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Abstract 
  
Cellular automata (CA) based cryptosystem has been studied for almost three decades, yet 

most of previously reported researches focus on the symmetric key encryption schemes. Up to 

now, few CA based public key encryption scheme has been proposed. To fill the gap, in this 

paper, we propose a new public key encryption scheme based on layered cellular automata 

(LCA). Specifically, in the proposed scheme, based on the T-shaped neighborhood structure, 

we combine four one-dimensional reversible CAs (set as the private key) to form the transition 

rules of a two-dimension CA, where the two-dimension CA is set as the corresponding public 

key. Based on the hardness assumption of the Decisional Dependent CA problem in LCA, we 

formally prove the proposed scheme is indistinguishably secure against the chosen-plaintext 

attack (IND-CPA). In addition, we also use a numeric example to demonstrate its feasibility. 

Finally, analysis of key space and time efficiency are also carried out along with RSA-1024, 

and the simulation results demonstrate that our proposed scheme is more efficient. 
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1. Introduction 

As the explosive growth of information and communication technology (ICT) and its wide 

applications today, information security has become indispensable and crucial to the success 

of ICT. Cryptographic technique is an essential component of any secure communication, 

which ensures the data confidentiality, authentication, integrity and non-repudiation. Typical 

examples of cryptosystem include Data Encryption Standard (DES) [1], Advanced Encryption 

Standard (AES) [2], RSA [3], and ElGamal [4]. Besides these typical examples, applying 

cellular automata (CA) techniques to design cryptosystem is also promising in cryptography. 

CA can be viewed as a simple model of a spatially extended decentralized system made up of 

a number of individual components (cells).  Each individual cell lies in a specific state and will 

change over time depending upon the states of its local neighbors. In general, the overall 

structure can be viewed as a parallel processing device. However, the simple structure, when 

iterated several times, will produce complex patterns indicating its potential to simulate 

various sophisticated natural phenomena [5]. CA as a medium for encryption is an attractive 

idea in theory as most CA can be implanted on very fast hardware [6,7],  as well as owing to its  

inherent features like parallelism, locality, simplicity, unpredictability and homogeneity. 

Since Wolfram studied the first secret key process based on CA [8], many researchers have 

explored several possible cryptographic techniques based on the CA, and CA has become one 

of the important tools to design cryptographic algorithms. Several variants of CA like 

two-dimensional and multi-dimensional automata with different types of neighborhood 

systems have been studied by Tomassini and Sipper for random number generation [9], and 

recently by Seredinsky et al. [10] and Anghelescu et al. [11] for block encryption. In addition, 

the concept of Reversible cellular automata (RCA) has also been discussed by Xia et al. for 

multi-granularity RCA data encryption [12], and the Layered cellular automaton (LCA) has 

been studied by Ayanzadeh et al. for generating normal random numbers [13]. 

While most of the investigations on CA-based cryptosystems have been focused on 

traditional secret key cryptosystems, few CA-based public key cryptosystems has been found 

in the literature. Guan [14] proposes a public key encryption algorithm used 

non-homogeneous CA, and the security of this algorithm is based on the difficulty of solving a 

system of nonlinear polynomial equations. However, he does not give any specifications like 

key-size, key generation procedure and real life examples [15]. Kari [16] introduces an idea 

for a public key encryption based on RCA, and poses the question of how to implement the 

key generation algorithm. Then Clarridge and Salomaa [17] prove that under certain technical 

assumptions a marker CA has a unique inverse with a given neighborhood, and they use the 

result to develop a working key generation algorithm for a public key encryption based on 

RCA originally conceived by Kari. Zhu et al. [18] put forward a public key algorithm, which 

uses four one dimension RCA to build a Moore neighborhood two-dimensional CA.  The 

securities of these schemes are all based on the trapdoor function, which only achieves the 

one-way security. As a result, these schemes may not satisfy high level security requirements, 

i.e., secure against the chosen-plaintext attacks (CPA) [19]. To fill this gap, in this paper, we 

will define a layered cellular automata (LCA) and derive a new hard Decisional 

Dependent-CA (D-DCA) problem from the 2D CA reversibility problem. Then, built upon 

LCA, we propose a new public key encryption scheme and formally prove the proposed 

scheme is semantically secure against CPA, from the D-DCA assumption. Specifically, the 

main contributions of this paper are two-fold. 
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 Firstly, we define a layered cellular automata (LCA) with a new neighborhood structure, 

T-shaped neighborhood. The LCA can be viewed as a highly parallel system and the 

encryption schemes based on LCA are more efficient than other traditional secret key 

cryptosystems [13]. Then we define a new hard Decisional Dependent-CA (D-DCA) 

problem, which is derived from the hard 2D CA reversibility problem. Built on the LCA, 

we present a new efficient public key encryption (PKE) scheme that utilizes some 

one-dimensional reversible CAs to construct the transition rules of 2D CA with T-shaped 

neighborhood structure, where the 1D CA is set as the private key, and the transition rules 

of the constructed 2D CA are set as the corresponding public key.  

 Secondly, we analyze the security of the PKE scheme. In particular, we apply the 

provable security technique to formally prove that the PKE scheme is semantically secure 

against the chosen-plaintext attacks, relative to the Decisional Dependent-CA problem.   

    The remainder of this paper is organized as follows. In Section 2, we formalize the 

definition of public key encryption and the corresponding security model. In Section 3, we 

review the definition of CA, RCA, layered CA and a security assumption, which serve as the 

basis of our proposed scheme. In Section 4, we present our public key encryption scheme 

based on layered CA, followed by a formal security proof in Section 5.  Then, we give a 

numerical example to demonstrate the feasibility of the proposed scheme in Section 6, and 

analyze its strengths in Section 7.  Finally, we draw our conclusion in Section 8.  

2. Definition and Security Model 

2.1 Notation 

Let Ν },3,2,1{   denote the set of natural numbers, and k  N  be a security parameter.  

An event is said to be negligible if it happens with a probability less than the inverse of any 

polynomial in k . If n N , then 
n0 denotes the string of n  zeros. Let pZ  be a finite field, 

p is a large prime number, then  p

R Zs  indicates the process of selecting s  uniformly and 

at random in pZ . If A is a randomized algorithm, then  ,, 21 xxAy   denotes the 

processing of A  on inputs ,21, xx , and y  denotes its output. 

2.2 Definition 

In general, a public key encryption scheme PKE= (Kgen, Enc, Dec) consists of three 

algorithms: 

 The randomized key generation algorithm Kgen takes a system parameter k  as input, 

and returns a pair  skpk,  which consists of a private key sk  and a corresponding 

public key pk , we write  skpk,
R

  kKgen . 

 The randomized encryption algorithm Enc takes a public key pk , a random number  , 

and a plaintext M  as inputs and returns a ciphertext C , we write C   MpkEnc ,, . 

 The deterministic decryption algorithm Dec takes the private key sk  and a ciphertext C  
as inputs, and returns the corresponding plaintext M , we write M   CskDec , . 

    All algorithms should satisfy the standard consistency constraint of public key encryption, 

i.e., for any message M ,    MMpkEncCskDec  ,,,  . 
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2.3 Security Model 

We recall the standard notion of security of public key encryption schemes in terms of 

indistinguishability. Concretely, we consider the security notion of a public key encryption 

scheme is indistinguishable against the chosen plaintext attacks, call it the ‘IND-CPA’ security 

model for brevity [20]. In IND-CPA, a probabilistic polynomial time-bounded adversary, 

given a public key, generates two equal-length messages and sends to a challenger, the 

challenger randomly chooses one of the messages to encrypt and sends the corresponding 

ciphertext to the adversary. The semantic security means the adversary cannot distinguish 

which message was encrypted.  

 

Definition 1: (IND-CPA):  Let k and t  be integers and   a real number in 1,0 , and PKE  a 

secure public key encryption scheme with the security parameter k . Let A  be an IND-CPA 

adversary, we consider the following random experiment: 

 Experiment  kExp cpaind

APKE,  

          kKgenskpk R,  

         ARstateMM ,, 10  

        }1,0{Rb ,   bb MrpkEncC ,,  

         stateb ,bCpk,A  

        If  bb   then return 1* b  else 0* b  

        return 
*b  

If  kExp cpaind

APKE, 1 , we say A success. 

   We define the success probability of A  via 

  kSucc cpaind

APKE



,   1]Pr[2 ,   kExp cpaind

APKE 1]Pr[2  bb  

   The proposed PKE scheme is said to be  ,, tk -IND-CPA secure, if no adversary A  

running in time t has a success    kSucc cpaind

APKE , . 

3. Cellular Automata and Security Assumption 

3.1 Cellular Automata (CA) 

A CA is a discrete model that consists of grids of cells in which each cell can exist in a finite 

number of states. All cells change their states synchronously, according to a local rule that 

specifies the new state of each cell based on the old states of its neighbors. A CA is a 

dynamical system in which space and time are discrete, CAs exhibit some inherent features 

like parallelism, locality, simplicity, unpredictability and homogeneity,  thus CAs are naturally 

efficient in hardware and software implementations. 

    A CA can be defined by a quadruple  fNSD ,,,  with the dimension D , the state set S , 

the neighboring states set N  and the transition rule f  .  

 
D . The existing studies of cellular automata mostly focused on one-dimensional (1D) 

and two-dimensional (2D) CA. 
  S . The state set S holds the set of possible states of all cells in a CA. 
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 N . There exist various neighborhood structures, and most popular structures are 

3-neighborhood, Von Neumann neighborhood and Moore neighborhood, which are 

respectively shown in Fig. 1 (a), (b), and (c). 
 

 
(a)  One-dimension 3-neighborhood  

                  
                       (b) Von Neumann neighborhood                     (c) Moore neighborhood 

 

Fig. 1.  Different neighborhood structures 

 

 f . SSf : is transition rule (transition function). 

   Let 
t

is denote the state of the i-th cell at t time step and 
1t

is  denote the state of the i-th cell at 

t+1 time step, the states of all cells in a CA at t time step   ,,,, 10

t

i

tt sss  called a 

configuration, denoted by
tS . The state of a cell at the next time step is determined by the 

transition rule along with its current state and states of neighboring cells, this can be 

represented by the following formula:  t

ri

t

i

t

i

t

i

t

ri

t

i sssssfs 

  ,,,,,, 11

1  , where r  is the 

neighborhood radius.  

    One-dimensional CA with two-state (i.e. S = {0, 1}) and 3-neighborhood (i.e. r =1) called 

Elementary cellular automata (ECA). The state transition of the cell can be represented as 

follows:  t

i

t

i

t

i

t

i sssfs 11

1 ,, 

  . There are 8 = 
32  possible configurations for a cell and its two 

immediate neighbors. The rule f  defines the CA must specify the resulting state for each of 

these possibilities, so there are 
322 =256 possible rules. Wolfram [29] proposes a scheme, to 

assign each rule a number from 0 to 255 which have become standard. Each possible 

configuration is written in order, 111, 110... 001, 000, and the resulting state for each of these 

configurations is written in the same order and interpreted as the binary representation of an 

integer, where the number is considered to be the rule number of the automaton. For example, 

90 written in binary is 010110102, so rule 90 is defined by the transition rule: 
 

Table 1. Rule 90 

Rule 

90 

111 110 101 100 011 010 001 000 

0 1 0 1 1 0 1 0 

 

   Although the cellular automata is an infinite system, yet it should be finite-dimensional in 

practical applications. Therefore, it is necessary to define the boundary conditions. Several 

types of boundary conditions can be considered, such as periodic boundary condition (Fig. 2 

(a)), a CA with periodic boundary has the extreme cells are adjacent to each other. Another one 

is mapped boundary condition (Fig. 2 (b)), which can be obtained by mapping the extreme 

http://en.wikipedia.org/wiki/Stephen_Wolfram
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cells at the boundary, often this boundary condition can be usefully combined with another, 

e.g. periodic boundary condition on different boundaries. To simulate a long channel, one 

would use periodic boundary in horizontal direction, and mapped boundary in vertical 

direction. The other one is fixed boundary (Fig. 2 (c)), can be obtained by simply prescribing a 

fixed value for the cells on the boundary. The periodic boundary comes closest to simulate an 

infinite lattice, and is therefore often used. So, in our proposed scheme, we set the periodic 

boundary condition for the CA, both in the private key and public key.  
 

 
(a) Periodic boundary 

 
(b) Mapped boundary 

 
(b) Fixed boundary 

 

Fig. 2. Different boundary conditions 

 3.2 Reversible Cellular Automata (RCA) 

A CA is said to be an RCA if for every current configuration of the CA there is exactly one 

past configuration. In other words, a CA is reversible, if and only if the transition function is 

reversible and hence every configuration not only has one successor, but also has one 

predecessor.  

    For example, we let f  is the transition rule for moving forward and g  is the transition rule 

for moving backward, let  t

ri

t

i

t

i

t

i

t

ri

t

i sssssS  ,,,,,, 11   to be the current configuration of 

the i-th cell and its neighbors, where r  is the neighborhood radius. Then the successor 
1t

iS  of 

the i-th cell can  be achieved by:  t

ri

t

i

t

i

t

i

t

ri

t

i sssssfS 

  ,,,,,, 11

1  ,
 
and the predecessor 

1t

iS of the  i-th cell is:  t

ri

t

i

t

i

t

i

t

ri

t

i sssssgS 

  ,,,,,, 11

1  . If the rule g  is the reverse of 

the rule f , a CA moved to n time steps by using rule f , the reverse rule g  can be applied till 

the same number of time steps to obtain the original configuration of the CA. 

   Concretely, we define four one-dimensional, 4-state and 
2

1
-radius RCAs, labeled CA1, CA2, 

CA3 and CA4, where iCA =  ir fNS ,,,1 ,  41  i , S  is the state set and  3,2,1,0S ,  

rN is neighborhood with 
2

1
-radius. Set each cell takes the cell at its right position as its 

neighbor (Fig. 3), the transition rules of these CAs are shown in Table 2. 

 

 
Fig. 3. The neighborhood structure of the 1D RCA 

 

   These CAs are all reversible and their reverse rules are themselves. For example, we take 
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01132012030130032 as the initial configuration, which adopts periodic boundary and right 

neighborhood structure. Then use rules of CA1 evolve one time step, and for the new 

configuration we can return to the initial state by CA1.  
 

Table 2.  Reversible rules of four 1D 4-state 1/2-radius RCAs 

 1,t t

i is s 
       

1t

is 
       

CA1 CA2 CA3 CA4 

00 2 0 0 1 

01 0 1 0 1 

02 2 0 0 1 

03 2 2 0 0 

10 1 1 1 0 

11 1 0 1 0 

12 1 2 1 0 

13 1 3 1 1 

20 0 3 2 2 

21 2 3 3 2 

22 0 1 2 2 

23 0 0 2 2 

30 3 2 3 3 

31 3 2 2 3 

32 3 3 3 3 

33 3 1 3 3 

 

From the Fig. 4, we can see that CA1 is reversible, the reverse rule is itself and the other three 

can also prove to be self-reversing. 

 

 
Fig. 4.  CA1 state transition 

     
   In addition, we can set that each RCA has a specific operational direction and each cell in 1D 

RCA only has one adjacent neighborhood, which is illustrated in Fig. 5. 

 

 
Fig. 5. Each 1D CA neighbor structure in construction algorithm 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 10, October 2014                                   3579 

   Reversible rules in order to be useful for cryptography only if they should be numerous and 

exhibit complex behavior. Analysis [21] showed that the ECA turns out that only a small 

number of rules have the property of being reversible. For example, among all 256 one-radius 

ECA transition rules, only six are reversible. For CA of two or more dimensions, it has been 

proved that the reversibility is undecidable for arbitrary rules [22]. So the two-dimensional CA 

used for encryption has an advantage.  Most of the encryption schemes based on the RCA are 

focused on the symmetric encryption [23-28], there appears to be a very few RCA-based 

public key encryption schemes in the literature. In this paper, we propose a new public key 

encryption scheme based on RCA, which utilizes several one-dimensional (1D) RCAs to 

construct a two-dimensional (2D) CA, the 1D CA set as the private key and the 2D CA set as 

the corresponding public key. At the same time, we try to construct the encryption scheme 

based on the layered cellular automata (LCA) with a new T-shaped neighborhood structure, to 

achieve high level security.  

3.3 Layered Cellular Automata and T-shaped Neighborhood 

A layered cellular automata (LCA) can be viewed as a highly parallel system that consists of 

layers and each layer consisting of rows of one-dimensional CA, the number of layers can be 

changed according to actual situation [13]. This stacked structure allows the cell in it has more 

complex and volatile neighborhood, which may lead to analysis of a new class of CA and is 

much of theoretical interest. In [28], an 8-layer CA is used in block encryption scheme, the 

scheme is observed to possess better confusion and diffusion properties when compared with 

AES, and is more efficient than AES.  A two-layer CA and T-shaped neighborhood are shown 

in Fig. 6 and Fig. 7, respectively. 

                             
                      Fig. 6.  A two-layer CA                       Fig. 7. T-shaped neighbor in two-layer CA 

   

   From Fig. 7, we can clearly see what T-shaped neighborhood is, i.e., a cell in the first layer, 

its state changed based on not only its left and right neighbor, but also the cell at the same 

position in the next layer, so the neighbors of central cell ‘ 2 ’ is the left neighbor ‘ 3 ’, the right 

neighbor ‘ 0 ’and the ‘ 0 ’ at the next layer. This neighborhood structure joins two layers of the 

CA and let them become a linked system, can effectively improve the diffusion property of the 

encryption algorithm with T-shaped neighborhood [23]. 

   In summary, we have the reason to believe that the interaction between layers of the LCA 

with T-shaped neighborhood structure, in our proposed scheme, will lead to a dynamic and 
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complex behavior and contribute to achieve better properties of confusion and diffusion. 

3.4 Security Assumption 

The Reversibility problem of CA: Kari has proven that the reversibility of two-dimensional 

(2D) CA is undecidable, even when restricted to CA using the Von Neumann neighborhood 

[16]. And there does not exist any algorithms that would decide on a given two-dimensional 

transition rule whether it is reversible or not [22]. So it is impossible that a 2D CA retrace its 

computation steps backwards in polynomial time, if only known the transition rules. 

   That is, let
caf pp ZZ : be the transition rule of a 2D CA. For arbitrary message pZm , 

evolved by the transition rule
caf  for k time steps ( Nk ), will change to a new message m , 

i.e.,   pmfm k

ca mod . The reversibility problem is that if given the message m  and the 2D 

rule 
caf , we cannot get the initial message m .  

   In our proposed encryption scheme, we set Nk as a security parameter and kept private, 

where the k  is vitally important for the security of the scheme. The bigger k  is, the more 

difficult the Reversibility problem of CA is.  In Section 6, we will give a numerical example to 

discuss the influences of different k  on the diffusion property of our proposed scheme.  

   Then we define two hard problems, the Computation Dependent-CA (C-DCA) problem and 

the Decisional Dependent-CA (D-DCA) problem, all based on the Reversibility problem of 

CA. If the Reversibility problem of CA can be solved, then we can solve the C-DCA problem, 

later we can solve the D-DCA problem. Based on these hard problems, we give a Decisional 

Dependent-CA (D-DCA) Assumption, in section 5 we will formally prove our proposed 

scheme is IND-CPA security, based on the D-DCA assumption. 

 

Definition 2.   (Computation Dependent-CA (C-DCA) problem) 

    Let caf pp ZZ :  be the transition rule of a 2D CA and caF pp ZZ : , where 
k

caca fF  , 

Nk . Given  aFca  
pZa , i.e.,    afaF k

caca  ,   is the result of a  evolved 

by transition rule caf  for k  time steps. The C-DCA problem is for some unknown pZa , 

computing  1aFca . 

    The C-DCA assumption holds if for any probabilistic polynomial time adversary, the 

probability  ASucc  is negligible, where, 

        ]|mod1modPr[ p

R

caca ZapaFpaFAASucc   

 

Definition 3.   (Decisional Dependent-CA (D-DCA) problem) 

     The D-DCA problem is stated as follows:  Let caf pp ZZ :  be the transition rule of a 2D 

CA, and caF pp ZZ : , where 
k

caca fF  , Nk . There are two distributions: 

Rand         },|,,{ p

R

caca ZcacFaF   

DCA         }|1,,{ p

R

caca ZaaFaF    

    Where,  aFca  means arbitrary pZa  evolved by the 2D transition rule caf  for k  time 

steps. The D-DCA problem is that for given   , pZ , deciding   , Rand  or 
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  , DCA . 

    The advantage of a distinguisher A  denoted by  AAdv  and defined by:  

       1,Pr1,Pr   AAAAdv DPKERand  

 

Definition 4. (Decisional Dependent-CA (D-DCA) Assumption) 

    Given 
caf pp ZZ :  be the transition rule of a 2D CA, let caF pp ZZ : ,

k

caca fF  , 

Nk , and a pair   , pZ , an adversary takes   ,  as input and distinguishes   ,  

comes from the Rand  or the DCA  distribution. We consider the following random 

experiment on the D-DCA problem. 

 Experiment 
DCAD

AExp 
 

      if b=1,          },|,,{ p

R

caca ZcacFaF  

       Else if b=0, 

          ,,}1,0{ caFAb   

   that if  exist  1,0  is non-negligible and   AAdv , 

   then return 1b , else return 0b . 

    We define the corresponding success probability of A  in solving D-DCA problem via 

 
DCAD

ASucc  ]1Pr[  DCAD

AExp  

    The PKE scheme is said to be  ,t -secure if no polynomial algorithm A  running in time 

t  has success DCAD

ASucc . 

4. Proposed Scheme 

In this section, we present our public key encryption scheme PKE based on the layered cellular 

automata with T-shaped neighborhood, which mainly consists of three algorithms, namely 

Kgen, Enc and Dec. 

Kgen. Given a security parameter Nk , we define four one-dimension (1D) RCAs, labeled 

CA1, CA2, CA3 and CA4, and each iCA =  ir fNS ,,,1 , where S  is the  state set and rN  is the 

neighborhood with r -radius  Nr  . Set each iCA  has n -state, where n N and 2n , 

the state set S = 1,,1,0 n . Set the transition rule SSfi :   41  i  to be reversible. 

In addition, we define all 1D CAs with periodic boundary.  Choose a random string 

s 4321 aaaa  comprised by integers {1, 2, 3, 4} which defines the order of the four 1D CAs in 

the generate 2D rules procedure. Set the private key is sk = (CAa1, CAa2, CAa3, CAa4). 

   We set the corresponding public key is the transition rules of a 2D CA denoted by
*CA , 

where  cafNSCA ,,,2 **   is constructed by the 1D RCAs in the private key sk , so its state 

set is S . Set its transition rule SSfca : , 
4321 aaaaca fffff  . The neighborhood 

structure is T-shaped neighborhood, we set a number r N  to define the neighborhood 

radius of 
*CA . Define a function SSFca : , 

k

caca fF  . 
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Fig. 8. A r -radius T-shaped neighborhood structure in plane 

 

   Construct a r -radius T-shaped neighborhood structure in a two-dimensional plane, as 

shown in Fig. 8, and set all possible configurations. Take every configuration as the input of 

the transition rule 
4321 aaaaca fffff   and evolved successively, the final state of the 

central cell set as the output. There are 13 r  inputs in the transition rule and each has 

n -state.   

   For example, we let 
t

jis , denote the state of the central cell at i -row and j -column  at t  time 

step,  and the states of the central cell and its r3  neighbors constitute a configuration,  this 

configuration as the input of the transition rules and evolved to get a new configuration, the 

final state of the central cell as the output of evolving procedure. This procedure can be 

presented as follows: 

 

 
    

4

,

,,1,1,,1,,

,,1,1,,1,,

,,,,,,,,,

,,,,,,,,,

1234











t

ji

t

jri

t

ji

t

rji

t

ji

t

ji

t

ji

t

rjiaaaa

t

jri

t

ji

t

rji

t

ji

t

ji

t

ji

t

rjica

s

sssssssffff

sssssssf





 

    And we set the map of the states of the central cell and its neighbors to its new state, i.e., 

caf :   4

,,,1,1,,1,, ,,,,,,,,, 
  t

ji

t

jri

t

ji

t

rji

t

ji

t

ji

t

ji

t

rji ssssssss  , is a 2D transition rule. For 

all cells, performing this procedure to get the new states, and then get the corresponding 2D 

transition rules. 

   Set the private key sk = (CAa1, CAa2, CAa3, CAa4) and the corresponding public key 

pk = caf . 

   In general, the value of state number n  is always chosen 2, 3 or 4, i.e. the state set S  is 

always set as  1,0 , 2,1,0  or  3,2,1,0 , the radius of the T-shaped neighborhood structure r  

is always chosen 1, 2 or 3. With the increase of the state number and the radius, the number of 

the constructed 2D transition rules will grow exponentially. The more rules in the public key, 

the more secure the algorithm will be. However, if the values of the state number n  and the 

radius r  are too large, the computation complexity will increase and the efficiency of the 

algorithm will be greatly reduced.  

    Enc.  Randomly chosen a random number  pZ , given message M pZ  and the public 

key pk
*CA . 

 For the random number  pZ , because the state set of CA in the private and public key 

is S =  1,,1,0 n , so coding   to  , where 321   , Si  . Then 
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arranged   into a layered CA, as the radius of the T-shaped neighborhood of the 
*CA  is 

r , we set the layer number equal to 1r , in this way, each cell in the layered CA can 

select r  neighbors from the other r  layers.    

    For example, if we set 3r , the layered CA consists of 4 layers (Figure 9), and the 

number of cells in each layer depends on the length of the plaintext. Fig. 9 shadows the cells 

which are the neighbors of the central cell ‘2’ at the first layer, and the central cell has 

10= 13 r   neighbors. 

 

 
Fig. 9. A 4-layer CA with 3-radius T-shaped neighborhood 

 

 Let  n

t

jil Zs ,,  bjairl  1,1,1  denote the state of the cell at the 

l -layer, i -row and j -column at t  time step, where a  is the row number and b is the 

column number. 

 Select the neighbors of each cell according to the T-shaped neighborhood structure with 

r -radius, and each cell has 13 r neighbors. Take the states of the neighbors as the 

input of the rule
k

caca fF  , then compare with the input of 2D transition rules in the public 

key and get the corresponding output. That is,   

 t

jirl

t

jil

t

rjil

t

jil

t

jil

t

jil

t

rjil

k

ca

kt

jil sssssssfs ,,,,1,,1,,,,1,,,,,, ,,,,,,,,, 

    

    All the outputs will comprise the ciphertext of the , denoted by  caF , and then it will be 

coded into   pca ZF   . 

 Encrypt 1  into   pca ZF  1 , then compute    pMFca mod1   . 

 Set   pFC ca mod1   and    pMFC ca mod12   . 

 Set the ciphertext of M  is  21,CCC  . 

 

  Dec. Given a ciphertext C  21,CC  and the private key sk = (CAa1, CAa2, CAa3, CAa4). 

 Compute the reverse rules of the four 1D CAs in the private key, get  
1111

4321
,,, 

aaaa ffff . 

 For given   pFC ca mod1  , coding it to 3211 cccC  , Sci  , arranged into the 

layered CA, then successively cyclic evolved k times by four 1D transition rules 
1

1



af , 
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1

2



af , 
1

3



af  and 
1

4



af , the final states of all cells made up the plaintext  . That is,  

     kt

jirl

t

jil

t

rjil

t

jil

t

jil

t

jil

t

rjilaaaa

kt

jil sssssssffffs ,,,,1,,1,,,,1,,,,

1111

,, ,,,,,,,,,
4321 

    

 Encode  to pZ , and compute 1 pZ , then use the Enc algorithm encrypt 

1  into   pFca mod1  . 

 Compute    pFCM ca mod12   , i.e., the plaintext of C . 

5. Security Analysis 

In this section, we formally prove that the ciphertext  21,CCC   in the proposed PKE 

scheme is semantically secure against chosen-plaintext attack under the assumption that the 

D-DCA problem is hard. 

   The proposed PKE consists of three algorithms, namely Kgen, Enc and Dec. The private 

key is sk = (CAa1, CAa2, CAa3, CAa4, k ) which consists of four 1D RCAs and a security 

parameter k , and the corresponding public key is pk =
*CA . The transition rule of 

*CA  is 

denoted as SSfca : , S is the state set, set function SSFca : , 
k

caca fF  . For arbitrary 

pZa , coding a  to 321 aaaa  , where Sai  . We set  aFca  denote a  evolved by 

function caF , and code  aFca  to  'caF a , where Pca ZF  . 

   Assume that there is an adversary A  which runs in polynomial time and has a non-negligible 

advantage to break the semantic security of the ciphertext  21,CCC   in PKE scheme, 

then we can construct another adversary B which has access to A and achieves a 

non-negligible advantage to break the D-DCA problem. 

    First, A chooses two messages pZm 0  and pZm 1 , and returns them to B . At this 

moment, B flips a bit  1,0b  and generates a ciphertext 

    pmCCC b mod,, 21   , where   pZ , . In the end, B sends  21,CCC   to 

A . After received  21,CCC  , A returns B a bit b  as the guess to b .  B  then returns 1  if 

bb  , else returns 0.  

   On one hand, if the pair   pZ ,  comes from the random distribution Rand , the 

pair        
pcabca ZcacFmaFCC  ,|,, 21  is uniformly distributed, hence 

independently of b . Then  
2

1
|Pr  bbBsuccess

Rand
. 

   On the other hand, when the pair   pZ ,  comes from DCA distribution, one can 

remark that  21,CC  is a valid ciphertext of 
bm , following a uniform distribution among the 

possible ciphertexts. Then  
 

22

1
|Pr

AAdv
bbB

def

success
DCA

 . 

    The advantage of B in distinguishing the DCA and Rand distributions is   

     
 

2
|Pr|Pr

AAdv
bbBbbBBAdv success

DCA
success

Rand
 , 
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therefore greater than 2 . 

   Since  is non-negligible, the above result contradicts with the assumption that the D-DCA 

problem is hard. As a result, the ciphertext  21,CCC   is semantically secure under the 

chosen-plaintext attack (IND-CPA). 

6. Numeric Example 

In this section, we give a numeric example of our proposed encryption scheme, and discuss the 

selection of the security parameter k , which will show that our proposed scheme is correct 

and feasible. 

 

Kgen. Randomly choose the security parameter 5k . We set the four one-dimensional 

4-state 21 -radius RCAs (i.e. 4n , the state set }3,2,1,0{S , the radius 21r  ), 

described in Section 3.2, as the private key, their reversible rules are shown in Table2. 

Randomly generate a string s 1234 , so the private key is sk = (CA1, CA2, CA3, CA4).  

    Then we define the corresponding public key pk =  cafNSCA ,,,2 **  , 
*CA is a 2D CA   

where the transition rule 1234 fffffca  , set the radius of the T-shaped neighborhood to 

be one, i.e. 1r . There are   256413 4 
n

r  possible 2D rules. We set all possible 

configurations  t

ji

t

ji

t

ji

t

ji ssss ,11,,1, ,,,   as the input of, where Sst

ji ,  is the state of the i-th 

row j-th column cell, and the corresponding 2D transition rule can be expressed as  caf : 

  4

,,11,,1, ,,, 

  t

ji

t

ji

t

ji

t

ji

t

ji sssss . 

    There is a concrete example of the rule generation process in Fig. 10, and caf : (2031) →3 is 

a 1-radius 2D rule. Table 3 shown some 2D rules generated by Kgen algorithm. 

 

 
 

 
Fig. 10. The process of generating a 2D rule 

 
 Table 3. Part of the generated 2D rules 

t 0133 1321 3200 2012 1320 3212 2113 1131 

t+1 3 3 1 0 3 0 3 1 

t 2202 2031 0320 3223 1120 1203 2013 0110 

t+1 0 3 2 2 0 3 2 0 

 

Enc. Randomly select a large prime number 37591p , and a random number 

pZ 30930 . Given a message pZM  29753 . Because the state of the CA in the 

2f  
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public and private key is }3,2,1,0{S , so we first coding the number 30930 to 

13203102 . 

 Arrange the   into a two-layer CA because of the radius of the T-shaped neighborhood 

1r . The structure of the two-layer CA is shown in Fig. 11 (a), and its second layer is 

shown in Fig. 11 (b). 

 

                                  
(a). The structure of two-layer CA                      (b). The second layer  

 

Fig. 11. Two-layer Cellular Automata 

 

 Set caF SS : , 
5

caca fF  , where caf is the transition rule of the public key 
*CA . Take 

each cell of the two-layer CA shown in Figure 11 and its neighbors as the input of the rule 

caF , the all outputs make up the ciphertext of   , that is  caF  33102301. Then 

coding the ciphertext to decimal form    pFca mod   pmod48382 10791 . 

 Compute 309311 , coding it to   132031031 


 , encrypt it into 

  pFca mod1   17210 . 

 Set   pFC ca mod1  10791 ,  and    pMFC ca mod12   9372  

 So the ciphertext of the message M  is  21,CCC   9372,10791 . 

 

Dec. Given the ciphertext  21,CCC   and the private key sk = (CA1, CA2, CA3, CA4, 

5k ). Because the four transition rules of 1D CA in the sk  is self-reversible, i.e. 1

1

1 ff 
,  

2

1

2 ff 
,…, 4

1

4 ff 
, so we should not compute their reverse rules.  

 For 
1C 10791  ,  change it to quanternary form  02220213 and arrange it into a 

two-layer CA.  

 Use the transition rules 4321 ,,, ffff in sk  to cyclic evolve every cell successively for 5 

times.  The final configuration of the two-layer CA is the plaintext of 
1C , that is the 

random number  . 

 Compute and encrypt 1  into    pFca mod1 17210 . 

 Compute    pFCM ca mod12   29753 , that is the plaintext. 

   For the security parameter Nk ,  we give an experiment on the difference between 

 caF   and  1 caF  when choosing different values. We define a parameter  1,0  to 

denote the proportion of the  1k

caf  different from the  k

caf . Based on the Reversibility 

problem of CA, only more than half bits in  1k

caf   are changed, i.e. 21 , the semantic 

security of our proposed scheme is achieved. More detailed, the result is shown in Table 4. 
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Table 4. The comparison of  k

caf  and  1k

caf  with different k  

k    k

caf    1k

caf     modcaF p    1 modcaF p      

1 33102301 33122302 25050 25563 2/8 

2 30023000 30002030 12262 11701 3/8 

3 03310330 30030323 15676 12388 6/8 

4 20003003 20200210 32963 34852 5/8 

5 23303332 10030322 10791 17210 6/8 

 

   We can see that the bigger k  is, the better diffusion property we can achieve, which profits 

to effectively prevent the adversary from solving the D-DCA problem. So in the practical 

application, the value of k should be as big as possible on the premise of no obvious reduction 

of encryption efficiency. 

7. Performance Analysis 

The numeric example has shown the feasibility of the proposed encryption scheme PKE. In 

this section, we will exhibit its strengths by giving a comparison between the proposed PKE 

and the algorithm RSA. 

   Since the radius and state sets of the CAs used in the proposed PKE are not appointed, we 

can achieve different size key space by varying the radius and state number. Moreover, 

different key space means more or less calculations and time cost. In our proposed PKE, we set 

the 2D CA in Kgen algorithm has n -state and T-shaped neighborhood with r -radius, so 

there may be 
3 1rnn


possible rules generated as the public key, i.e., the key space is 
3 1rnn


. 

Table 5 shows the key space size and the time of generating the public key when n and r are 

chosen different values and compared with RSA. It’s obviously observed from the table that 

the key space increases quickly as n and r  become large, and the time cost of generating the 

public key of the proposed PEK is less than that of RSA. 

 
Table 5. The key space and timing analysis between PKE and RSA 

 State number Radius Key space Time (ms) 

PKE 

2n    1r    

1r    162   -- 

2r   1282   15.6 

3r   10242   202.8 

4n    
1

2
r    

1r   256 5124 2   31 

2r   
152 327684 2   4477 

RSA   10242   4708 

 

   As we know that an RSA algorithm is secure if and only if the public key n
 pq  is large 

enough to secure against factorization, where p  and q  are set as the private key.  In general, 

p  and q  are at least chosen as 512 bits large primes so that the corresponding product n
 

will be 1024 bits. Factoring a number with this length that is far beyond the capability of 
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existing factorization algorithms. Therefore, we consider RSA-1024 to compare with the 

proposed PKE. 

Because the key space of RSA-1024 algorithm is 
10242 , as well as the plaintext space and 

ciphertext space, here we set 2n   and 3r  , such that 
3 1rnn


= 
10242 . Now, we randomly 

choose 100 plaintexts from the plaintext space and encrypt them to get the cipehertexts, and 

then decrypt these ciphertexts.  All the encryption and decryption are executed by the 

RSA-1024 and our proposed PKE on an Intel Core 2 Duo 2.0 GHZ, in C++ platform. The 

average execution time of the 100 encryption and 100 decryption processes are calculated 

separately and the results are tabulated in Table 6. It is observed that the time taken by our 

proposed PKE is less than RSA-1024, which obviously demonstrates the efficiency of our 

proposed scheme. 

 

Table 6. Average execution time for RSA-1024 and PKE 

 RSA-1024 PKE 

Encryption 2.71ms 2.24ms 

Decryption 4.19ms 3.8ms 

8. Conclusion 

In this paper, we have proposed an efficient public key encryption scheme based on layered 

cellular automata. We use four one-dimensional (1D) RCAs to construct a two-dimensional 

(2D) CA, as the reversibility of 2D CA is undecidable, we set the transition rules of the 

constructed 2D CA as the public key, the 1D RCAs as the private key. And we have formally 

shown the proposed encryption scheme is semantically secure against chosen-plaintext attacks 

(IIND-CPA) in the standard model, based on the difficult Decisional Dependent-CA 

assumption.  Moreover, the proposed scheme is developed with a numerical example, and 

analysis of key space and time efficiency are  also carried out along with RSA-1024, and the 

results demonstrate that proposed scheme is more efficient than RSA-1024. 
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