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Abstract 
 
In this paper, optimal sensing time allocation for adaptive multiband spectrum 

sensing-transmission procedure is investigated. The sensing procedure consists of an 

exploration phase and a detection phase. We first formulate an optimization problem to 

maximize the throughput by designing not only the overall sensing time, but also the sensing 

time for every stage in the exploration and detection phases, while keeping the miss detection 

probability for each channel under a pre-defined threshold. Then, we transform the initial 

non-convex optimization problem into a convex bilevel optimization problem to make it 

mathematically tractable. Simulation results show that the optimized sensing time setting in 

this paper can provide a significant performance gain over the previous studies. 
 

 

Keywords: Cognitive radio, adaptive spectrum sensing, multiband sensing, 

sensing-throughput tradeoff, bilevel optimization 
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1. Introduction 

The explosive increase in the wireless service demand has made radio spectrum scarcity a 

serious problem. Cognitive radio has been proposed to improve the spectrum utilization by 

allowing secondary users (SUs) to opportunistically access the vacant frequency bands [1]. 

Since a cognitive radio network is designed to be aware of its surroundings, it is necessary for 

SUs to sense whether primary users (PUs) are active or not. Spectrum sensing is a critical task 

for cognitive radio system mainly due to noise, channel fading and shadowing [2][3][4].  

Recently, sequential spectrum sensing strategy has received growing attention [5][6], in 

which the SUs sequentially sense the channels according to a pre-defined order and stop to 

sense when specific criterions are met. Sequential sensing strategy only senses one channel at 

a time. However, when the bandwidth is wide and the channel occupancy rate is high, the 

sequential sensing strategy needs a large amount of sensing resources causing the sensing 

efficiency to be greatly reduced. An adaptive multiband sensing approach has been proposed 

for rapidly identifying multiple spectrum holes in wideband cognitive radio network. The 

sensing method consists of two phases, a exploration phase and a detection phase [7]. In the 

exploration phase, the size of candidate idle channel set is reduced by excluding channels that 

are likely to be occupied by the PUs. In the detection phase, the final detection is performed to 

determine the idle channels. The sensing samples are distributed to focus the limited sensing 

resources on the more promising channels. This adaptive sensing strategy provides a 

significant performance gain under the scenario that holes are sparsely scattered across the 

wideband spectrum. However, the exploration phase in the adaptive sensing approach 

lengthens the sensing time, which accordingly decreases the transmission time. Consequently, 

there exists a sensing-throughput tradeoff in sensing time setting and transmission time setting. 

In [8], the optimal tradeoff is investigated so as to optimally utilize the transmission 

opportunities in a single channel for a single SU. In [9]-[12], the optimal tradeoff of 

cooperative sensing with multiple SUs are studied in a single channel. 

In this paper, we optimize both the overall sensing time and the sensing time for every stage 

in the exploration and detection phases for multiband spectrum sensing. An optimization 

problem is formulated to maximize the average achievable throughput by jointly designing the 

overall sensing time, and the sensing time for every stage in the exploration and detection 

phases, while keeping the miss detection probability for each channel under a pre-defined 

threshold. The initial non-convex optimization problem is further transformed into a convex 

bilevel optimization problem to make it mathematically tractable. Simulations show that 

compared with the existing studies, the proposed sensing time setting can provide a significant 

throughput performance gain. 

The rest of this paper is organized as follows. In Section II, the system model is given. In 

Section III, we formulate the optimization problem and prove that the problem is a convex 

bilevel problem. In Section V, we provide simulation results to demonstrate the performance. 

Finally, conclusions are drawn in Section VI. 

2. System Model 

A cognitive radio system with N channels is considered. Each channel has a bandwidth of W. 

Time is divided into slots, each with a fixed length T. In each slot, the primary user in the 
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channel is assumed to be either active or idle for the whole slot. The channels among primary 

and secondary users are assumed to remain unchanged within each slot.  

For channel n, we have the following hypotheses: 
0
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: ( ) ( ),

: ( ) ( ) ( ),

n n n

n n n n

y m w m

y m s m w m
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where 0

nH  and 1

nH  mean that the primary user in channel n is idle and busy respectively, m is 

the sample index, (.)y  is the received signal of channel n at the secondary user. (.)nw  is the 

additive white Gaussian noise with variance 2

w  corresponding to the channel n. (.)ns  is PU’s 

signal sample at the channel n and is assumed to be independent and identically distributed 

with variance 2( )n

s . Denote 
2
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( )n
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  as the received signal-to-noise (SNR) in channel n.  

In the adaptive multiband spectrum sensing method, each slot includes two phases: a 

multi-stage exploration phase and a detection phase [7]. The exploration phase is essentially a 

coarse sensing process, and it consists of K iteration stages. In each stage, the size of candidate 

idle channel set is reduced by excluding channels that are likely to be occupied by the PU.  We 

denote 
kI  as the set of surviving channels at the end of k-th stage, then after the k-th stage, the 

number of remaining channels is k

k kN N I , where 0 1   is called the distillation 

ratio, which is the percentage of channels that survive at each stage. Fig. 1 shows the adaptive 

multiband spectrum sensing structure.  
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Fig. 1.   Adaptive multiband spectrum sensing structure 

The statistic of the received energy in channel n at the k-th stage is  
1 2
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where   is the sampling rate of the received signal, k  is the sampling time for per channel at 

the k-th stage. (2) is equivalent to 2

11
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kTk

n n km
y m n




   I , where 
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k

k ii
T 


 . Sort the 

1 1k kN   I  energy values 1{ ,  }k

n kn   I  in ascending order, to obtain 
kN  channels with the 

smallest energy values as the new set of surviving channels kI . Although the new set is 

obtained by comparing the energy values between the 
1kN -  channels, the decision process at 

the k-th stage can be seen as comparing the statistic in (2) with a virtual threshold k

n . The 

probability distribution function (pdf) of k

n  in channel n at the k-th stage is  



987                                                        Yu et al.: Optimal Adaptive Multiband Spectrum Sensing in Cognitive Radio Networks 

 

  

2 4

2
2 2

0

1 2 2

: ~ ) ,

: ~

, / (

, (( ) ( ) ) ,

k

n n k

k n n

n n s s

w w

w w k

T

T







 







 

H

H

N

N
                           (3) 

where N  denotes Gaussian distribution. So, the false alarm probability (i.e., the probability 

that, under hypothesis 0

nH , the SU falsely declares that the primary signal is active) of channel 

n at the k-th stage is given as 

0

, 2
Pr( | ) ( 1)
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and miss detection probability (i.e., the probability that, under hypothesis 1

nH , the SU falsely 

declares that the primary signal is inactive) of channel n at the k-th stage is given as 

1 2

, 2
Pr( | ) 1 ( 1) / ( 1)

k
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n k n n n n k n

w

P Q T
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where (.)Q  is the Q function, defined as 
21

( ) exp( )
22 x

z
Q x dz





  . 

At the end of the exploration phase, a small subset of the original N channel is obtained, for 

which the final detection to determine the identified idle channels is performed. In the 

detection phase, we update the energy of each channel in kI  as 

2

1
| ( ) |     

DD K

n n n km
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     I                                   (6) 

where D  is the sampling time for each channel in kI  during the detection phase. (6) is 

equivalent to 2

1
| ( ) | ,  
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n n Km
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   I , where 
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  . The candidate set of idle 

channels is { : }D D

D K n nn    I I , where D

n  is the decision threshold. Similar to the k-th 

stage, we can get the false alarm probability 
,

fa

n DP  and miss detection probability ,

md

n DP  of the 

detection phase as  
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The overall false alarm probability of channel n is seen as the probability that the SU falsely 

declares that the primary signal is active in every stage of the exploration phase and the 

detection phase under hypothesis 0

nH . The overall miss detection probability of channel n is 

seen as the probability that the SU falsely declares that the primary signal is inactive in every 

stage of the exploration phase and the detection phase under hypothesis 1

nH . The overall false 

alarm probability and the overall miss detection probability are calculated as 

, ,

1

1 (1 ) (1 )
K

fa fa fa

n n D n k

k

P P P


                                                  (9) 

and 
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which are similar to the OR-Rule in the cooperative sensing scheme. 

When channel n is indeed free and is detected to be free, the achievable transmission rate of 

channel n is 0

2 0log (1 / )n sC P N= + , where sP  is the received power of the secondary user and 

0N  is the noise power [8]. When channel n is busy and is detected to be free, the achievable 

transmission rate of channel n is 1

2 0log (1 / ( ))n s pC P P N= + + , where pP  is the interference 

power of primary user measured at the secondary receiver [8]. Then, the average throughput of 

secondary user is given as 
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where   is the overall sensing time and 1

1
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  . Here we consider the 

scenario that all the candidate channels for the secondary user are licensed to a single primary 

user (e.g. a base station of cell networks), which means that the SNR of every candidate 

channel is approximately the same. For simplicity, we assume that the active probability is 

equal in all the channels, which means that n  , and 0

0Pr( ) Pr( )n H H , 1

1Pr( ) Pr( )n H H , 
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Therefore, the throughput in (11) is equivalent to 
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3. Optimal Sensing Time Setting for Multi-stage Exploration Phase and 
Detection Phase 

In this section, an optimal sensing time allocation problem for multi-stage exploration phase, 

the detection phase and overall sensing procedure is formulated and addressed resulting in 

maximizing the average throughput. The miss detection probability in each channel should be 

smaller than a threshold that is denoted thP  so as to protect the activities of primary users. 

Then, the problem can be formulated as  
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0, 0. 1,2,...,D i i K                                            (13e) 

The problem above is not a convex problem. To solve it, we use the bilevel optimization 

[13][14], in which the lower level problem is to optimize 1 2{ , ,..., , }K D     with a fix  , 

whereas the upper level problem is to optimize the overall sensing time  . Specifically, the 

lower level problem is 

0 0
{ },

1

1 1

1
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which is subject to the constraints (13b)-(13e). 

Lemma 1: The objective function pU  in problem PL1 achieves the maximal value when 

md

thP P= . 

Proof:  In the multi-stage exploration phase, at the k-th stage, we select 1k kN N   

channels as the surviving channels from 
1kN -  candidate channels. Because the idle channels 

are sparsely distributed among a large number of channels, the miss detection probability at 

the k-th stage is approximately calculated as 1( , )  md k

k k k

k

N
P T

N
. Using (4) and (5), the 

false alarm probability at the k-th stage can be written as a function of the detection probability  

 1( , ) ( 1) (1 )       fa

k k k kP T Q Q T .                                   (15) 

It can be seen that the false alarm probability and the miss detection probability at the k-th 

stage are irrelevant to the threshold k . There are K stages in the exploration phase. From (9) 

and (10), we can obtain the overall miss detection probability and the overall false alarm 

probability as 

( , )md K md

D D DP P T                                                        (16) 

and  

  1

1

(1 ( , )) 1 ( 1) (1 )
K

fa fa

D D D k
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From Equation (7) and (8), it can be seen that (1 ( , ))fa

D D DP T   and ( , )md

D D DP T   grow with 

the increase of D . When the overall miss detection probability mdP  reaches the limit thP , the 

overall false alarm probability faP  also reaches the maximum value. Therefore, The objective 

function pU  achieves the maximum value when md

thP P= . 

This completes the proof. 

  

Based on Lemma 1, the lower level problem PL1 is equivalent to the problem  

{ },
1

2 :  max     (1 ( , )) (1 ( )),
k D

K
fa fa

P D D D k k

k

PL S P T P T
 




                          (18) 

which is subject to the constraints (13c)-(13e). The objective function in problem PL1 can be 

rewritten as 0 0 1 1Pr( ) Pr( )P P thU C S C P H H . 
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Lemma 2: Problem PL2 is a convex problem under condition C1 which includes that 
2
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thP     at 0.5  . 

Proof: In the proof of Lemma 1, we have the miss detection probability ( )md

k kP T   and 

( , ) /md K

D D th thP T P P  . Thus, the false alarm probability in the multi-stage exploration phase 

and detection phase are given as 
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Taking logarithm to the objective function pS , we have 
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Based on (19), we have 
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Further, we have  
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  Since spectrum opportunity is sparsely distributed in the sensing band, we expect that the 

false alarm probability is no greater than 0.5 in every stage of the exploration phase. It is 

equivalent to the following two inequalities 
1
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Since 0k   for any k, (25) is equivalent to 
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. In the detection phase, 

we expect the miss detection probability is no larger than 0.5, and we can achieve this by 

properly setting parameter a and K to obtain 0.5th
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Under the above conditions, we have 
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. Therefore, l

pS  is a concave function for 
1 2{ , ,..., , }K DT T T T . Because the 

objective function pS  is the exponent function of l

pS  and exponent function is concave and 

nondecreasing, pS  is also a concave function for 
1 2{ , ,..., , }K DT T T T  [14, page 84]. 

Denote 1 2[ , ,..., , ]T

K DT T T T=T , 1 2[ , ,... , ]T

K D   τ . From the constraint (13c), we have 

T = Aτ , where A is a ( 1) ( 1)K K+ ?  lower triangular matrix with the nonzero elements 

equal to 1. Since 
pS  is a concave function for 

1 2{ , ,..., , }K DT T T T , after the operation of 

composition with an affine mapping [14, page 79], pS  is also a concave function for 

1 2{ , ,... , }K D    . 

This completes the proof. 

  

  Since the problem PL2 is convex, the lower level problem PL1 is also convex, and it can be 

solved by convex optimization methods. So, the optimal solution of 1 2{ , ,... , }K D     for a 

given   can be obtained. By denoting * ( )pU   as the optimal objective value of the lower level 

problem PL1 with a specific  , the upper level problem is given as: 

              
*1:        max    ( ) (1 ) ( ).

                 s.t.      0

p pPU C U
T

T




 



  

 

                                  (27) 

Lemma 3: Problem PU1 is a convex problem under condition C1.  

Proof: Define two variables (1)  and (2) , assume that (1) (2)  . For (1)  , the optimal 

solution to problem PL1 is (1) (1) (1) (1)

1 2{ , ,... , }K D    , i.e. 
(1)

(1) (1) 1

1

( )
K

K i

D i

iN


    



  , and the optimal 

objective value is * (1)( )pU  . For (2)  , the optimal solution to problem PL1 is 
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(2) (2) (2) (2)
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  , and the optimal objective value is 
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It can be seen that the new set is a feasible solution to problem PL1 with (2)  . Because 
* (2)( )pU   is the optimal objective value to problem PL1 with (2)  , we have 
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So * ( )pU   is an increasing function with respect to  . Then, we have 

*d ( )
0

d

pU 


 . 

We rewrite the optimal objective value of the lower level problem PL1 as 
* ( ) sup ( , )p pU U



 


 τ
A

, where A  is the feasible domain defined in problem PL1. It has been 

proved that ( , )pU  τ  is the concave function with respect to τ . Since   is the linear 

combination of the elements in τ , with the operation of composition with an affine mapping, 

( , )pU  τ  is also the concave function for  . Then, according to the pointwise supremum 

property [14, page 79], it can be obtained that * ( )pU   is the concave function with respect to  . 

So, we have 
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The second order derivative of ( )pC   is given as 
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Since 
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  and 
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d
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 , from Equation (30) we have 

2

2

d ( )
0

d

pC 


 . Therefore, 

problem PU1  is a convex problem under condition C1. 

This completes the proof. 

  

By Lemma 2 and Lemma 3, we prove that the problem is a convex bilevel problem, which 

can be solved by existing methods.  

4. Simulation Results 

In this section, simulations are provided to illustrate the performance of the proposed 

algorithm. Similar to [7], we consider a system consisting of N=100 channels. The sampling 

frequency is set to be 600  kHz. The overall miss detection probability constraint is set as 

0.0625thP = . The distillation ratio of the adaptive method is set to be 0.5   and the number 
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of stages in the exploration phase is set as 3K = . 

Fig.2 shows the maximum achievable normalized throughput of the proposed algorithm and 

compares the proposed algorithm with the exhaustive search algorithm, the no optimization 

scheme [7] with the equal sampling budget allocation and fixed overall sensing time,  the 

adaptive partial optimization scheme [8] with the total sensing time as the optimization 

variable. The SNR is -10dB. It is obvious that the concave-shaped curve of proposed algorithm 

is consistent with the conclusion in Lemma 3. Compared with the exhaustive search curve, the 

proposed algorithm is close to the optimal. Compared with the no optimization scheme [7] and 

partial optimization scheme [8], the proposed algorithm provides a significant performance 

gain.  
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Fig. 2.     Normalized throughput versus t . 

Fig.3 compares the throughput performance between the proposed algorithm, the 

exhaustive search algorithm, the no optimization scheme [7] and the adaptive partial 

optimization scheme [8] in different SNR. For every SNR, there exists an optimal overall 

sensing time for a fix frame duration T [8]. When SNR is low, it needs more sensing time to 

maintain the given target probability of detection, thus, the optimal overall sensing time is 

relatively long. For example, when SNR=-10dB the optimal sensing time is 19ms, which is 

shown in figure 2. So the performance of no optimization  =10ms and 15ms are better than 

that of no optimization  =5ms. When SNR is 0dB, the case is opposite. The curve of partial 

optimization in figure 3 shows the performance with the optimal overall sensing time. The 

optimal overall sensing time at SNR=0dB is close to 5ms. So the curves of no optimization 

 =10ms and  =15ms are worse than that of no optimization  =5ms when SNR is 0dB. The 

curve of proposed algorithm is almost coincide to the exhaustive search algorithm. Comparing 

with the scheme without optimization [7] under different fixed overall sensing time, the 

throughput of the proposed algorithm shows significant performance improvement. The 

performance of the proposed algorithm is also better than that of the partial optimization 

algorithm [8]. The gain is obtained from the optimization of the sensing time for each stage of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014                                        994 

Copyright ⓒ 2014 KSII   

the exploration phase. 
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Fig. 3.   Normalized maximal throughput versus SNR. 

The computational complexity of the proposed algorithm is summarized as follows. When 

optimizing the overall sensing time, we divide the overall sensing time into M parts for 

searching. For each sensing time in the exploration and detection phases, it needs K operations. 

There is K+1 sensing time in the proposed algorithm, so the computational complexity is 

 2O MK . The comparison of  computational complexity in our computer between the 

proposed algorithm, the no optimization scheme [7] and the adaptive partial optimization 

scheme [8] is given in Table 1. It is observed that the proposed algorithm obtains throughput 

improvement at the price of higher complexity. Considering the fact that in practice, the 

number of stages K in the exploration stage is very small (e.g., K<10), the complexity of the 

proposed algorithm is allowable for general systems. 

 
Table 1. Computational complexity 

Scheme Computational complexity 

No optimization scheme [7]  O K  

Adaptive partial optimization scheme [8]  O MK  

Proposed algorithm  2O MK  

5. Conclusions 

In this paper, we have studied the problem of throughput tradeoff in adaptive multiband 

spectrum sensing procedures. This has been achieved by optimizing not only the overall 

sensing time but also the sensing time for the exploration and detection phases. We have 

transformed the initial non-convex optimization problem to a convex bilevel optimization 
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problem. Comparing the adaptive method with equal sampling budget allocation and fixed 

overall sensing time, the proposed scheme provides a significant improvement on the 

throughput of the secondary user. 

In this research, the problem is formulated when the distillation ratio of the adaptive method  

a  and the number of stages in exploration phase K are fixed. How to implement the joint 

optimization of the distillation ratio a , the number of stages in the exploration phase K, 

overall sensing time t  and the sensing time for the exploration and detection phases are  

interesting research topics for further investigation. 
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