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Abstract 
 

We study the problem of optimal opportunistic spectrum access with unknown and 
heterogeneous channel dynamics in cognitive radio networks. There is neither statistic 
information about the licensed channels nor information exchange among secondary users in 
the respective systems. We formulate the problem of maximizing network throughput. To 
achieve the desired optimization, we propose a win-shift lose-stay algorithm based only on 
rewards. The key point of the algorithm is to make secondary users tend to shift to another 
channel after receiving rewards from the current channel. The optimality and the convergence 
of the proposed algorithm are proved. The simulation results show that for both heterogeneous 
and homogenous systems the proposed win-shift lose-stay algorithm has better performance in 
terms of throughput and fairness than an existing algorithm.  
 
 
Keywords: Cognitive radio, opportunistic spectrum access, distributed channel selection, 
global optimization, heterogeneous 

 
 
http://dx.doi.org/10.3837/tiis.2014.08.006 



2676                                              Yuli Zhang et al.: Optimal Opportunistic Spectrum Access with Unknown and  
Heterogeneous Channel Dynamics in Cognitive Radio Networks 

1. Introduction 

Cognitive radio (CR) [1] [2] technologies which can solve the problem of spectrum scarcity 
have drawn great attention. Recently, the opportunistic spectrum access (OSA) [3-4] has been 
studied in detail in literature because of the good compatibility between the traditional 
communication systems and the cognitive radio networks. Although considerable innovative 
research work has been done on distributed OSA systems, there are still some problems that 
need more effort. First, most of the methods for global optimization in a distributed OSA 
system require information exchange between secondary users. In these works, the authors 
always assume and use a cooperation mechanism to achieve their solutions. The secondary 
users acquire some intelligence through the information exchange, such as other users’ 
strategies. Yet such extra information exchange brings extra costs in terms of energy and 
resources. Secondly, the authors also assume that the secondary users have full knowledge 
about the environment. However, due to hardware limitations, secondary users cannot sense 
all the channels simultaneously; sometimes even, they choose only one channel to sense. 
Another important constraint is the time-varying environment. Typically, the statistical 
information is hard to estimate. In this paper, we focus on distributed OSA systems without 
information exchange or a priori statistical knowledge about the channels. 

There has been one work [9] about a distributed OSA system in the above environment. 
However, the results in the cited reference show that the throughput performance in 
heterogeneous environments is not as good as that obtained in quasi homogeneous ones. And 
yet the heterogeneous environment is more common in cognitive radio networks due to the 
diversity of primary users. Thus, more research on the distributed OSA in a heterogeneous 
environment is necessary. 

In this paper, we focus on the problem of global throughput optimization in an unknown 
heterogeneous distributed OSA system. The goal is a challenge, because there is no statistical 
information available to secondary users about the channel and no information exchange can 
be used for coordination. The only available information is the history of each user’s channel 
selection decisions and the rewards received from the channel. Moreover, the environment is 
time-varying during the entire process, making it hard to obtain the optimized solution.   

To solve the problem, we propose a new channel selection algorithm for secondary users. 
All the users work in a slotted fashion. The key idea is that after each channel access, the 
winner of the contention will move on to another channel but the losers will continue to stay in 
the current channel next slot. We name the algorithm with the secondary users’ strategies: the 
“win-shift lose-stay” (WSLS) algorithm. The algorithm represents an implicit cooperation 
scheme using the information contained in the rewards instead of the explicit information 
received from other users directly. The system finally achieves the maximization of 
throughput. 

To summarize, the main contributions of this paper are as follows. We propose a win-shift 
lose-stay algorithm to achieve optimal opportunistic spectrum access with unknown and 
heterogeneous channel dynamics. We analyze the convergence process and prove the 
optimality of the algorithm. We simulate the proposed approach both in heterogeneous and 
homogeneous systems. The results show its rapid convergence, as well as its improvement on 
throughput and fairness performance compared with an existing algorithm. 

The rest of this paper is organized as follows. In Section II we review the related work. In 
Section III we present the system model as well as the problem formulation. In Section IV the 
WSLS algorithm is proposed and proved to be convergent. In Section V simulation and 
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discussion of results are presented. Finally, we present our conclusions in Section VI. 
 

2. Proposed Denoising Method 
The subject of opportunistic spectrum access has been researched for quite a long time. 

The authors in [4] and [13] use the Markov decision process to study the OSA system. But 
their works do not consider the multiple secondary users situation. There are other theoretical 
methods employed in the study of the distributed OSA systems [19], such as game theory in 
[5-6] [14-15], optimal stopping rule in [16-17], and self-organization paradigms in [20]. 
However, these approaches always assume that there is information exchange, or that the 
channel statistical knowledge is known for secondary users. 

The OSA system in unknown environment is studied in [7] [8] and [18] with the 
multi-armed bandit theory. These works focus on the minimizing the regret instead of 
maximizing the system throughput. Recently, the authors in [9] proposed a game-theoretic 
stochastic learning algorithm to solve the problem of an OSA system in an unknown dynamic 
environment. But their work focuses on the convergence and finally achieves a suboptimal 
throughput maximization of the whole network. Compared with [9], the proposed approach 
achieves a higher throughput in a heterogeneous environment. Besides throughput, fairness is 
another important index for multiple secondary users systems [10]. In this paper, the algorithm 
achieves an almost near-fair result at the same time with a high throughput. 
 

3. System Model and Problem Formulation 

3.1   System Model 
We assume a heterogeneous OSA system with M  licensed channels and N  secondary 

users, 1N M≥ ≥ . Each channel transmission rate is mR , where 1 m M≤ ≤ . We assume that 
each channel provides the same transmission rate for all the users. In this way, we ignore the 
difference of bandwidth or other characteristics when different secondary users access the 
same channel. We can find the same assumption in some practical systems, e.g., IEEE 802.16d 
[11]. Moreover, we consider that the primary users utilize the licensed channel in a slotted 
fashion and the probability of occupying a channel is independent from channel to channel and 
from slot to slot. In other words, we can define the independent channel idle probabilities with 

mθ , 1 m M≤ ≤ . To make our approach more realistic, we assume that the system also has the 
following characteristics [9]:  
1. The channel idle probabilities mθ  are fixed but unknown for the secondary users. mθ  is 

distributed in a large range to make the system heterogeneous.  
2. The number of secondary users N  is unknown. 
3. There is no information exchange between the secondary users, and they are     

non-cooperative. 
4. The system is distributed. In other words, there is no centralized controller. 
 

The transmission structure of secondary users is shown in Fig. 1. As a result of the 
hardware limitation [4], each secondary user can sense only one channel in each slot. We 
assume the sensing results are perfect to simplify the problem. When the sensing results are 
imperfect, we can find the throughput decline, as a consequence of the mis-detection 
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probability and the false alarm probability. In this situation, the throughput can be improved 
by a more exact sensing result, such as collaborative sensing, but this is a little beyond our 
topic in this paper. As described in Fig. 1, at the beginning of each slot, every secondary user 
selects one channel to sense. Then, after sensing, if the channel is idle, secondary users begin 
to access the channel. We use the carrier sense multiple access (CSMA) mechanism to decide 
which secondary user can use the channel when there are two or more users selecting the same 
channel. The winner has the right to transmit the data during the next period. At the end of the 
slot, each secondary user updates its channel selection strategy. 
 

Channel selection and 
sensing

Contention

Data transmission

Learning

slot

 
Fig. 1. Transmission structure of secondary users. 

 
The whole contention is divided into mini-slots. These mini-slots have same length. Users 
contend for the channel access with same probability in each mini-slot. The winner of the 
contention is the user which no other user contends with during the same mini-slot. The others 
are the loser. According to the CSMA mechanism, the length of contention period should vary 
in different situations. The more users in one channel, the more time it costs to access the 
channel successfully. But for simplicity, we assume the length of contention time to be a fixed 
one. Under this condition, every successful secondary user has the same time to transmit data. 

3.2   Problem Formulation 

Let na  denote a channel selection of secondary users n  and na−  denote the channel 
selection of other users. Let mc denote the set of secondary users who select channel m  to 
sense and transmit, i.e., { {1,..., }: }m nc n N a m= ∈ = . Let ms  denote the number of the set, i.e., 

| |m ms c= . Let ( )md j  denote the state of channel m  in j th slot. That is,  
 

1, the channel is idle
( )

0, the channel  is busym

m
d j

m


= 


                                              (1) 

 

According to the assumption of the same transmission time, we define the transmission 
time as t . The throughput of user n  in the j th slot is 

 

( ) ( ) ( )
n nn a ar j d j tR e n=                                                           (2) 
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where ( ) 1e n =  stands for secondary user n  accessing channel and transmitting data 
successfully; otherwise, ( ) 0e n = . The total throughput of the network is 

 
1 1

( ) ( ) ( )
n n

N N

s n a a
n n

U a r j d tR e n
= =

= =∑ ∑                                               (3) 

where 1 2( , ,..., )Na a a a=  is a channel selection profile and 1 2 3{ , , ,... }MD d d d d=  is the 
channel state set. We know that D  may have 2M  different states. D  is unknown before 
secondary users sense. The channel state set D  also keeps changing with time. We rewrite the 
equation (3) from the point of view of channels as follows: 

 
1

( ) ( )
M

s m m m
m

U a d tR sδ
=

=∑                                                          (4) 

where ( )msδ  denotes whether there is a secondary user in channel m  or not. That is, 

  
1, 1

( )
0, 0

m
m

m

s
s

s
δ

≥
=  =

                                                                   (5) 

From (4), to maximize throughput is to make sure that there is always at least one 
secondary user on the idle channel. Formally, for {1, 2, ..., }m M∈ , if 1,md =  then ( ) 1msδ = . 
The objective is to find the optimal channel selection opta  to maximize ( )sU a . That is, 

arg max ( )opt sa U a=                                                                 (6) 
It is easy to see that making the most use of the idle channels in each slot is a challenge because 
(i) N  is unknown in a distributed system and the other secondary user selections are also 
unknown, and (ii) the D  may be different from channel to channel and slot to slot. A 
distributed algorithm with no information exchange is desirable in this work. 
 

4. Win-shift Lose-Stay Algorithm for achieving Global Optimization of 
Throughput 

To solve the problem of global optimization in a distributed OSA system with unknown 
heterogeneous environment, we have to design a new mechanism. In this situation, the most 
helpful information is the history of sensing and access. Based on this knowledge, we propose 
a "win-shift lose-stay" algorithm which converges to a global optimal solution. 

4.1 Description of the Algorithm 
The proposed algorithm is described as Algorithm 1. The main idea of the algorithm is 

that secondary users have different channel selections based on the different sensing and 
accessing results. The updating rules specified by (7) show the different strategies. As 
described in (7), the winner of contention will quit the channel and shift to another one in the 
next slot; the losers continue to stay in the current channel next slot. Through such a 
mechanism, the secondary users in one channel may be divided into two groups: the shifting 
users and the staying users. In this way, the secondary users will disperse to all the channels. 
Therefore, no matter what the channel state D  will be, we make sure that the idle channels 
will be selected by secondary users. Thus the algorithm avoids the waste of available channels 
and achieves the maximization of throughput. Let 0I  denote the number of channels which are 
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not selected by secondary users, e.g., 0 |{ {1, ..., }: 0}|mI m M s= ∈ = . 
 

Algorithm 1: Win-shift lose-stay algorithm 
1. Initially, set 0j = . Each secondary user randomly selects a channel. 

( ) ,1 ,1ka j m m M k N= ≤ ≤ ≤ ≤ . 
2. Secondary users select channel to sense and access. 
3. At the end of j th slot, secondary user k  updates ( 1)ka j +  according to reward ( )kr j  

and contention result ( )e k : 

( )

( )

( )

( ), 1and ( ) 0

( 1) ( ) 1, 1and ( ) 1

( ) 1, 0

k

k

k

k a j

k k a j

k a j

a j d e k

a j a j d e k

a j d

 = =
+ = − = =
 − =

                                         (7) 

      if  ( ) 1ka j =  then ( ) 1ka j M− =     

4.  Back to step 2. If j  is large enough, then, 0 ( ) 0I j = . 
 

From the description in Algorithm 1, it is easy to find the obvious features of WSLS 
algorithm: (i) the algorithm just needs the rewards without any other extra information and it is 
completely distributed, and (ii) there is no an explicit stopping criterion in the algorithm. 
However, at last, the algorithm goes into a state which may change with slots but always can 
achieve the maximal possible throughput in each slot, which just satisfies the maximization in 
objective (6). We will explain the special meaning of convergence in the WSLS algorithm in 
the next subsection. 

4.2 Convergence of the Algorithm  
The meaning of the convergence in the WSLS algorithm is different with regard the 

ordinary acceptance of the term. It is similar with the absorbing state in a Markov process. The 
final channel selection na  is not a fixed one and may vary with slots. We would like to use an 
example in Fig. 2 to illustrate the special "convergence" of the WSLS algorithm. From the 
figure, in the first slot, we can see that there are two channels not selected and one of them is 
idle. This wastes the resource. According to the selection rules described in (7), three users in 
Channel 2 will shift to Channel 1, and User 5 shifts to Channel 2, while User 2 still stays in 
Channel 3 in the third slot. We show a random state of the channels from Slot 2 to 6. Based on 
these states, we show a possible evolution of channel selection. In Slots 5 and 6, we find that 
all the channels are selected by secondary users. The system can achieve the maximization of 
throughput. Although the channel selections are totally different in the Slots 5 and 6, they can 
still be regarded as convergence states, because they make the most use of the idle channel no 
matter what the channel state D  will be. Moreover, there may be some more channel 
selections that satisfy (6) and they are all the "convergence" states of the WSLS algorithm. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014                                          2681 

Slot 1 Slot 2 Slot 3

Slot 4 Slot 5 Slot 6

User

Channel 1

Channel 2

Channel 3

Channel 4

Channel 1

Channel 2

Channel 3

Channel 4

U1

U2

U3

U5

U4 U5

U1 U3 U4

U2
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U5

Busy channel

U1

U2

Shifting users Staying users Idle channel

 
 

Fig. 2. An example to illustrate the convergence (Slot 1-5 are the convergence process and 
 Slot 5-6 are both the "convergence" state). 

 

We use a turntable model to illustrate the algorithm in Fig. 3. The numbers inside the circle 
are from 1 to M , which stands for channels. The outside number represents the secondary 
users selecting the corresponding channel. Each secondary user will make a decision on the 
channel state md  and the result of contention. From slot to slot, the system varies as the 
turntable turns step by step with the outside numbers changing. We focus on the number of 
secondary users in channels and ignore the relationship between channels and secondary users 
in the proof of convergence.  

 

1

2

3

4

M

M-1

M-20

1

0

2

1

0

1

5

6 7

8

...2

0
1

4

 
 

Fig. 3. Description of the WSLS algorithm using a turntable  
(numbers inside stand for channels and the ones outside for the secondary users in corresponding 

channels and the arrow is the SUs moving direction). 
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Theorem 1: If all the channels of the system are selected by secondary users in some slot, 
then all the channels will be selected after this slot. Formally, 

 0 0( ') 0, if ', then ( ) 0I T j T I j= ≥ =                                            (8) 

Proof: Based on the meaning of 0I , when 0 ( ') 0I T = , it means that all the channels are 
selected by secondary users. In other words, there is at least one secondary user in each 
channel. According to the updating rules in (7), we know that whatever the channel state md  is, 
there is at least one secondary user that will select channel 1m −  in the ' 1T +  slot. Therefore, 
each channel will be selected in the next slot. The algorithm is still convergent.  
Formally, 0 ( ' 1) 0I T + = . Concluding, 0 ( ) 0, 'I j j T= ≥ .                                                                                             

We have proved the convergence stability of the proposed WSLS algorithm in Theorem 1. 
Now, we will prove that the system will converge from any random initialization. We classify 
the number of secondary users (SUs) in one channel ms  into four kinds. That is, 

0

1

, 1
1, 1

, the latter first does not equal to 1 is 0
, the latter first does not equal to 1 is

m

m
m

m

m

N s
s

s
z s
z s N

+

+

>
 == 



                                 (9) 

 
The reason to identify number of SUs in each channel is because they play a different part 

in convergence. N+  contributes considerably to the convergence process. The 0z and 1z  show 
the different trend  in convergence process  which 0z  becomes 0 and 1z  becomes 1 or N+ . We 
use an example to describe (9). We consider a system with ten channels and ten secondary 
users. One situation of ms  may be [1, 4, 0, 1, 0, 1, 2, 1, 0, 0]. Then, using (9), it is expressed as 
[1, N+ , 0z , 1, 1z , 1, N+ , 1, 0z , 1z ].  

Theorem 2: Consider a system with N  secondary users and M  channels, N M≤ . The 
channel selected by no secondary users will be the one finally selected. Formally, 0z , 1z  will 
turn into 1 or N+ . 

Proof: According to (7), if ( ) 1md j =  and 1ms ≥ , the secondary users in channel m  will 
be divided into two groups in the next slot. For the 1z  in the sequence of 1z , 1, ... , 1, N+ , 
where the number of 1 is k , we define min{ , {1, ..., }}min m m Mθ θ= ∈ . We use minθ  to 
represent all mθ . We define ( )P i  meaning 1z  turns into 1 after i  slots in the worst situation. 

( )P i  is given as follows: 

 ( 1)
1( ) (1 )k k i k

i min minP i C θ θ − −
−= −                                                  (10) 

Therefore, 
 ( 1) / ( ) / ( )minP i P i i i k qθ+ = − =                                              (11) 

For a fixed minθ , there is always a 'T making 1q < . When , ( ) 0i P i→∞ → . Therefore, the 

total probability ( ) 1
i k

P P i
∞

=

= =∑ . In other words, 1z  will turn into 1 or N+  at last. In fact, the 

algorithm does not need a large number of iterations i  to turn 1z  into 1. This just indicates the 
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inevitability of convergence in the proof. Furthermore, we will find in simulation that the 
algorithm converges rapidly in simulation.  

At the same time when 1z  turns into 1, a 0z  turns into 1z or 1 which makes 0I  decline. The 
whole convergence process is the process of 1z  turning into 1 and 0z  turning into 1z or 1 
continually. With the assumption of N M≤  in the system model, 1z  and 0z  will turn into 1 
or N+  at last, and 0I  will finally decrease to zero. Based on Proposition 1, 0I  will be zero 
forever.                                                                                                                                                                                                          
We have finally proven that the WSLS algorithm converges from a random access situation to 
a maximization of throughput. 

 

5. Simulation and Results Discussion 
In this section, we mainly perform a two-part simulation of the WSLS algorithm. In the first 
part, we illustrate the convergence of the algorithm. We also consider the convergence speed 
with different secondary users. In the second part, we compare the throughput and fairness of 
three algorithms: (i) the WSLS algorithm, (ii) the distributed stochastic learning solution 
proposed in [9], and (iii) an exhaustive approach both in heterogeneous and homogeneous 
systems. The stochastic learning solution has for its objective to maximize user’s own 
throughput and finally achieves a NE (Nash Equilibrium) point. The exhaustive approach is a 
exhaustive search with a central controller that has all the information; this would be the 
perfect strategy for each user in order to maximize system throughput. 
 

5.1 Convergence of the Proposed WSLS Algorithm 
First, we show a given process from its initialization to the convergence state in Fig. 4. We 

consider a distributed OSA system including ten licensed channels. For different numbers of 
secondary users, we compare their convergence process. We record the average 0I  in each 
slot of 10000 independent trials. From the figure, we can note that the more secondary users 
there are, the more rapidly it converges. Even in the slowest situation with ten secondary users, 
it only takes less than 30 iterations to converge.  
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Fig. 4. Convergence evolution with 10,15,20 secondary users for 10 channels  

( mθ is randomly generated in the region [0.1-0.9]) 
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Fig. 5. Convergence time with different number of SUs  

(The system has 10 channels and the SUs increase from 10 to 30. mθ  is randomly generated). 
 
Moreover, we consider a distributed OSA system with 10 licensed channels. The number of 
secondary users increases from 10 to 30. We plot the relationship between the convergence 
time and the number of secondary users in Fig. 5. The channel idle probabilities  mθ  are 
distributed in different ranges as shown in the figure. We use some specified data to illustrate 
the simulation in Table 1. For ten secondary users with {0.1 0.9}mθ ∈ − , the algorithm needs 
11.95 iterations to converge. But for 20, it only needs 2.80 iterations. This is because of the 
algorithm’s random access mechanism. The secondary users have same the probability of 
accessing each channel. Based on the probability theory, the increase in users will make the 
distribution of users a uniform distribution, which is close to the convergence state of the 
algorithm. Moreover, for the same number of secondary users, a higher mθ  means a higher 
convergence speed. Therefore, we can conclude that the convergence time decreases quickly 
with the number of secondary users and with the channel idle probabilities increasing. 
 

Table 1. Convergence time for different numbers of SUs. 
 

Number of SUs 
Expected iterations to 

convergence 
{0.4 0.9}mθ ∈ −  

Expected iterations to 
convergence 

{0.1 0.9}mθ ∈ −  

Expected iterations to 
convergence 

{0.1 0.6}mθ ∈ −  
10 10.19 11.95 18.81 
15 4.04 5.20 7.66 
20 2.16 2.8 4.06 

 

5.2 Throughput and Fairness Performance of the Proposed Approach 
A) The Heterogeneous Systems 

In this subsection, we consider OSA systems where the channel idle probabilities vary in a 
large range. The system contains 10 licensed channels and the channel idle probabilities mθ  
are set as [0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9] to show the heterogeneous characteristics. 
The transmission rate are set as 1, {1,2,..., }mR m M= ∈ . The number of secondary users varies 
from 10 to 20. For each number, we do 10000 trials independently to obtain the average 
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throughput and fairness performance. We compare the proposed WSLS algorithm, the 
stochastic learning solution in [9], and the exhaustive solution. 
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Stochastic learning [9]
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Fig. 6. Comparison of the achievable system throughput in the heterogeneous OSA system 

( [0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9]mθ = ). 
 

The average throughput with different numbers of secondary users is plotted in Fig. 6. From 
the figure, we can see that (i) the throughput of WSLS algorithm is higher than the stochastic 
learning solution [9] and (ii) the proposed WSLS algorithm has the same performance with the 
exhaustive solution. There is an obvious advantage when 10 secondary users are in the system. 
Then, the two performance curves both decline but get close. There are two reasons for this. 
On the one hand, the throughput is an average over all every secondary users. However, the 
total resource of whole network is fixed, thus the average throughput declines with the number 
of users increasing. On the other hand, the throughput of the stochastic learning solution gets 
close to the global optimization with the number of secondary users increasing. However, the 
throughput of the proposed WSLS is always better than that of the stochastic learning solution. 
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Fig. 7. Comparison results of the JFI of 10 channel selection schemes in 

the heterogeneous OSA system( [0.1,0.2,0.3,0.4,0.5,0.5,0.6,0.7,0.8,0.9]mθ = ) 
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We also get the fairness performance in Fig. 7. We use the Jain’s Fairness Index (JFI) [12] 
to describe the fairness. It is clear that the JFI of WSLS is always staying above that of the 
other two algorithms. According to the JFI characteristics, if a JFI is greater than 0.9, we can 
say that it achieves a good fairness. The JFI of the proposed WSLS is greater than 0.99 from 
the figure which achieves a near perfect fairness. 
 
 

B) The Homogeneous Systems 
 

10 11 12 13 14 15 16 17 18 19 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of SUs

Th
ro

ug
hp

ut

 

 
Propesed WSLS
Stochastic learning
Exhaustive solution

 
Fig. 8.  Comparison results of the throughput of ten channel selection schemes 

in the homogeneous OSA system( 0.6mθ = ).  
 
 

We perform the above simulation for a homogeneous environment again where the channel 
idle probabilities are 0.6, {1, ..., }m m Mθ = ∈ . The throughput performance is showed in Fig. 
8. From the figure, it is easy to find that the proposed WSLS algorithm has almost the same 
performance as the exhaustive algorithm and the stochastic learning solution. The fairness 
results are showed in Fig. 9. The proposed WSLS is almost a straight line. The curves of other 
two algorithms decrease at first until the number of secondary users is beyond 15. It is easy to 
explain why there is a depression. For example, the fairness is perfect when there are two 
channels and two secondary users in the system. When there are three users, two users have to 
share one channel while the third still owns one channel in two algorithms. However, if there is 
one more user, it will be fair again where each channel has two secondary users. The number 
of users increasing may cause the difference of rewards among the users some times. 
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Fig. 9. Comparison results of the JFI of ten channel selection schemes 

in the homogeneous OSA system( 0.6mθ = ). 
 

It is noted from the above figures that (i) the proposed WSLS converges fast especially 
with large number of secondary users or high channel idle probabilities, (ii) the proposed 
WSLS algorithm has the same throughput with the exhaustive solution, and they are both 
better than stochastic learning solution [9] in heterogeneous systems, (iii) the throughput 
values of the three algorithms in  homogeneous systems are practically the same, and (iv) the 
WSLS achieves near fair results both in heterogeneous and homogeneous systems. 

6. Conclusion 
In this paper, we study the problem of optimal opportunistic spectrum access with 

unknown and heterogeneous channel dynamics in cognitive radio networks. The channel idle 
probabilities and number of secondary users are unknown for secondary users. There is no 
information exchange among users, either. We formulate the problem of maximizing 
throughput and propose a win-shift lose-stay (WSLS) algorithm. We prove the convergence 
and optimality of the WSLS algorithm. It is shown that the WSLS algorithm converges rapidly. 
Simulation results validate that the proposed approach achieves a better performance of 
throughput and fairness both in heterogeneous and homogeneous systems.  

However, it is also seen that we do not consider the channel switching cost in this paper. In 
fact, channel switching costs energy and resources. When the channel switching cost is 
considered, the users would stay in the current channel rather than switch frequently. We will 
investigate the issue of behavior cost to further improve the system performance in the future. 
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