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Abstract 
 

We introduce attribute set based signature (ASBS), a new cryptographic primitive which 
organizes user attributes into a recursive set based structure such that dynamic constraints can 
be imposed on how those attributes may be combined to satisfy a signing policy. Compared 
with attribute based signature (ABS), ASBS is more flexible and efficient in managing user 
attributes and specifying signing policies. We present a practical construction of ASBS and 
prove its security in the standard model under three subgroup decision related assumptions. Its 
efficiency is comparable to that of the most efficient ABS scheme. 
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1. Introduction 

1.1 Motivation 

Flexible and privacy-preserving authentication scheme is a fundamental concern in modern 
cryptography, and attribute based signature (ABS) [1] is proposed as a potential solution. 
However, as observed by Bobba, Khurana and Prabhakaran [2], attribute based systems are far 
from being flexible in managing user attributes and specifying signing policies, mainly due to 
the fact that they organizes user attributes into a single set, and a user can use all possible 
combinations of attributes issued in her attribute keys to satisfy a policy. For example, 
consider a graduate student who has enrolled in course 525 and she is also the TA for course 
101. Here, both ‘CourseID: 101’ and ‘Role: TA’ are valid attributes but their combination is 
not allowed. To prevent such undesirable combination, these attributes have to be appended 
into two strings of ‘Role:TA_CourseID:101’ and ‘Role:Grad_CourseID:525’. However, this 
approach leads to another undesirable consequence where a singleton attribute, say, ‘Role:TA’ , 
can’t be used alone to satisfy a policy, since attribute based systems only checks the equality of 
strings and can’t extract a single attribute from a string. 

To addresses these limitations, Bobba, Khurana and Prabhakaran present ciphertext policy 
attribute set based encryption (CP-ASBE) [2] as an enhancement to attribute-based encryption 
(ABE). By organizing user attributes into a recursive set based structure, CP-ASBE allows 
users to impose dynamic constraints on how those attributes may be combined to satisfy a 
policy, that is, policies can be specified to restrict decrypting users to use attributes from a 
single set or allow them to combine attributes from multiple sets. Moreover, CP-ASBE can 
efficiently support multiple value assignments and attribute revocation. Due to these powerful 
features, CP-ASBE provides an attractive primitive to realize a flexible and fine-grained 
access control in distributed systems. 

Since ABS suffers from almost same problems as ABE, a natural question is whether there 
exists a practical signature analog of CP-ASBE, to realize a flexible and privacy-preserving 
authentication mechanism. 

1.2 Contribution 
In this paper, we introduce attribute set based signature (ASBS) as an enhancement to ABS. 
Since ASBS also organizes user attributes into a recursive set based structure, it shares same 
flexibility and other desirable features with CP-ASBE; that is, ASBS allows dynamic 
constraints to be imposed on how those attributes may be combined to satisfy a signing policy, 
and it also can efficiently support compound attributes, multiple value assignments and 
attribute revocation. We also construct a practical ASBS and prove its security in the standard 
model under three subgroup decision related assumptions. The efficiency of our construction 
is comparable to that of the most efficient ABS scheme. 

Although our ASBS may be thought as the signature analog of CP-ASBE, it can’t be 
straightforwardly converted from Bobba, Khurana and Prabhakaran’s construction, since it 
can only be proved secure under both generic group model and random oracle model. In 
addition, perfect privacy is a specific requirement in our ASBS.  

Roughly speaking, a signature in our construction is generated by re-randomizing a secret 
key, and it is verified by first distributing shares of a secret exponent across some verification 
components and then checking whether the secret can be recovered by the signature. To do so, 
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we need to extend the re-randomization technique from the ABS scheme due to Okamoto and 
Takashima [3], in order to accommodate our more complicated key structure. We also adapt 
the dual system encryption of Lewko and Waters to prove the security of our ASBS. Their 
technique is originally developed to prove the full security of IBE and ABE [4, 5].  

The primary challenge in our construction is how to manage the recursive set based 
attribute structure. Specifically, our construction should allow a signing policy to specify 
whether and how a signer can combine attributes from multiple sets within her attribute 
structure. To tackle the issue, we introduce the translating keys and translating verification 
components. Given a signer’s attribute structure, we randomize attribute keys in each attribute 
set with a unique exponent. Then a translating key is issued for each attribute set, used to 
translate the exponent into a constant such that attribute keys in this attribute set can be 
combined with other attribute keys to satisfy a signing policy. However, this combination can 
only be performed with the help of the corresponding translating verification component, 
which is generated by the verifier when the signing policy does specify to do so. 

1.3 Related Work 
Because ABS is the most related concept to ours ASBS, we briefly review it as follows.  

Maji, Prabhakaran and Rosulek [1] presented the first ABS in 2008. This primitive allows a 
signer to convince a verifer that she holds a set of attributes satisfying the signing policy and 
has endorsed the message. Their scheme supports very expressive signing policies and is 
almost optimally efficient, but its security is only proven in generic group model, an artificial 
model which is not solid enough to guarantee the security. 

Motivated by the limitation of [1], several ABS schemes [6-8, 15-17] were presented to be 
secure in the standard model, but they can only achieve selective security, a weaker notion of 
unforgeability than adaptive security. In this security model, an adversary is required to 
announce the target signing policy she intends to attack before seeing the public parameters. In 
addition, signing policies in most of these ABS schemes are limited to threshold predicate, 
which is less expressive than necessary. 

Maji, Prabhakaran and Rosulek [9] presented the first ABS which is adaptively secure in 
the standard model, but it is much less efficient (in terms of signature size) since it employed 
the Groth-Sahai NIZK system as building blocks, in order to prove relations between the bits 
of elements in the group. By using the technology of dual pairing vector spaces, Okamoto and 
Takashima [3] also presented an ABS scheme which is adaptively secure in the standard 
model, and their scheme is more expressive, i.e., it allows non-monotone predicates to express 
signing policies. They further improved it to accommodate the setting of multi-authority [10].  
However, the efficiencies of their two schemes are several times worse than that of Maji, 
Prabhakaran and Rosulek’s ABS scheme [1]. 

As we mentioned earlier, all of these ABS schemes are not flexible enough in managing 
user attributes and specifying signing policies. So our goal is to present a construction of 
ASBS that satisfies at the same time the following properties: (1) it is proved adaptively secure 
in the standard model, (2) it admits general signing policies, and (3) it is efficient in terms of 
signature size. 

The remainder of the paper is organized as follows. In Section 2, we review some 
definitions and complexity assumptions. Section 3 defines ASBS and formulizes its security. 
In Section 4, we present our construction of ASBS and prove its security. Finally, Section 5 
concludes the whole paper. 
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2. Preliminaries 

2.1 Bilinear Groups of Composite Order and Complexity Assumptions 
Definition 1 (Bilinear group of composite order): A (symmetric) bilinear group of 
composite order is a tuple ( N, G, GT, ê ) where N = p1 p2 p3 for distinct primes p1, p2, p3, G, GT 
are cyclic groups of composite order N, and ˆ : Te G G G× →  is an efficiently computable 
function with the following properties: 

(1) ,g h∀ G∈ , ,a b∀ N∈ Z , ˆ ˆ( , ) ( , )a b abe g h e g h=  
(2) The element ˆ( , )e g g  is a generator of GT. 
The security of our construction relies on three subgroup decision related assumptions on 

bilinear groups of composite order. They have been used by Lewko and Waters to prove the 
security of their IBE [4] and ABE [5]. To be concise, in the sequel we use ipG  or i jp pG  to 
denote the subgroup of order pi or pi pj in G. 
Assumption 1: Given a bilinear group of composite order ( N, G, GT, ê ) and random 1pg G∈ , 

33 pX G∈ , it is hard to distinguish a random element T1 1 2p pG∈ from a random element T2 1pG∈  
Assumption 2: Given a bilinear group of composite order ( N, G, GT, ê ) and random 

11, pg X G∈ , 22 2, pX Y G∈ , 33 3, pX Y G∈ , it is hard to distinguish a random element T1 G∈ from a 
random element T2 1 3p pG∈ . 
Assumption 3: Given a bilinear group of composite order ( N, G, GT, ê ) and random α, s N∈ Z , 

1pg G∈ , 22 2 2, , pX Y Z G∈ , 33 pX G∈ , it is hard to distinguish the element T1 = ˆ ( , ) se g g α  from a 
random element T2 TG∈ . 

2.2 Linear Secret Sharing Scheme and Attribute Structure 
Definition 2 (Monotone access structure [11]): Let P = {  1P ,  2P ,…,  lP } be a set of parties 
(attributes in our setting). A collection 2Λ ⊆ P  is monotone if ,B C∀  : if B ∈ Λ  and B C⊆  
then C ∈ Λ . A monotone access structure is a collection Λ  of non-empty subsets of P , and 
elements in Λ  are called as authorized sets. 
Definition 3 (Linear secret sharing scheme (LSSS) [11]): A secret sharing scheme over a set 
of parties P = {  1P ,  2P ,…,  lP } is called linear (over 

NZ ) if, 
(1) The shares of each party form a vector over 

NZ , and 
(2) There exists a matrix A with l rows and n columns, and a function ρ which maps xA , the 

x-th row of A, to the party ( )xρ  for x = 1, …, l. Given a random vector v = (s, v2,…, vn) n
N∈ Z , 

A v⋅  is the vector of l shares of the secret s, and xA v⋅  belongs to party ( )xρ . 
Using standard techniques [12], any monotonic boolean formulas can be converted into an 

LSSS matrix A to represent its access structure Λ . For each authorized set B ∈Λ , there exists 
a reconstruction vector ω = (ω1, ω2,…, ωl) l

N∈ Z , where ωx = 0 if ( )xρ ∉ B, such that Aω ⋅ = (1, 
0, …, 0) and ( )  x xx B A v sρ ω∈ ⋅ =∑ . On the contrary, no reconstruction vector exists if B ∉Λ .  

Definition 4 (Attribute structure): An attribute structure in ASBS is a recursive set where 
each element of the set is either a set itself (i.e. an attribute structure) or an attribute. 

The depth of an attribute structure is defined as the number of its recursive levels. Like the 
CP-ASBE [2], our construction mainly focuses on the attribute structure with depth 2, where 
elements at depth 1 can either be attributes or sets but elements at depth 2 can only be 
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attributes, belonging to some sets at depth 1. For each set at depth 1, an index, numbered from 
1, is assigned to identify it. For the sake of consistency, attributes at depth 1 can be thought to 
form a set with index of 0. We also abuse the notion of index to an individual attribute, which 
is defined as the combination of the index of the set it belongs to and its sequence number in 
the set. 

In our construction, a signing policy is expressed by a monotonic boolean formula and a 
signer’s attributes are described by an attribute structure. If a signer’s attribute structure 
satisfies the signing policy, the signing policy is realized by the corresponding LSSS matrix 
and the reconstruction vector is used to generate a signature. 

3. Definitions 

3.1 Attribute Set based Signature 
Definition 5 (Attribute Set based Signature): An attribute set based signature ASBS = 
{Setup, KGen, Sign, Verify} is a tuple of polynomial time algorithms. 
–Setup(1λ) → (PK, MSK) .  On input security parameter 1λ, the setup algorithm outputs the 
public parameters PK and a master secret key MSK for the attribute authority. 
–KGen(PK, MSK, AS) → SK.  Given (PK, MSK) and an user’s attribute structure AS, the key 
generation algorithm outputs a secret key SK for the user. 
–Sign(PK, SK, M, (A, ρ)) → σ.  The signing algorithm takes in PK, a secret key SK, a message 
M and a LSSS access structure (A, ρ) over the universe of attributes. If the attribute structure in 
SK satisfies the LSSS access structure, it outputs a signature σ. 
–Verify(PK, M, (A, ρ), σ) → 1/0.  Given PK, a message M, a LSSS access structure (A, ρ) and 
a signature σ, the verification algorithm outputs 1 if σ is a valid signature on M or 0 otherwise. 

3.2 Security model for ASBS 
Perfect privacy and unforgeability are two security properties that ASBS should satisfy. We 
give their formal definitions as follows. 
Definition 6 (Perfect Privacy): An ASBS scheme is perfect privacy, if, for all (PK, MSK) ← 
Setup(1λ), all messages M, all attribute structures AS(1) and AS(2), all secret keys SK(1)← 
KGen(PK, MSK, AS(1)) and SK(2)← KGen(PK, MSK, AS(2)), all access structures (A, ρ) such 
that both AS(1) and AS(2)

 satisfy (A, ρ), the distributions of σ(1) = Sign(PK, SK(1), M, (A, ρ)) and 
σ(2) = Sign(PK, SK(2), M, (A, ρ)) are equal. 
Definition 7 (Existential Unforgeability): For an adversary A, we define GameAdvA  to be 
its success probability in the following game. An ASBS scheme is existentially unforgeable if 
GameAdvA  is negligible for any polynomial-time adversary A. 
–Setup  Run (PK, MSK) ← Setup(1λ ) and give PK to A.  
–Queries  A can adaptively makes a polynomial number of q queries of the following two 
types: 

(1) Key Queries  A can request a secret key for any attribute structure AS.  
(2) Signing Queries  A can request a signature for any message, attribute structure AS and 

access structure (A, ρ), with the restriction that the attribute structure AS should satisfy the 
access structure (A, ρ). 
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–Forgery  A outputs a signature *σ  on a message *M  and an access structure ( *A , *ρ ). 
A succeeds in the game if 

(1) Verify(PK, *M , ( *A , *ρ ), *σ ) = 1. 

(2) A has never queried a secret key for an attribute structure *AS  satisfying ( *A , *ρ ). 

(3) A has never queried a signature on message *M  and ( *A , *ρ ). 

4. OUR ASBS 

4.1 Construction 
We construct our ASBS in a bilinear group of composite order (N, G, GT, ê ), where keys and 
signatures occur in the subgroups 1 3p pG , while the subgroup 2pG is used as the semi-functional 
space to prove the security of our construction.  
–Setup(1λ)   The setup algorithm performs the following steps:  

(1) Generate a bilinear group (N, G, GT, ê ) of composite order N = 1 2 3p p p .  
(2) Pick random value α, a N∈ Z , g 1pG∈ , X3 3pG∈ , and choose u0, u1,…, uη 1pG∈  as Water’s 

hash function [13], where η is the length of a message. To be concise, we define F(M) 
= 0 1( ) i

iiu u
µη

=∏  for a message M = (μ1, μ2,…, μη). 
(3) Let the universe attribute structure be AS = { AS0, AS1, …, ASm}. For each attribute set 

ASi = { ,1iat , …, , ii nat }, 1 i m≤ ≤ , pick a unique random exponent bi N∈ Z . For the j-th attribute 
appearing in set ASi, 0 i m≤ ≤ , 1 ij n≤ ≤ , pick a unique random exponent hij N∈ Z . 

The algorithm outputs public parameters and the master secret key as: 
PK = ( N, G, GT, ê , g, ag , ˆ ( , )e g g α , u0, u1,…, uη, ibg i∀ , / ia bg i∀ , ijhijH g i j= ∀ ∀ ) 
MSK = (α, ib i∀ , X3) 

–KGen(PK, MSK, AS)  The key generation algorithm chooses a unique random i Nt ∈ Z  for 
each set ASi ∈ AS, 0 i m≤ ≤ . It also chooses random elements '0 3, , ,i i ij pR R R R G∈  and outputs 
the secret key as: 

K = 0 0atg g Rα ,  
Ki = it ig R ,  Kij = ( ) itij ijH R , 0 i m≤ ≤ , 1 ij n≤ ≤  
Li = 0( )/ 'i ia t t b ig R+ , 1 i m≤ ≤   

–Sign(PK, SK, M, (A, ρ))  Let A be an l × n matrix and Ax be the x-th row of A. The function ρ 
maps each row number x to an attribute’s index ρ(x), while the function φ maps x to the index 
of the set the attribute ρ(x) belongs to. The algorithm proceeds as follows: 

(1) Choose random ' '0, ( )x Nt  tϕ ∈ Z  for 1 x l≤ ≤ , and blind the secret key SK as: 

'K = '0( )a tK g = 0 0( 0a t tg g Rα +‘ ） , 
' ( )xKϕ = ' ( )( ) xtxK g ϕϕ = '( ) ( ) ( )x xt t xg Rϕ ϕ ϕ+ ,  
' ( )xKρ = ' ( )( ) ( )( ) xtx xK H ϕρ ρ = '( ) ( )( ) ( )( ) x xt tx xH Rϕ ϕρ ρ+  

' ( )xLϕ = ' '( ) 0 ( )/( ) ( )x xa b t txL g ϕ ϕϕ + = ' '0 0 ( ) ( ) ( )( )/ ' ( )x x xa t t t t b xg Rϕ ϕ ϕ ϕ+ + +  

(2) Find a reconstruction vector ω = (ω1, ω2,…, ωl) l
N∈ Z  and two random vectors β1 = (β11, 

β12,…, β1l), β2 = (β21, β22,…, β2l), such that 1 Aβ ⋅ = 2 Aβ ⋅ = (0, 0, …, 0). We discuss the 
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existence of β1, β2 in the proof of Theorem 1. Then compute: 

aσ = 1' ( ) ( )1' (( ) ( ) ) ( )x x
l rx xxK K H F Mω βρ ρ=∏ , bσ = rg  

1,xσ = 1' ( )( ) x xxK gω βϕ , 2,xσ = ( ) 2/' ( )( ) ( )xx xa bxL g ϕω βϕ , 1 x l≤ ≤  

The algorithm outputs the signature as σ = ( aσ , bσ , 1, 2, 1,...,( , )x x x  lσ σ = ).   
–Verify(PK, M, (A, ρ), σ)  Given a signature σ on a message M, the algorithm first chooses a 
random vector v = (s, v2, ..., vn) n

N∈ Z  and generates a group of verification components as 
follow: 

C = sg , xC = ( )( )xaA v sxg Hρ − , xE = ( )x xb A vg ϕ , 1 x l≤ ≤  

Then the algorithm outputs 1 if the following verification equation holds 
ˆ( , )ae Cσ = ˆ ˆ ( , )  ( ( ) , )s s be g g e F Mα σ 2, 1,1 ˆ ˆ( , ) / ( , ) l

x x x xx e E e Cσ σ=∏                         (1) 
We name the component Li in a secret key and xE  in the verification components as the 

translating key and the translating verification component, respectively. During verification, 
only simultaneous use of both a translating key and the corresponding translating verification 
component can translate the exponents ti in Ki and Kij into the constant t0, and the verification 
succeeds only when all ti are translated into t0. 

4.2 Efficiency 
To show the efficiency and security of our ASBS, we compare it with existing ABS schemes 
which support general signing policies in Table 1, where l and n are the size of the underlying 
LSSS matrix, and λ is the security parameter (e.g., 128). The signature size and complexity are 
measured in terms of the number of group elements and the number of paring operations to 
verify a signature, respectively. In addition, since there are two constructions are presented in 
[9], the more efficient construction based on Waters signature is used to measure the signature 
size, and the underlying Groth-Sahai NIZK system is instantiated under DLIN Assumption. 

Table 1. Comparison with ABS schemes supporting general signing policies 
Schemes Size complexity Model Policy Multi-authority 

MPR08 [1] l + n + 2 n l + n + 3 generic group monotone No 
MPR11 [9] 36l +2n +9λ+12 36l  standard monotone No 
OT11a [3] 7l + 11 7l + 15 standard non-monotone No 

OT11b [10] 13l 13l standard non-monotone Yes 
Our ASBS 2l + 2 2l + 2 standard monotone No 

Although some ABS schemes, such as [6-8, 15-17], have short or even constant signature 
size, we need not compare with them in Table 1, since they only admit threshold signing 
policies, which can’t provide enough flexibility than necessary. Although some of them, such 
as [17], can be extended to admit general signing policies, the signature size, as the authors of 
[17] denoted, will drastically increase.  

Since the ABS scheme due to Maji, Prabhakaran and Rosulek [1] has the best efficiency 
among all ABS schemes, we consider it as a benchmark. Compared with this ABS scheme, our 
ASBS has almost same signature size but less complexity.  

4.3 Perfect Privacy 
Theorem 1. Our construction of ASBS can achieve perfect privacy. 
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Proof. Given a LSSS access structure (A, ρ), if rank(A) < l, there obviously exist polynomial 
numbers of vectors β such that Aβ ⋅ = (0, 0, …, 0). If rank(A) = l, there exists only one β = (0, 
0, …, 0) such that Aβ ⋅ = (0, 0, …, 0), but the signing policy is limited to a (n, n)-threshold 
predicate, which means there is no attribute privacy at all. So we only need to consider the case 
of rank(A) < l. 

To show that two signatures of σ(1) = Sign(PK, SK(1), M, (A, ρ)) and σ(2) = Sign(PK, SK(2), M, 
(A, ρ)) have equal distributions, it suffices to prove that, by choosing proper random 'it , r and 
β1, β2, same signatures can be generated from different keys SK(1) and SK(2). To do so, we 
choose r(1) = r(2) , (1) '(1)

0 0t t+ = 0t = (2) '(2)
0 0t t+  and (1) '(1)

( ) ( )x xt tϕ ϕ+ = ( )xtϕ = (2) '(2)
( ) ( )x xt tϕ ϕ+  for 1 x l≤ ≤ . Given 

(1)
1β = ( (1)

11β ,…, (1)
1lβ ) and (1)

2β = ( (1)
21β ,…, (1)

2lβ ), we also choose (2)
1β  and (2)

2β  by setting 
(2)

1xβ = (1) (2) (1)
( ) 1( )x x x xtϕω ω β− + , (2)

2xβ = (1) (2) (1)
0 ( ) 2( )( )x x x xt tϕω ω β− + + . It is easy to check that (2)

1 Aβ ⋅  
= (2)

2 Aβ ⋅ = (0, 0, …, 0) and σ(1) = σ(2). 

4.4 Existential Unforgeability 
We adapt the dual system encryption technique [4, 5] to prove the unforgeability of our 
construction. Specifically, we define two types of semi-functional signatures and an additional 
semi-functional verification algorithm VerifySF. We also define a sequence of games where 
the first game is the real unforgeable game and in the last game the success probability of any 
polynomial-time adversary is negligible. Then, by standard hybrid arguments, we prove 
several lemmas to show that the adversary's success probabilities are indistinguishable among 
these games. The unforgeability of our construction follows from these lemmas. 
–Semi-functional signatures of type 1  Given a normal signature 'σ = ( 'aσ , 'bσ , 

' '1, 2, 1,...,( , )x x x  lσ σ = ), a semi-functional signature of type 1 is generated by choosing a generator 

22 pg G∈ , random exponents , Nd e ∈ Z  and x Nf ∈ Z , and outputting σ = ( '
2
d

a gσ , 'bσ , 
' '1, 2, 1,...,2 2( ( ) , ( ) )xx x

fe
x x x  lg gω ωσ σ = ).  

–Semi-functional signatures of type 2  Given a normal signature 'σ = ( 'aσ , 'bσ , 
' '1, 2, 1,...,( , )x x x  lσ σ = ), a semi-functional signature of type 2 is generated as σ = ( '

2
d

a gσ , 'bσ , 
' '1, 2, 1,...,( , )x x x  lσ σ = ). 

–VerifySF  This algorithm is same as Verify except that it chooses a random exponent Nc ∈ Z , 
two random vectors , n

Nu w∈ Z , random values x Nγ ∈ Z  for each x, and random values 
( )x Nzρ ∈ Z  for each attribute ρ(x), and generates semi-functional verification components as: 

C = 2
csg g , xC = ( )

( ) 2( ) x x
x

A u zaA v sxg H g ρ
ρ

−− , xE = ( ) 2
x xx x
A wb A vg gϕ

γ , 1 x l≤ ≤  

– Gamereal : The real security game defined in Section 3. 
– 0Game : The real security game with the exception that the algorithm VerifySF is used to 
verify a forged signature. 
– 1Gamek, ,1 k q≤ ≤ : Same as 0Game  except that the first k − 1 signatures are semi-functional 
signatures of type 2 and the k-th key is a semi-functional signature of type 1. 
– 2Gamek, ,1 k q≤ ≤ : Same as ,1Gamek  except that the k-th signature is also a semi-functional 
signature of type 2. 
– Game final : In this game, all signatures are semi-functional signatures of type 2, and the 
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forged signature is verified by VerifySF. 
Lemma 1. Suppose there exists an adversary A such that Game Advreal A  − 0Game AdvA = ε, 
then we can build a simulator S that has advantage ε in breaking the Assumption 1. 
Proof. The simulator S begins by taking in an instance (g, X3, T) of Assumption 1, where T 
= 2

csg g  or sg  for unknown , Ns c ∈ Z . It simulates Gamereal  or 0Game  as follows:  
–Setup  S generates PK and MSK by running the algorithm Setup. 
–Queries  Since S knows the MSK, it can run algorithms KGen and Sign to outputs any secret 
keys and signatures. 
–Forgery  Upon receiving a forged signature, S chooses a random vector 'v  = (1, '2v , ..., 

'nv ) n
N∈ Z , and generates verification components as follows: 

C = T, xC = ( )' xx saA vT T ρ− , xE = ( ) 'x xb A vT φ  
If T = sg , we have C = sg , xC = '

( )x saA sv
xg Hρ

− , xE = ( ) 'x xb A svg φ . They are properly distributed 
normal verification components with the implicit setting of v = 'sv . 

If T = 2
csg g , we have C = 2

csg g , xC = ( )''
2( )

x x
x

A cav cssaA sv
xg H g ρ

ρ
−− , xE = ( )

( )
''

2
x x

x x
cb A vb A svg g ϕ

φ . They are 
well-formed semi-functional verification components if we further set u = 'cav , ( )xzρ = ( )xcsρ , 

( )xcbϕ  = xγ  and w = 'v . Although some values in 1pG  parts of the verification components, 
such as a, 'v , ( )xsρ , ( )xbϕ , are reused in 2pG  parts, it is still properly distributed, since these 
values modulo p2 are uncorrelated from their values modulo p1 due to the Chinese Remainder 
Theorem. Hence S can use the output of A to break the Assumption 1 with advantage ε.                                                                    
Lemma 2. Suppose there exists an adversary A such that 1,2Game Advk − A  − ,1Game Advk A  
= ε, then we can build a simulator S that has advantage ε in breaking the Assumption 2. 
Proof. Given an instance (X1X2, X3, Y2Y3, T) of Assumption 2, where T = 2

etg g R  or tg R , for 
some unknown , Nt e∈ e Z  and 3pR G∈ , S simulates 1,2Gamek −  or ,1Gamek  as follows. 

–Setup  S generates PK and MSK by running the algorithm Setup.  
–Queries  Since S knows the MSK, it can generate any secret keys by running the algorithm 
KGen. S can also generate normal signtures for requests > k by running the algorithm Sign.  

To generate the first k − 1 semi-functional signatures, S first generates a normal signature 
'σ = ( 'aσ , 'bσ , ' '1, 2, 1,...,( , )x x x  lσ σ = ). Then it choose random ' Nd ∈e Z  and outputs the signature as σ 

= ( ' '2 3( )da Y Yσ , 'bσ , ' '1, 2, 1,...,( , )x x x  lσ σ = ). It is a properly distributed semi-functional signature of 
type 2 if we implicitly set 2

dg = '
2
dY  and 0R = '' '0 ( )1 3( ) x

l d
xxR R Yωρ=∏ . 

To generate the k-th signature, S chooses random ( )x Nϕξ ∈ Z , ' ' '' '0 ( ) ( ) ( ) 3, , ,x x x pR R R R Gϕ ϕ ρ ∈  and 
Nr ∈ Z . It also chooses a reconstruction vector ω and two random vectors β1, β2 such that 

1 Aβ ⋅ = 2 Aβ ⋅ = (0, 0, …, 0), and outputs: 

aσ = ( ) ( ) 1' '0 ( ) ( )1( ) (( ) ) ( ) ( )x x x x
l sa rx xxg T R Tg R H F Mϕ ρξα ω βρ ρ=∏ , bσ = rg  

1,xσ = ( ) 1' ( )( )x x xxTg R gϕξ ω βρ , 2,xσ = ( ) ( ) ( ) 2/ /2 '' ( )(( ) ) ( )x x xx xa b a bxT g R gϕ ϕ ϕξ ω βϕ , 1 x l≤ ≤  

If T = 2
etg g R , we have a properly distributed semi-functional signature of type 1 as follows, 

where we implicitly set 0t = t, ( )xtϕ = ( )xt ϕξ+ , xf = ( )2 / xae bϕ , 0R = '0 aR R , ( )xRρ = ( ) ' ( )xs xR Rρ ρ , 
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2
dg = ( )12 2( ) ( ) x x

le e sa xg g ρ ω
=∏ , ( )xRϕ = ' ( )xRRρ , ' ( )xRϕ = 2 '' ( )xR Rϕ . 

aσ = ( ) ( ) ( )1' '0 ( ) ( )1 12 2((( ) ) ( ) ) ( ) ( ) ( )x x x xi x x
l le es s sat a t r ax xx xg g R R g R R H F M g gρ ρ ρ ωα ξ ω βρ ρ+

= =∏ ∏  

1,xσ = ( ) ' ( ) 2( ) ( )x x x xet xg RR g gϕξ ω β ωρ+ , 1 x l≤ ≤  

2,xσ = ( ) ( ) ( ) ( )2/ / 2 /2 '' ( ) 2(( ) ) ( ) (( ) )x x x xx x xet t a b a b a bxg R R g gϕ ϕ ϕ ϕξ ω β ωϕ+ + , 1 x l≤ ≤  

If T = tg R , we have a properly distributed normal signature with the implicit setting of 0t = t, 
( )xtϕ = ( )xt ϕξ+ . 

It can be checked that the k-th signature, in both cases of T = 2
etg g R  or T = tg R , can be 

successfully verified by the algorithm VerifySF, so neither A nor S can distinguish two 
games by verifying the k-th signature.  
 –Forgery  To simulate the algorithm VerifySF, S implicitly sets sg = X1, 2

cg = X2 and obtains 
ˆ( , )  se g g α by computing 1 2ˆ( , )e g X X α . It also chooses a random vector 'u = (a, '2u ,..., 'nu ) and 

generates verification components as follows: 
C = 1 2X X , xC = ( )'1 2 1 2( ) ( ) xX sA uX X X X ρ− , xE = 1( ) '1 2( ) x Xb A a uX X φ − , 1 x l≤ ≤  

We can check that C = 2
csg g , xC = ( )1 ''

2( )
x x

X
A cu cssaA sa u

xg H g ρ

ρ
− −− and xE = 11( )

''
2

xx X
cb A a ub A sa ug g ϕ

ϕ
−

− , thus it 
is a properly distributed verification components with the implicit setting of v = 1 'sa u− , u = 'cu , 

( )xzρ = ( )xcsρ , xγ = ( )xcbϕ  and w = 1 'a u− .  

To sum up, depend on whether T G∈  or 1 3p pT G∈ , S can properly simulate 1,2Gamek −  or 

,1Gamek , thus can use the output of A to break the Assumption 2 with advantage ε. 

Lemma 3. Suppose there exists an adversary A such that ,1Game Advk A  − ,2Game Advk A  = 
ε, then we can build a simulator S that has advantage ε in breaking the Assumption 2. 
Proof. S simulates the games in almost the same way as it does in the lemma 2, except that it 
chooses a random exponent Nh ∈ Z  and generates the k-th signature as: 

aσ = ( ) ( ) 1' '0 ( ) ( ) 2 31( ) (( ) ) ( ) ( ) ( )x x x x
l sa r hx xxg T R Tg R H F M Y Yϕ ρξα ω βρ ρ=∏ , bσ = rg  

1,xσ = ( ) 1' ( )( )x x xxTg R gϕξ ω βρ , 2,xσ = ( ) ( ) ( ) 2/ /2 '' ( )(( ) ) ( )x x xx xa b a bxT g R gϕ ϕ ϕξ ω βϕ , 1 x l≤ ≤  

Depend on T G∈  or 1 3p pT G∈ , it is a properly distributed semi-functional signature of type 2 
or normal signature, and in both cases it can’t be verified by the algorithm VerifySF due to the 
extra term 2 3( )hY Y . Thus S can also use the output of A to break the Assumption 2 with 
advantage ε.  
Lemma 4. Suppose there exists an adversary A such that ,2Game Advq A  − Game Advfinal A  
= ε, then we can build a simulator S that has advantage ε in breaking the Assumption 3. 
Proof. Given an instance ( 2g Xα , X3, 2sg Y , Z2, T ) of Assumption 3, where T = ˆ( , ) se g g α  or 
ˆ( , )re g g  for unknown , , Ns rα ∈ Z , S simulates ,2Gameq  or Game final  as follows. 

–Setup  S chooses random exponents a, ib , ijs , u0, u1,…, uη N∈ Z , and sets PK as: 

PK = ( N, G, GT, ê , g, ag , 2ˆ ( , )e g g Xα , u0, u1,…, uη, ibg i∀ , / ia bg i∀ , ijhijH g i j= ∀ ∀ ) 

–Queries  S generates a secret key as follows: 
K = 0 02 2 0( )at tg X g Z Rα  
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Ki = it ig R ,  Kij = ( ) itij ijH R , 0 i m≤ ≤ , 1 ij n≤ ≤  
Li = 0( )/ 'i ia t t b ig R+ , 1 i m≤ ≤  

Given such a secret key, S generates a signature by running the algorithm Sign. The resulting 
signature is a properly distributed semi-functional signature of type 2 with the implicit setting 
of 2

dg = 02 2( )tX Z . 

–Forgery  To simulate the algorithm VerifySF, S chooses a random vector 'u = (a, '2u ,..., 'nu ), 
and outputs verification components as follows: 

C = 2sg Y , xC = ( )'2 2( ) ( ) xX ss A u sg Y g Y ρ− , xE = 1( ) '2( ) x Xb A a usg Y ϕ −  
It is a properly distributed semi-functional verification components, with the implicitly setting 
of 2

cg = 2Y , v = 1 'sa u− , u = 'cu , ( )xzρ = ( )xcsρ , xγ = ( )xcbϕ  and w = 1 'a u− . Then S verifies the 
signature by the verification equation of ˆ( , )ae Cσ = 2, 1,1ˆ ˆ ˆ ( ( ) , ) ( , ) / ( , )ls b x x x xxT e F M e E e Cσ σ σ=∏ . 

If T = ˆ( , ) se g g α , it is the original verification equation (1) used in VerifySF. Otherwise, due 
to the random T in the verification equation, S rejects the forged signature with overwhelming 
probability. Thus S can use the output of A to break the Assumption 3 with advantage ε.                        
Theorem 2 (Unforgeability). Our construction of ASBS is existential unforgeable under 
Assumptions 1, 2 and 3. 
Proof. It follows from lemma 1 to 4, and the fact that the success probability of any 
polynomial-time adversary in Game final  is negligible. 

5. Conclusion 
In this paper, we introduce attribute set based signature as an enhancement to attribute based 
signature. ASBS organizes user attributes into a recursive set based structure such that 
dynamic constraints can be imposed on how those attributes may be combined to satisfy a 
signing policy. Thus it is more flexible and efficient in managing user attributes and specifying 
signing policies. We present a practical construction of ASBS and prove its security in the 
standard model under three subgroup decision related assumptions. Its efficiency is 
comparable to that of the most efficient ABS scheme. 

Our construction relies on a bilinear group of composite order. This requires large group 
orders to guarantee security. So an interesting direction for future research is to convert it to 
prime order groups, probably using the technique from [14]. 
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