWare 

[7] and QEMU [8], in order to execute the malware in an isolated system. Wang et al. [9] 

developed a tool, HoneyMonkey, that can detect malicious web pages using a virtual machine 

based on the system behavior. Because it targets drive-by-downloads, it monitors the behavior 

of a web browser, including the process creation, file creation, and so on; this method also uses 

API hooking. 

However, the API hooking approach is limited because it can only access the exported 

functions in the DLL files. Thus, API hooking is not suitable for analyzing malicious 

JavaScript codes in IE because many IE modules, such as jscript.dll, mshtml.dll, and ActiveX 

Controls, are implemented as component object model (COM) files [10]. 

The export functions in the COM object avoid the analysis of sophisticated malicious 

JavaScript code. In order to overcome this drawback, NEPTUNE [11] uses an arbitrary 

hooking method that can hook internal functions in the COM object. However, the arbitrary 

hooking requires prior tedious and labor intensive processes to determine the target address in 

the memory. Arbitrary hooking methods access the functions using the hard-coded absolute 

address of the functions in the memory. When the target module or runtime state version is 

changed, the tedious and labor intensive process must be performed again. 

In contrast, JsSandbox can access the internal functions in the COM object, using the 

relative address of the functions in the memory, by applying a debugging approach with the 

symbol files. 

JsSandbox is a system for tracing and analyzing the behavior of malicious JavaScript code 

in a web browser by hooking the internal functions in the JavaScript engine and HTML parser. 

Chenette proposed a method that hooks the internal functions in a DLL file and performed it 

using DLL hooking [12]. This approach is similar to the proposed system because it focuses on 

internal functions for analyzing the JavaScript engine. However, because this approach must 

know the memory address of target functions in advance when the file is loaded in the memory, 

it is difficult to hook the internal functions. Alternatively, because the debug information is 

used here, the internal functions can be accessed in a stable manner. 
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Malicious JavaScript Code Detection: There has been much research on the detection 

and analysis of malicious JavaScript code. In reference [13], the authors studied various 

JavaScript redirections in spam pages and found that obfuscation techniques were prevalent 

among the redirections. In reference [14], the author introduced various malicious JavaScript 

attacks and obfuscation methods. He found that the eval and document.write functions were 

the most used functions in malicious web pages. This research has focused on the malicious 

JavaScript codes themselves. 

Provos et al. [15] declared that web pages were malicious if the web pages caused the 

automatic installation of software without the user's knowledge or consent. They found 

malicious web pages by dynamically monitoring the behavior of Internet Explorer in a virtual 

machine. In their research, the authors observed that a number of web pages in reputable sites 

were obfuscated, and found that the obfuscated JavaScript is not in itself a good indicator of 

malice. 

Ikinci et al. implemented a low interaction honeyclient system, MonkeySpider, for 

detecting malicious web pages [16]. Feinstein et al. analyzed JavaScript obfuscation cases and 

implemented an obfuscation detection tool [17]. They hooked the eval function and string 

concatenation method, based on Mozilla's SpiderMonkey. Hallaraker et al. proposed a method 

that monitors the JavaScript code execution, to detect malicous code behavior, and evaluated a 

mechanism that audits the execution of JavaScript codes [18]. 

These methods modified the open source JavaScript engine; nonetheless they cannot be 

applied to Internet Explorer (IE), which is the Internet browser with the largest market share in 

the world. ADSandbox [19] is a tool that analyzes JavaScript code using a sandbox 

implemented by the Mozilla JavaScript engine, SpiderMokey, in a Microsoft Windows and IE 

environment. However, the tool cannot completely analyze the threat of IE functions 

propagated from malicious JavaScript code, because of the imperfect emulation of IE in the 

SpiderMonkey-based environment. Cova et al. [20] proposed various features for detecting 

malicious JavaScript code in an emulated environment using the HtmlUnit and demonstrated 

their validation. 

Another approach for detecting malicious JavaScript code is to use emulators of JavaScript 

engines such as DecryptJS [21], Rhino [22], NJS [23], and so on. DecryptJS is a tool that 

allows obfuscated JavaScript code to be readable in FireFox. Rhino is an open source 

implementation of JavaScript written entirely in Java, and NJS is a JavaScript interpreter. 

These emulators are limited because they are not real JavaScript engines, whereas JsSandbox 

traces the real JavaScript engine of Microsoft IE. 

3. Internal Function Hooking 

API hooking is mostly used for analyzing the behavior of a program in a Windows system. In 

a Windows system, the API is a function exported in a DLL file: API hooking changes the 

execution flow of the program into an arbitrary flow and extracts the values of the API 

parameters. Most sandboxes use API hooking approaches such as the CWSandbox [4]. 

However, API hooking can only access exported functions in a DLL file, except for various 

internal functions. 

For example, when monitoring a JavaScript engine, API hooking cannot trace the flow in it, 

because the JavaScript engine is implemented by a COM process and does not have APIs for 

JavaScript. For this reason, a method that can monitor various internal functions in the 

modules of the web browser using debugging information is proposed. 
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Generally, debugging information includes the function information, global or local 

variable information, and so on. In a Windows system, debugging information is named as a 

private symbol or public symbol. Microsoft provides public symbols for the Windows OS, 

including Internet Explorer (IE). The public symbols include only the name and starting 

address of the functions and global variables. For example, the JavaScript engine (jscript.dll) 

of IE in Windows Vista includes 3,623 symbols, and the symbols represent all functions 

implemented in the JavaScript engine. 

Using the public symbol allows the JavaScript engine of Internet Explorer to be monitored 

and analyzed. A symbol's function is defined as an internal function (IF), and accessing the IF 

using a debugging mechanism is defined as internal function hooking (IFH). That is, IFH sets 

the breakpoint at the starting address of the target function and catches the exception for the 

breakpoint using the debugger engine. The WinDBG debugger (dbgeng.dll) is used in this 

method because public symbols are being used. 

 

695441b9 8bff   mov  edi,edi

695441bb 55     push ebp

695441bc 8bec   mov  ebp,esp

695441be 8b4508 mov  eax,dword ptr [ebp+8]

695441c1 83ec54 sub  esp,54h

...

jscript!JsEvalDebugBaseEventCallbacks::Breakpoint

   access Registers

   access Call Stack Frames

   …

1

2

Debugger Process Debuggee Process

 

Fig. 1.  Internal function hooking monitors the eval function of JavaScript 

Fig. 1 shows an example where the IFH monitors the eval function of the JavaScript code. 

The debuggee is the target program, and the debugger is the analyzer. In the JavaScript engine 

(jscript.dll), eval is implemented as JsEval. In order to set the breakpoint at the JsEval 

function, the IFH accesses the symbol using the Jscript!jsEval string. This means that the 

JsEval function is in the jscript.dll module. 

If the breakpoint is set at the function, the debugger engine substitutes the first one byte of 

the start address of the JsEval to be 0xCC. If the flow of the program execution meets the 0xCC 

byte, the program generates the exception for the breakpoint. 

(1) When the execution flow of the JavaScript code reaches JsEval, the debugger engine 

catches the breakpoint event. 0x695441b9 is a starting address of a JsEval function. Because 

the IFH uses symbols, it does not need to know the memory address of the function in advance. 

The IFH simply accesses the location using the starting address information of the function in 

the symbol. 

An advantage of the IFH is the use of the debugging information. As a result, the debugger 

engine has control of the web browser. In that case, the debugger calls the 

DebugBaseEventCallbacks::Breakpoint function, permitting a user to add their own code. 

The malicious JavaScript code is monitored and analyzed by extracting the values of the 

parameters of JsEval, the information for the call stack frames, and so on. For example, 

[esp+0x4] is the first parameter of the hooked function and [esp+0x4*n] is the n-th 

parameter of the function. 

(2) After obtaining the information for the function, the IFH gives the execution control to 

IE. By doing this, the IFH performs monitoring for the JsEval function. 
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4. Detection Model for Malicious JavaScript Code 

In this section, the execution flow of JavaScript code in a web browser is analyzed first to 

make a model for detection. Then, based on the analysis, some threats of malicious JavaScript 

code are modeled. 

4.1 Execution Flow of JavaScript Code 

A web browser parses and executes a HTML document after downloading it into the local 

computer system. In order to parse dynamic HTML (DHTML), the browser makes a 

document object model (DOM) tree, and then executes each node related to the HTML tags. In 

the web page, client script languages such as JavaScript and VBScript can access and control 

all nodes of the DOM tree. 

To model the behavior of malicious JavaScript code, the execution flow of JavaScript code 

is analyzed and defined, as shown in Fig. 2. 

Firstly, the web browser requests a web page from a web server (A0), downloads the web 

page (A1), and parses the HTML document file. Using the HTML document, the web browser 

creates a DOM tree composed of the various HTML tags (A2). In the DOM tree, each node is 

related to tags, such as HTML, BODY, SCRIPT, and so on. The web browser displays and 

executes each node. 

In this paper, the focus is on the SCRIPT tag, because JavaScript codes are embedded 

within this tag. When a browser executes the script codes (such as JavaScript or VBScript) in 

the SCRIPT tag, the execution flow reaches the S0 state and the browser parses codes from the 

<SCRIPT> tag until the </SCRIPT> tag. 

 

DOWNLOAD

(A1)

DOM

PARSING(A2)

SCRIPT

TAG(S0)

REDIRECTION

(R) EVENT

(E)

OBJECT

TAG(A3)

OBJECT

FUNCTION(S4)

EXECUTION

FUNCTION(S3)

GENERAL

FUNCTION(S1)

BROWSER

(B)

ACCESS WEB 

PAGE(A0)

Download HTML

Download HTML

Register event

Register event

Fire event

Parse HTML page

Parse Object Tag

return

Parse script tag

Call function in object

return

Execute general operations

Execute execution function

Access browser

return

Request other web page

Request other web page

Request other web page

Access other tags

STRING

FUNCTION(S2) return

return

returnreturn Execute function

related to string

Processing in SCRIPT Tag

 

Fig. 2.  Execution flow of JavaScript code 
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In the GENERAL FUNCTION (S1) state, the JavaScript engine only executes general 

JavaScript functions such as Sqrt, Max, and so on. Most malicious JavaScript code targets 

functions that are related to string. Therefore, in this paper, the string functions are the primary 

focus. In the STRING FUNCTION (S2) state, the JavaScript engine performs various string 

operations. In this state, malicious JavaScript code changes shape of its own accord, 

deobfuscates the obfuscated string, and executes the exploit code. 

Recently, because many malicious JavaScript codes use obfuscation, another state was set 

for obfuscation, the EXECUTION FUNCTION (S3). The execution function state includes 

the eval, document.write, and similar functions. If a real malicious code is at another web 

server, the web browser is redirected to the server (REDIRECTION). Then, the browser 

reaches the DOWNLOAD (A1) state again. 

There are many cases where the malicious JavaScript code attacks the vulnerabilities of 

web browsers or web applications. For example, if a malicious JavaScript code exploits the 

vulnerability of an ActiveX control, the browser goes to the OBJECT FUNCTION (S4) state. 

In this state, the internal functions implemented in the ActiveX Control are called. Because 

this execution flow focuses on the execution of the JavaScript code, the focus is on the string 

related to the exploit code, rather than the execution of exploit code in the memory. 

4.2 Model for Detecting the Behavior of Malicious JavaScript Code 

In this section, a model that detects malicious JavaScript is created based on the execution 

flow that was analyzed in the previous section. Using the proposed model, we make a model 

for detecting malicious JavaScript (Obfuscation, Exploit code, and Redirection) as shown in 

Fig. 3. 

 

0S 1S

2S

8S

6S

3S

7S
9S

5S4S

Parsing start

Normal parsing

Parsing 

document.write() 

and eval()

Parsing unescape()

ParameterSize > Threshold

ParameterSize > Threshold

Disassemble

parameter

PUSH instruction

CALL instruction

Parsing End

Calculate URL 

ranking

Call GetLocationW()

return

OBFUSCATION

EXPLOIT CODE

REDIRECTION

 

Fig. 3.  Model for detecting the behavior of malicious JavaScript code 

In this paper, we focus on three behaviors of malicious JavaScript code: obfuscation ( ), 

exploit code ( ), and redirection ( ).  means the initial state of JavaScript tag.  

represents the normal state that parses JavaScript code, and  is the state that parses a URL in 

a HTML file. Thus, most of script codes are handled in  and  states. 
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(i) For OBFUSCATION ( ), the model ( ) is    and   .  is 

related to some functions: eval, document.write, and unescape. After extracting the 

parameter value in the functions,  checks size of the value to determine whether it is 

obfuscated or not. 

(ii) For EXPLOIT CODE ( ), the model ( ) is    .  disassembles the 

parameter value of unescape and finds the pattern of executable code 

(pushpush...call) in the value. 

(iii) For REDIRECTION ( ), the model ( ) is    .  collects all URLs 

in a HTML file ( ) and calculates ranking of them. Based on the ranking,  finds malicious 

redirection among URLs. These three components of the model are described in detail below. 

Model for Detecting Obfuscated JavaScript:  

For   model, the processing flow of the JavaScript string in the target function is the 

primary focus. The target functions eval, document.write, and unescape were selected for 

this process. The parameters of each function are related to the obfuscated and deobfuscated 

strings. The detection of the obfuscated string is performed through static analyses, and 

extraction of the deobfuscated string is undertaken through the execution of a web page. For 

eval and document.write, when an obfuscated string is entered into the function code, the 

function attempts to process the readable string; that is, the deobfuscated string. Therefore, the 

IFH must access the start address of the function when the target functions are called. However, 

the deobfuscated string of the unescape function can be gained when the target function is 

returned. For the parameters of the unescape function, analyses were performed to detect 

exploit codes. 

Based on the process flow of the JavaScript string, an algorithm that analyzes the 

malicious JavaScript code is proposed. Algorithm 1 verifies whether a web page includes an 

obfuscated string based on the word size, and it deobfuscates the obfuscated string. For the 

unescape function, the algorithm can locate an exploit code. 

 
Algorithm 1. Analyzing obfuscated string 

INPUT : HTML document 

OUTPUT : Obfuscated check, Deobfuscated string, Exploit code check 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Extract code between <SCRIPT> and </SCRIPT> tags 

Calculate WordSizes[1…n] in the code // WordSizes includes all word size in the code 

if (Max(WordSizes) > threshold) { 

   Monitor target functions // eval, document.write, unescape 

   if (function == eval) || (function == document.write) { 

      Extract Val  // value of parameter of function) 

      Notify that Val is deobfuscated string 

   } 

   else if (function == unescape) { 

Extract Val   // value of parameter of function) 

      Notify that Val is deobfuscated string 

      Disassemble Val as assem 

      if (assem includes push instruction) || ( Next assem is call instruction) { 

         Notify that Val is exploit code 

      } 

   } 

} 

 

The input of this algorithm is a HTML document that can include many script codes. The 

algorithm is applied to each SCRIPT tag. For example, if a page includes three SCRIPT tags, 

the proposed algorithm is called three times. First, all codes between the <SCRIPT> and 
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</SCRIPT> tags (LINE1) are extracted; because it is difficult to only extract the value of a 

parameter at the source code level, all codes in the SCRIPT tag are targetted. Statically, all 

word sizes of the codes (LINE 2) are calculated, and then the obfuscated string is detected 

based on the word size. Many obfuscated strings include unusually long word sizes. A word is 

defined as the character set between two spaces; for example, in the statement of "if( a >= b )", 

words are "if(", "a", ">=", "b" and ")". Maximum word sizes are used in order to decide 

whether a page includes an obfuscated string (LINE 3). 

If the maximum size is longer than the threshold, the proposed algorithm begins to monitor 

the target functions in order to extract a deobfuscated string and detect an exploit code (LINE 

4). The parameters of the target functions are extracted, and because the functions require a 

readable value as a parameter, the deobfuscated string is always transmitted into their 

parameter. 

In the cases of the eval and document.write strings, the proposed algorithm extracts the 

input value of the function parameter and notifies the users of the value (LINE 5-7). For the 

unescape string, the proposed algorithm extracts the output value of the function parameter 

and verifies whether the string is an exploit code (LINE 9-14). The proposed pattern for 

detecting an exploit code is described in the following section. 

 

Model for Detecting Exploit Code:  

Some malicious JavaScript code includes an exploit code in order to execute the arbitrary code. 

The exploit code is an assembly code that uses the vulnerability of the web browser or web 

applications, such as buffer overflow. By allowing a user to execute the exploit code 

unconsciously, the attacker can control the user's system. 

A pattern related to the call instruction is used to decide whether the string is executable 

code or not. A call instruction is used in an exploit code, because the code must call other APIs 

to undertake various jobs. A pattern was found: push → … → push → call: that is, the push 

instruction was executed at least once before the call instruction. This indicates that the exploit 

code calls an API or a function with parameter(s). Because a normal string can only include a 

call instruction when it is dissembled, the push instruction is considered to be related to the 

function parameter. If the string includes this pattern, it was decided that the string was an 

exploit code. 

 

unescape("%u9090%u9090%u9090%u9090%ufce9%u0000%u5f00%ua164%u0030%u0000%u0c78%u408b%u8b0c

%u1c70%u8bad%u0868%u09eb%u408b%u8d34%u7c40%u688b%u8b3c%u6af7%u5904%u8fe8%u0000%ue200%u68f9

%u6e6f%u0000%u7568%u6c72%u546d%u16ff%ue88b ...");

90              nop

90              nop

90              nop

90              nop

90              nop

90              nop

90              nop

90              nop

e9fc000000      jmp     0032ee3d

5f              pop     edi

64a130000000    mov     eax,dword ptr fs:[00000030h]

780c            js      0032ed56

8b400c          mov     eax,dword ptr [eax+0Ch]

8b701c          mov     esi,dword ptr [eax+1Ch]

ad              lods    dword ptr [esi]

8b6808          mov     ebp,dword ptr [eax+8]

eb09            jmp     0032ed5f

8b4034          mov     eax,dword ptr [eax+34h]

8d407c          lea     eax,[eax+7Ch]

8b683c          mov     ebp,dword ptr [eax+3Ch]

8bf7            mov     esi,edi

6a04            push    4

59              pop     ecx

e88f000000      call    0032edf8

e2f9            loop    0032ed64

686f6e0000      push    6E6Fh

6875726c6d      push    6D6C7275h

54              push    esp

ff16            call    dword ptr [esi]

8be8            mov     ebp,eax

...

disassemble

Pattern

Not Pattern

 

Fig. 4.  Pattern for detecting exploit code in malicious JavaScript 
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Fig. 4 shows an example of the exploit code being disassembled. "push 6E6Fh, push 

6D6C7275h, push esp, call dword ptr [esi]" is the pattern that the exploit code uses to call 

the APIs with three parameters. Although "e88f000000" is parsed into a call instruction, it 

does not match the proposed pattern because the instruction does not have parameter(s). 

Model for Detecting Redirection:  

To force a web browser to access a malicious server, an attacker inserts malicious code for 

redirection into a web page. Without the user realizing it, a user's web browser accesses the 

malicious server, through the web pages with the embedded redirection code. 

In this paper, only the execution of the web browser itself is a focus, and black list 

matching using a malicious URL list is not considered. Therefore, suspicious URLs are 

detected based on the URL's information included in the web page. 

Suspicious URLs have the possibility of accessing a malicious server. A method for 

locating suspicious URLs is proposed based on the domain name that the web browser 

accesses. Suspicious URLs are verified based on two metrics: 

 Ranking is the number of URLs which have same domain name. For example, if a 

web page includes a URL such as www.yahoo.com five times, the ranking of the URL 

is 5. Thus, the more related a URL is to the domain that a web browser accesses, the 

higher the ranking is. 

 Meaningful Word is a word used several times in URLs. Generally, URLs that 

include meaningful words have a high ranking. For example, in www.yahoo.com, the 

meaningful word is yahoo. General words related to classifications such as com, org, 

www are excluded. For mail.yahoo.com, although the URL's ranking is one, it is not a 

suspicious URL because it includes a meaningful word. 

 
Algorithm 2. Detecting redirection 

INPUT : HTML document 

OUTPUT : Suspicious URLs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Extract URLs[1…n] in HTML document 

Calculate Ranking of URLs // Ranking is number of URLs in the document 

Extract meaningful words in URLs 

for ( i = 1 to n) { 

   if ( URLs[i].ranking == 1) || (URLs[i] doesn’t include meaningful words) { 

      Analyze stack frame of URLs[i] 

      if (URLs[i] is related to IFRAME) { 

         Notify that URLs[i] is suspicious 

      } 

   } 

} 

 

Algorithm 2 is proposed for the detection of redirection to malicious servers. Firstly, all 

URLs in a HTML document file (LINE 1) are extracted. Next, the rank of all URLs in the 

HTML document (LINE 2) are calculated. The more URLs in the web page, the higher the 

URL ranking. It was decided that URLs with a high rank are safe, because attackers generally 

do not insert multiple URL redirection codes into HTML documents. Among the URLs that 

have high ranking, the meaningful words (LINE 3) were extracted. The URL relationship to 

the redirection for all URLs (LINE 4) was verified. The URL was examined if the URL's 

ranking was one and did not include meaningful words (LINE 5). Next, the stack frame related 

to URL (LINE 6) was analyzed. In the stack frame, there is a function for the tag to which the 

URL is related: for IFRAME, the stack frame includes the 

mshtml!CHtmIframeParseCtx::Execute function (LINE 7). If the IFRAME tag includes the 

URL, it was decided that the URL is suspicious. 
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5. Implementation of JsSandbox 

JsSanbox was implemented as a practical tool to detect and analyze malicious JavaScript code 

based on the detection models described in this section. JsSandbox is a debugger that monitors 

and extracts information related to various internal functions in the JavaScript engine and 

HTML parser of a web browser. 

JsSandbox can access the internal functions in DLL files, as well as the exported functions, 

because it uses a debugging method with the public symbol files provided by Microsoft. The 

symbol file includes information about the functions and data structures for debugging 

programs in Windows systems. JsSandbox uses the WinDbg debugger engine [24], which is 

the representative debugger for the Windows environment. In this paper, Internet Explorer 7 

(IE7) and Windows Vista are the target platforms. 

Before implementing JsSandbox, the HTML parser (mshtml.dll), JavaScript engine 

(jscript.dll), and URL library (shlwapi.dll) in IE7 were analyzed through reverse engineering 

in order to extract the information from the functions and parameters. In IE's HTML parser, a 

tag is implemented as a class that includes codes related to the attributes and functions. For 

example, the SCRIPT tag is implemented as CScriptElement in mshtml.dll. In order to 

execute the script code, CScriptElement calls COleScript::ParseScriptText in jscript.dll. 

That is, the HTML parser calls the JavaScript engine because the HTML parser cannot process 

the JavaScript code. The JavaScript functions are defined as functions using prefix Js; for 

example, eval is JsEval, unescape is JsUnescape, and so on. If the JavaScript code wants to 

access the document object model (DOM), it recursively accesses the classes in mshtml.dll, 

because the DOM is related to the HTML parser. For example, if the code is 

eval(document.write()), the JavaScript engine calls CDocument::write in mshtml.dll 

again. 

JsSandbox monitors the HTML parser (mshtml.dll) and JavaScript engine (jscript.dll). The 

HTML parser processes the DOM, which represents a tag as an object. In mshtml.dll, an object 

is implemented as a class. For example, the SCRIPT tag is written as a CScriptElement class. 

If the SCRIPT tag executes a JavaScript code, the HTML parser calls the COleScript class in 

jscript.dll. This class processes the JavaScript code after the JavaScript engine parses the code. 

Based on the analysis of the IE modules, the JsSandbox system was implemented for 

sandboxing malicious JavaScript code in IE 7. Fig. 5 shows the architecture of the JsSandbox 

system. 

 

JsSandbox.exe mshtml.dll

jscript.dll

Other DLL files

Web Browser(iexplore.exe)

Symbol files

Execute

Monitor &

Control
Get information

of DLL files shlwapi.dll

dbgeng.dll

XML Analysis File

Write

Analysis Module

kernel32.dll

 

Fig. 5.  Overall architecture of JsSandbox 

JsSandbox traces iexplore.exe and sets a breakpoint for all functions related to the 

proposed detection model through the debugger engine (dbgeng.dll). A symbol file helps 

JsSandbox access the internal functions of IE. JsSandbox monitors some modules, such as 
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mshtml.dll, jscript.dll, shlwapi.dll, and kernel32.dll. After collecting data about the behavior 

of the JavaScript code, JsSandbox analyzes the data and prepares an XML analysis report for 

the analyst. 

 

Detecting Obfuscation and Extracting Deobfuscated String 

JsSandbox can detect whether the JavaScript is obfuscated or not, using the word size. 

Because most obfuscated strings are very long, the maximum word size of the parameter in the 

target function can be calculated. However, it is difficult to extract all values of the parameter 

of target functions, because there are various descriptions for the variables related to the 

parameter of target functions. 

Therefore, the focus in this paper is on all statements that are in JavaScript code. 

JsSandbox selects the longest word in the statements and decides whether the code is 

obfuscated or not based on the word size. The code in the SCRIPT tag is related to 

COleScript::ParseScriptText in jscript.dll. Therefore, after JsSandbox accesses the 

second parameter of the function, it can extract all codes in the SCRIPT tag. The function is 

called once per SCRIPT tag. If the word size is beyond a specified threshold, JsSandbox 

determines that the JavaScript includes an obfuscated string. 

JsSandbox monitors three functions: eval, document::write, and unescape, and obtains 

the value of the parameter in order to extract the deobfuscated string. These functions assist in 

executing the obfuscated string. The eval and unescape functions are implemented as 

JsEval and JsUnescape in jscript.dll, and document.write is implemented as 

CDocument::write in mshtml.dll. 

In JsEval, the fifth parameter is directly related to the eval parameter. When JsEval is 

called, a deobfuscated string exists at [[[esp+0x14]+0x8]+0x8]. Because all variable types in 

JavaScript are VARIANT, its memory address is complex. The size value of the deobfuscated 

string exists in the memory address four bytes ahead of the deobfuscated string. 

CDocument::write receives it as a deobfuscated string through the second parameter and the 

type of parameter is SAFEARRAY. The address of the string is [[[esp+0x8]+0xc]+0x8]. 

Therefore, JsSandbox obtains the deobfuscated string by extracting the value of parameter of 

eval and document::write. 

 

Detecting Redirection 

JsSandbox extracts all URLs linked in a HTML document file using GetLocationW in 

shlwapi.dll. This function is always called when a URL in a tag is parsed. When the function is 

called, JsSandbox also examines the call stack frame by calling 

IDebugControl->GetStackTrace. Through the call stack frame, JsSandbox can know which 

tag is related to the URL. 

For example, the IFRAME tag calls mshtml!CHtmIframeParseCtx::Execute and this 

function calls GetLocationW. Therefore, JsSandbox targets operations related to redirection, 

such as iframe, document.location, document.URL, window.location, 

window.location.href, and so on. These JavaScript codes can redirect to another site 

without the user's action. Therefore, JsSandbox monitors the value of parameter of 

GetLocationW and the call stack frame. 

 

Detecting Malicious Behavior 

JsSandbox finds malicious behavior based on the assembly code. The focus of JsSanbox is on 

an exploit code operated in a stack frame or a heap using a buffer overflow. In order to write 

the byte codes of a string directly into the memory, the exploit code in JavaScript uses the 
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unescape function. Therefore, JsSandbox monitors JsUnescape in jscript.dll. 

Its third parameter is related to the return value of the function, and the input value is 

transferred into its fifth parameter. When JsUnescape is called, JsSandbox remembers the 

address of [[esp+0xC]+0x8]+0x8. After the function is returned, JsSandbox reads the string at 

the address. To disassemble the string, JsSandbox calls IDebugControl::Disassemble in the 

WinDBG engine. Using the disassembly code, JsSandbox checks for the existence of the 

pattern,  push → … → push → call, as described in Section 4.2, and decides whether the 

JavaScript code includes an exploit code. 

6. Evaluation 

JsSandbox was evaluated using the proposed detecting model for malicious JavaScript: 

detecting obfuscation, extracting deobfuscated strings, detecting redirection, and detecting 

exploit codes. Undoubtedly, JsSandbox can detect malicious code using other detection 

models that have been presented in other research and have been developed continuously by 

the current authors. 

In an experiment, JsSandbox and a target program were operated in virtual environment 

(e.g. VMWare) and controlled using a Virtualization Controller. JsSandbox executed IE and 

IE accessed web pages periodically based on a URL list that was collected. In this experiment, 

JsSandbox monitored the IE JavaScript engine for 60 seconds for each page. This time was 

sufficient for JsSandbox to trace and analyze the behavior of IE. 

6.1 Evaluation of the Internal Function Hooking 

The number of functions that the API hooking and IFH can access were compared. In this 

experiment, the IFH could access more functions than the API hooking because the IFH uses 

the public symbol file. 

In particular, for the COM, IE consisted of several COMs, but the API hooking could not 

access the internal functions in the COM. Table 1 shows the number of functions that the API 

hooking and IFH can access. Among IE's modules, mshtml.dll, jscript.dll, vbscript.dll, 

urlmon.dll, and mlang.dll were COM. 

Table 1. Number of functions that API hooking and IFH can access 

Name API hooking IFH COM 

mshtml 13 26,154 O 

jscript 4 3,539 O 

vbscript 4 4,066 O 

wininet 247 4,049  

urlmon 219 5,457 O 

mlang 14 1,056 O 

shlwapi 858 3,573  

 

For example, in order to access the functions in jscript.dll, API hooking can access only 

four functions: DllCanUnloadNow, DllGetClassObject, DllRegisterServer, and 

DllUnregisterServer, because it cannot access the internal functions of COM. However, the 

IFH can access 3,539 internal functions, such as JsEval and JsUnescape. Furthermore, 

JsSandbox targeted the functions of the JavaScript engine and HTML parser such as JsEval, 

JsUnescape, COleScript::ParseScriptText, and CDocument::write. These functions can 

only be accessed by the IFH. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012                                          779 

The IFH can monitor not only the functions that can be monitored by API hooking but also 

internal functions, because the public symbol includes information for exported functions and 

internal functions. In wininet.dll, the number of symbols is 4,049 and the number of exported 

functions is 247. 

JsSandbox was applied to Internet Explorer 6, 7, and 8 on Windows XP, Vista, and 7. 

Without additional modification, after the analysis for each Windows and IE version, 

JsSandbox was used for all versions to analyze malicious JavaScript code. 

For the Ultimate Deobfuscator [12], if some modules were changed, these modules in all 

versions needed to be analyzed in order to set the start memory address of the functions in the 

COM object. The memory address of JsEval symbol is as follows: Windows XP SP 3 & IE 7 

(0x75ba4bba), Windows Vista & IE 7(0x6e6f81d9), and Windows 7 & IE 8 (0x6bb1912a). 

6.2 Evaluation of the Malicious JavaScript Code Detection 

Malicious JavaScript code was analyzed with JsSandbox using the proposed detection model. 

Firstly, the inclusion of an obfuscated string in a JavaScript code was analyzed. Obfuscation is 

the changing of the shape of a string in order to avoid a signature-based detection system. 

Recently, many JavaScript attacks have used obfuscation methods, and there are various 

methods for obfuscation [12][25]. 

Using Google, 452,892 web pages were collected, including 123,404 JavaScript files. In 

order to analyze the JavaScript code, the js files were collected separately. Among the web 

pages, it was found that the eval function was used 91,741 times, the document.write 

function was used 172,121 times, and the unescape function was used 38,657 times. Because 

these functions are related to obfuscation, the maximum word size of the parameter value of 

the functions was calculated. 

Table 2 shows the distribution of the maximum word size in three functions: eval, 

document.write, and unescape. 55 bytes indicates that 90% of the parameters of the eval 

function were shorter than 55 bytes. The word size was selected to be 95% as the threshold for 

deciding obfuscation. Therefore, if the maximum word size of the strings in JavaScript was 

longer than the word size threshold, it was considered to be potentailly obfuscated and it was 

then analyzed. 

Table 2. Average word size of parameters of target function 

 eval document.write unescape 

90% 55 bytes 82 bytes 35 bytes 

95% 126 bytes 82 bytes 41 bytes 

 

Next, all word sizes in the script codes were verified statically without considering the 

parameters of the target functions. Fig. 6 shows the distribution of the word size of the string in 

JavaScript codes. Most sizes were concentrated within 100 bytes. 

The previous two experiments demonstrated that the parameter values of the target 

functions and codes in script tags have similar distributions in word sizes. Most word sizes are 

concentrated in approximately 100 bytes: 99% of string word sizes were shorter than 120 bytes. 

Therefore, the threshold for deciding obfuscation was the word size longer than 120 bytes. In 

order to reduce false positives, the threshold was set at 500 bytes, and JsSandbox analyzed the 

top 500 sites in Alexa [26]. The web sites did not include JavaScript strings longer than 500 

bytes. 
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Fig. 6.  Distribution of word sizes in JavaScript code strings. 

Because attackers use smaller web sites more often than popular portal sites, 142,117 

small web sites were collected. In these web pages, 19 obfuscated strings were found based on 

word size: the maximum word size varied from 536 bytes to 11,079 bytes. 

For the obfuscated string, JsSandbox can extract a deobfuscated string. Fig. 7 shows an 

example of a real malicious JavaScript code that JsSandbox found, and the word size of the 

sting, which was 758 bytes. After deobfuscating the obfuscated string, a web browser accessed 

2.htm, 3.htm, and 4.htm automatically because it included the IFRAME tag. JsSanbox 

deobfuscated all 19 obfuscated strings that were found. JsSandbox extracted the deobfuscated 

strings from the parameters of the eval, document.write, and unescape functions. 

One feature of malicious JavaScript code is redirection, which changes the connection of 

the web site to an arbitrary URL. By doing this, the attacker can force a web browser to 

download malware or force a user view an unexpected advertisement. JsSandbox extracts the 

URL from parameter of the GetLocationW function in shlwapi.dll and the information from 

call stack related to that URL. JsSandbox can know the tag name related to the redirection 

using the information from the call stack. For example, IFRAME tag calls functions in 

CHtmIframeParseCtx class. 

 

document.writeln("<iframe src=4.htm width=1 height=1 ><\/iframe>");
document.writeln("<iframe src=2.htm width=1 height=1 ><\/iframe>");
document.writeln("<iframe src=3.htm width=1 height=1 ><\/iframe>");

Eval("\144\157\143\165\155\145\156\164\56\167\162\151\164\145\154\156\50\42\74\151\146\162\141\155\145\40\
163\162\143\75\64\56\150\164\155\40\167\151\144\164\150\75\61\40\150\145\151\147\150\164\75\61\40\76\74\
134\57\151\146\162\141\155\145\76\42\51\73\15\12\144\157\143\165\155\145\156\164\56\167\162\151\164\145\
154\156\50\42\74\151\146\162\141\155\145\40\163\162\143\75\62\56\150\164\155\40\167\151\144\164\150\75\61\
40\150\145\151\147\150\164\75\61\40\76\74\134\57\151\146\162\141\155\145\76\42\51\73\15\12\144\157\143\
165\155\145\156\164\56\167\162\151\164\145\154\156\50\42\74\151\146\162\141\155\145\40\163\162\143\75\63\
56\150\164\155\40\167\151\144\164\150\75\61\40\150\145\151\147\150\164\75\61\40\76\74\134\57\151\146\162\
141\155\145\76\42\51\73")

BEFORE Deobfuscation

AFTER Deobfuscation

Fig. 7.  Deofuscation of obfuscated malicious JavaScript code 

Among the 142,117 web pages, JsSandbox found 8 URLs related to redirection among the 

suspicious URLs. Two features were used to find the redirection to a malicious web page: 
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ranking and IFRAME tag. JsSandbox decided that a web site included redirection codes when 

the ranking of some URLs were one, and the redirection was related to the IFRAME tag. 

JsSandbox detected 8 web pages that redirected the web browser to suspicious sites. The focus 

was on the IFRAME tag because most web pages including redirection use this tag. 

Finally, JsSandbox was evaluated for its detection of exploit code. Exploit codes were 

collected from real world examples and the Milw0rm site [27]. In Milw0rm, all 

JavaScript-related exploit codes are gathered that were published in 2009. After disassembling 

the parameter values of JsUnescape using JsSandbox, some exploit codes were detected from 

the disassembled code. Three malicious codes were found based on the proposed detection 

model. 

Table 3. Patterns of exploit code in real world detected by JsSandbox 

#1 exploit code 
53     push    ebx 

FF D0  call    eax 

#2 exploit code 
68 00 20 00 00 push    2000h 

6A 00          push    0 

FF D0          call    eax 

#3 exploit code 
52       push    edx 

FF D0    call    eax 

 

Table 3 shows the patterns that JsSandbox detected in the real world. The call eax 

instruction indicates that the exploit code calls a function and the previous push instruction 

indicates that the code inserts a parameter of the function into the memory. Next, the exploit 

codes from the Milw0rm site were used in experiments. JsSandbox found three exploit codes 

from the 11 codes. Eight exploit codes did not include the proposed pattern. Table 4 shows the 

proposed pattern in the three exploit codes that were found by JsSandbox. 

Table 4. Patterns of exploit code from the Milw0rm site detected by JsSandbox 

#1 exploit code 
66 53        push bx 

66 68 33 32  push 3233h 

68 77 73 32 5F  

             push 5F327377h 

54           push esp 

FF D0        call eax 

#2 exploit code 
FF 37 push dword ptr [edi] 

56    push esi 

E8 33 00 00 00  

call 001fe7ec 

 

#3 exploit code 
53  push ebx 

FF 57 F8   

call  dword ptr [edi-8] 

7. Conclusion 

A tool was proposed for analyzing malicious JavaScript code, JsSandbox, that can analyze and 

detect malicious JavaScript code using internal function hooking. Since JsSandbox uses the 

engine of the WinDBG debugger and the public symbols provided by Microsoft, it can access 

various internal functions in the JavaScript engine. 

After attaching JsSanbox to IE, JsSandbox traced the JavaScript engine (jscript.dll), 

HTML parsing engine (mshtml.dll), and so on. It was found that the internal function hooking 

supplied more sophisticated analysis results than API hooking. Since JsSandbox is a general 

framework, it can be extended to analyze another malicious code such as VBScript and Perl.  

Most research has used the JavaScript engine of Mozilla, SpiderMonkey, because it is 

open source. However, in this paper, JsSandbox was implemented in Microsoft Internet 

Explorer after reverse engineering of the IE modules. Therefore, JsSandbox can detect threats 

propagated by IE from malicious JavaScript code. Also, the functions of JsSanbox were 

extended in order to analyze other malicious codes such as VBScript. 

Some features for detecting malicious JavaScript code were proposed and were 

subsequently applied to JsSandbox. Evaluation of these features demonstrated that JsSandbox 
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can analyze and detect several malicious JavaScript codes using the proposed features. 

In order to detect malicious JavaScript more accurately, more patterns of malicious 

behavior in JavaScript are required. Thus, the behavior of various malicious javascript have 

been modeled. Using the new malicious model, JsSanbox can detect malicious JavaScript 

code with low false positive and false negative results. 
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