
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2388

Copyright ⓒ 2012 KSII

http://dx.doi.org/10.3837/tiis.2012.09.024

Look-Up Table Based Implementations of SHA-3
Finalists: JH, Keccak and Skein

Kashif Latif
1
, Arshad Aziz

1
 and Athar Mahboob

2

1National University of Sciences and Technology (NUST) H-12 Islamabad, Pakistan
2DHA Suffa University, Karachi, Pakistan

[email: kashif@pnec.edu.pk]
*Corresponding author: Kashif Latif

Received May 22, 2012; revised August 6, 2012; accepted August 23, 2012;

published September 26, 2012

Abstract

Cryptographic hash functions are widely used in many information security applications like

digital signatures, message authentication codes (MACs), and other forms of authentication.

In response to recent advances in cryptanalysis of commonly used hash algorithms, National
Institute of Standards and Technology (NIST) announced a publicly open competition for

selection of new standard Secure Hash Algorithm called SHA-3. One important aspect of

this competition is evaluation of hardware performances of the candidates. In this work we
present efficient hardware implementations of SHA-3 finalists: JH, Keccak and Skein. We

propose high speed architectures using Look-Up Table (LUT) resources on FPGAs, to

minimize chip area and to reduce critical path lengths. This approach allows us to design
data paths of SHA-3 finalists with minimum resources and higher clock frequencies. We

implemented and investigated the performance of these candidates on modern and latest

FPGA devices from Xilinx. This work serves as performance investigation of leading SHA-3

finalists on most up-to-date FPGAs.

Keywords: Authentication, SHA-3, JH, Keccak, Skein, Cryptographic Hash Functions,

High Speed Encryption Hardware, FPGA.

http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Message_authentication_codes
http://en.wikipedia.org/wiki/Authentication

2389 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

1. Introduction

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block

of data and output is a fixed-size bit string, which is known as the (cryptographic) hash value.
Cryptographic hash functions are widely used in many information security applications like

digital signatures, message authentication codes (MACs), and other forms of authentication.

There is a long list of cryptographic hash functions but with recent advances in
cryptanalysis, many have been found vulnerable and should not be used. A successful attack

against a weakened variant of an algorithm weakens the experts’ confidence, even though the

hash function has never been broken, that leads to its rejection.

In previous few years, cryptanalysis of several hash algorithms has found serious

vulnerabilities. In 2004, X. Wang et al. presented the collisions for MD4, MD5, HAVAL-128

and RIPEMD [1]. There was a breakthrough in cryptanalysis of SHA-1 Hash Algorithm in

August 2005. M. Szydlo found that it is possible to find a collision in SHA-1 in 2
63

 operations
[2]. Previously, it was thought that 2

80
 operations are required to find a collision in SHA-1 for

a 160-bit block length. This attack is expected to find a hash collision i.e. two messages with

the same hash value in 2
63

 operations. No attacks have yet been reported on the SHA-2
variants; however they are algorithmically similar to SHA-1. Furthermore, M. Stevens

reported a collision attack on MD5 in 2006 [3].

To ensure the long-term robustness of applications that use hash functions National

Institute of Standards and Technology (NIST) USA has announced a public competition in
the Federal Register Notice published on November 2, 2007 [4] to develop a new

cryptographic Hash algorithm called SHA-3. In response to NIST’s announcement 64

submissions were reported, out of which 51 entries fulfilled the minimum submission
requirements and were selected as the First Round Candidates. After reviewing and analyzing,

the number of candidates reduced to 14 in Round 2 of the competition. A whole year was

allocated for the public review, implementation and analysis of these algorithms and the
Second SHA-3 Candidate Conference was held on August 23-24, 2010 in University of

California, Santa Barbara. As a result of 2
nd

 SHA-3 conference, 5 out of 14 Round 2

candidates have been selected and promoted to the Final Round on December 9, 2010. Five

short listed candidates, advanced in final round are BLAKE, Grøstl, JH, Keccak and Skein.
The tentative time-frame for the end of this competition and selection of finalist for SHA-3 is

in 4
th
 quarter of 2012 [5].

This paper describes efficient hardware implementations of three SHA-3 finalists, on latest
FPGA technologies from Xilinx. The remainder of this paper is organized as follows. We

briefly give an overview about cryptographic hash functions in section 2. Section 3 gives a

brief description of selected SHA-3 finalists. Section 4 discusses some architecture related

details of Xilinx’s FPGA, concerned to our work. In section 5 we present the efficient
hardware implementations of selected SHA-3 finalists. In section 6 we give the results of our

work and present the analysis of achieved results. Section 7 provides the performance

evaluation of SHA-3 finalists. Section 8 provides the comparison of our work with previously
reported implementations. Finally, we provide some conclusions and direction for future work

in section 9.

2. Cryptographic Hash Functions

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block

of data and output is a fixed-size bit string, which is known as the (cryptographic) hash value.
Hash functions have the most fascinating property of input sensitivity. It is in this way that

an intended or unintended change to the message will change the hash value drastically. This

property makes hash functions an ultimate choice for applications requiring authenticity and

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Information_security
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Message_authentication_codes
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2390

integrity. More often, the data to be hashed is called the ‘message’, and the hash value is

sometimes called the ‘message digest’ or simply the ‘digest’. A hash value of plaintext

is generated by a hash function of the form

The ideal cryptographic hash function with inputs , and outputs , must have the

following properties:

• It should be easy to compute the hash value for any given message

• Preimage Resistance: It should be very hard to find a message that has a given hash,

i.e. to find any preimage such that when given any

• Second Preimage Resistance: It should be difficult to find another input message

such that both messages have the same Hash value, i.e. given , to find a second

preimage such that . This property is sometimes referred to

as ‘weak collision resistance’

• Collision Resistance: It should be difficult to find two different messages that have

the same hash value, i.e. to find any and which have the same hash i.e. that

 . Such pair of messages is called a cryptographic hash collision. This
property is sometimes referred to as ‘strong collision resistance’

Hash functions and encryption functions are different: encryption converts plain text into

cipher text and by using the appropriate key it converts it back. The two texts roughly
correspond to each other with respect to size. Encryption is a two-way operation. On the

other hand, hashes convert a stream of data into a fixed size hash value. No matter how long

the message may be but its hash value will be of fixed size and it is strictly a one way
operation.

3. Brief Description of Selected SHA-3 Finalists

3.1 JH Hash Function

H. Wu designed and proposed the JH hash function for SHA-3 [7]. JH algorithm is based on

the idea that large block ciphers can be constructed through small components and constant

key. JH algorithm generalizes the AES design methodology to high dimensions. JH has four

variants JH-224, JH-256, JH-384 and JH-512. Each variant is named as the output length of
the hash. JH uses the same design for all variants. These variants only differ in initial values

(IV) and output hash length. The compression function of JH is shown in Fig. 1. JH

compression function is constructed from bijective function (a block cipher with constant

key) [7]. JH compression function compresses a previous 1024-bit hash value and 512-

bit message block into new 1024-bit hash value . The bijective function , consists of

42 rounds. Each round consists of 4-bit S-box substitution, a linear transformation and a
series of three permutations. The 1024-bit state of JH is grouped into 256 4-bit pairs before

start of round operations and de-grouped after it. Grouping and de-grouping of bits is defined

in [7]. Two types of S-boxes are used and selection of S-box for a given 4-bit substitution is

controlled by respective bit value of round constant. In this sense, it can be viewed as 5-bit to

4-bit substitution. S-box substitutions are given at Table 1. The linear transformation of JH

implements a (4,2,3) Maximum Distance Separable (MDS) code over The bit-wise

computation of is given as follows. Let , , and denote 4-bit words, the function
 is computed as:

2391 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

Where is most significant and is least significant bit of . Same convention is used for

 , and . The permutation of JH is a combination of three small permutations (ø, and
π). In terms of hardware, permutations are achieved through simple rewiring of nets.

Description of these permutations can be found in [7]. A sample two rounds of 64-bit state is

shown in Fig. 2. Round constant bits are not shown in Fig. 2. Each JH round uses a 256-bit

round constant. For 256 4-bit pairs of JH state, each round constant bit selects either S-box

 or at respective positions. Round constant for each round may be generated on the fly

by using identical bijective compression function of JH in parallel to JH data path and setting

initial constant value to zero. Alternately, round constants may be pre-computed and stored

in memory to be used later. The initial value of JH state is computed by setting first two

bytes of equal to the desired hash digest size and remaining bytes to zero, setting

message to zero and then applying JH compression to and to obtain . For an

 block message final hash is calculated by applying JH compression function to

message blocks , , ,.…., iteratively as follows:

for to

return

Fig. 1. JH compression function

Table 1. S-box substitutions of JH

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14
 3 12 6 13 5 7 1 9 15 2 0 4 11 10 14 8

3.2 Keccak

G. Bertoni et al. designed and proposed the Keccak Hash Function for SHA-3 [8]. Keccak is

a family of sponge functions with members Keccak [r, c] characterized by two parameters,
bitrate r and capacity c. The sum r + c determine the width of the Keccak- f permutation used

in the sponge construction and is restricted to values in {25, 50, 100, 200, 400, 800, 1600}.

For SHA-3 proposal Keccak team proposed the Keccak [1600] with different r and c values

for each desired length of hash output [8]. For 256-bit hash output r = 1088 and c = 512. The
1600-bit state of Keccak [1600] consists of 5x5 matrix of 64-bit words. Each compression

step of Keccak consists of 24 rounds. Let us denote the state matrix with . Each round then

consists of following five steps:

Theta (θ):

0 512

1023 511

0 1023 512 511

512

1023 512 0

0 1023

511

511

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2392

Fig. 2. Two sample rounds of JH using 64-bit state size

Rho(ρ) and Pi (π):

Chi (χ):

Iota (i):

In above listed equations all operations within indices are done modulo 5. denotes the

complete permutation state array and denotes a particular 64-bit word in that state.

 , and are intermediate variables. The symbol denotes the bitwise XOR,

 the bitwise complement and the bitwise AND operation. Finally,

denotes the bitwise cyclic shift operation, moving the bit at position into position

(modulo the lane size i.e. 64). The constants and are cyclic shift offset and round

constant respectively, and are defined in [8].
Keccak hash function operation consists of three phases, initialization, absorbing phase

and squeezing phase. Initialization is simply initializing the state matrix with all zeros. In

absorbing phase each -bit wide block of message is XORed with current matrix state and 24
rounds of Keccak permutation are performed. After absorbing all blocks of input message in

that fashion there comes the squeezing phase. In squeezing phase simply the state matrix is

truncated to desired length of output hash. If more than -bit (bitrate) hash value is required

then more Keccak permutations are performed and their results concatenated until hash
width reaches the desired length.

3.3 Skein

N. Ferguson et al. designed and proposed the Skein family of cryptographic hash functions for

SHA-3 [9]. Skein has three different internal state sizes: 256, 512, and 1024 bits. Each of

these state sizes can support any output size. Skein is built from these three components:

• Threefish: Threefish is the tweakable block cipher at the core of Skein, defined with
a 256, 512 and 1024 bit block sizes.

S S

L

S S

L

S S

L

S S

L

S S

L

S S

L

S S

L

S S

L

Permutation

S S

L

S S

L

S S

L

S S

L

S S

L

S S

L

S S

L

S S

L

Permutation

2393 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

• Unique Block Iteration (UBI): UBI is a chaining mode that uses Threefish to build a

compression function that maps an arbitrary sized input to a fixed sized output.

• Optional Argument System: This allows Skein to support a variety of optional
features without imposing any overhead on implementations and applications that do

not use these features.

Threefish: Skein's compression function is based on Threefish, which is a large tweakable

block cipher [9]. Tweakable block ciphers are ciphers that take three inputs: a key, a tweak
and a block of message, instead of the usual block ciphers that take two inputs, a key and a

block of message. A unique tweak value is used to encrypt every block of message. Different

tweaks create different permutations for each encryption process. This technique eliminates
the need for altering keys if we want to have a different block cipher every time.

The block and key sizes of Threefish are equal and can be set to 256, 512 or 1024 bits, and

they are designated as: Threefish-256, Threefish-512, and Threefish-1024, respectively. The
tweak value is 128 bits for all block sizes. Threefish structural design consists of round

operations. Threefish-256 and Threefish-512 compression functions are made of 72

consecutive round operations while the Threefish-1024 requires 80 rounds. Each round of the

Threefish-256 block cipher is made of two instances of a MIX function along with a
permutation module, while a round key is added to the data before the first round and after

each 4 consecutive rounds as shown in Fig. 3.

Fig. 3. First Four Round Operations of the Threefish-256 Cipher

Subkeys or round keys consist of three contributions: an input key word, tweak words, and a

counter value. The key schedule turns the key and tweak words into a sequence of subkeys,

each of which is equal to the size of the block. Tweak depends upon number of factors
including position and the bit length of the message block.

The mix operation consists of addition modulo 2
64

, XORs and left-rotates. These operations

are defined on the intermediate state organized in 64-bit words. The MIX operation
transforms two of these 64-bit words and is common to all Threefish variants. MIX function

has two input words (and) and produces two output words (and) using the

following relations:

MIXING MIXING

MIXING MIXING

MIXING MIXING

PERMUTATION

SUBKEY 1

PERMUTATION

ADDITION OF SUBKEY

PERMUTATION

PERMUTATION

MIXING MIXING

ROUND 0
(All rounds are
similar apart
from rotation
distance used
in Mixing)

ADDITION OF SUBKEY SUBKEY 0

PLAIN TEXT

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2394

Where is the bit-wise XOR operation and is the left rotate operator and R (Rotation

Distance) is a constant value which depends on the Threefish block size, the round index and

the position of the two 64-bit words in the Threefish block [9]. All Threefish rounds are
similar apart from rotation constant in mixing operation. These rotation constants are defined

in [9]. The subsequent permutation operation reorders 64-bit words constructed from a

Threefish block. This permutation is fixed for a specific Threefish variant, defined in [9].

Unique Block Iteration (UBI) Construction:

The UBI construction is a variant of the Cascade or (Merkle-Damgård) construction. It uses a

tweakable block cipher in Matyas-Meyer-Oseas mode to form a compression function, and

uses the bit offset of the block being hashed as the tweak [9]. An example of UBI mode is
shown in Fig. 4.

Fig. 4. Unique Block Iteration Construction

The message M, shown in Fig. 4, comprises of three message blocks M0, M1 and M2.

UBI_IN is the first Threefish encryption key which is used along with the tweak value for the
encryption of first message block. The output of the Threefish block cipher is XORed with

message block itself and its output along with new tweak value is used for the encryption of

the next block of message. It means that a new key is used for the encryption of each block.
As mentioned earlier, the tweak values depend on the position and bit length of the respective

message block. UBI is used in Skein not only for compression and the output transformation,

but also for other optional operation modes e.g. tree hashing and keyed hashing.

4. FPGA Specific Features and Their Implication on SHA-3 Algorithm
Architectures

The architectures of latest FPGA families from Xilinx (Virtex 5, Virtex 6, and Spartan 6) are

based on 6-input LUTs, named LUT6 [10]. A CLB Slice of Xilinx FPGA consists of 4 such

LUTs. Each LUT6 has six independent inputs and two independent outputs. These LUTs
may be configured and used in many different ways. A LUT6 may be used as independent 5-

input LUT using LUT5 primitive from Xilinx HDL library, shown in Fig. 5(a). On the other

hand, it is possible to implement any two 5-input logic functions with shared inputs using

LUT6_2 primitive, shown in Fig. 5(b). In this case, LUT input selects between two 5-

input logic functions to connect at output Same LUT6_2 primitive may be used to draw

two independent outputs from a LUT6, with shared 5-inputs. In this case, input should be

tied to logic high (i.e. 1). The INIT value in hexadecimal, shown under attributes in Fig. 5(a)

72 Rounds
of Threefish
Block Cipher

M 0 (First Message Block)

XOR

Tweak
(M 0)

72 Rounds
of Threefish
Block Cipher

M 1 (Second Message Block)

XOR

Tweak
(M 1)

72 Rounds
of Threefish
Block Cipher

M 2 (Third Message Block)

XOR

Tweak
(M 2)

UBI_IN UBI_OUT

2395 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

and 5(b) configures the LUT to perform desired operation at its inputs. The INIT value is

derived by laying down the truth table for all possible combinations of LUT inputs and

outputs. We have used these primitives excessively in architectural designs of SHA-3

finalists. We also exploit the techniques presented in [11] for efficient utilization of modern
FPGA resources.

5. Implementation

We have implemented the core functionality of 256-bit and 512-bit variants of JH, Keccak

and Skein. Core functionality does not mean that we have implemented compression function

only. Our designs are fully autonomus with complete I/O interfaces. We targeted for efficient
implementations but keeping in mind the fair hardware performance comparison for these

candidates. We assure this approach by cattering for the following constraints:

 Common Environment: It is concerned with the implementations, in terms of the

level of expertise, language, coding techniques, design methodology, and
development tools. We assured it by keeping: common implementer for all

candidates, using Verilog as common language, common design methodology

(discussed in next point) and using Xilinx’s ISE 13.1 as the common development
tool.

 Design Methodology: For fair comparison it is necessary to utilize same set of

hardware resources for all candidates. We assured it by forcing our designs to map

on LUT based logic and not to use dedicated hardware resources like BRAMs,

Multipliers and DSPSlices. Memories are also implemented using distributed
RAMs/ROMs because they utilize the LUT resources and memory requirement of a

candidate will be reflected in terms of utilized area.

 Common I/O Interface: Using common Input/Output interface assures the identical

flow of data for all candidates in investigation. It also assures modular approach by
reusing the same module wherever possible.

 Overhead suppression: We do not implement the optional parameters of the

candidates like salt input, Hash Tree functionality and HMAC etc. Furthermore, we

assume that input message blocks are already padded outside.

LUT5

LUT5

Attributes

INIT=0000000000000000

6-Input Look-Up Table

LUT6_2

LUT5

Attributes

INIT= 00000000

5-Input Look-Up Table

(a) (b)

Fig. 5. LUT5 and LUT6_2 primitives in Xilinx HDL library

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2396

5.1 Common I/O Interface

Fig. 6. Common Input/Output Interface

Developed input/output interface is shown in Fig. 6. All I/O transactions are synchronized.

Each I/O is sampled at the rising edge of clock cycle. The first_blk and last_blk signals

indicate the first and last block of message, respectively. The input cycle is initiated by I/O
interface by putting load signal to high. Hash Module acknowledges the request if it is able

to receive data by putting ack signal to high. After receiving acknowledgment, I/O interface

makes available 64-bit word of data at each rising edge of clock cycle. During the transaction
of data, ack signal remains at logic high. After receiving desired amount of input words Hash

Module puts the ack signal to low. Accordingly I/O interface pulls the load signal to low if

no more transactions are required. If message blocks are still present, load signal will remain

high but Hash Module acknowledges it after one clock cycle from the previous transaction.

Fig. 7. Hash Module separated in Control and Data paths

In the same way when Hash Module is ready with a valid hash value it signals the I/O

interface by putting Hash_Valid signal to high. After putting Hash_valid signal hash module
outputs 64-bit words on each rising edge of clock cycle until the desired hash length is

achieved. I/O interface is designed in a way that it does not affect the ongoing processing of

hash module. That is, we can make I/O transactions at the same time while hash of a
message block is in progress.

5.2 Control and Data Paths

64

I/O

Interface

Hash

Module

64

hash_done

hash_en

select

rst

clk

clock

counter

FSM Logic

State_Reg

Input Registers

Hash Core

Output Register

Intermediate

Registers

Input

output

C
o

n
tr

o
l
P

a
th

D
a

ta
 P

a
th

2397 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

Hash module of each candidate consists of two major parts, the control path and the data path.

Block diagram of hash module separated in control path and data path is depicted in Fig. 7.
Control path consists of Finite State Machine, State register, clock and counter. Data path

consists of Input registers, Hash Core, Intermediate registers and Output registers. Input

registers of data path consist of a Serial In Parallel Out (SIPO) register and other registers to
store message and other input parameters like key in case of Skein. Hash Core is the main

arithmetic logic unit of the hash algorithm. Intermediate registers are utilized to store

intermediate results of the hash algorithm. Output register contains the resulting hash and it is

a Parallel In Serial Out (PISO) register to serially output the result.

5.3 Implementation of JH

The data path implemented for JH is shown in Fig. 8(a). The state_reg represents the
intermediate JH state register, on which processing of JH algorithm takes place.

JH hash function uses the same algorithm for all hash digest sizes. Hence, same data path is
utilized for all hash digest sizes. Only the difference between data path for different hash -

sizes is of initial values (IV) and hash output registers. In the beginning of every hash process
state_reg is initialized with IV of desired hash digest size. Then a complete JH compression

is processed by setting msg and round constant RC to zero. The higher order 512 bits of

resulting state of JH compression is then XORed with first message block and stored in
state_reg. Then contents of state_reg are processed through JH compression function with

respective round constant. JH compression function consists of 42 rounds of its arithmetic

logic unit (ALU). A single round is processed in one clock cycle. Therefore 42 clock cycles
are required to complete 42 rounds of JH compression function. After completion of 42

rounds on a message block, resulting lower order 512 bits of JH compression state is XORed

with msg, to obtain next chaining hash value. The higher order 512 bits of resulting chaining

hash value is then XORed with next message block and stored in state_reg and same
compression sequence is repeated again. This process continues till the end of all message

(c) Linear

Transformation

LUT5

LUT5

1

Attributes
INIT=966969963
C3C3C3C
6-Input Look-Up

Table

LUT6_2

LUT5

LUT5

0

 0

1

Attributes
INIT=969696963
C3C3C3C
6-Input Look-Up

Table

LUT6_2

LUT5

LUT5

0

1

Attributes
INIT=6996699696
969696
6-Input Look-Up

Table

LUT6_2

LUT5

LUT5

0

 0

1

Attributes
INIT=969696963
C3C3C3C
6-Input Look-Up

Table

LUT6_2

Fig. 8. Architectural detail of JH

LUT5

LUT5

1

Attributes
INIT=73259EC81
1F931D9
6-Input Look-Up

Table

LUT6_2

LUT5

LUT5

1

Attributes
INIT=F18AC2B94
93EB8B4
6-Input Look-Up

Table

LUT6_2

(b) 5-to-4 bit S-box (a) Data path of JH

102
4

has
h

counte
r

Trunc. Concat.

state_reg

ms
g

grouping

JH
Compressio

n

degrouping

102
4

1023…5
12

511…
0

IV

512

256

h

102
4

102
4

RC

RO
M

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2398

blocks. At the end, resulting lower 512 bits of chaining hash value is truncated to the desired

length of hash output. The Trunc. block in Fig. 8(a) represents the truncation operation. The
Concat. block represents the concatenation operation. The grouping and degrouping blocks

are used to perform grouping and de-grouping of JH state bits into 4-bit pairs as specified in

JH specification document [7]. In terms of hardware implementation these steps are achieved
through simple rewiring of interconnects, at no resource cost. The round constants (RC) are

stored in ROM using 43x256 bit single port distributed ROM. Respective round constant is

addressed during each round using round number as ROM address.

JH Arithmetic Logic Unit (ALU): JH ALU consists of S-boxes (S) and linear transformation

units (L). JH ALU works on 4-bit pairs of JH state register contents. For S-box, we used

LUT6_2 primitive (Fig. 5(b)) and used both of its outputs i.e. and . Using this approach 4
S-boxes are adjusted within a single slice. In this approach S-box logic of JH ALU consists of

only 128 slices. Implementation of a single S-box using this approach is depicted in Fig. 8(b).

The INIT values (in hexadecimal) shown in figure, are actual configuration values for each

LUT to perform S-box operation. Linear transformation is also implemented using same

optimized approach. LUT6_2 primitive with both outputs and is used. Implementation

of a single linear transformation unit (L) is depicted in Fig. 8(c). The INIT values (in

hexadecimal) shown in figure, are actual configuration values for each LUT to perform L
operation. Same variables are shown for inputs and outputs in Fig. 8(c) as denoted in linear

transformation equations in specification document [7].

5.4 Implementation of Keccak

The data path implemented for Keccak is shown in Fig. 9(a). The A_Reg represents the

matrix register, on which processing of Keccak algorithm takes place. Keccak data path is

fully parameterized, such that the design may be synthesized for any value of r (bitrate) and
c (capacity). For that reason, the width of each net is highlighted as r, c or r + c in Fig. 9(a).

The length of A_Reg also varies according to r and c and it is defined as r + c (bits). For

Keccak-256, r is specified as 1088-bits and c as 512-bits. For Keccak-512, r is specified as
576-bits and c as 1024-bits. Accordingly A_Reg will be of 1600-bits. In beginning of every

hash process A_Reg is initialized with all zeros. First message block is directly copied to

A_Reg after concatenating it with c wide stream of 0’s. The Concat. block in Fig. 9(a)
represents the concatenation operation. Compression function of Keccak consists of five

steps. In Fig. 9(a) each step is denoted by the symbol as specified in Keccak specifications.

These steps are and i. We have combined these steps during implementation,

wherever possible. We have implemented and as a single step. Keccak algorithm’s
compression function consists of very simple arithmetic operations. It involves simple XOR,

AND and NOT operations. These operations are implemented using LUT primitives from

Xilinx specific libraries. Following are details of implementation of each step:

Theta () Step: There are three equations in step. First equation (calculation of C) is

implemented using LUT5 primitive for XOR logic as shown in Fig. 9(b). The INIT value in

hexadecimal, shown under attributes in figure, configures the LUT to perform XOR
operation at its inputs. The INIT value is derived by laying down the truth table for all

possible combinations of LUT inputs. To XOR 5 64-bit operands of the equation, LUT5

primitive is instantiated 64 times. For complete implementation of equation, 5x64 LUT5 are
required. We can combine remaining two equations of theta step. For its implementation,

LUT3 primitive is used for XOR logic as shown in Fig. 9(c). The one bit rotation in last

operand is implemented through rewiring. To implement the complete logic, 25x64

instantiations of LUT3 primitive are required.

2399 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

Rho () and Pi () Steps: The and are permutations, which may be achieved through

simple rewiring in hardware, at no resource cost. The cyclic shift constant is fixed

and known for each position of matrix . It is also implemented by means of fixed rewiring.

Chi (Step: In step three logical operations XOR, NOT and AND are used. These are

implemented using LUT3 primitive as shown in Fig. 9(d). In order to accomplish the step,

LUT3 with logic is instantiated 25x64 times.

Iota (): The i step involves simple XOR of round constant with least significant 64 bits of

A_Reg, i.e. . It is implemented using LUT2 primitive as shown in Fig. 9(d). LUT2 is

instantiated 64 times for i step.

The round constants (RC) are stored in ROM using 24x64 bit single port distributed ROM.

Respective round constant is addressed during each round using round number as ROM
address. These five steps or a single round of Keccak algorithm are accomplished in one

clock cycle. Therefore 24 clock cycles are required to complete 24 rounds of Keccak

algorithm. After completion of 24 rounds on a message block, resulting r-bits of state of

A_Reg are XORed with next message block and same round sequence is repeated again.
This process continues till the end of all message blocks. At the end, state of A_Reg is

truncated to the desired length of hash output.

5.5 Implementation of Skein

The data path implemented for Skein is shown in Fig. 10(a). Add_Subkey module consists

of 8 64-bit adders, implemented using fast carry chain logic available in Xilinx FPGAs. The
Threefish compression function of Skein is partially implemented using 4 unrolled rounds.

These 4 rounds are then iteratively used to complete 72 rounds of compression function. The

novel idea in implementation of these 4 unrolled rounds is that, we do not need separate MIX

h

c

 r

r +
c

r +
c

r +

c

hash

RC
RO
M

Trunc. r

Concat.

A_Reg

msg 0’s

c r

c

r

θ

ρ || π

χ

i
64

co-
unter

LUT5

Attributes

INIT= 96696996

5-Input Look-Up

Table

(b) 5-bit XOR used in θ step (c) 3-bit XOR used in θ step

LUT3

Attributes

INIT= 96

3-Input Look-Up

Table

(d) 3-bit Logic used in χ step

LUT3

Attributes

INIT= D2

3-Input Look-Up

Table

(e) 2-bit XOR used in i step

LUT2

Attributes

INIT= 6

2-Input Look-Up

Table

Fig. 9. Architectural detail of Keccak

(a) Data path of Keccak

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2400

modules and multiplexers to select between different rotation constants in second step of
MIX operation. We have efficiently implemented second step in MIX module using a LUT4

primitive depicted in Fig. 10(c). The select bit , selects between two rotated instances of ,

according to round number, to XOR with . For first four rounds is zero and upper half

rows of rotation constants’ table are used for respective MIX modules. For next four rounds

 will be 1 and lower half rows of rotation constants’ table are used for respective MIX

modules. For example, will be selected and XORed with in first round and

 will be selected and XORed with in fifth round. Hardware architecture of key

schedule module is shown in Fig. 10(b). The extended key K8 is obtained by XORing the
input 64-bit key words (K0…..K7) and constant C240. The extended tweak t2 is obtained by

XORing the two input 64-bit tweak word (t0 and t1). The extended key and tweak words are

then loaded into the circular shift registers K (576 bit) and t (192 bit). These two registers are
clocked and rotated once for each subkey. Key Schedule module generates subkeys on every

falling edge of clock pulse. Add_Subkey module gives output on the rising edge of each

clock pulse. Next subkey is available on falling edge of the same clock pulse. In this way one
clock cycle is required to complete four rounds, subkey addition and subkey generation.

Therefore to complete 72 rounds and 19 subkey addition of Skein, 19 clock cycles will be

required. The next chaining hash value will be available after 19 clock cycles.

6. Implementation Results

The designs have been implemented on Xilinx Virtex 5 and Virtex 6. Detailed device
specifications are: Virtex 5 LX30T, speed grade 3, package FF323 (5vlx30tff323-3) and

Virtex 6 LX75T, speed grade 3, package FF784 (6vlx75tff784-3). The resulting clock

frequencies and area utilization after place and route are reported. Table 2 shows achieved

area consumption (), clock frequency (), throughput () and throughput per area

() for implemented designs. The is the block size of message in bits and

is the number of clock cycles required for hash of a single message block. In order to

complete the profile of SHA-3 candidates, results of BLAKE and Grøstl are included from
[15] and [16], respectively. However, we would like to point out that BLAKE and Grøstl

implementations did not benefit from the use of Lookup Table based design. This can be

attributed to the fact that JH, Keccak and Skein utilize boolean functions extensively in the

compression transformation whereas BLAKE utilizes primitives which make use of

msg
Add_Subkey

Key_Schedule

MIX

Permute

MIX

Permute

MIX

Permute

MIX

Permute

msg
tweak

IV

Trunc.

hash

b b

b

b

b
b

128

b

b

1

b: 256/512

h: 256/512

h

(a) Data path of Skein

Circular Shift Circular Shift

K0 K1 K2 K3 K4 K5 K6 K8 K7 t0 t2 t1

Counter
(Round #)

512-bit Subkey

(b) Key_Schedule Module

Fig. 10. Architectural detail of Skein

(c) Selection between two rotation constants in MIX operation

LUT4

Attributes

INIT= 5A66

4-Input Look-Up Table

2401 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

arithmetic operations. BLAKE and Grøstl are algorithms where use of specific library

resources not turns into advantageous outcomes. For example, the addition operation on
Xilinx FPGAs is efficiently implemented by synthesis tools itself by using dedicated carry

logic resources. The XOR and rotation operation are not expensive operations in terms of

resource utilization. Hence, efficient direct coding of the equations of BLAKE returns good
synthesis results.

Table 2. Implementation Results for 256-bit and 512-bit variants of SHA-3 finalists

SHA-3

Finalist
Device

256-bit 512-bit

[bits]

[cycles]

[MHz]

[Slices]

[Gb/s]

[Mbps/slice]

[bits]

[cycles]

[MHz]

[Slices]

[Gb/s]

[Mbps/slice]

BLAKE
Virtex 5 512 28 124.55 1739 2.28 1.31 1024 32 100.02 2582 3.21 1.24

Virtex 6 512 28 131.96 1602 2.41 1.51 1024 32 104.30 2246 3.34 1.46

Grøstl
Virtex 5 512 10 121.03 1419 6.20 4.37 1024 14 101.22 2523 7.40 2.94

Virtex 6 512 10 146.87 1467 9.62 5.12 1024 14 125.44 2359 9.17 3.89

JH
Virtex 5 512 42 287.44 865 3.50 4.05 512 42 292.48 888 3.57 4.02

Virtex 6 512 42 303.65 562 3.70 6.59 512 42 306.37 661 3.74 5.65

Keccak
Virtex 5 1088 24 275.56 1333 12.49 9.37 576 24 263.16 1197 6.32 5.28

Virtex 6 1088 24 301.57 915 13.67 14.94 576 24 291.21 1015 6.99 6.89

Skein
Virtex 5 512 19 113.78 1492 3.07 2.05 512 19 113.60 1544 3.06 1.98

Virtex 6 512 19 114.30 1163 3.08 2.65 512 19 112.36 1203 3.03 2.52

For both Virtex 5 and Virtex 6, designs of JH and Keccak result in higher frequencies, due to
their simple compression functions. However, more number of rounds make JH algorithm’s

throughput restricted to the lower end. The larger message block size and average number of

rounds of Keccak make it the top performer in terms of both throughput and throughput per
area. In terms of area consumption, JH is the most compact algorithm. BLAKE and Skein

are computationally rigorous algorithms as compared to other candidates, hence, results in

low throughput and throughput per area designs.

7. Evaluation of SHA-3 Finalists

It is clear from results that Keccak is far ahead of other four candidates, on both Virtex 5 and
Virtex 6, in terms of throughput per area for both 256-bit and 512-bit variants. The

difference is large for 256-bit variant; however, in case of 512-bit variants JH is very close to

the performance of Keccak. For 256-bit variants JH and Grøstl give almost similar
throughput per area performance. In terms of area consumption JH leads all of the other

candidates by consuming lesser area, for both variants. The area consumption difference

from JH to other candidates is even more significant for 512-bit variants. In terms of
throughput, again Keccak is far ahead for 256-bit digest sizes but Grøstl beats the Keccak

with significant differences for 512-bit digest sizes on both devices. For throughput and

throughput per area, BLAKE and Skein are well behind the performances of Keccak, JH and
Grøstl. BLAKE and Skein are computationally intensive designs as compared to other

candidates. If we consider throughput per area as the major deciding factor for performance

comparison, we can easily rank Keccak first and JH and Grøstl as second and third

respectively.

8. Comparison with previous work

We have achieved significant improvements in implementation results from all of the

previously reported work. For JH, Keccak and Skein we take advantage of Look Up Table

(LUT) resources, available on Xilinx FPGAs, to reduce chip area consumption and critical

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2402

paths. The use of resource primitives from Xilinx specific libraries allowed us to design high

frequency designs with minimum use of resources. Table 3 shows the comparison of results

with previously reported implementations in terms of , area and throughput per area. In

Table 3, we show our exceeding results in bold font. Most of our results for Virtex 5 and

Virtex 6 are exceeding from all previously reported work in terms of throughput per area.
Only the JH is the case where our throughput per area results are slightly behind of [17].

However, our result figures are very close to throughput per area results of [17] with

exceptional use of smaller area for JH. In case of Keccak and Skein algorithms our

throughput per area results are ahead of previously reported work. Comparison of BLAKE
and Grøstl has been presented in [15] and [16] respectively; therefore, their comparison is

not included in Table 3.

9. Conclusion and Future Work

In this work we have presented efficient hardware implementations of SHA-3 finalists: JH,

Keccak and Skein. We have reported the implementation results of 256-bit and 512-bit
variants on Xilinx FPGAs Virtex 5 and Virtex 6 in terms of area, throughput and throughput

per area; and compared it with previous results. Utilization of Look-Up Table (LUT)

resources on FPGAs proves beneficial to enhance the hardware performance of the JH,
Keccak and Skein SHA-3 candidates in terms of both speed and area. Use of LUT primitives

is, therefore, demonstrated to be a justified design approach. However, for BLAKE and

Grøstl SHA-3 candidates, further effort is required to be able to extract performance gains
from LUT based implementation. This shows that SHA-3 finalists offer implementors

different tradeoffs in FPGA based implementations. We intend to further explore the

possibilities of LUT based implementations for BLAKE and Grøstl which may prove

competitive relative to non LUT designs.
We have achieved significant improvements in implementation results compared to the

previously reported work. Results achieved in this work are exceeding the various

implementations reported so far. This work serves as performance investigation of SHA-3
finalists on modern FPGAs.

Table 3. Comparison with previous work. in MHz, in Slices and in Mbps/Slice

SHA-3

Finalist

s

Author(s) Device
256-bit 512-bit

JH

Our work Virtex 5 287.44 865 4.05 292.48 888 4.02

Our work Virtex 6 303.65 562 6.59 306.37 661 5.65

Baldwin et al.[12] Virtex 5 144.11 1763 0.93 144.11 1763 0.93

Matsuo et al. [13] Virtex 5 201.00 2661 0.84 - - -

Gaj et al. [14] Virtex 5 278.09 1108 3.06 275.48 1165 2.88

Homsirikamol et al.

[17]
Virtex 6 - 847 6.73

- 896 5.95

Homsirikamol et al.

[17]
Virtex 5 - 909 5.09

- 1020 4.64

Keccak

Our work Virtex 5 275.56 1333 9.37 263.16 1197 5.28

Our work Virtex 6 301.57 915 14.94 291.21 1015 6.89

Keccak Team [8] Virtex 5 122.00 1330 3.91 - - -

Strömbergson [18] Spartan3A 85.00 3393 1.41 - - -

Strömbergson [18] Virtex 5 118.00 1483 4.52 - -

Baldwin et al.[12] Virtex 5 195.73 1971 3.17 195.73 1971 4.32

Matsuo et al. [13] Virtex 5 205.00 1433 5.86 - - -

Akin et al. [19] Spartan 3 81.40 2024 1.71 - - -

Akin et al. [19] Virtex-II 136.60 2024 2.87 - - -

Akin et al. [19] Virtex 4 142.90 2024 3.00 - -

Gaj et al. [14] Virtex 5 238.38 1229 8.79 276.86 1236 5.37

2403 Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein

Homsirikamol et al.

[17]
Virtex 6 - 1165 10.17

- 1231 5.87

Homsirikamol et al.

[17]
Virtex 5 - 1395 9.16

- 1220 5.37

Skein

Our work Virtex 5 113.78 1492 2.05 113.60 1544 1.98

Our work Virtex 6 114.30 1163 2.65 112.36 1203 2.52

Baldwin et al. [12] Virtex 5 - - - 83.58 2756 0.35

Matsuo et al. [13] Virtex 5 115.00 854 1.64 - - -

Gaj et al. [14] Virtex 5 116.35 843 1.86 104.34 1520 1.85

 Long [20] Virtex 5 114.94 931 0.44 114.94 1758 0.46

Tillich [21] Virtex 5 68.40 937 1.87 69.04 1632 2.17

Tillich [21] Spartan 3 26.14 2421 0.28 26.66 4273 0.32

Homsirikamol et al.

[17]
Virtex 6 - 1510 2.17

- 1591 1.96

Homsirikamol et al.

[17]
Virtex 5 - 1728 1.70

- 1658 1.7

References

[1] X. L. X. Wang, D. Feng and H. Yu., “Collisions for hash functions MD4, MD5, HAVAL-128 and
RIPEMD,” Cryptology ePrint Archive, Report 2004/199, pp.1-4, 2004. Article (CrossRef Link).

[2] M. Szydlo, “SHA-1 collisions can be found in 263 operations,” CryptoBytes Technical Newsletter, 2005.
Article (CrossRef Link).

[3] M. Stevens, “Fast collision attack on MD5,” Cryptology ePrint Archive, Report 2006/104, pp. 1-13, 2006.
Article (CrossRef Link).

[4] Federal Register / Vol. 72, No. 212 / Friday, November 2, 2007 / Notices, pp. 1-9, 2007. Article
(CrossRef Link).

[5] National Institute of Standards and Technology (NIST), “cryptographic hash algorithm competition,”
2007. Article (CrossRef Link).

[6] NIST Interagency Report 7764, “Status report on the second round of the SHA-3 cryptographic hash
algorithm competition,” pp.1-38, 2010. Article (CrossRef Link).

[7] H. Wu., “The hash function JH,” pp.1-54, 2011. Article (CrossRef Link).

[8] G .Bertoni, J. Daemen, M. Peeters, G. V. Assche, “The KECCAK SHA-3 Submission version 3,” pp.1-14,
2011. Article (CrossRef Link).

[9] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas and J. Walker, “The
Skein hash function family version 1.3,” pp.1-100, 2011. Article (CrossRef Link)

[10] Xilinx Virtex Family Documentation, available online at Article (CrossRef Link).

[11] K. Latif, A. Aziz and A. Mahboob, “Optimal utilization of available reconfigurable hardware resources,”
Elsevier Computer & Electrical Engineering, vol.37, pp.1043-1057, 2011. Article (CrossRef Link).

[12] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. Neill and W. P. Marnane, “FPGA
Implementations of the Round Two SHA-3 Candidates,” 2nd SHA-3 Candidate Conference, pp.1-18,
Aug.2010. Article (CrossRef Link).

[13] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama and K. Ota, “How Can
We Conduct Fair and Consistent Hardware Evaluation for SHA-3 Candidate?,” 2nd SHA-3 Candidate
Conference, pp.1-15, Aug.2010. Article (CrossRefLink).

[14] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive Methodology for Comparing
Hardware Performance of Fourteen Round Two SHA-3 Candidates using FPGAs,” Proc. Cryptographic
Hardware and Embedded Systems workshop, CHES 2010, Santa Barbara, 2010. Article (CrossRef Link).

[15] K. Latif, A. Mahboob and A. Aziz, “High Throughput Hardware Implementation of Secure Hash
Algorithm (SHA-3) Finalist – BLAKE,” in Proc. of 9th International Conference on Frontiers of
Information Technology, IEEE Computer Society, pp.189-194. 2011. Article (CrossRef Link).

[16] M. M. Rao, K. Latif, A. Aziz, and A. Mahboob, “Efficient FPGA Implementation of Secure Hash
Algorithm Grøstl - SHA-3 Finalist,” In Emerging Trends and Applications in Information Communication
Technologies, vol.281, pp.361-372, 2012, Article (CrossRef Link).

[17] E. Homsirikamol, M. Rogawski and K. Gaj, “Comparing Hardware Performance of Round 3 SHA-3
Candidates using Multiple Hardware Architectures in Xilinx and Altera FPGAs,” ECRYPT II Hash
Workshop 2011, pp.1-15, 2011. Article (CrossRef Link).

[18] J. Strömbergson, “Implementation of the Keccak Hash Function in FPGA Devices,” 2010. Article
(CrossRef Link).

http://eprint.iacr.org/2004/199
http://www.rsa.com/rsalabs/node.asp?id=2927
http://eprint.iacr.org/2006/104
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.nist.gov/itl/csd/ct/hash_competition.cfm
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Round2_Report_NISTIR_7764.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.xilinx.com/support/
http://dx.doi.org/10.1016/j.compeleceng.2011.07.010
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/index.html
http://dx.doi.org/10.1007/978-3-642-15031-9_18
http://dx.doi.org/10.1109/FIT.2011.42
http://dx.doi.org/10.1007/978-3-642-28962-0_35
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_07.pdf
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf
http://www.strombergson.com/files/Keccak_in_FPGAs.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012 2404

[19] A. Akin, A. Aysu, O. C. Ulusel and E. Savas, “Efficient Hardware Implementations of High Throughput
SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for Single- and Multi-Message Hashing,” 2nd
SHA-3 Candidate Conference, pp.1-12, Aug.2010. Article (CrossRef Link).

[20] M. Long, “Implementing Skein Hash function on Xilinx Virtex-5 FPGA platform,” pp.1-15, 2009.
Article (CrossRef Link).

[21] S. Tillich, “Hardware implementation of the SHA-3 candidate skein,” Cryptology ePrint Archive, Report
2009/159, pp. 1-7, 2009. Article (CrossRef Link).

Kashif Latif obtained B.E. in Industrial Electronics from N.E.D. University of Engineering and Technology,
Karachi, Pakistan and M.S. degree in Electrical Engineering from National University of Sciences and
Technology, Pakistan in 2002 and 2008, respectively. He has been involved in various R&D assignments since
2002. Presently he is Ph.D. candidate at National University of Sciences and Technology, Pakistan. His research
interests include Information Security and Cryptography, FPGA based Systems Designs, Hardware Solutions of

Cryptographic Applications and Digital Systems Design.

Arshad Aziz obtained B.E. and M.E. degrees in Computer Engineering from Sir Syed University of Engineering
and Technology, Karachi, Pakistan in 1998 and 2002, respectively. He obtained his Ph.D. in Electrical
Engineering from National University of Sciences and Technology, Pakistan in 2007. He is currently an
Associate Professor in Electrical Engineering at the National University of Sciences and Technology, Pakistan.
His research interests include Computer and Network Security, Cryptography, Computer Networks and
Internetworking, TCP/IP Protocol suite, FPGA Based Systems Design, Computer Architectures and the
Operating Systems.

Athar Mahboob obtained B.S. and M.S. degrees in Electrical Engineering from Florida State University at

Tallahassee, Florida, USA in 1992 and 1995, respectively. He obtained his Ph.D. in Electrical Engineering from
National University of Sciences and Technology, Pakistan in 2005. He is currently a Professor and Head of
Department of Electrical Engineering at the DHA Suffa University, Pakistan. His research interests include
implementing Enterprise Information Services using Linux, Information Security and Cryptology, Computer
Networks and Internetworking using TCP/IP Protocols, Digital Systems Design and Computer Architectures.

http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/index.html
http://www.skein-hash.info/sites/default/files/skein_fpga.pdf
http://eprint.iacr.org/2009/159

