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Abstract 
 

This paper addresses the problem of signal acquisition with a sparse representation in a 

given orthonormal basis using fewer noisy measurements. The authors formulate the problem 

statement for randomly measuring with strong signal noise. The impact of white Gaussian 

signals noise on the recovery performance is analyzed to provide a theoretical basis for the 

reasonable design of the measurement matrix. With the idea that the measurement matrix can 

be adapted for noise suppression in the adaptive CS system, an adapted selective compressive 

sensing (ASCS) scheme is proposed whose measurement matrix can be updated according to 

the noise information fed back by the processing center. In terms of objective recovery quality, 

failure rate and mean-square error (MSE), a comparison is made with some nonadaptive 

methods and existing CS measurement approaches. Extensive numerical experiments show 

that the proposed scheme has better noise suppression performance and improves the support 

recovery of sparse signal. The proposed scheme should have a great potential and bright 

prospect of broadband signals such as biological signal measurement and radar signal 

detection. 
 

 

Keywords: Signal acquirsion, Adaptive selective compressive sensing, signal noisy 

suppression, measurement matrix design 



3560   Wen et al.: Adaptive Selective Compressive Sensing based Signal Acquisition Oriented toward Strong Signal Noise Scene 

 

1. Introduction 

As an alternative paradigm to the Shannon-Nyquist sampling theorem, compressive sensing 

(CS) enables sparse signal to be acquired by sub-Nyquist analog-to-digital converters (ADC), 

thus launch a revolution in signal collection, transmission and processing. The CS theory 

points out that if the signal is compressible or sparse in a transform domain, it can be recovered 

exactly with high probability from fewer measurements via  
1l  -norm optimization [1]. Rather 

than the classical Shannon-Nyquist sampling theorem, which requires sampling signals at 

twice the bandwidth, CS promises to reduce the sampling bandwidth, which depends on the 

sparsity of the signal. Compared with the traditional radio frequency (RF) signal acquisition 

system, the sampling front-end of CS operates at a lower speed and then lowers the cost of the 

front-end sensor (such as size, weight and power consumption). The parts with intensive 

computation of the acquisition process are removed from the front-end sensor and are 

transferred to a central processing back-end. Due to the potential use in signal processing 

applications, CS has attracted vast interests in signal acquisition [2], radar detection [3], 

cognitive radio [4] and Massive antenna arrays [5]. 

CS has been considered from an adaptive perspective in [6]-[10]. The parameterized 

Bayesian model [6] is proposed in to dynamically determine whether a sufficient number of 

CS measurements have been performed. In [7], an empirical Bayesian model based multitask 

learning algorithm is developed to improve the performance of the inversion. An analogous 

work has been done in localization in wireless LANs [8]. These Bayesian methods have been 

demonstrated to achieve better recovery performance. However, they often require fewer 

noisy observations to recover sparse signals than nonadaptive competitors in practice. In [9], 

an adaptive optimal measurement matrix design has been studied in CS-based multiple-input 

multiple-output (MIMO) radar to improve the detection accuracy. In [10], an adaptive CS 

radar scheme is proposed where the transmission waveform and measurement matrix can be 

updated by the target scene information fed back by the recovery algorithm, which achieves 

better detection performance than the traditional CS radar system. 

Generally speaking, the measurement noise in CS can be classified into two categories in 

terms of the generation mechanism [11]. The first category is the signal noise, i.e., jammers 

and interference in the transmission channel. The second category is the processing noise 

caused by the processing and acquisition hardware, i.e., the quantization error in the 

acquisition system. Most of the previous literatures focus on CS acquisition and recovery with 

the processing noise. The recent works in CS show that the measurement process would 

causes the noise folding phenomenon [12], which implies that the noise in the signal 

eventually is amplified by the measuring process. The study of has raised concerns from some 

scholars [13][14]. In [13], the authors evaluate the performance of the CS based wideband 

radio receiver in both signal noise and processing noise environments, and some effective 

suggestions are given for the CS receiver evaluation. In [14], an enhanced 
1l  minimization 

recovery algorithm is developed for signal noise suppression, which has been proven that the 

algorithm providing relatively simple and precise theoretical guarantees. All the above studies 

can be summarized as optimization methods after sparse signals and noise have been acquired. 

Once the acquisition system faced with strong signal noise scene, the benefit from these 

optimization methods may be diminished. Nonetheless, signal noise suppression has not been 

taken into account from the perspective of measurement matrix optimization in the signal 

acquisition current system. 
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In this paper, we provide a new insight into sparse signal acquisition oriented toward strong 

signal noise scene. The mechanism of how does the signal noise exacerbates the recovery 

performance is investigated. An adapted selective compressive sensing (ASCS) scheme is 

proposed for signal noise suppression in the acquisition system. The measurement matrix can 

be adapted according to the noise strength so as to selective measure the signal noise, thus 

provides fewer noisy measurements. For robust noise priori estimation, the multiple 

measurement vectors (MMV) [15] model is used. A method of joint projection filtering in the 

compressive domain and the subspace estimation are proposed in this paper. We evaluate the 

performance via simulations and compare the proposed scheme with a non-adaptive 

implementation.  

The rest of the paper is organized as follows. In section 2, we present the signal model and 

analyze the impact of measurement process on signal noise. Section 3 provides the proposed 

ASCS scheme. The simulation results are given in section 4. Finally, conclusions are given in 

Section 5. 

Notation: Lower case and capital letters in bold denote, respectively, vectors and matrices. 

The superscript ( )T , ( )H , 1( )  and †( )  represent the operators of transpose, Hermitian transpose, 

inverse and pseudo-inverse, respectively; The subscript i
 and j

 accounts for the i -th row 

and j -th column of a matrix; 1
 , 2

  and F
  separately denote the 1l -norm, 2l -norm and 

Frobenius norm.  
 

2. Signal Model 

2.1 Compressive Sensing 

The CS theory states that if a signal is compressible or sparse in a transform domain, it can be 

recovered exactly with high probability from much fewer samples than that required by the 

traditional Shannon-Nyquist sampling theorem. Without loss of generality, for any 1Nx ¡ , if 

there exist unique coefficients  
0

N

n n
s


 such that 

 
1

0

N

n n

n

s




  Ψx φ s   (1) 

where Ψ  denote an N N  orthogonal transform basis with the n -th column given by 
1N

n

φ ¡ , and  1 2, , ,
T

Ns s ss L  is a complex-valued vector with length of N . The signal x  

is called K -sparse if no more than K  elements of its sparse representation s  are nonzero, i.e. 

0
Ks  with K N= . The support of x is 

      supp | 0 1,nn s N  x   (2) 

In order to recover x one must identify  supp x . Therefore, a natural recovery strategy for 

signal recovery is support identification.  

Now we consider a linear projection operator that computes  M K M N   inner products 

between x  and a set of vectors  
1

M

m m



  

 , T

m m my   x x   (3) 
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We collect the measurements and form a vector  1 2, , ,
T

My y yy L . By arranging the 

projection operators  
1

M
T

m m



 as rows of an M N  measurement matrix Φ , the noisy 

measurement process in (3) can be represented as 

    Φ ΦΨ Θy x e = s e = s e   (4) 

where  1 2, , ,
T

Me e ee L   represents the noisy environment effects with each entry 
me  being 

zero mean Gaussian random variable with variance 2

e . As M  is typically much smaller 

than N , the matrix Θ ΦΨ  represents a dimensionality reduction since it maps N¡  into M¡ . 

(4) is turned to be an underdetermined system. The sparse solutions ŝ  to the linear inverse 

problem from (4) can be formulated as the following convex problem 

 
2 2

0 2
ˆ arg min . . es t   Θs s y s   (5) 

In general, this problem is NP-hard. [16] states that the 
0l -norm optimization in (5) can be 

approximated by the 
1l -norm relaxation with a bounded error under certain conditions 

 
2 2

1 2
ˆ arg min . . es t   Θs s y s   (6) 

To ensure stable recovery of sparse vector s by 
1l -norm minimization, the matrix Θ  need 

satisfying the restricted isometry property (RIP) [17] of the order K  with a very small 

constant
K , so that  

    
2 2 2

2 2 2
1 1K K    Θs s s   (7) 

In other word, Θ  acts as an approximate isometry on the set of vectors that are K -sparse. 

Note that Gaussian matrices, Bernoulli matrix and uniformly random partial Fourier matrix 

provide reasonable constants for RIP. A typical means of solving (6) is through an 

unconstrained 
1l -norm regularized formulation 

  2

2 1
ˆ arg min   Θs y s s   (8) 

where    is a tradeoff parameter balancing the estimation quality. The basic framework in (8) 

can be solved by techniques such as greedy algorithms [18] and Bayesian algorithms. 

2.2 Noise Folding in CS 

The basic CS model in (4) is adequate when faced with the measured error or noise. However, 

in many practical scenarios, the signal itself is contaminated by the signal noise, which is not 

accounted for in (4). In [11], the authors present a generalized CS model 

       Φ ΦΨ Θy x e = s + n e = s + n e%   (9) 

where n  stands for the white signal noise with variance 2

n , and e represents the processing 

noise. Basically, this is equivalent to stating that  Ψx = s + n%  is only approximately sparse. 

The noise situation in (9) is subtly different from the basic setting because the signal noise has 

been acted upon by the matrixΘ , and it is possible that Θn  could be potentially rather large. 

Our chief interest here is to understand how n  impacts the recovery performance.  

Before establishing our main result concerning white signal noise, some useful assumptions 

are suggested for our deduction. We suppose that the measurement matrix M NΘ £ fulfills 

the RIP of the order K  and constant
K . Furthermore, we suppose that: 
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1). each row  1,2, ,m m M Θ L  of Θ is orthogonal to others, i.e., 0H

i j  Θ Θ  ( )i j ,  and 

each column of  1,2, ,n n N Θ L is normalized to 1, namely 
2

1n Θ .  

2). each row has the same norm. Since
2 2 2

, , ,2 2
1 1 1 1

M N N M

m n n mF
m n n m

 

   

    Θ Θ Θ Θ , with 

the hypothesis in 1), we have
2

, 2m n
N

M
Θ . 

3). acquisition noise e  is ignored in our discussion, i.e. =0e . 

In our formulation, we use the notation ( )j Θ  to denote the j -th largest eigenvalue ofΘ , and we 

use ( )js Θ  to denote the j -th largest singular value ofΘ , thus we obtain ( ) ( )H

js Θ Θ Θ . To 

establishing our main result concerning white signal noise, a useful lemma is firstly cited, which has 

been proven in [19]. 

Lemma (Lemma 7.1 of [19]).  Suppose that Θ  is a M N  matrix and let   be a set of 

indices with
0

K  . If Θ  satisfies the RIP of order K  and constant
K , for 1,2, ,k K L  we 

have 

 †1 1
( )

1 1
k

K K

s
 

 
 

Θ   (10) 

 We begin by noting that H

M

N

M
ΘΘ I , the expectation of the measured noise power is  

     
2

H H H n

M

N
E E

M


 Θ Θ Θ Θ In n nn   (11) 

which establishes      
2

2 2

2

H n

M n

N
E E Tr Tr N

M




 
   

 
Θ Θ Θ In n n . From the RIP, we can 

get

2

2

2

2

1
Θs

s
, which implies that the sparse signal power hardly changed during the measurement 

process. In order to quantify the impaction of signal noise to the random measurement process, we 

defined the impaction factor 
noiseGain  as ratio of the recovered noise power  2

2
ˆE s s  to the power of 

the noise component that attached to the sparse signal  2

2
E n , therefore

 
 

2

2

2

2

ˆ

noise

E
Gain

E 




s s

n
.  Let 

  to be the indices set with the elements represent the indexes corresponding to the location 

of nonzero elements in s , i.e.  supp  x . The least-squares optimal recovery of s  restricted 

to the index set   is given by 

 †ˆ
 Θ Θs s n   (12) 

Since Θn  is a white Gaussian process, we have 

 

       
       

 

22 † † †

2 2

2

† † † †

2
2

†

1

ˆ
H

H HH n

K
n

k

k

E E E Tr

N
Tr E Tr

M

N
s

M





  

   





  

 

 

Θ Θ Θ Θ

Θ Θ Θ Θ Θ Θ

Θ

s s n n Θ Θn

n n   (13) 
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Combining (13) with (10)  yields  
2

2

2
ˆ nNK

E
M


 s s . In the event that the noise n   is a white 

random vector, there exists  2 2

2 nE K n , thus 

 
 
 

2

2

2

2

ˆ

noise

E N
Gain

ME 


 

s s

n
  (14) 

From which we observe that the noise added to the signal itself can be highly amplified by 

the measurement process as M N= . In the literature, this effect is known as noise folding. 

3. Adaptive Compressive Sensing 

Although prior research have validated the benefits of exploiting RIP in measurement design 

[9][10], such as improving the recovery probability, decreasing the recovery error and so on, 

these benefits diminished when faced with strong signal noise scene. From the above analysis, 

the expected 
noiseGain  closely related to parameters M  and N , which account for the number 

of rows and columns inΘ . Generally, M is related to the RIP condition (which is bound by K , 

N and
K ), and N in

noiseGain  is related to the measured support of noise inΘ . However, only 

Θ  contribute to the sparse vector s and 

Θ  entirely measured the signal noise. In the 

traditional Shannon-Nyquist sampling system, to avoid the noise off the passband, an 

antialiasing filter is applied before the sampling process. Inspired by the necessity of 

antialiasing filtering in bandpass signal sampling, a selective measuring scheme is proposed in 

this paper. The measurement matrix would only sense the interested spectrum, where most 

likely the sparse spectrum lying. 

The measurement matrix in our scheme is modified into  

   1

 Φ A Ψ   (15) 

where M NA  is a random matrix,  is an index set.   A  is defined as a selective 

operation which setting the n -th  n  column of A  to zeroes, act as an antialiasing filter in 

our scheme. 

3.1 Projection Filtering in the Compressed Domain 

The core of the proposed scheme is estimation of the index set , where most likely the noise 

spectrum lying. It is necessary for us to extract the information that each vector 
nΘ  hide in y . 

The simplest way is to projection y  to each vector
nΘ . However, due to the nonorthogonality 

between the columns of the matrixΘ , the projection results would interfere with each other, 

and the low SNR scene increased the difficulty of information extraction. To minimize the 

projection interference, a set of projection filters are applied. The output of the n -th 

 1,2, ,n N L  filter is formed as 

 , H

n n nz  h y h y   (16) 

The output energy is defined as  2

2

H

n n y nE z  Rh h  with the correlation matrix of the 

measured signal  H

y ER yy .  Our objective function is minimized the output energy. In 
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order to avoid the trivial solution such as
n h 0 , a set of linear constraints are added to the 

objective function, which can be expressed as  

  2

2
min . . 1n n nE z s t  Θh   (17) 

The minimum output energy can be achieved with a proper choice of
nopth . We can solve the 

general constrained minimization problem of equation (17) to obtain 
nopth by applying 

Lagrange multiplier method, which resulting in the following unconstrained objective 

function 

    1H

nopt n y n n nf    R Θh h h h   (18) 

To force the gradient of the objective function to be zero, i.e., 
 

0
nopt

n

f




h

h
, we obtain 

1

1
H

n y n




 


Θ R Θ

. The optimal values for 
nopth that minimize the objective function can be 

evaluated as follows 

 
1

1

y n

nopt H

n y n

R





 


Θ

Θ R Θ
h   (19) 

The optimal output energy of 
nz  is    

12
1

2

H

nopt n y nE z




  Θ R Θ and the desired output of the 

filter banks  1 2, , , Nz z zz = L  are  

 H Qz y   (20) 

with 1

y

Q DR Θ  and  1 2, , , Ndiag d d dD L  denotes a diagonal matrix with principal 

diagonal elements being 
1 2, , , Nd d dL  in turn, where  1H

n n y nd 

 Θ R Θ .  Note that in the ideal 

case the matrix Q  can be estimated precisely. Therefore, the Lagrange method converges to 

the optimal solution in a single iteration, as expected for a quadratic objective function. 

3.2 Noise Information Estimation Using Subspace Method 

The model in (9) is a typical single measurement vector (SMV) model. When a sequence of 

measurement vectors are available, (9) can be extended to the multiple measurement vectors 

(MMV) model, which provides informative coupling between the vectors. The noisy MMV 

problem can be stated as solving the following underdetermined systems of equations 

 , 1,2, ,l l l l L  Θy s e   (21) 

where L  is the number of measurement vectors. Since the matrix Θ  is common to each of the 

representation problem, (21) can be rewritten as 

  Y ΘS E   (22) 

where  1 2, , , LY y y y ,  1 2, , , LS s s s and  1 2, , , LE e e e . Additional assumptions are 

that the solution vectors 
1 2, , , Ls s s are sparse and have the same sparsity profile. It is equal to 

state that S is an unknown source matrix with nonzero rows representing the targets. In many 

applications, such as wireless communication and radar detection, the spectrum that signals 

occupied is slowly time-varying, hence the common sparsity assumption is valid.  

The presence of multiple measurements can be helpful in estimating the set Ω. With 

multiple measurements, the desired output in (25) can be represented as  
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 H H    Z Q Y Q ΘS N HS N   (23) 

where HN Q E  and HH Q Θ .  The covariance matrix of the filtered signal is  H

Z ER ZZ . 

The eigenvalue decomposition of 
ZR is 

 
1

N
H H H H

Z j j j s s s n n n

j




   R UΣU U Σ U U Σ Uu u   (24) 

where 
1 2( , , , )Ndiag   Σ , the eigenvalues are complied with 

1 K    1K N     

2

N . The eigenvectors 1 2, , , ku u u corresponding to the  K  larger eigenvalues 
1 2, , , N    

construct signal subspace  1 2, , ,s kU u u u , with  1 2, , ,s K  Σ . Similarly, the later 

N K  eigenvalue are depending on the noise and their numeric values are 2

N . The 

eigenvectors 1 2, , ,K K N u u u corresponding to 
1 2, , ,K K N   

construct noise 

subspace  1 2, , ,n K K N U u u u , and  1 2, , ,n K K N   Σ . Let  stands for the index set 

corresponding to the K  nonzero rows of S , we have  

 2 2H

z n S n n n n n 
   R U H R H U U U   (25) 

where  H

S E S S
  R . It can be seen from (25) that H

S n  H R H U 0 . Since S
R is a 

non-singular matrix, we get H

n H U 0 , thus H

n  U H 0 . This indicates that the column vectors 

in 
H is orthogonal to the subspace of the noise. The spectrum function of sparse location can 

be deduced 

 
1

, 1,2, ,n H H

n n n n

f n N
 

 
H U U H

  (26) 

With the change of n , there would be K large values in (26), which correspond to the sparse 

position. The peak values are obvious with high SNR, but this superiority dwindles under the 

condition of low SNR. However, the non-orthogonality between 
H and 

nU barely affected. 

Hence the index corresponding to the smallest N K  values could be treated as the positions 

of the noise, which should be ignored by the measurement process for noise suppression. In 

order to avoid causing any confusion with strong signal noise level, we consider the index 

corresponding to the smallest (2 P N)P K    values in (26) seemed a high possibility to be 

noise. (26) also can be expressed as 

  1/ , 1,2, ,H

n n n n ng f Tr n N  P U U   (27) 

where 
1

H H

n n n n n



   
   P H H H H , which represents the projection matrix of 

nH . 

3.3 Signal Reconstruction 

Recovery of the signal from the linear projections can be accomplished by solving (8). A 

variety of optimization algorithms are available for the recovery problem, such as Orthogonal 

Matching Pursuit (OMP), Compressive Sampling Matched Pursuit (CoSaMP), FOCal 

Underdetermined System Solver (FOCUSS) and Sparse Bayesian Learning (SBL). The 

regularized M-FOCUSS [15] is chosen for its perfect compromise between computation 

complexity and reconstruction accuracy, which can be summarized as the following iteration 

steps 
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where   stands for the regularization parameter, the p -norm always set to 0.8p  as 

suggested by the authors for robust solution. 

The regularized M-FOCUSS algorithm can be treat as solving at each iteration a weighted 

least squares. The initial solution 1S%  was firstly set to a nonzero weight matrix, with the 

iteration of the algorithm, S% would tend to be stable. The algorithm could be terminated once 

the maximum iteration number reached or a convergence criterion has been satisfied 

 
1d d

F

d
F


 


S S

S

% %

%
  (29) 

where   is a user-selected parameter. The proposed adaptive CS scheme can be summarized 

as following 

(1). Initialize measurement matrix Φ  as (15), set   . Collect the compressed data Y , and 

calculate Ζ using (23). 

(2). Estimate the compressed signal covariance matrix
ZR , then perform an EVD for

ZR , and 

isolate the subspace of the noise
nU . 

(3). Compute the spectrum function in (26) or in (27), select the index corresponding to the 
P smallest value in (26) or the P largest value in (27).  

(4). Update measurement matrix Φ  using (15). 

(5). Measure the signal x  using the updated measurement matrixΦ , recovery the sparse 

information using the iterations of (28) until (29) being satisfied. 

4. Experimental Results and Analysis 

Extensive computer experiments have been conducted and a few representative and 

informative results are presented. We consider a signal sparse in Fourier domain. Unless 

specifically stated otherwise, the following conditions are applied. We set 150N   and 3K  , 

the compressive measured dimension is 50M  , the dimension of the multiple measurement 

vectors is 10L  , and the selective parameter is set to 50P  . In our simulation, the SNR is 

defined as SNR = 20log  2 2
/S N  , where N stands for the signal noise matrix. The 

proposed adaptive method is compared to the adaptive compressive sensing (ACS) method in 

[10] (using M-FOCUSS algorithm for sparse reconstruction) and traditional nonadaptive 

scheme with the recovery algorithms OMP, M-FOCUSS and MSBL. To assess the 

optimization performance of the proposed scheme, 1000 Monte Carlo simulations are 

conducted. In each trial the initial measurement matrix was created with columns uniformly 

drawn from the surface of a unit hypersphere, and the source matrix N LS ¡  was randomly 

generated with K  nonzero rows (i.e., sources). In each trial the indexes of the sources were 

randomly chosen. Two measures were applied for performance assessment, the first one is the 

failure rate defined in [20], and a failed trial was recognized if the indexes of estimated sources 
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with the largest norms were not the same as the true indexes. The second one is the mean 

square error (MSE) defined as 
2 2

22
/S S S%  , where S% represents the reconstructed sources S .  

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR(dB)

F
a
ir
u
re

 R
a
te

 

 

OMP

SBL

FOCUSS

ACS

ASCS

 
-10 -5 0 5 10

10
-3

10
-2

10
-1

10
0

10
1

SNR(dB)
M

S
E

 

 

OMP

SBL

FOCUSS

ACS

ASCS

 
Fig. 1. Performance comparison with various SNR 

 

We explored the recovery performance with different signal noise levels. Fig. 1 depicts the 

performance curve, from which we conclude that the adaptive scheme outperform the ACS 

method and the nonadaptive one with the same noise environment. With the increasing SNR, 

as expected, both schemes would achieve better performance. But meanwhile we noticed 

when SNR ≤ −4dB, the benefit from multiple measurement vectors diminished, and the failure 

rate deteriorate sharply. One obvious observation is that the proposed adaptive scheme would 

achieve lower failure rate with extreme noise conditions. According to the RIP in CS, once 

  logM C K N Θ ( C is a constant and   Θ is defined as the maximum absolute value of the 

normalized inner product between all columns in Θ ), one could accurately recovery the 

sparse vector with high probability.  In our setup, the RIP is satisfied, and therefore further 

optimization for the measurement matrix couldn’t improve the performance significantly. 

However, our ASCS scheme would suppress the signal noise, hence provides high-precision 

recovery performance.  
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Fig. 2. Performance comparison with different sparsity K 

 

Fig. 2 depicts simulation results with different signal sparsity, the SNR is set to 0dB. As this 

figure shows, the increasing of sparsity K leads to the decreasing of the recovery performance, 

but the proposed adaptive method still achieves better performance with respect to failure rate 

and MSE. This phenomenon can be explained as follows. The configured parameters in our 

simulation is only robust for K ≤ 6 according to the RIP[15]. In the case of K ≥ 7, the RIP 

diminished, thus the recovery algorithm fail to recovery S with high probability. The proposed 
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adaptive method enables fewer signal noise being measured through the measurement process, 

therefore the adaptive method performs better than the nonadaptive ones with the same 

configuration. 
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Fig. 3. Performance under different number of measurements L 

 

Fig. 3 shows that the failure rate decreases exponentially with the number of the 

measurement vectors L, and the increasing L narrows the performance gap between the 

adaptive scheme and the nonadaptive one. In practical applications, under the common 

sparsity assumption of source S, we cannot obtain many measurement vectors, as the sparsity 

profile of practical signals is time-varying, such as frequency hopping system. So the common 

sparsity assumption is valid for only a small L in the MMV model. Future research will pay 

much attention to this problem. 
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Fig. 4. Performance comparison with applied in spatial compressive sensing MIMO radar 

 

Finally, we investigated the application of the proposed method for diection-of-arrival 

(DOA) estimation in spatial CS based multip-input and multip-output (MIMO) radar system 

[21]. In this application, the MIMO radar system is configurated with 10 transmit antennas, 10 

receiver antennas, the snapshots number is 5, and 3 targets are located in the far field with 

DOA  15,40,65θ . Unlike the Fourier basis that used in the above simulation, sparse 

dictionary in the application is consist of a series of interesting steering vectors with angel 

range from 0  -90  and resolution is 0.25 . Fig. 4 depicts the performance comparson with 

different SNR and different measurements. As shown in the figures, the OMP method owns 

high failure rate, this is caused by the severe mutual coherence between the atoms of the 

dictionary. The greedy OMP algorithm ensures the residual is orthogonal to the atoms that 

chosen in the last iteration, which may destroy the information hiding in the residual when 
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updating the new residual. Thanks for the noise suppression function, the proposed scheme 

could provide almost precise estimation results.  

5. Conclusion 

In this paper, we proposed an ASCS scheme for signal noise suppression in CS based signal 

acquisition system. A computational framework for the measurement matrix design is 

investigated, which transforms the measurement matrix design into the noise priori estimation. 

A two-step process is developed for locating the noise spectrum precisely. A set of projection 

filter banks are firstly used for minimizing the projection interferences. A subspace method is 

then applied for the noise information estimation. Simulation results demonstrated the 

effectiveness of the proposed scheme. From the view point of future implementation, 

measurement noise should be taken into consideration in the system, and more efficient 

algorithms have to be developed for source pre-estimation with low SNR. On the other hand, 

how to deal with the real world signal (e.g., image, video, or audio) is a problem need for 

further study. 
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