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Abstract 
 

We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency 

selective channels in orthogonal frequency division multiplexing (OFDM) systems. By 

exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian 

method provides a more accurate and efficient detection of the channel status information 

(CSI) than do conventional sparse channel estimation methods that are based on compressive 

sensing (CS) technologies. Using a reasonable approximation of the system model and a 

skillfully designed pilot arrangement, the proposed estimation scheme is able to address the 

Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, 

to further reduce the computational cost of the channel estimation, we make some 

modifications to the BMP algorithm. The modified algorithm can make good use of the 

group-sparse structure of doubly selective channels and thus reconstruct the CSI more 

efficiently than does the original BMP algorithm, which treats the sparse signals in the 

conventional manner and ignores the specific structure of their sparsity patterns. Numerical 

results demonstrate that the proposed Bayesian estimation has a good performance over 

rapidly time-varying channels. 
 

 

Keywords: Bayesian matching pursuit, orthogonal frequency division multiplexing, 

group-sparse channel estimation, doubly selective channels, inter-carrier interference 
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1. Introduction 

Channel estimation for high mobility wireless communication scenarios is a challenging task 

in orthogonal frequency division multiplexing (OFDM) systems because the severe Doppler 

frequency shift destroys the orthogonality of subcarriers, which causes strong inter-carrier 

interference (ICI) to pilot symbols. This interference results in a sharp decline of the 

estimation performance. To address the ICI, traditional estimation methods [1] such as the 

least square (LS) method require a large number of pilot symbols, thereby leading to a reduced  

bandwidth efficiency.  

Recently, the compressive sensing (CS [2, 3])-based channel estimation [4-6] has gained a 

fast-growing interest. Compared with traditional pilot-aided methods, the CS-based channel 

estimation is considered as a more promising technology because it is able to take advantage 

of the inherent sparsity of the propagation channel. This superiority enables the latter to detect 

the channel status information (CSI) with considerably reduced pilot symbols in high mobility 

communication environments. Moreover, in the recent work [7, 8], experimental results 

demonstrated that CS-based methods are clearly superior to traditional estimation methods 

over some real-world multipath channels (e.g., the underwater acoustic channel) in OFDM 

systems. 

As an extension of CS, the Bayesian CS (BCS) [9-11] technologies such as the Bayesian 

matching pursuit (BMP) [12-14] are based on prior statistics of the sparse signal. Using the 

additional priori statistical knowledge, the Bayesian recovery method outperforms the 

conventional sparse recovery methods in many applications. In the field of channel estimation, 

some statistical information of the channel can also be obtained in some scenarios, providing 

the potential for a more precise estimation of the channel or a further reduction of pilot 

symbols. Based on the available channel statistics, the recent work presented in [6] developed 

a statistical basis optimization procedure, which enables channel coefficients to be represented 

by a sparser basis expansion model. Simulation results in this literature showed that the 

statistically optimized basis can achieve an improvement of the estimation performance for 

doubly selective channels. However, until now there has been little CS-based work that 

considers the direct application of BCS approaches to the channel estimation. Therefore, we 

believe that the statistical information of the channel is not effectively exploited in the existing 

sparse channel estimation methods.  

Compared with the related work mentioned above, the uniqueness of the approach 

presented in this paper can be summarized as follows. First, using the channel basis expansion 

function in the delay-Doppler domain, we depict the group-sparsity (i.e., block sparsity) [15, 

16] and statistical properties of doubly selective channels. Based on these priors, we represent 

the CSI by a statistical group-sparsity model, which enables us to formulate the channel 

estimation as a problem of reconstructing the statistical group-sparsity signal. Then, we 

propose a BMP-based method to reconstruct the CSI for rapidly time-varying OFDM systems. 

In this estimation scheme, we adopt an approximate model of the fast fading transmission 

system. This approximation allows us to handle the Doppler-induced ICI with a relatively low 

computational complexity. Moreover, because the BMP algorithm treats the signal as being 

sparse in the conventional sense and ignores the specific structure of their sparsity patterns, we 

make some small changes to BMP, which enable the algorithm to make good use of the 

group-sparse structure of the channel. Simulation results demonstrate that these modifications 

lead to a further reduction of the computational cost. Finally, we also analyze the influence of 
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different pilot patterns on the estimation performance and then present an approximately 

optimal pilot placement for the proposed estimation scheme. 

The remainder of the paper is organized as follows. We introduce some fundamentals 

about the BMP algorithm and the OFDM system in the next section. The sparse and statistical 

properties of the doubly selective channel are described in Section 3. In Section 4, we propose 

a low-complexity estimation method which is based on the modified BMP algorithm. The 

pilot design is also studied. Section 5 shows the experimental results. Conclusions are finally 

drawn in Section 6. 

2. Preliminaries 

2.1 BMP Method  

CS and other sparse recovery methods focus on the classical linear measurement model 

defined as follows 

Y =Φu + Z                                                      (1) 

where      is an unknown K-sparse vector (has only K nonzero entries,    ),       

( K N M  ) is a known measurement signal,        is the measurement matrix and 

         
     is an additive Gaussian noise. It has been proved in [2] that u can be 

reconstructed from Y by conventional sparse recovery methods [2, 3] if the measurement 

matrix satisfies the so-called restricted isometry property (RIP) [17].  

In some scenarios, the sparse signal exhibits an additional structure in the form that the 

nonzero elements occur in groups, not arbitrary places. By taking advantage of the structured 

sparsity, the group-sparse recovery methods [15, 16] can further compress the information of 

sparse signals; thus yield an improved recovery performance compared with traditional CS 

algorithms.  

As another special case of CS technologies, the BMP algorithm [12-14] and other BCS 

methods are based on the additional statistical information of the sparse signal. Generally, u is 

considered as a mixed Bernoulli-Gaussian process in these approaches. More specifically, let 

S  be the support of u, then the elements of S  are assumed to be sampled from {1,2, , }M  

according to the Bernoulli distribution with success probability P. Under this assumption, we 

obtain the probability of S : 

 ( ) (1 )Mp P P  S SS                                                   (2) 

It is observed that the sparsity of u is controlled by P ( [ ]K PME ). Defining uS  to be the 

subvector of u, which is indexed by S , we further assume that the entries of uS  are drawn 

from an Gaussian process with zero-mean and known variance 2 . Then, the minimum 

mean-square error (MMSE) estimate of u from Y is given by 

MMSEˆ [ | ] [ | , ] ( | )p u u Y u Y YE[ E[
S

S S|                                   (3) 

and the maximum a posteriori (MAP) estimate is expressed as 
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MAP MAPˆ [ | , ]u u YE[ S                                                   (4) 

where 

MAP argmax ( | )p Y
S

S S|                                                  (5) 

To calculate the two estimates, the expectation [ | , ]u YE[ S  and the posterior ( | )p YS|  

must be evaluated. We first consider the calculation of the former. Because the relationship 

between u and Y is linear, the linear MMSE (LMMSE) estimate can be used to evaluate the 

expectation [14]:  

 
1

2 2 2[ | , ] H H
N  


 Zu Y Φ I Φ Φ YE[ S S SS                                   (6) 

where ΦS  is the submatrix that consists of the columns of Φ , indexed by S , NI  is an N N  

identity matrix, and ( )H  denotes the conjugate transpose matrix. 

Next, using the Bayesian rule, we have 

( | ) ( )
( | )

( )

p p
p

p


Y
Y

Y

|S S
S|                                                   (7) 

where the factor ( )p Y  can be ignored since it is common for each potential support, and 

( )p S  is obtained from (2). Then, we focus on the prior probability ( | )p Y|S . Because the 

entries of uS  are drawn from 2(0, )CN , we have that |Y|S  is (0, )ΣSCN , where  

2 2 H
N  ZΣ I Φ ΦS S S                                                   (8) 

So, 

     1

1/2

1 1
( | ) exp

2( 2 )

H

N
p



 
  

 
Y Y Σ Y

Σ
S

S

|S                                 (9) 

Note that if the dimension of u is large, there are quite many possible supports. In this case, 

computing the posterior and expectation for all these supports requires an unacceptable 

computational cost. To simplify the estimation, the computation should be restricted to the 

dominant supports, i.e., the supports which have significant posteriors. Defining the dominant 

support set as S * , we approximate the MMSE estimate as follows 

AMMSEˆ [ | , ] ( | )p


 u u Y YE[
S S

S S|
*

                                         (10) 

which is called the AMMSE estimate. Note that the MAP estimate can be treated as an 

extreme case of AMMSE, where the size of S *  is reduced to one. Therefore, we only analyze 

the AMMSE estimate in the rest of the paper. The search procedure of S *  is presented in 

Section 4.2. 
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2.2 OFDM System  

We focus on the discrete time-varying transmission model 

     
1

0

[ ] ,
L

l

y n h n l x n l z n




                                              (11) 

where h[n, l] denotes the channel impulse response (L is the maximum multipath delay), x[n] 

is the input signal, y[n] is the output signal and z[n] is the Gaussian noise with zero-mean and 

variance 2Z . Over a block of N symbols, the linear system can be written in matrix notation as 

y = Hx + z                                                           (12) 

where the vectors ( [0], , [ 1])Tx x N x , ( [0], , [ 1])Ty y N y , ( [0], , [ 1])Tz z N z  

and N NH  represents the channel matrix:  

[0,0] 0 0 [0, 1] [0,1]

[1,1] [1,0] 0 0 [1, 1] [1,2]

[ 1, 1] [ 1,0] 0 0

0 0 [ 1, 1] [ 1,0]

h h L h

h h h L h

h L L h L

h N L h N

 
 


 
 

  
   

 
 

    

H  (13) 

We construct an OFDM system with N subcarriers. Let N NQ  be the standard discrete 

Fourier transform (DFT) matrix ( 2 ( 1)( 1)/( , ) 1/ j p q NQ p q Ne    ), and X, Y be the transmitted 

and received data vectors, respectively. Then, we have Hx = Q X  and Y = Qy . To remove the 

inter-symbol interference (ISI) from the OFDM system, we assume that the length of the 

cyclic-prefix (CP) is longer than L. Then, over a block of an OFDM symbol, we can express 

the overall system model as follows 

Y = GX + Z                                                          (14) 

where the noise vector is Z = Qz  and the overall system matrix is HG = QHQ . The system 

model can also be written in the following form 

,

1,

N

k k k k m m k

m m k

Y G X G X Z
 

                                                (15) 

where the non-diagonal entries of G  represent the ICI response. Inserting HG = QHQ  into 

(15), we have 
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1 1

2 ( )/

1 0 0

1 1

2 ( )/

0 0 1

1
[ , ]

1
[ , ]

N N L

j nk ml nm l N
k m k

m n l

N L N

j nk ml nm l N
m k

n l m

Y h n l e X Z
N

h n l X e Z
N





 

   

  

 

   

  

 
  

 

 
  

 

 

 

                            (16) 

We define the impulse response vector NLh  as follows 

0 1( , , ) ,

( [0, ], , [ 1, ])

T
L

l h l h N l



 

h h h

h
                                             (17) 

and an N NL  matrix A as follows 

2 ( )/
,

1

1 N

j nk ml nm l N
k q m

m

A X e
N

   



                                           (18) 

where ( 1)mod( )n q N  , and ( 1 ) /l q n N   . Then, (16) can be expressed in matrix 

notation as 

 Y Ah Z                                                           (19) 

The system model is changed as a function of h, which is convenient for us to address the 

channel estimation problem. 

3. Sparsity and Statistical Characteristics 

We construct a doubly selective channel which consists of S propagation paths. The channel 

impulse response is expressed as 

 2

1

( , ) ( ) s

S

j f t
s s

s

h t e     


                                                (20) 

where ( )   is the Dirac function, s , s  and sf  denote the magnitude, multipath delay and 

Doppler frequency, respectively. Assuming that the sampling period is T, we approximately 

consider that /s T  are integers for 1, ,s S . In this case, the discrete impulse response is 

given by  

2

1

[ , ] ( ) s

S

j f nT
s s

s

h n l l T e   


                                              (21) 

We first investigate the sparse structure of the channel. To describe the sparsity in the 

delay-Doppler domain, we use the delay-Doppler basis expansion:  

 
1

2 /

0 1

1
[ , ] [ , ] [ , ]

N S

j dn N
s

n s

u l d h n l e u l d
N






 

                                     (22) 
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where  

1

2 ( )

0

1
[ , ] ( )

0, , 1, 0, , 1

s

N

j d f NT n N
s s s

n

u l d l T e
N

l L d N

  


 



 

   


                               (23) 

Now we focus on the following function  

1

2 ( )

0

sin( ( ))
[ ]

sin( ( ) / )
s

N
sj d f NT n N

s

sn

d f NT
E d e

d f NT N








 




 


                          (24) 

which describes the energy distribution of [ , ]su l d  in the frequency domain. Generally, the 

normalized Doppler frequency is          ; thus the frequency offset is constrained in a 

small band around the zero point [6-8, 18]. An example of [ ]sE d  is shown in Fig. 1. 

 
Fig. 1. An example of [ ]sE d , N = 1024, 0.3sf NT   

 

As observed in Fig. 1, the energy of [ ]sE d  is concentrated in the subspace [ , ]d D D   for 

an appropriately chosen D ( [ , 1]D   is the circular shift of [ , 1]N D N  ). Because 

( ) 0sl T    if sl T , the dominant components of [ , ]su l d  are mainly concentrated in 

the group { [ / ,0], , [ / , ],s s s su T u T D  [ / , ], , [ / , 1]}s s s su T N D u T N   . For all S paths, 

the significant elements of [ , ]u l d  cluster in S such groups. Ignoring the small-magnitude 

elements, we approximately consider that [ , ]u l d  has only S nonzero groups, which only occur 

in the subset [0, 1] ([0, ] [ , 1])L D N D N   ∪ . The number of valid channel coefficients is 

decreased from NL to (2D+1)L. 

We define a (2D+1)L-length vector as follows:   
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0 1( , , ) ,

( [ ,0], , [ , ], [ , ], , [ , 1])

T
L

l u l u l D u l N D u l N



  

u u u

u
                              (25) 

Then, only S of the groups ( 0 1, , Lu u ) are nonzero. If S L , u is approximately an 

group-sparse vector over this group partition. 

Next, we investigate the channel statistical properties. Without loss of generality, we 

assume that for 1, ,s S , s  and sf  are uniformly sampled from {0, , ,( 1) }T L T  and 

max max, ][ f f , respectively, and 2(0, )s CN  is a Gaussian process. Because lu  is nonzero 

only if /sl T , we can approximately consider that each group of u has the probability 

/P S L  to be nonzero (i.e., a Bernoulli process). We assume that S  is a possible support of u, 

which corresponds to a certain group-sparse pattern. Then, the probability of S  is given by 

| |/(2 1) | |/(2 1)( ) (1 )D L Dp P P   S SS                                              (26) 

Moreover, the entries within each nonzero group of u are Gaussian. Therefore, u can be 

considered as a group-version of the mixed Bernoulli-Gaussian process.  

4. BMP-Based Channel Estimation 

In this section, we propose a BMP-based estimation method to reconstruct the CSI. In the 

proposed estimation, we make some changes to BMP, which enable the algorithm to address 

the group-sparse channel coefficients in a more efficient manner. Furthermore, a discussion 

about the pilot pattern is also presented. 

4.1 Proposed estimation scheme 

We consider the representation of (19) in the delay-Doppler domain. From (22), the 

relationship between h and u is obtained as 

( ( ) )H
L h = I FQ u                                                       (27) 

where   denotes the Kronecker product, and (2 1)D N F  denotes the uniform 

down-sampling operation from  1, N  to    1, 1 1,D N D N  ∪ . Using u to replace h, we 

transform (19) into the form  

Y Φu + Z                                                             (28) 

where the (2 1)N D L   matrix ( ( ) )H
L Φ A I FQ . We define a (2 1)D L -length vector  

 

0 1( , , ),

1, , 1, 1, ,

L

i Ni Ni D Ni N D Ni N



       

m m m

m
                      (29) 

and, subsequently, ( 1)mod( )qn m N   and ( 1 ) /ql m n N    for 1, ,(2 1)q D L  . Then, 

the entries of Φ  are expressed as follows 
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 
2 ( 1) /

, ( 1)mod 1

1
j k n l N

k q k n Ne X
N

  
                                        (30) 

It is seen that  ( 1)mod 1 kk n NX X     if 0n  . Essentially, these symbols are the direct 

neighbors on both sides of kX . Hence, the corresponding entries ,k q  describe the 

interference of these neighboring symbols (i.e., the ICI response) on kY . Assume that there are 

PN  pilots in the N-symbol block, and the pilot tones belong to the subset 

{ (1), , ( )}Pk k NP . Selecting the measurements at the pilot positions, we form the 

measurement model 

(1) (1)(1),1 (1),(2 1)

( ) ( ),1 ( ),(2 1) ( )P P P P

k kk k D L

k N k N k N D L k N

Y Z

Y Z





     
    

     
         

u                    (31) 

or  

Y =Φ u + ZP P P                                                        (32) 

In the pth row of ΦP , the entries ( ),k p q  corresponding to ( ( ) 1)mod( ) 1k p n N   P  

(n was defined in (30)) are unknown because we know only the pilot symbols, not data 

symbols. These unknown entries represent the ICI from the data symbols. To construct the 

measurement equation without the pre-estimation of ΦP , we should  ignore these unknown 

components. The approximate matrix is defined as follows 

[ ] ( ( ) 1)mod(, ,
[ , ]

0, other s

)

w e

1

i

k p n Np q
p q

 


  
 


P

P

P
                           (33) 

Using ( )  w Φ u ZΦP P P  to replace ZP , we change (32) into the form  

 ΦY u wP P                                                          (34) 

To reconstruct u from (34), we use the modified BMP algorithm, which is described in 

Section 4.2. With the estimate of u, the impulse response vector h is obtained via (27). 

4.2 Modified BMP Algorithm 

To compute the AMMSE estimate of u, we must look for appropriate supports to form the 

dominant set S *  in (10) at first. In [12, 13], a fast greedy approach was proposed to search the 

best supports of different sizes. Here, to make full use of the group-sparsity of u, we make 

some modifications to this greedy approach. And, we will show that the modified algorithm 

can significantly reduce the computational complexity. 

Assume that the sparsity of u is unknown. Then, all potential support sizes must be taken 

into consideration. Since u is a group-sparse vector, we investigate only the group-sparse 

samples instead of all sparse ones. Assuming the maximum possible group-sparsity of u is 

maxS , we consider the group-sparsity that belongs to max[1, ]S . In other words, the support sizes 

of u are selected from the subset max{2 1,2(2 1), , (2 1)}D D S D   . For each potential size, 
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we choose the support S  which has the highest posterior probability. For example, when 

searching the optimal support of size 2 1D  (i.e., one nonzero group), we evaluate 1( | )p YS |  

for 1 0 ,S U , 1LU , where lU  is the support corresponding to lu  ( lu  was defined in (25)). 

The support which maximizes 1( | )p YS |  is considered optimal for this support size. We 

assume that the optimal support is 1 iS U . When evaluating supports of size 2(2 1)D  , we 

choose j iU U , which enables 2 i jS U U∪  to maximize 2( | )p YS | . When the support size 

further increases, the greedy search continues in the same manner. Finally, there are maxS  

supports selected to form S * .  

With the dominant set, the AMMSE estimate in (10) can be calculated using the fast 

recursive method proposed in [12]. In contrast to AMMSE, the MAP estimate in (4) needs less 

steps since it considers only the optimal support instead of all dominant supports. However, 

the reduced complexity probably leads to performance degradation. Detailed steps of the 

modified algorithm are presented in Table 1. 

 

Table 1. Modified BMP algorithm 

Input: Y , Φ , 
2 , 

2
Z

, 
maxS , P 

Initialize: 
0 0 1{ , , }LB = U U , 

0 {}S , {}S*
, 1i   

Support search: 

While 
maxi S , do  

       1.  
1

1 1 1 2 1 1, , ,
i

i i i k i   


     B BS S S∪ ∪ ∪ ; 

       2. argmax ( | )i p YSS S| ; 

       3. { , }iS S S* *
; 

       4. 
0 \i iB B S ; 

       5. 1i i  . 

End while 

     MAP arg max ( | )p


 Y
S S

S S|*  

Compute: 
AMMSEû , 

MAPû   

Output: S*
, 

MAPS , 
AMMSEû , 

MAPû  

Using the modified BMP algorithm, in each iteration of the support search procedure, we 

only need to calculate the posterior around L times. Compared with the modified algorithm, 

the original BMP algorithm requires a far larger number of calculations (about (2 1)D L  

times) because the latter cannot use the group-sparse structure of u. Furthermore, the iteration 

number of the modified BMP algorithm is also decreased from max(2 1)D S  to maxS . Hence, 

the total number of operations is reduced by 2(2 1)D   times. Obviously, the modified BMP 

algorithm has a far lower computational complexity.  

To improve the accuracy of the AMMSE estimate, we should expand the dominant set S *  

to involve more potential supports. This can be done by repeating the support search step 

several times. In each repetition, the supports which already belong to S *  should not be 

chosen again. If we repeat the search procedure R times, the size of S *  is increased from maxS  

to maxRS .  
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In Table 1, maxS , P, 2  and 2Z  can be estimated from some prior channel information or 

set as predefined values. The initial estimates of these hyperparameters should be refined 

during the repeated search procedure. In the rth repetition ( 1r  ), assuming that ( 1)
MAP

rS  is the 

optimal support chosen in the previous round and ( 1)
MAPˆ ru  is the corresponding MAP estimate, 

we update the hyperparameters as follows:  

( 1)
M

max

AP

2 1

r

S
D






S
                                                        (35) 

max
P

L

S
                                                             (36) 

( 1)
MAP

2 v ˆar( )r  u                                                       (37) 

( 1)
MAP

2 var( )ˆ r  Z Φ uYP P                                                (38) 

4.3 Pilot Design 

The performance of the proposed estimation scheme is mainly influenced by two issues: one is 

the approximation error ( )  Φ uw Z ΦP PP , which is equivalent to the data-induced ICI; 

the other is the reconstruction error. To eliminate the former, the pilots should be put together 

and far away from the data symbols. This consecutive pilot pattern enables ΦP  to be 

extremely approximate to ΦP , thereby minimizing the approximation error. On the other 

hand, for the sparse signal reconstruction, the pilot symbols are suggested to be set at random 

places [4, 6]. However, in this case the pilots are very likely to be separated from each other 

and close to the data symbols.  

For the trade-off between the accurate approximation of the system model and the stable 

reconstruction performance, we adopt the combination of the above two pilot patterns. 

Specifically, we divide the pilots into several groups and put these groups at random positions. 

Because each symbol mainly affects its adjacent ones, only the pilots at the borders of the 

groups are interfered by the unknown data symbols if the group size is sufficiently large. In 

this case, the data-induced ICI can be significantly reduced. Hence, compared with the random 

pilot pattern, the proposed combo pilot pattern has an improved robustness to the ICI. On the 

other hand, compared with the consecutive pilot pattern, the combo pilot pattern is expected to 

be more appropriate for the sparse signal reconstruction. The actual effects of the three pilot 

patterns are investigated in the next section. 

5. Numerical Simulations 

5.1 Simulation Settings  

We assume that the OFDM system is divided into 1024  subcarriers, and the CP length ratio is 

1/ 4 . We also simulate a doubly selective channel with ten paths, whose magnitudes 

1 10, ,   are drawn from 1(0, )CN . The delay-Doppler points ( / , )s sT f NT  are uniformly 

chosen from the subset max max{0,1, ,255} [ , ]f NT f NT  , where the maximum normalized 

Doppler frequency maxf NT  varies from 0.1 to 0.3. The additive channel noise is a zero-mean 

Gaussian process. The pilots are independently and randomly sampled from the QPSK 
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alphabets, and the pilot ratio is 1/ 8 . 

Based on the approximate measurement model (34) with 2D  , we reconstruct u using 

the modified BMP algorithm. The support search is repeated 3R   times, and both the 

AMMSE and MAP estimates are calculated. The initial value of  2  is roughly estimated 

using the LS estimate [1]. The initialization of the other hyperparameters is given by: max 7S  , 

max / 256SP   and 2 2 /10 Z . Moreover, we present the performances of the basis pursuit 

de-noising (BPDN) algorithm [19] and the orthogonal matching pursuit (OMP) algorithm [20] 

for comparison. Finally, the runtime of the estimation is also investigated.  

5.2 Numerical Results 

We first focus on the comparison between the proposed Bayesian approach and the 

conventional CS-based methods. The combo pilot pattern is adopted with the group size of 

2 1D . Fig. 2 depicts the mean square error (MSE) performance versus SNR when 

max 0.2f NT 
. Fig. 3 shows the MSE performance versus maxf NT

 when SNR 20 dB . On 

different conditions, the performances of the two modified-BMP estimators (AMMSE and 

MAP) are clearly superior to those of BPDN and OMP. The performance advantage 

demonstrates that the proposed Bayesian method effectively exploits the prior statistics and 

the group-sparsity of channel coefficients. Compared with the MAP estimate, the AMMSE 

estimate has an improved performance as expected. Moreover, the gap between the two 

becomes larger when low SNR or large Doppler spreading occurs, indicating that the AMMSE 

estimate is more robust to extreme channel conditions. This additional superiority of AMMSE 

is because that the repeated support search procedure enhances its performance in poor 

communication environments.  

 

 
Fig. 2. Performance versus the SNR. 
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Fig. 3. Performance versus the Doppler frequency. 

Next, Figs. 4 and 5 depict the performance of the modified BMP algorithm for different 

pilot patterns. Here, we compare the three previously mentioned pilot patterns: Pattern 1 is the 

consecutive pilot pattern; Pattern 2 is the random pilot pattern; Pattern 3 is the combo pilot 

pattern. The AMMSE estimate is adopted. It is observed that Pattern 3 outperforms the other 

two for different SNRs and Doppler frequencies. The good performance of this pattern 

demonstrates that it effectively reduces both the data-induced ICI and the reconstruction error. 

From Fig. 5, it is seen that the performance of Pattern 2 is close to that of Pattern 3 if the 

Doppler spreading is small. However, the former is more sensitive to max sf NT  since it cannot 

address the severe ICI. Pattern 1 has a much worse performance than the other two pilot 

patterns do, indicating that it is not applicable for sparse recovery methods. In summary, the 

combo pilot pattern is very likely to be optimal for the proposed Bayesian estimation scheme 

over rapidly time-varying channels.          

 
Fig. 4. Performances of different pilot patterns versus the SNR 
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        Fig. 5. Performances of different pilot patterns versus the Doppler frequency 

Finally, Figs. 6 and 7 show the mean runtime of these recovery methods. Here we still 

adopt the AMMSE estimate in the two BMP methods. As can be seen in the plots, the two 

BMP algorithms need shorter runtime than does the traditional CS-based method because of 

the efficient use of channel statistics. It is also observed that the modified BMP method is 

much faster than the original one, demonstrating that the proposed modifications effectively 

simplify the reconstruction steps. 

 

 

Fig. 6. Mean runtime versus the SNR. 
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Fig. 7. Mean runtime versus the Doppler frequency. 

6. Conclusion 

We considered the application of the BMP algorithm to the channel estimation for rapidly 

time-varying OFDM systems. By exploiting the basis expansion function of the channel, we 

depicted the group-sparse structure and statistical characteristics of the doubly selective 

channel. Then, we proposed a BMP-based estimation scheme to reconstruct the CSI. In this 

method, we adopted both the MMSE and MAP estimates, providing a trade-off between the 

estimate performance and the computational complexity. Moreover, because the BMP 

algorithm cannot take advantage of the specific structure of the sparsity pattern, we made 

some changes to the support search procedure of BMP, which enable the algorithm to address 

the group-sparse channel coefficients in a more efficient manner. We showed that the 

modified BMP algorithm has a significantly reduced complexity compared with its original 

version. Furthermore, a pilot arrangement was designed to work in conjunction with the 

proposed estimation scheme. Experimental results illustrated the superiority of our method 

over conventional CS-based approaches. 
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