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Abstract 
 

Cryptographic hash functions are widely used in many information security applications like 

digital signatures, message authentication codes (MACs), and other forms of authentication. 

In response to recent advances in cryptanalysis of commonly used hash algorithms, National 
Institute of Standards and Technology (NIST) announced a publicly open competition for 

selection of new standard Secure Hash Algorithm called SHA-3. One important aspect of 

this competition is evaluation of hardware performances of the candidates. In this work we 
present efficient hardware implementations of SHA-3 finalists: JH, Keccak and Skein. We 

propose high speed architectures using Look-Up Table (LUT) resources on FPGAs, to 

minimize chip area and to reduce critical path lengths. This approach allows us to design 
data paths of SHA-3 finalists with minimum resources and higher clock frequencies. We 

implemented and investigated the performance of these candidates on modern and latest 

FPGA devices from Xilinx. This work serves as performance investigation of leading SHA-3 

finalists on most up-to-date FPGAs. 
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1. Introduction 

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block 

of data and output is a fixed-size bit string, which is known as the (cryptographic) hash value. 
Cryptographic hash functions are widely used in many information security applications like 

digital signatures, message authentication codes (MACs), and other forms of authentication. 

There is a long list of cryptographic hash functions but with recent advances in 
cryptanalysis, many have been found vulnerable and should not be used. A successful attack 

against a weakened variant of an algorithm weakens the experts’ confidence, even though the 

hash function has never been broken, that leads to its rejection.  

In previous few years, cryptanalysis of several hash algorithms has found serious 

vulnerabilities. In 2004, X. Wang et al. presented the collisions for MD4, MD5, HAVAL-128 

and RIPEMD [1].  There was a breakthrough in cryptanalysis of SHA-1 Hash Algorithm in 

August 2005. M. Szydlo found that it is possible to find a collision in SHA-1 in 2
63

 operations 
[2]. Previously, it was thought that 2

80
 operations are required to find a collision in SHA-1 for 

a 160-bit block length. This attack is expected to find a hash collision i.e. two messages with 

the same hash value in 2
63

 operations. No attacks have yet been reported on the SHA-2 
variants; however they are algorithmically similar to SHA-1. Furthermore, M. Stevens 

reported a collision attack on MD5 in 2006 [3]. 

To ensure the long-term robustness of applications that use hash functions National 

Institute of Standards and Technology (NIST) USA has announced a public competition in 
the Federal Register Notice published on November 2, 2007 [4] to develop a new 

cryptographic Hash algorithm called SHA-3. In response to NIST’s announcement 64 

submissions were reported, out of which 51 entries fulfilled the minimum submission 
requirements and were selected as the First Round Candidates. After reviewing and analyzing, 

the number of candidates reduced to 14 in Round 2 of the competition. A whole year was 

allocated for the public review, implementation and analysis of these algorithms and the 
Second SHA-3 Candidate Conference was held on August 23-24, 2010 in University of 

California, Santa Barbara. As a result of 2
nd

 SHA-3 conference, 5 out of 14 Round 2 

candidates have been selected and promoted to the Final Round on December 9, 2010. Five 

short listed candidates, advanced in final round are BLAKE, Grøstl, JH, Keccak and Skein. 
The tentative time-frame for the end of this competition and selection of finalist for SHA-3 is 

in 4
th
 quarter of 2012 [5]. 

This paper describes efficient hardware implementations of three SHA-3 finalists, on latest 
FPGA technologies from Xilinx. The remainder of this paper is organized as follows. We 

briefly give an overview about cryptographic hash functions in section 2. Section 3 gives a 

brief description of selected SHA-3 finalists. Section 4 discusses some architecture related 

details of Xilinx’s FPGA, concerned to our work. In section 5 we present the efficient 
hardware implementations of selected SHA-3 finalists. In section 6 we give the results of our 

work and present the analysis of achieved results. Section 7 provides the performance 

evaluation of SHA-3 finalists. Section 8 provides the comparison of our work with previously 
reported implementations. Finally, we provide some conclusions and direction for future work 

in section 9. 

2. Cryptographic Hash Functions 

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block 

of data and output is a fixed-size bit string, which is known as the (cryptographic) hash value. 
Hash functions have the most fascinating property of input sensitivity. It is in this way that 

an intended or unintended change to the message will change the hash value drastically. This 

property makes hash functions an ultimate choice for applications requiring authenticity and 

http://en.wikipedia.org/wiki/Algorithm
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http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Message_authentication_codes
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integrity. More often, the data to be hashed is called the ‘message’, and the hash value is 

sometimes called the ‘message digest’ or simply the ‘digest’. A hash value   of plaintext    

is generated by a hash function   of the form 

         
 

The ideal cryptographic hash function with inputs  ,     and outputs  ,    must have the 

following properties: 

• It should be easy to compute the hash value for any given message   

• Preimage Resistance: It should be very hard to find a message that has a given hash, 

i.e. to find any preimage   such that        when given any    

• Second Preimage Resistance: It should be difficult to find another input message 

such that both messages have the same Hash value, i.e. given  , to find a second 

preimage       such that           . This property is sometimes referred to 

as ‘weak collision resistance’ 

• Collision Resistance: It should be difficult to find two different messages that have 

the same hash value, i.e. to find any   and     which have the same hash i.e. that 

          . Such pair of messages is called a cryptographic hash collision. This 
property is sometimes referred to as ‘strong collision resistance’  

Hash functions and encryption functions are different: encryption converts plain text into 

cipher text and by using the appropriate key it converts it back. The two texts roughly 
correspond to each other with respect to size. Encryption is a two-way operation.  On the 

other hand, hashes convert a stream of data into a fixed size hash value. No matter how long 

the message may be but its hash value will be of fixed size and it is strictly a one way 
operation. 

3. Brief Description of Selected SHA-3 Finalists 

3.1 JH Hash Function 

H. Wu designed and proposed the JH hash function for SHA-3 [7]. JH algorithm is based on 

the idea that large block ciphers can be constructed through small components and constant 

key. JH algorithm generalizes the AES design methodology to high dimensions. JH has four 

variants JH-224, JH-256, JH-384 and JH-512. Each variant is named as the output length of 
the hash. JH uses the same design for all variants. These variants only differ in initial values 

(IV) and output hash length. The compression function of JH is shown in Fig. 1. JH 

compression function is constructed from bijective function (a block cipher with constant 

key) [7]. JH compression function compresses a previous 1024-bit hash value      and 512-

bit message block    into new 1024-bit hash value   . The bijective function  , consists of 

42 rounds. Each round consists of 4-bit S-box substitution, a linear transformation and a 
series of three permutations. The 1024-bit state of JH is grouped into 256 4-bit pairs before 

start of round operations and de-grouped after it. Grouping and de-grouping of bits is defined 

in [7]. Two types of S-boxes are used and selection of S-box for a given 4-bit substitution is 

controlled by respective bit value of round constant. In this sense, it can be viewed as 5-bit to 

4-bit substitution. S-box substitutions are given at Table 1. The linear transformation   of JH 

implements a (4,2,3) Maximum Distance Separable (MDS) code over         The bit-wise 

computation of   is given as follows. Let  ,  ,   and   denote 4-bit words, the function 
             is computed as: 
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Where    is most significant and    is least significant bit of  . Same convention is used for 

 ,   and  . The permutation   of JH is a combination of three small permutations (ø,    and 
π). In terms of hardware, permutations are achieved through simple rewiring of nets. 

Description of these permutations can be found in [7]. A sample two rounds of 64-bit state is 

shown in Fig. 2. Round constant bits are not shown in Fig. 2. Each JH round uses a 256-bit 

round constant. For 256 4-bit pairs of JH state, each round constant bit selects either S-box 

   or    at respective positions. Round constant for each round may be generated on the fly 

by using identical bijective compression function of JH in parallel to JH data path and setting 

initial constant value to zero. Alternately, round constants may be pre-computed and stored 

in memory to be used later. The initial value of JH state    is computed by setting first two 

bytes of      equal to the desired hash digest size and remaining bytes to zero, setting 

message    to zero and then applying JH compression to     and    to obtain   . For an 

  block message final hash    is calculated by applying JH compression function to 

message blocks   ,   ,   ,.….,    iteratively as follows: 
 

for     to   

                     

return    
 

 

Fig. 1. JH compression function 

Table 1. S-box substitutions of JH 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

      9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14 
      3 12 6 13 5 7 1 9 15 2 0 4 11 10 14 8 

3.2 Keccak 

G. Bertoni et al. designed and proposed the Keccak Hash Function for SHA-3 [8]. Keccak is 

a family of sponge functions with members Keccak [r, c] characterized by two parameters, 
bitrate r and capacity c. The sum r + c determine the width of the Keccak- f permutation used 

in the sponge construction and is restricted to values in {25, 50, 100, 200, 400, 800, 1600}. 

For SHA-3 proposal Keccak team proposed the Keccak [1600] with different r and c values 

for each desired length of hash output [8]. For 256-bit hash output r = 1088 and c = 512. The 
1600-bit state of Keccak [1600] consists of 5x5 matrix of 64-bit words. Each compression 

step of Keccak consists of 24 rounds. Let us denote the state matrix with  . Each round then 

consists of following five steps: 
 

Theta (θ): 

 

                                                  

0   512 

  

1023 511 

   

0 1023   512 511 

     

512 

1023   512 0 

0 1023 

   
511 

   

511  
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Fig. 2. Two sample rounds of JH using 64-bit state size 

 

                                     

                                 
 
Rho(ρ) and Pi (π): 

                                             
 
Chi (χ): 

                                                       
 
Iota (i): 

                 
 

In above listed equations all operations within indices are done modulo 5.   denotes the 

complete permutation state array and        denotes a particular 64-bit word in that state. 

      ,      and      are intermediate variables. The symbol   denotes the bitwise XOR, 

    the bitwise complement and     the bitwise AND operation. Finally,          

denotes the bitwise cyclic shift operation, moving the bit at position   into position       

(modulo the lane size i.e. 64). The constants        and    are cyclic shift offset and round 

constant respectively, and are defined in [8].  
Keccak hash function operation consists of three phases, initialization, absorbing phase 

and squeezing phase. Initialization is simply initializing the state matrix with all zeros. In 

absorbing phase each  -bit wide block of message is XORed with current matrix state and 24 
rounds of Keccak permutation are performed. After absorbing all blocks of input message in 

that fashion there comes the squeezing phase. In squeezing phase simply the state matrix is 

truncated to desired length of output hash. If more than  -bit (bitrate) hash value is required 

then more Keccak permutations are performed and their results concatenated until hash 
width reaches the desired length.  

3.3 Skein  

N. Ferguson et al. designed and proposed the Skein family of cryptographic hash functions for 

SHA-3 [9]. Skein has three different internal state sizes: 256, 512, and 1024 bits. Each of 

these state sizes can support any output size. Skein is built from these three components: 

• Threefish: Threefish is the tweakable block cipher at the core of Skein, defined with 
a 256, 512 and 1024 bit block sizes. 

                                                   

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

Permutation 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

S S 

L 

Permutation 

                                                      

   



2393                                     Latif et al.: Look-Up Table Based Implementations of SHA-3 Finalists: JH, Keccak and Skein 

 

• Unique Block Iteration (UBI): UBI is a chaining mode that uses Threefish to build a 

compression function that maps an arbitrary sized input to a fixed sized output. 

• Optional Argument System: This allows Skein to support a variety of optional 
features without imposing any overhead on implementations and applications that do 

not use these features. 

Threefish: Skein's compression function is based on Threefish, which is a large tweakable 

block cipher [9].  Tweakable block ciphers are ciphers that take three inputs: a key, a tweak 
and a block of message, instead of the usual block ciphers that take two inputs, a key and a 

block of message.  A unique tweak value is used to encrypt every block of message.  Different 

tweaks create different permutations for each encryption process. This technique eliminates 
the need for altering keys if we want to have a different block cipher every time. 

The block and key sizes of Threefish are equal and can be set to 256, 512 or 1024 bits, and 

they are designated as: Threefish-256, Threefish-512, and Threefish-1024, respectively. The 
tweak value is 128 bits for all block sizes. Threefish structural design consists of round 

operations. Threefish-256 and Threefish-512 compression functions are made of 72 

consecutive round operations while the Threefish-1024 requires 80 rounds. Each round of the 

Threefish-256 block cipher is made of two instances of a MIX function along with a 
permutation module, while a round key is added to the data before the first round and after 

each 4 consecutive rounds as shown in Fig. 3. 

 
Fig. 3. First Four Round Operations of the Threefish-256 Cipher 

Subkeys or round keys consist of three contributions: an input key word, tweak words, and a 

counter value. The key schedule turns the key and tweak words into a sequence of subkeys, 

each of which is equal to the size of the block. Tweak depends upon number of factors 
including position and the bit length of the message block. 

The mix operation consists of addition modulo 2
64

, XORs and left-rotates.  These operations 

are defined on the intermediate state organized in 64-bit words. The MIX operation 
transforms two of these 64-bit words and is common to all Threefish variants. MIX function 

has two input words (   and   ) and produces two output words (   and   ) using the 

following relations: 

 

MIXING MIXING 

MIXING MIXING 

MIXING MIXING 

PERMUTATION 

SUBKEY 1 

PERMUTATION 

ADDITION OF SUBKEY 

PERMUTATION 

PERMUTATION 

MIXING MIXING 

ROUND 0 
(All rounds are 
similar apart 
from rotation 
distance used 
in Mixing)  
 

ADDITION OF SUBKEY SUBKEY 0 

PLAIN TEXT 
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Where   is the bit-wise XOR operation and   is the left rotate operator and R (Rotation 

Distance) is a constant value which depends on the Threefish block size, the round index and 

the position of the two 64-bit words in the Threefish block [9]. All Threefish rounds are 
similar apart from rotation constant in mixing operation. These rotation constants are defined 

in [9]. The subsequent permutation operation reorders 64-bit words constructed from a 

Threefish block. This permutation is fixed for a specific Threefish variant, defined in [9].  

Unique Block Iteration (UBI) Construction:  

The UBI construction is a variant of the Cascade or (Merkle-Damgård) construction. It uses a 

tweakable block cipher in Matyas-Meyer-Oseas mode to form a compression function, and 

uses the bit offset of the block being hashed as the tweak [9]. An example of UBI mode is 
shown in Fig. 4. 

 

 

Fig. 4. Unique Block Iteration Construction 

The message M, shown in Fig. 4, comprises of three message blocks M0, M1 and M2.  

UBI_IN is the first Threefish encryption key which is used along with the tweak value for the 
encryption of first message block. The output of the Threefish block cipher is XORed with 

message block itself and its output along with new tweak value is used for the encryption of 

the next block of message. It means that a new key is used for the encryption of each block. 
As mentioned earlier, the tweak values depend on the position and bit length of the respective 

message block. UBI is used in Skein not only for compression and the output transformation, 

but also for other optional operation modes e.g. tree hashing and keyed hashing. 

4. FPGA Specific Features and Their Implication on SHA-3 Algorithm 
Architectures 

The architectures of latest FPGA families from Xilinx (Virtex 5, Virtex 6, and Spartan 6) are 

based on 6-input LUTs, named LUT6 [10]. A CLB Slice of Xilinx FPGA consists of 4 such 

LUTs. Each LUT6 has six independent inputs and two independent outputs. These LUTs 
may be configured and used in many different ways. A LUT6 may be used as independent 5-

input LUT using LUT5 primitive from Xilinx HDL library, shown in Fig. 5(a). On the other 

hand, it is possible to implement any two 5-input logic functions with shared inputs using 

LUT6_2 primitive, shown in Fig. 5(b). In this case, LUT input    selects between two 5-

input logic functions to connect at output     Same LUT6_2 primitive may be used to draw 

two independent outputs from a LUT6, with shared 5-inputs. In this case, input     should be 

tied to logic high (i.e. 1). The INIT value in hexadecimal, shown under attributes in Fig. 5(a) 

72 Rounds  
of  Threefish 
Block Cipher 

M 0 (First  Message         Block) 

XOR 

Tweak 
(M 0 ) 

72 Rounds  
of  Threefish 
Block Cipher 

M 1 (Second  Message         Block) 

XOR 

Tweak 
(M 1 ) 

72 Rounds  
of  Threefish 
Block Cipher 

M 2 (Third  Message         Block) 

XOR 

Tweak 
(M 2 ) 

UBI_IN UBI_OUT 
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and 5(b) configures the LUT to perform desired operation at its inputs. The INIT value is 

derived by laying down the truth table for all possible combinations of LUT inputs and 

outputs. We have used these primitives excessively in architectural designs of SHA-3 

finalists. We also exploit the techniques presented in [11] for efficient utilization of modern 
FPGA resources.  

5. Implementation 

We have implemented the core functionality of 256-bit and 512-bit variants of JH, Keccak 

and Skein. Core functionality does not mean that we have implemented compression function 

only. Our designs are fully autonomus with complete I/O interfaces.  We targeted for efficient 
implementations but keeping in mind the fair hardware performance comparison for these 

candidates. We assure this approach by cattering for the following constraints: 

 Common Environment: It is concerned with the implementations, in terms of the 

level of expertise, language, coding techniques, design methodology, and 
development tools. We assured it by keeping: common implementer for all 

candidates, using Verilog as common language, common design methodology 

(discussed in next point) and using Xilinx’s ISE 13.1 as the common development 
tool.   

 Design Methodology: For fair comparison it is necessary to utilize same set of 

hardware resources for all candidates. We assured it by forcing our designs to map 

on LUT based logic and not to use dedicated hardware resources like BRAMs, 

Multipliers and DSPSlices. Memories are also implemented using distributed 
RAMs/ROMs because they utilize the LUT resources and memory requirement of a 

candidate will be reflected in terms of utilized area. 

 Common I/O Interface: Using common Input/Output interface assures the identical 

flow of data for all candidates in investigation. It also assures modular approach by 
reusing the same module wherever possible. 

 Overhead suppression: We do not implement the optional parameters of the 

candidates like salt input, Hash Tree functionality and HMAC etc. Furthermore, we 

assume that input message blocks are already padded outside.  

 

 

LUT5 

LUT5 

   

   

   

   

   

   

Attributes 

INIT=0000000000000000 

6-Input Look-Up Table 

 

LUT6_2 
 

   

   

LUT5 
 

Attributes 

INIT= 00000000 

5-Input Look-Up Table 

 

   

   

   

   

   

  

(a) (b) 

Fig. 5.  LUT5 and LUT6_2 primitives in Xilinx HDL library 
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5.1 Common I/O Interface 

Fig. 6. Common Input/Output Interface  

Developed input/output interface is shown in Fig. 6. All I/O transactions are synchronized. 

Each I/O is sampled at the rising edge of clock cycle. The first_blk and last_blk signals 

indicate the first and last block of message, respectively. The input cycle is initiated by I/O 
interface by putting load signal to high. Hash Module acknowledges the request if it is able 

to receive data by putting ack signal to high. After receiving acknowledgment, I/O interface 

makes available 64-bit word of data at each rising edge of clock cycle. During the transaction 
of data, ack signal remains at logic high. After receiving desired amount of input words Hash 

Module puts the ack signal to low. Accordingly I/O interface pulls the load signal to low if 

no more transactions are required. If message blocks are still present, load signal will remain 

high but Hash Module acknowledges it after one clock cycle from the previous transaction.  

Fig. 7. Hash Module separated in Control and Data paths 

In the same way when Hash Module is ready with a valid hash value it signals the I/O 

interface by putting Hash_Valid signal to high. After putting Hash_valid signal hash module 
outputs 64-bit words on each rising edge of clock cycle until the desired hash length is 

achieved. I/O interface is designed in a way that it does not affect the ongoing processing of 

hash module. That is, we can make I/O transactions at the same time while hash of a 
message block is in progress.   

5.2 Control  and Data Paths 
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Hash module of each candidate consists of two major parts, the control path and the data path. 

Block diagram of hash module separated in control path and data path is depicted in Fig. 7. 
Control path consists of Finite State Machine, State register, clock and counter. Data path 

consists of Input registers, Hash Core, Intermediate registers and Output registers. Input 

registers of data path consist of a Serial In Parallel Out (SIPO) register and other registers to 
store message and other input parameters like key in case of Skein. Hash Core is the main 

arithmetic logic unit of the hash algorithm. Intermediate registers are utilized to store 

intermediate results of the hash algorithm. Output register contains the resulting hash and it is 

a Parallel In Serial Out (PISO) register to serially output the result. 

5.3 Implementation of JH 

The data path implemented for JH is shown in Fig. 8(a). The state_reg represents the 
intermediate JH state register, on which processing of JH algorithm takes place.  

 

JH hash function uses the same algorithm for all hash digest sizes. Hence, same data path is 
utilized for all hash digest sizes. Only the difference between data path for different hash -

sizes is of initial values (IV) and hash output registers. In the beginning of every hash process 
state_reg is initialized with IV of desired hash digest size. Then a complete JH compression 

is processed by setting msg and round constant RC to zero. The higher order 512 bits of 

resulting state of JH compression is then XORed with first message block and stored in 
state_reg. Then contents of state_reg are processed through JH compression function with 

respective round constant. JH compression function consists of 42 rounds of its arithmetic 

logic unit (ALU). A single round is processed in one clock cycle. Therefore 42 clock cycles 
are required to complete 42 rounds of JH compression function. After completion of 42 

rounds on a message block, resulting lower order 512 bits of JH compression state is XORed 

with msg, to obtain next chaining hash value. The higher order 512 bits of resulting chaining 

hash value is then XORed with next message block and stored in state_reg and same 
compression sequence is repeated again. This process continues till the end of all message 
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Fig. 8. Architectural detail of JH 
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blocks. At the end, resulting lower 512 bits of chaining hash value is truncated to the desired 

length of hash output. The Trunc. block in Fig. 8(a) represents the truncation operation. The 
Concat. block represents the concatenation operation. The grouping and degrouping blocks 

are used to perform grouping and de-grouping of JH state bits into 4-bit pairs as specified in 

JH specification document [7]. In terms of hardware implementation these steps are achieved 
through simple rewiring of interconnects, at no resource cost. The round constants (RC) are 

stored in ROM using 43x256 bit single port distributed ROM. Respective round constant is 

addressed during each round using round number as ROM address.  

 
JH Arithmetic Logic Unit (ALU): JH ALU consists of S-boxes (S) and linear transformation 

units (L). JH ALU works on 4-bit pairs of JH state register contents. For S-box, we used 

LUT6_2 primitive (Fig. 5(b)) and used both of its outputs i.e.    and   . Using this approach 4 
S-boxes are adjusted within a single slice. In this approach S-box logic of JH ALU consists of 

only 128 slices. Implementation of a single S-box using this approach is depicted in Fig. 8(b). 

The INIT values (in hexadecimal) shown in figure, are actual configuration values for each 

LUT to perform S-box operation. Linear transformation is also implemented using same 

optimized approach. LUT6_2 primitive with both outputs    and    is used. Implementation 

of a single linear transformation unit (L) is depicted in Fig. 8(c). The INIT values (in 

hexadecimal) shown in figure, are actual configuration values for each LUT to perform L 
operation. Same variables are shown for inputs and outputs in Fig. 8(c) as denoted in linear 

transformation equations in specification document [7]. 

5.4 Implementation of Keccak 

The data path implemented for Keccak is shown in Fig. 9(a). The A_Reg represents the   

matrix register, on which processing of Keccak algorithm takes place. Keccak data path is 

fully parameterized, such that the design may be synthesized for any value of r (bitrate) and 
c (capacity). For that reason, the width of each net is highlighted as r, c or r + c in Fig. 9(a). 

The length of A_Reg also varies according to r and c and it is defined as r + c (bits). For 

Keccak-256, r is specified as 1088-bits and c as 512-bits. For Keccak-512, r is specified as 
576-bits and c as 1024-bits. Accordingly A_Reg will be of 1600-bits. In beginning of every 

hash process A_Reg is initialized with all zeros. First message block is directly copied to 

A_Reg after concatenating it with c wide stream of 0’s. The Concat. block in Fig. 9(a) 
represents the concatenation operation. Compression function of Keccak consists of five 

steps. In Fig. 9(a) each step is denoted by the symbol as specified in Keccak specifications. 

These steps are         and i. We have combined these steps during implementation, 

wherever possible. We have implemented   and    as a single step. Keccak algorithm’s 
compression function consists of very simple arithmetic operations. It involves simple XOR, 

AND and NOT operations. These operations are implemented using LUT primitives from 

Xilinx specific libraries. Following are details of implementation of each step:  
 

Theta ( ) Step: There are three equations in   step. First equation (calculation of C) is 

implemented using LUT5 primitive for XOR logic as shown in Fig. 9(b). The INIT value in 

hexadecimal, shown under attributes in figure, configures the LUT to perform XOR 
operation at its inputs. The INIT value is derived by laying down the truth table for all 

possible combinations of LUT inputs. To XOR 5 64-bit operands of the equation, LUT5 

primitive is instantiated 64 times. For complete implementation of equation, 5x64 LUT5 are 
required. We can combine remaining two equations of theta step. For its implementation, 

LUT3 primitive is used for XOR logic as shown in Fig. 9(c). The one bit rotation in last 

operand is implemented through rewiring. To implement the complete logic, 25x64 

instantiations of LUT3 primitive are required. 
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Rho ( ) and Pi ( ) Steps: The   and    are permutations, which may be achieved through 

simple rewiring in hardware, at no resource cost. The cyclic shift constant        is fixed 

and known for each position of matrix  . It is also implemented by means of fixed rewiring. 

 

Chi (   Step: In   step three logical operations XOR, NOT and AND are used. These are 

implemented using LUT3 primitive as shown in Fig. 9(d). In order to accomplish the   step, 

LUT3 with   logic is instantiated 25x64 times. 

 

Iota ( ): The i step involves simple XOR of round constant with least significant 64 bits of 

A_Reg, i.e.       . It is implemented using LUT2 primitive as shown in Fig. 9(d). LUT2 is 

instantiated 64 times for i step. 
 

The round constants (RC) are stored in ROM using 24x64 bit single port distributed ROM. 

Respective round constant is addressed during each round using round number as ROM 
address. These five steps or a single round of Keccak algorithm are accomplished in one 

clock cycle. Therefore 24 clock cycles are required to complete 24 rounds of Keccak 

algorithm. After completion of 24 rounds on a message block, resulting r-bits of state of 

A_Reg are XORed with next message block and same round sequence is repeated again. 
This process continues till the end of all message blocks. At the end, state of A_Reg is 

truncated to the desired length of hash output.  

5.5 Implementation of Skein  

The data path implemented for Skein is shown in Fig. 10(a). Add_Subkey module consists 

of 8 64-bit adders, implemented using fast carry chain logic available in Xilinx FPGAs. The 
Threefish compression function of Skein is partially implemented using 4 unrolled rounds. 

These 4 rounds are then iteratively used to complete 72 rounds of compression function. The 

novel idea in implementation of these 4 unrolled rounds is that, we do not need separate MIX 
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modules and multiplexers to select between different rotation constants in second step of 
MIX operation. We have efficiently implemented second step in MIX module using a LUT4 

primitive depicted in Fig. 10(c). The select bit  , selects between two rotated instances of   , 

according to round number, to XOR with   . For first four rounds   is zero and upper half 

rows of rotation constants’ table are used for respective MIX modules. For next four rounds 

  will be 1 and lower half rows of rotation constants’ table are used for respective MIX 

modules. For example,       will be selected and XORed with    in first round and 

       will be selected and XORed with    in fifth round. Hardware architecture of key 

schedule module is shown in Fig. 10(b). The extended key K8 is obtained by XORing the 
input 64-bit key words (K0…..K7) and constant C240. The extended tweak t2 is obtained by 

XORing the two input 64-bit tweak word (t0 and t1). The extended key and tweak words are 

then loaded into the circular shift registers K (576 bit) and t (192 bit). These two registers are 
clocked and rotated once for each subkey. Key Schedule module generates subkeys on every 

falling edge of clock pulse. Add_Subkey module gives output on the rising edge of each 

clock pulse. Next subkey is available on falling edge of the same clock pulse. In this way one 
clock cycle is required to complete four rounds, subkey addition and subkey generation. 

Therefore to complete 72 rounds and 19 subkey addition of Skein, 19 clock cycles will be 

required. The next chaining hash value will be available after 19 clock cycles. 

6. Implementation Results 

The designs have been implemented on Xilinx Virtex 5 and Virtex 6. Detailed device 
specifications are: Virtex 5 LX30T, speed grade 3, package FF323 (5vlx30tff323-3) and 

Virtex 6 LX75T, speed grade 3, package FF784 (6vlx75tff784-3). The resulting clock 

frequencies and area utilization after place and route are reported. Table 2 shows achieved 

area consumption (    ), clock frequency (     ), throughput (  ) and throughput per area 

(   ) for implemented designs. The            is the block size of message in bits and      

is the number of clock cycles required for hash of a single message block. In order to 

complete the profile of SHA-3 candidates, results of BLAKE and Grøstl are included from 
[15] and [16], respectively. However, we would like to point out that BLAKE and Grøstl 

implementations did not benefit from the use of Lookup Table based design. This can be 

attributed to the fact that JH, Keccak and Skein utilize boolean functions extensively in the 

compression transformation whereas BLAKE utilizes primitives which make use of 
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arithmetic operations. BLAKE and Grøstl are algorithms where use of specific library 

resources not turns into advantageous outcomes. For example, the addition operation on 
Xilinx FPGAs is efficiently implemented by synthesis tools itself by using dedicated carry 

logic resources. The XOR and rotation operation are not expensive operations in terms of 

resource utilization. Hence, efficient direct coding of the equations of BLAKE returns good 
synthesis results. 

Table 2. Implementation Results for 256-bit and 512-bit variants of SHA-3 finalists 

SHA-3 

Finalist 
Device 

256-bit 512-bit 

      

     

[bits] 

     

[cycles] 

     

[MHz] 

     

[Slices] 

   

[Gb/s] 

    

[Mbps/slice] 

      

     

[bits] 

     

[cycles] 

     

[MHz] 

     

[Slices] 

   

[Gb/s] 

    

[Mbps/slice] 

BLAKE 
Virtex 5 512 28 124.55 1739 2.28 1.31 1024 32 100.02 2582 3.21 1.24 

Virtex 6 512 28 131.96 1602 2.41 1.51 1024 32 104.30 2246 3.34 1.46 

Grøstl 
Virtex 5 512 10 121.03 1419 6.20 4.37 1024 14 101.22 2523 7.40 2.94 

Virtex 6 512 10 146.87 1467 9.62 5.12 1024 14 125.44 2359 9.17 3.89 

JH 
Virtex 5 512 42 287.44 865 3.50 4.05 512 42 292.48 888 3.57 4.02 

Virtex 6 512 42 303.65 562 3.70 6.59 512 42 306.37 661 3.74 5.65 

Keccak 
Virtex 5 1088 24 275.56 1333 12.49 9.37 576 24 263.16 1197 6.32 5.28 

Virtex 6 1088 24 301.57 915 13.67 14.94 576 24 291.21 1015 6.99 6.89 

Skein 
Virtex 5 512 19 113.78 1492 3.07 2.05 512 19 113.60 1544 3.06 1.98 

Virtex 6 512 19 114.30 1163 3.08 2.65 512 19 112.36 1203 3.03 2.52 

 

For both Virtex 5 and Virtex 6, designs of JH and Keccak result in higher frequencies, due to 
their simple compression functions. However, more number of rounds make JH algorithm’s 

throughput restricted to the lower end. The larger message block size and average number of 

rounds of Keccak make it the top performer in terms of both throughput and throughput per 
area. In terms of area consumption, JH is the most compact algorithm. BLAKE and Skein 

are computationally rigorous algorithms as compared to other candidates, hence, results in 

low throughput and throughput per area designs.    

7. Evaluation of SHA-3 Finalists 

It is clear from results that Keccak is far ahead of other four candidates, on both Virtex 5 and 
Virtex 6, in terms of throughput per area for both 256-bit and 512-bit variants. The 

difference is large for 256-bit variant; however, in case of 512-bit variants JH is very close to 

the performance of Keccak. For 256-bit variants JH and Grøstl give almost similar 
throughput per area performance. In terms of area consumption JH leads all of the other 

candidates by consuming lesser area, for both variants. The area consumption difference 

from JH to other candidates is even more significant for 512-bit variants.  In terms of 
throughput, again Keccak is far ahead for 256-bit digest sizes but Grøstl beats the Keccak 

with significant differences for 512-bit digest sizes on both devices. For throughput and 

throughput per area, BLAKE and Skein are well behind the performances of Keccak, JH and 
Grøstl. BLAKE and Skein are computationally intensive designs as compared to other 

candidates. If we consider throughput per area as the major deciding factor for performance 

comparison, we can easily rank Keccak first and JH and Grøstl as second and third 

respectively. 

8. Comparison with previous work 

We have achieved significant improvements in implementation results from all of the 

previously reported work. For JH, Keccak and Skein we take advantage of Look Up Table 

(LUT) resources, available on Xilinx FPGAs, to reduce chip area consumption and critical 
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paths. The use of resource primitives from Xilinx specific libraries allowed us to design high 

frequency designs with minimum use of resources. Table 3 shows the comparison of results 

with previously reported implementations in terms of     , area and throughput per area. In 

Table 3, we show our exceeding results in bold font. Most of our results for Virtex 5 and 

Virtex 6 are exceeding from all previously reported work in terms of throughput per area. 
Only the JH is the case where our throughput per area results are slightly behind of [17]. 

However, our result figures are very close to throughput per area results of [17] with 

exceptional use of smaller area for JH. In case of Keccak and Skein algorithms our 

throughput per area results are ahead of previously reported work. Comparison of BLAKE 
and Grøstl has been presented in [15] and [16] respectively; therefore, their comparison is 

not included in Table 3.  

9. Conclusion and Future Work 

In this work we have presented efficient hardware implementations of SHA-3 finalists: JH, 

Keccak and Skein. We have reported the implementation results of 256-bit and 512-bit 
variants on Xilinx FPGAs Virtex 5 and Virtex 6  in terms of area, throughput and throughput 

per area; and compared it with previous results.  Utilization of Look-Up Table (LUT) 

resources on FPGAs proves beneficial to enhance the hardware performance of the JH, 
Keccak and Skein SHA-3 candidates in terms of both speed and area. Use of LUT primitives 

is, therefore, demonstrated to be a justified design approach.  However, for BLAKE and 

Grøstl SHA-3 candidates, further effort is required to be able to extract performance gains 
from LUT based implementation. This shows that SHA-3 finalists offer implementors 

different tradeoffs in FPGA based implementations. We intend to further explore the 

possibilities of LUT based implementations for BLAKE and Grøstl which may prove 

competitive relative to non LUT designs. 
We have achieved significant improvements in implementation results compared to the 

previously reported work. Results achieved in this work are exceeding the various 

implementations reported so far. This work serves as performance investigation of SHA-3 
finalists on modern FPGAs. 

Table 3. Comparison with previous work.      in MHz,      in Slices and     in Mbps/Slice 
 

SHA-3  

Finalist

s 

Author(s) Device 
256-bit 512-bit 

                            

JH 

Our work Virtex 5 287.44 865 4.05 292.48 888 4.02 

Our work Virtex 6 303.65 562 6.59 306.37 661 5.65 

Baldwin et al.[12] Virtex 5 144.11 1763 0.93 144.11 1763 0.93 

Matsuo et al. [13] Virtex 5 201.00 2661 0.84 - - - 

Gaj et al. [14] Virtex 5 278.09 1108 3.06 275.48 1165 2.88 

Homsirikamol et al. 

[17] 
Virtex 6 - 847 6.73 

- 896 5.95 

Homsirikamol et al. 

[17] 
Virtex 5 - 909 5.09 

- 1020 4.64 

Keccak 

Our work Virtex 5 275.56 1333 9.37 263.16 1197 5.28 

Our work Virtex 6 301.57 915 14.94 291.21 1015 6.89 

Keccak Team [8] Virtex 5 122.00 1330 3.91 - - - 

Strömbergson [18] Spartan3A 85.00 3393 1.41 - - - 

Strömbergson [18] Virtex 5 118.00 1483 4.52 - -  

Baldwin et al.[12] Virtex 5 195.73 1971 3.17 195.73 1971 4.32 

Matsuo et al. [13] Virtex 5 205.00 1433 5.86 - - - 

Akin et al. [19] Spartan 3 81.40 2024 1.71 - - - 

Akin et al. [19] Virtex-II 136.60 2024 2.87 - - - 

Akin et al. [19] Virtex 4 142.90 2024 3.00  - - 

Gaj et al. [14] Virtex 5 238.38 1229 8.79 276.86 1236 5.37 
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Homsirikamol et al. 

[17] 
Virtex 6 - 1165 10.17 

- 1231 5.87 

Homsirikamol et al. 

[17] 
Virtex 5 - 1395 9.16 

- 1220 5.37 

Skein 

Our work Virtex 5 113.78 1492 2.05 113.60 1544 1.98 

Our work Virtex 6 114.30 1163 2.65 112.36 1203 2.52 

Baldwin et al. [12] Virtex 5 - - - 83.58 2756 0.35 

Matsuo et al. [13] Virtex 5 115.00 854 1.64 - - - 

Gaj et al. [14] Virtex 5 116.35 843 1.86 104.34 1520 1.85 

 Long [20] Virtex 5 114.94 931 0.44 114.94 1758 0.46 

Tillich [21] Virtex 5 68.40 937 1.87 69.04 1632 2.17 

Tillich [21] Spartan 3 26.14 2421 0.28 26.66 4273 0.32 

Homsirikamol et al. 

[17] 
Virtex 6 - 1510 2.17 

- 1591 1.96 

Homsirikamol et al. 

[17] 
Virtex 5 - 1728 1.70 

- 1658 1.7 
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