
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, Aug. 2014                                               2895 
Copyright ⓒ 2014 KSII  

Learning Free Energy Kernel for Image 
Retrieval  

 
Cungang Wang1, Bin Wang2*, Liping Zheng1 

1 School of Computer Science, Liaocheng University 
Liaocheng 252000, China 

2 College of Information, Mechanical and Electrical Engineering, Shanghai Normal University 
Shanghai 200234, China 

[email: binley.wang@gmail.com] 
*Corresponding author: Bin Wang 

 
Received January 12, 2014; revised April 11, 2014; revised May 29, 2014; accepted June 19, 2014; 

published August 29, 2014 
 

 

Abstract 
 

Content-based image retrieval has been the most important technique for managing huge 
amount of images. The fundamental yet highly challenging problem in this field is how to 
measure the content-level similarity based on the low-level image features. The primary 
difficulties lie in the great variance within images, e.g. background, illumination, viewpoint 
and pose. Intuitively, an ideal similarity measure should be able to adapt the data distribution, 
discover and highlight the content-level information, and be robust to those variances. 
Motivated by these observations, we in this paper propose a probabilistic similarity learning 
approach. We first model the distribution of low-level image features and derive the free 
energy kernel (FEK), i.e., similarity measure, based on the distribution. Then, we propose a 
learning approach for the derived kernel, under the criterion that the kernel outputs high 
similarity for those images sharing the same class labels and output low similarity for those 
without the same label. The advantages of the proposed approach, in comparison with 
previous approaches, are threefold. (1) With the ability inherited from probabilistic models, 
the similarity measure can well adapt to data distribution. (2) Benefitting from the 
content-level hidden variables within the probabilistic models, the similarity measure is able to 
capture content-level cues. (3) It fully exploits class label in the supervised learning procedure. 
The proposed approach is extensively evaluated on two well-known databases. It achieves 
highly competitive performance on most experiments, which validates its advantages. 
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1. Introduction 

Motivated by the rapid increasing amount of tremendous digital images, a number of 
techniques for image store, search and browse have been investigated during past decades [1,2]. 
To retrieve images that might be of interest from a huge database is highly challenging, which 
requires the service providers annotate the images beforehand. Traditional approaches for 
image retrieval usually annotate images manually or according to their surrounding text, and 
then resort to text-based techniques to perform image retrieval. However, these text-based 
image retrieval approaches are sensitive to the keywords input by the users [3]. To overcome 
the difficulties existing in text-based image retrieval techniques, content-based image retrieval 
(CBIR) is proposed [4]. CBIR systems aim to retrieve relevant images for a query image from 
a given image dataset based on the content- level similarity, which has attracted increasing 
attention in recent years and is widely applied to diverse areas, such as advertising, 
entertainment, fashion design and other industrial applications [5].  

CBIR systems are typically comprised of two main components: (a) image representation 
and feature extraction; (b) image similarity measures defined on the feature space. Usually, for 
image representation, CBIR systems exploit low-level visual features, e.g., texture, color and 
shape of images [6,7,8,9,10]. Ideally, image features are expected to encode the sematic content 
of images. With the extracted image features, another important issue is how to measure the 
similarity between images [4]. Similarity measures target to merge the cues from low-level 
image features so as to build the content-level connection among images, which is well known 
as the problem of “reduce semantic gap”. [11] categorized similarity measures into four typical 
classes: non-parameter test statistic, e.g. χ2-statistics; heuristic distance such as Minkowski 
form distance 𝐿𝑝; information theory divergence like Kullback-Leibler divergence. However, 
these similarity measures do not explicitly consider the broad diversities of different image 
databases. Consqeuently, their adaption abilities to the data distribution varying along with 
image databases are limited.  

To build the content-level connections among images and adapt to image distribution, a 
promising and high-level perspective is to learn the similarity function from the dataset. 
Motivated by the above observations, a number of learning based approaches are proposed to 
attack the problem, where distance metric learning and  similarity metric learning [12]  are two types 
of representative approaches. Because distance metric learning can be converted to similarity metric 
learning, in this paper, we don’t distinguish similarity metric learning from distance metric learning. 
And, for brevity, we refer to it as similarity learning. Depending on the availability of class label, 
these approaches fall into two classes: unsupervised similarity learning and supervised similarity 
learning. The approach proposed in this paper is a type of supervised similarity learning approach. 

Unsupervised similarity learning typically constructs a manifold with low dimensionality, 
in which the geometric relationship between most observed data are largely preserved [12]. 
Some unsupervised learning approaches leverage eigen-decomposition to obtain a low 
dimensional embedding of data points that lie on non-linear manifold. Techniques under this 
criterion include Multiple Dimension Scaling (MDS), Laplacian eigenmap [13], principle 
component analysis (PCA) [14], ISOMAP [15] and local linear embedding (LLE) [16]. 
Multiple dimension scaling (MDS) [17] finds a rank projection that preserves the dissimilarity 
defined in pairwise distance matrix. PCA attempts to find a subspace, with the data variance 
preserved. In contrast with MDS and PCA, LLE can find non-linear structure of the data, 
under the principle that preserves the local rank relation between data in both the intrinsic 
space and the embedding space. [45] is an unsupervised similartiy learning method used for image 
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retrieval, which is to project data points into a lower-dimensional space so as to exploit the advantage of 
multiple kd-trees over low-dimensional data. 

 

 
Fig. 1. The framework of the proposed approach 

 
Supervised learning approaches learn similarity functions under the criterion that keeps 

data points within the same class close while separates data points of different classes far away 
[17,18]. The representative approaches include local Fisher discriminant analysis (LFDA) [18], 
relevant component analysis (RCA) [20] and local linear discriminative analysis (LLDA) [21]. 
Among these approaches, the most representative work is proposed by Xing et al. [22]. It 
formulates distance learning into a constrained convex programming problem, and learns the 
similarity metric through minimizing the distance between the data points in the equivalent 
constraints, subject to the constraint that the data points in the inequivalent constraints are well 
separated [17]. LFDA [19] extends the classical latent discriminant analysis (LDA) to the case 
that the form of side information is pairwise constraints. The large margin nearest neighbor 
(LMNN) [23] extends the neighborhood component analysis (NCA) [24] via a maximum 
margin framework. [43] is a supervised learning approach used to attack image retrieval problem, 
which learns a linear combination of a set of base kernels by optimising two objective functions that are 
commonly used in distance metric learning. 

The above approaches exhibit a number of advantages in image retrieval. At the same time, 
probabilistic approaches [25-30] show promising performance in a wide rang of applications, 
especially well known for their great adaption to data distribution. The so called probabilistic 
similarity learning methods derive the middle level feature and subsequently the similarity 
measures based on the probabilistic modeling of data. Therefore, they inherit the adaption 
abilities from probabilistic models, and are able to exploit hidden information inferred by 
Bayes inference. These approaches, Fisher kernel [26], probability product kernel [25], free 
energy score space (FESS) [27] and posterior divergence (PD) [28], can be unsupervised or 
supervised according to the availability of class label [27]. Nevertheless, we note that, these 
approaches can be further boosted by exploiting the class label when learning probabilistic 
models as well as similarity measures. 

In this paper, we construct a free energy kernel based on the free energy score space [27], 
and then propose a similarity learning method for free energy kernel for CBIR. The framework 
of the proposed approach is graphically illustrated in Fig. 1. First, we model the probabilistic 
distribution of low-level image features using Gaussian mixture model (GMM). Second, based 
on GMM, we derive free energy kernel as a function of image features, mixture indicators and 
model parameters. At last, a supervised learning method is proposed for free energy kernel, so 
as to exploit class label. The learned free energy kernel measures the similarity between 
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images. The advantages of the proposed similarity learning approach are threefold: (1) it could 
fully exploit class label and hidden information while being adaptive to data distribution; (2) 
the learning method for free energy kernel is very efficient in computation because of the form 
of the free energy kernel; (3) the proposed learning approach shows highly competitive 
performance over a set of datasets in image retrieval. The kernel similarity learning approach 
proposed in this paper could be considered as a type of “metric learning” approach. 

The remainder of this paper is organized as follows. Section 2 presents the proposed 
approach in details. We verify the effectiveness of the kernel learning approach in comparison 
with the state-of-the-art similarity learning approaches and image retrieval approaches in 
Section 3.  Section 4 draws a conclusion.   

 

 
Fig. 2. The mathematical illustration of the proposed approach 

2. Learning free energy kernels 
This section will present the learning approach for the probabilistic kernel derived from Free 
Energy Score Space (FESS). We first employ Gaussian Mixture Model (GMM) to model the 
distribution of image features. The reason for using GMM is that the effectiveness of using 
GMM for image feature modeling [31] has been extensively verified. Second, we derive the 
FESS feature mapping based on GMM. Third, construct the free energy kernel based on the 
FESS feature mapping. Forth, we propose a learning approach for free energy kernel. The 
mathematical illustration can be found in Fig. 2. For readability, we make a summation of the 
involved notations in Table 1. 

Table 1. The mathematical notation list 
Notation Description Notation Description 
x  observed variable z  hidden variable 
y  label vector E  Expectation 
D  dimension d  index of dimension 
K  #mixture center k  index of center 
N  #sample ,i j  index of sample 

M  #local feature c  index of local feature 
u  mean Σ  covariance matrix 
a  mixture prior ( , )K ⋅ ⋅  kernel function 
g  mixture posterior Q  posterior distribution 
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2.1. Gaussian Mixture Model: A Generative Perspective 
First, we introduce Gaussian Mixture Model (GMM) in the generative perspective. It is a 
probabilistic generative model with hidden variables, composing of multiple mixture centers 
each of which follows Gaussian distribution. It assumes a generation procedure that, to 
generate a sample, one first randomly chooses a mixture center and then draws the sample 
from a Gaussian distribution of this mixture center. It is widely used to model dimension-fixed 
real-valued data. Let DR∈x  be the observed variable of D-dimension. Specifically, x  is the 
local image feature in this work of image retrieval. Let 1( )T

Kz z= , ,z   be the binary-valued 
hidden variable indicating which mixture center is selected to generate the samples. That is, 

1kz =  if the k -th mixture center is selected to generate the samples and 0kz =  otherwise. 
Typically, the probabilistic distribution over z  is chosen to be Multinomial distribution, 
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Combining ( )P z  and ( )P |x z , then the joint distribution of GMM can be expressed as,  
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where 1{ }K

k k k kaθ == ,Σ ,u . For computational efficiency, we assume that the covariance 

matrixes kΣ  are diagonal, i.e., 2 2
1diag( )k k kDσ σΣ = , , . Note that, in real applications [31], 

this assumption will not bring negative effect to the performance of GMM.  

2.2. Variational Inference and Parameter Estimation 

It is worth noting that the log likelihood function ( ) ( )P Pθ θ| = , |∑ z
x x z  is difficult to be 

maximized. A more sophisticated approach is the Variational Expectation Maximization 
(VEM) algorithm which alternatively maximizes the log likelihood function over the training 
set with respect to the posterior distribution of z  (E-step or inference step) and the parameters 

z
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(M-step or parameter estimation step). Let ( )cQ z  be the posterior approaching to ( )cP |z x , 
then we have the following variational lower bound,  
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Assuming that the posterior for the sample cx  takes the same form with its prior but with 
different parameter 

1
( ) ( ) kK zc c
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=
=∏z  [28], the E-step updates the posterior of the hidden 

variable, for each observed sample cx  of the training set 1{ }NX = , ,x xL ,  
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where λ  is a multiplier. The M-step updates the parameters of GMM,  
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The expression of ka  is actually the average value of posterior probabilities c
kg  across 

samples. Similarly we have,  
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Here, ku  and 2
kdσ  are the weighted mean and variance, where c

kg  weights the contribution of 

the sample cx  to the k -th mixture center. The learning algorithm for GMM is the iteration of 
the E-step and M-step, which is summerized in Algorithm 1.  
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Algorithm 1. Variational learning of GMM 

1: input: training data set 1{ }c N
cX == x  

2: initialize parameters θ  
3: repeat 
4:    for 1c =  to N  do 

5:      compute { }c c
k Kg g, ,L  using Eq. (5) 

6:    end for 
7:    update θ  using Eq. (7) 
8: until convergence 
6: output: θ  

2.3. Free energy feature mapping 
We now proceed to derive the free energy score function [27] based on GMM and then the 
kernel based on the score function. Having the lower bound cF  for log ( )cP θ|x  in Eq. (4), 
we have the following decomposition,  
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The elements of free energy score function are the summation terms of the above variational 
lower bound, and can be divided into three groups [27],  
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where the fit  group measures how well the sample fits the model, and the ent  group 
measures the uncertainty in the fitting. We note that the elements of free energy score function 
are the expectation of the functions over the observed variable x , hidden variables z  and 
model parameters θ . The hidden variables enable free energy kernel the ability to exploit 
hidden information, and model parameters enable it ability to adapt to data distribution. The 
free energy score function is the combination of the above functions,  

                                                     ( ) ( )T T Tc Tc x c z c z
fit fit entϕ ϕ ϕ, , ,Φ = , ,x                                            (10) 
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Fig. 3. Illustration of the weight function ( )i jw ,y y , where 1.5, 1, 2, 1a b u v= = = = . 

2.4. Learning free energy kernel 
Having the score functions or feature mappings for image patches, we now proceed to define 
the kernel similarity function for images. The above modeling the score function works with 
image patches. Note that, each image contains a set of image patches, each of which has a 
corresponding free energy score feature. The distribution of these score features for an image 
encodes the information of the image and is able to identify the image. We follow an effective 
and widely used strategy [31] that uses the first order statistics, i.e., the mean of these score 
features, as the feature of images.  

                                                     
1
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where ( )icΦ x  is the feature mapping for the c -th patch of i -th image. Let 1( )i i i T
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be the label vector for the image iI , where 1i
cy =  iif the c -th label of all C  ones belongs to 

the image iI  and 0i
cy =  otherwise. Then the kernel similarity of two images, simultaneously 

considering image and its corresponding label, can be defined as follows,  
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a weight function depending on the similarity of the two label vectors, and is expected to take 
a positive value if they have shared labels and to take a negative value if they have no shared 
label. Here we choose the following sigmoid based function:  
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where T ji yy  is the number of labels shared by image iI  and jI ; a b u v, , ,  are parameters to 
be determined. The function is illustrated in Fig. 3. In the following part, we will show how to 
determine these parameters.  

We consider the 1-nearest neighbor criterion [32] which favors higher similarity for images 
with more shared class label and favors lower similarity for images with less shared labels. 
The the objective function can be expressed as,  
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The above objective function can be maximized using gradient descend algorithms. The 

gradient of O  with respect to ,a b u v θ, , ,  are as follows,  
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The learning approach is an iteration procedure, which is summarized in Algorithm 2. 
 
Algorithm 2. Learning free energy kernel  

1:  input: training set 1{( )} tNi i
iS y == ,x ; threshold ε ; learning rate γ  

2:  initialize parameters (0) (0) (0) (0) (0),a b u v θ, , ,  

3:  1t =  
4:  repeat 
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5:      ( 1) ( 1) ( 1) ( 1) ( 1)
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a b u vθ θ
θ θ −

− ∂
∂ , , ,
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10:       1t t← +  

11:  until  ( ) ( 1)t tJ J ε−| − |≤  
12:  Output:  ,a b u v θ, , ,   

  
Here we make a summary. In the training step, the label vectors for training samples are 
available, and thus ( )i jw ,y y  is available. This model can be trained using the approach 
described above. In the test step, the label vectors for test samples are no longer available, and 
thus ( )i jw ,y y  is unavailable. In this situation, we treat ( ) 1i jw , =y y  and run the regular 
retrieval using the parameters learned in the training procedure. It is worth noting that, the 
reason for introducing ( )i jw ,y y  is to exploit label information when learning the generative 
model θ , which is essentially a discriminative learning approach (supervised) for generative 
model as well as FESS, differing from the native FESS where the label information is absent 
(unsupervised). Namely, θ  is determined by x,y  in our proposed approach and is determined 
by x  in FESS. 

3. Experiments  
This section will experimentally validate the effectiveness of our proposed similarity learning 
approach, by comparing our approach with state-of-the-art approaches for CBIR over two 
popular databases across different evaluation criteria.  

3.1. Databases 
Two popular databases, Wang’s [33,34] and Caltech 101 [35,36], are chosen for experimental 
evaluation.  
 

 
Fig. 4. Sample images of Wang’s database. 
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Wang’s database1 [33,34]  contains 1,000 challenging images selected from Corel database. 
The database is composed of images with various contents, ranging from natural images to 
animals. It contains images with the size of 256 384 and 384 256. The database is divided 
into 10 groups each of which contains 100 images. The images in the same group are 
considered to be similar. The group names are respectively African people village, beach, 
Building, buses, dinosaurs, elephants, flowers, horses, mountains and glaciers, and food. Some 
sample images from all the 10 categories in the Wang’s database are shown in Fig. 4. 

 
Fig. 5. Sample images of Caltech-101 database. 

 
Caltech-101 database [35] is composed of 9,196 images, which is often used for larger scale 

experiments. The images in the database are categorized into 101 categories, for example, 
beaver, ant, crayfish, dolphin and llama, etc. The number of images in the database varies 
along category from 31 to 800. Most of the images are medium resolution, about 300 300 
pixels [37]. The Caltech-101 database is probably the most diverse database available today. 
Some sample images from certain categories of Caltech-101 database are shown in Fig. 5.      

It is worth noting that, in Wang’s dataset, each image has multiple labels. For this dataset, 
images belonging to a certain category not necessarily have the same label vector and 

( )i jw ,y y  not necessarily equals 1. On contrary, in Caltech 101, each image has only one 
label. For this dataset, images belonging to a certain category have the same vector and 

( ) 1i jw , =y y .  
The most important parameter in the proposed approach is the number of mixture centers of 

GMM. In general, GMM with small number of mixture centers tends to lose information and 
discrimination ability because it in this case is not capable enough to model the distribution of 
data. On the other hand, GMM with large number of mixture centers tends to procedure high 
dimension feature space that leads to poor generalization ability according to generalization 
theory, and therefore suffers from the so called “curse of dimensionality”. Subsequently, it is 
of great importantance to determine an appropriate number of mixture centers. In this paper, 
we use cross validation over the range of [20,260] with a step of 20 to choose the parameter, 
and find that, a wide range of about [60,160] could produce satisfied results. Moreover, we 
also found that two primary factors dominate the number of mixture centers, (1) the number of 
mixture centers is generally proportional to the number of categories of the dataset in certain 
range; (2) the number of training samples in the feature spaces.                        

1available at http://wang.ist.psu.edu/docs/related/ 

× ×

×
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3.2. Image Representation 
To cover the diverse visual attributes within images, we use a set of comprehensive features to 
represent the images. More specifically, we use multiple color SIFT descriptors for 
representation, due to their state-of-the-art performance in image retrieval and recognition [38]. 
Following the recommendation by [38], we use OpponentSIFT, C-SIFT, rgSIFT and 
RGB-SIFT. These color SIFT descriptors are extracted from the patches sampled by dense 
sampling and Harris-Laplace point sampling, followed by spatial pyramid. For dense sampling, 
descriptors are extracted around the points of a grid with the step size of 4 pixels. These 
descriptors are computed from three different scales: 16 16× , 24 24×  and 32 32× .  

3.3 Evaluation criteria 
To comprehensively evaluate the proposed approach, we use the following criterions to 
measure image retrieval approaches:  

Average Precision (AP) [33,39]: the average of the precision values at the ranks where 
relevant images appear. Specifically, for a query image qI , the precision (P) and recall (R), as 
two most commonly used criteria in image retrieval system, can be defined as follows: 

( ) /q qP I n L=  and ( ) /q qR I n N= , where L  is the number of retrieved images; qn  is the 
number of images relevant to the query image in the retrieved images; N  is the number of 
relevant images in the database. Finally, the average precision (AP) and average recall (AR) 
are computed over all reference images. 

Average Retrieval Precision (ARP) [33]: the average precision of the retrieval results of the 
various images with the number of returned images. It is worth noting that ARP is obtained by 
means of computing the average precision versus the number of searched images. That is to 
say, to obtain ARP graph, we calculate the precision for different numbers of retrieved 
images [34,40].  

Average Retrieval Rate (ARR) [33]: the average recall of the retrieval results of the various 
images with the number of returned images. Similar with ARP graph, to obtain ARR graph, 
recall values are calculated for varied number of retrieved images [34,40].  

3.4 Experimental results  

3.4.1. Experiments on Wang’s database 

The first experiment is performed on Wang’s database. This database is thought to meet all the 
requirements of evaluating the image retrieval systems, because of its diversity in content. The 
performance criterions in this experiment include average precision, average recall and 
average retrieval rate. The detailed definition can be found in [33].  
 

Table 2. The average precision (%) of comparison approaches on Wang’s database 
Category  Euclid.  MCM [41] LMNN [23] CTCHIRS[34] SS[42] MKL[43] FESS [27]  Ours   
Africans.  40.8  45.3  55.6  68.3 46.2 70.6 73.4 76.7   
Beaches 42.9  39.8  44.7  54.0 53.1 51.2 52.2 52.8  

Buildings  35.8  37.4  42.5  56.2 49.5 57.3 58.3 60.4  
Buses  64.3  74.1  76.6  88.8 90.2 86.1 87.7 89.6  

Dinosaurs  60.1  91.5  93.5  99.3 93.7 96.3 95.4 98.1  
Elephants  30.7  30.4  32.6  65.8 59.5 61.1 62.4 62.5  
Flowers  76.4  85.2  87.3  89.1 90.6 90.8 91.2 92.0  
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Horses  49.3  56.8  73.6  80.3 85.5 86.4 87.6 90.4  
Mountains  31.2  29.3  35.3  52.2 48.5 45.3 46.2 46.8  

Food  33.3  37.0  46.7  73.3 72.2 69.2 70.1 71.2  
Total  46.5  52.6  58.8  72.7 68.9 71.4 72.5 74.1  

 
Table 3. The average recall (%) of comparison approaches on Wang’s database 

Category  Euclid.  MCM [41]  LMNN[23]  CTCHIRS [34] SS[42] MKL[43] FESS[27]  Ours   
Africans.  20.2  19.5 23.9  42.1  41.3 49.8 55.0 56.2  
Beaches 24.6  27.9  33.1 32.4  32.6 33.3 34.8 35.4  

Buildings  23.3  20.5  23.7 36.5  35.9 30.4 38.4 36.9  
Buses  19.4  25.9  32.5 61.7  62.2 65.7 66.8 75.3  

Dinosaurs  23.6  40.3  48.4 96.1  95.4 96.0 97.1 92.2  
Elephants  25.9  32.5  38.6 33.1  34.1 38.7 35.8 33.9  
Flowers  36.9  48.1  50.2 77.5  68.8 70.0 65.5 67.3  
Horses  39.7  40.8  42.1 47.6  48.7 49.4 50.6 59.7  

Mountains  22.3  28.5  24.2 27.7  27.9 28.3 29.2 30.8  
Food  16.1  24.0  35.3 49.0  57.0 50.9 48.7 51.1  
Total  25.2  30.8  35.2 50.3  50.4 51.3 52.2 53.9  

 
In each round of experiment, 20% samples are randomly chosen from the database to form 

the training set and the rest 80% samples to form the test set. In our experiment, each image is 
used as a query image for evaluation. We firstly carry out the experiment to compute the 
precision P  of every query image with setting the number L  of returned retrieved images as 
20, and finally obtain the average precision. The total average recall is obtained in the same 
manner with the number of returned images set to be 100. In this experiment, the Euclidean 
distance is still a baseline method. Other comparison approaches include motif cooccurence 
matrix (MCM) [41], large margin nearest neighbor classification (LMNN) [23], CTCHIRS 
[34] , semi-supervised distance metric learning( defined as SS )[42], multiple kernel learning 
via distance metric learning (defined as MKL) [43], and FESS [27]. Among these approaches, 
MCM and CTCHIRS are two state-of-the-art image retrieval methods, SS and MKL are two 
distance metirc learnig-based approaches used for image retrieval, LMNN is a supervised 
similarity learning approach, FESS is the probabilistic similarity learning methods closely 
related to our approach. The experimental results are summarized in Table 2 and Table 3. We 
find that, MCM and LMNN gain significant improvement over the baseline method. Due to 
the adoptionof an optimal feature selection technique, CTCHIRS obtains a better performance 
for image retrieval than MCM and LMNN. As two distance metric learning approaches, the 
performance of MKL is better than SS. The reason is that MKL learns a linear combination of 
a set of base kernels by optimising two objective functions that are commonly used in distance 
metric learning [43].   From Table 2and Table 3, we can observe that the proposed approach 
obtains the best average precision than other comparison methods. Specifically, comparing 
with SS, which is a representative distance metric learning approach used for image retrieval, 
the proposed method achieves 5.2% improvement in AP and 3.5% improvement in AR 
respectively. Moreover, in comparison with FESS which is most closely related to our 
approach, we achieve 1.6% improvement in AP and 1.7% improvement in AR respectively. 
The reason for this observation is that our approach fully exploits class label which is very 
informative for image retrieval task. Fig. 6 illustrates the average precision and the average 
recall of the retrieval results of various images with the number of retrieved images 
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respectively. The experimental results clearly present that, for the first 20 to 100 retrieved 
images of the 1000 ten-category image database, our approach consistently outperforms the 
other methods. In the average recall experiment (ARR), the precision of image retrieval 
increases with the number of retrieved images. So, our approach is superior to other models. 

  

       
 Fig. 6. The average retrieval precision (top) and average retrieval rate (bottom) of these approaches on 

Wang’s dataset. 

 

3.4.2. Experiments on Caltech-101 database 
To further validate the abilities of our approach in adapting different databases and in scaling 
to larger database, we further evaluate the proposed approach on Caltech101 database. For 
confident conclusion, we repeatedly run the experiment and report the average results. In each 
round of experiment, 20% samples are randomly chosen from the database to form the training 
set and the rest 80% samples to form the test set. It is worth noting that, the training set is used 
to learn GMM as well as free energy kernel.  
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The experiment is performed using each image of each category as a query image. We carry 
out the experiment with setting the number of returned images as 20 to calculate the precision 
P for each query, and finally get the average precision cP N/ ( cN  images per category). The 
experimental results over Caltech101 database are reported in Table 4. Different from that on 
Wang’s database, we compare with Xing’s method [22], DML-eig [44], large margin nearest 
neighbor (LMNN) [23], semi-supervised distance metric learning( defined as SS )[42], 
multiple kernel learning via distance metric learning (defined as MKL) [43], and free energy 
score space (FESS) [27]. Euclidean distance is still included as a baseline method here. It’s 
worth noting that FESS is the basis of our approach. It is of interest to find that, the relative 
comparison results are close to that over Wang’s database, which indicates that the results are 
stable across two databases. As shown in Table 4, FESS, as an unsupervised similarity 
learning approaches derived from probabilistic models, shows highly competitive 
performance against other comparison methods. Our proposed approach again achieves 
improvement over all the other compared approaches with distinct methodologies. A reason 
accounting for the results is that, it incorporates different content level information together to 
form a comprehensive similarity for image retrieval.  

 
Table 4. The average precision of these approaches on Caltech-101dataset. 

Algorithm Average Precision (%) 
Euclidean 15.5 

Xing’s [22] 17.5 
DML-eig [44] 17.9 
LMNN [23] 

SS [42] 
MKL [43] 

18.0 
16.7 
18.4 

FESS [27] 18.6 
Ours 21.2 

4. Conclusions 
In this paper, we propose a free energy kernel based on the well-known free energy score 
space (FESS), and then learn the derived kernel in a supervised manner. Specifically, we first 
model the distribution of image features using GMM. Second, we derive a free energy kernel 
from GMM, which is a function of image feature, mixture indicator and model parameter. 
Third, we propose a supervised learning approach for the free energy kernel to exploit label 
information. The experimental results on two databases demonstrate that the proposed 
approach is superior to other comparison approaches for the content-based image retrieval 
task.   
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